JP6227395B2 - 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置 - Google Patents

三次元測定システム、三次元測定方法、被測定体、および、位置検出装置 Download PDF

Info

Publication number
JP6227395B2
JP6227395B2 JP2013261186A JP2013261186A JP6227395B2 JP 6227395 B2 JP6227395 B2 JP 6227395B2 JP 2013261186 A JP2013261186 A JP 2013261186A JP 2013261186 A JP2013261186 A JP 2013261186A JP 6227395 B2 JP6227395 B2 JP 6227395B2
Authority
JP
Japan
Prior art keywords
measurement
posture
probe
light
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013261186A
Other languages
English (en)
Other versions
JP2015117993A (ja
Inventor
正治 辻井
正治 辻井
赤木 敬治
敬治 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2013261186A priority Critical patent/JP6227395B2/ja
Publication of JP2015117993A publication Critical patent/JP2015117993A/ja
Application granted granted Critical
Publication of JP6227395B2 publication Critical patent/JP6227395B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、三次元測定システム、三次元測定方法、被測定体、および、位置検出装置に関する。
従来、被測定物の三次元座標を測定する構成が知られている(例えば、特許文献1参照)。
特許文献1には、接触子を有するプローブ装置を被測定物として、プローブ装置の三次元座標を測定する位置計測装置が開示されている。
プローブ装置は、所定の相対位置関係で互いに離間して配置された3個の発光点と、この3個の発光点に対して所定の相対位置関係で配置された接触子とを備えている。このような構成により、3個の発光点の位置を測定することで、接触子の三次元座標を測定できるようになっている。
位置計測装置は、水平方向に沿って配置された3個の撮像装置を備えている。3個の撮像装置のうち、両端の撮像装置に設けられたCCD素子は、水平方向に沿ったライン状の撮像範囲を有している。中間の撮像装置に設けられたCCD素子は、上下方向に沿ったライン状の撮像範囲を有している。
プローブ装置の三次元座標を測定する際には、まず、3個の発光点のうち1個の発光点を発光させる。そして、この発光を両端の撮像装置が撮像し、この撮像結果に基づいて、位置計測装置が発光点の水平面における座標を求める。また、この発光を両端の撮像装置が撮像し、この撮像結果に基づいて、位置計測装置が発光点の垂直方向の座標を求める。その後、位置計測装置は、この3個の撮像装置での撮像結果に基づいて、1個の発光点の三次元座標を求める。さらに、撮像装置および位置計測装置は、残りの2個の発光点についても同様の処理を行い、全ての発光点の三次元座標を求める。そして、位置計測装置は、3個の発光点の三次元座標に基づいて、プローブ装置の三次元座標を求める。
このように求められたプローブ装置の三次元座標は、プローブ装置の位置、姿勢を調整する駆動装置が設けられる場合には、所望の位置、姿勢に移動させるためのデータとして用いられる。
特開2013−68541号公報
ところで、プローブ装置の位置を精度よく測定するためには、プローブ装置を撮像装置に正対させることが望ましい。プローブ装置が撮像装置に正対していない場合、特に、プローブ装置が撮像装置に対して前後方向に傾いている場合、撮像装置で撮像された発光点の光強度分布が歪んでしまい、プローブ装置の位置情報が大きな誤差を持つからである。しかし、特許文献1に記載のような構成では、プローブ装置を測定者が保持して移動させるため、プローブ装置を撮像装置に正確に正対させることが困難である。そこで、三次元座標から求められるプローブ装置の姿勢に基づいて、プローブ装置を撮像装置に正対させることが考えられる。
しかしながら、プローブ装置の姿勢を発光点の撮像結果に基づき検出するため、当該検出精度に限界がある。特に、測定原理上、撮像装置に対する前後方向の姿勢の検出精度がよくない。このため、姿勢の検出結果に基づきプローブ装置を撮像装置に正対させたとしても、実際には、プローブ装置が撮像装置に正対させた状態から前後方向に傾いてしまい、プローブ装置の位置を精度よく測定できない場合がある。
本発明の目的は、被測定体の位置を精度よく検出することができる三次元測定システム、三次元測定方法、被測定体、および、位置検出装置を提供することにある。
本発明の三次元測定システムは、互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムであって、前記被測定体は、当該被測定体の姿勢を検出する姿勢センサを備え、前記位置検出装置は、撮像装置と、演算制御装置とを備え、前記撮像装置は、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを備え、前記演算制御装置は、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する位置演算部を備え、前記被測定体および前記演算制御装置のうち少なくとも一方は、前記姿勢センサにおける検出結果に基づいて、前記撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算する姿勢演算部を備え、前記被測定体および前記演算制御装置のうち少なくとも一方は、前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢演算部で演算された前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する正対判断部を備えていることを特徴とする。
本発明の三次元測定方法は、互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを用いた三次元測定方法であって、前記被測定体に、当該被測定体の姿勢を検出する姿勢センサを設け、前記位置検出装置を、撮像装置と、演算制御装置とで構成し、前記撮像装置に、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを設け、前記3個以上の測定用光源が、1個ずつ発光する工程と、前記姿勢センサが、前記発光する工程の実行中に前記被測定体の姿勢を検出する工程と、前記第1ラインセンサおよび前記第2ラインセンサが、前記測定用光源からの光を受光し、前記第1輝度分布および前記第2輝度分布を検出する工程と、前記演算制御装置が、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する工程と、前記被測定体および前記演算制御装置のうち少なくとも一方が、前記姿勢センサにおける検出結果に基づいて、前記撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算し、前記被測定体および前記演算制御装置のうち少なくとも一方が、前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する工程とを実行することを特徴とする。
このような構成によれば、撮像装置の第1,第2ラインセンサが、被測定体の測定用光源からの光を受光し、第1,第2輝度分布を検出する。そして、演算制御装置が、第1,第2輝度分布に基づいて、被測定体の位置情報を演算する。一方、測定用光源が発光する工程の実行中に、被測定体の姿勢センサが、当該被測定体の姿勢を検出する。そして、被測定体および演算制御装置のうち少なくとも一方が、姿勢センサにおける検出結果に基づいて姿勢情報を演算し、被測定体および演算制御装置のうち少なくとも一方が、この姿勢情報と基準姿勢情報に基づいて、撮像装置に対して被測定体が正対しているか否かを判断する。
このように、被測定体の姿勢を姿勢センサで直接検出するため、上記特許文献1に記載されたように撮像装置での受光結果に基づき姿勢を検出する構成と比べて、撮像装置に対する前後方向の姿勢の検出精度を向上できる。したがって、撮像装置に対して被測定体が正対しているか否かの判断を高精度に行うことができ、被測定体の位置を精度よく検出することができる。
本発明の三次元測定システムにおいて、前記被測定体は、当該被測定体の動きを検出する動きセンサを備え、前記位置演算部は、前記動きセンサにおける検出結果に基づいて、前記第1ラインセンサおよび前記第2ラインセンサにおける受光の開始から終了までの間に、前記被測定体が動いていると判断した場合、前記位置情報を演算せずに、前記被測定体が動いていないと判断した場合、前記位置情報を演算することが好ましい。
ここで、第1,第2ラインセンサにおける受光の開始から終了までの間に、すなわち位置情報の演算に用いる情報の取得中に、被測定体が動いた場合、適切な第1,第2輝度分布を検出することができず、被測定体の位置情報を正確に演算できない。
このような構成によれば、第1,第2ラインセンサにおける受光の開始から終了までの間に、被測定体が動いていない場合のみ位置情報を演算するため、適切な第1,第2輝度分布に基づいて、被測定体の位置を正確に検出できる。
本発明の三次元測定システムにおいて、前記位置演算部は、前記正対判断部において前記撮像装置に対して前記被測定体が正対していると判断された場合、前記位置情報を有効にし、前記正対していないと判断された場合、前記位置情報を無効にすることが好ましい。
このような構成によれば、精度よく測定可能な場合のみ位置情報を有効にするため、被測定体の位置検出結果の信頼性を向上できる。
本発明の三次元測定システムにおいて、前記被測定体および前記演算制御装置のうち少なくとも一方は、前記正対判断部での判断結果を報知する判断結果報知部を備えていることが好ましい。
このような構成によれば、判断結果の報知により、測定者は、被測定体が撮像装置に正対しているか否かを認識することができ、被測定体の位置検出結果が正確なものか否かを容易に判断できる。また、測定者は、被測定体が撮像装置に正対するように、被測定体の姿勢を直すことができる。
本発明の三次元測定システムにおいて、前記被測定体は、任意の位置に移動可能なプローブであり、前記プローブは、前記測定用光源および前記姿勢センサを備えたプローブ本体と、このプローブ本体に一体的に設けられ先端にワークと接触する接触子を有するスタイラスとを備え、前記位置演算部は、前記測定用光源に対する前記接触子の配置位置、前記第1輝度分布および前記第2輝度分布に基づいて、前記接触子の位置情報を演算することが好ましい。
このような構成によれば、測定用光源が先端に接触子を有するプローブに取り付けられているため、プローブの接触子をワークの測定部位に接触させれば、接触子が接触したワークの測定部位を正確に測定することができる。
本発明の三次元測定システムにおいて、前記被測定体は、任意の位置に移動可能なプローブであり、前記プローブは、前記測定用光源および前記姿勢センサを備えたプローブ本体と、このプローブ本体に設けられ光を照射するとともに光の照射位置を検出可能な非接触位置検出器とを備え、前記位置演算部は、前記非接触位置検出器によって検出された光の照射位置、前記第1輝度分布および前記第2輝度分布に基づいて、前記光の照射位置を表す位置情報を演算することが好ましい。
このような構成によれば、測定用点光源が非接触位置検出器を内蔵したプローブに取り付けられているため、プローブをワークに接触させることなく、非接触位置検出器からの光をワークの測定部位に向けて照射すれば、光が照射されたワークの測定部位を正確に測定することができる。
本発明の被測定体は、互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムに用いられる前記被測定体であって、当該被測定体の姿勢を検出する姿勢センサと、前記姿勢センサにおける前記姿勢の検出結果に基づいて、前記位置検出装置を構成する撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算する姿勢演算部と、前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢演算部で演算された前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する正対判断部とを備えていることを特徴とする。
本発明の位置検出装置は、互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムに用いられる前記位置検出装置であって、撮像装置と、演算制御装置とを備え、前記撮像装置は、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを備え、前記演算制御装置は、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する位置演算部を備え、前記位置演算部は、前記被測定体から送信される正対信号に基づいて、前記撮像装置に対して前記被測定体が正対していると判断した場合、前記位置情報を有効にし、前記正対していないと判断した場合、前記位置情報を無効にすることを特徴とする。
このような構成によれば、上述の三次元測定システムに好適な被測定体、位置検出装置を提供できる。
本発明の一実施形態に係る三次元測定システムを示す斜視図。 前記三次元測定システムを構成するプローブを示す斜視図。 前記三次元測定システムを示すブロック図。 前記三次元測定システムを構成する検出部の要部を示す斜視図。 前記三次元測定システムを用いたワーク測定処理を示すフローチャート。 前記ワーク測定処理を示すフローチャート。 前記ワーク測定処理において演算制御装置から送信されるパルス信号を示す図。 本発明の変形例に係るプローブを示す斜視図。
<三次元測定システムの構成>
図1に示すように、本実施形態の三次元測定システム1は、被測定体としてのプローブ2と、位置検出装置4とを備えている。位置検出装置4は、撮像装置5と、演算制御装置6と、表示装置7とを備えている。
プローブ2は、図2に示すように、測定者が持って任意の位置に移動可能なプローブ本体21と、このプローブ本体21に一体的に設けられたスタイラス27とを備えている。
プローブ本体21は、一端が結合され、他端が次第に離れるように弓状に湾曲したのち再び結合した2本のアーム22,23を有し、測定者が両手で掴めるように構成されている。また、プローブ本体21の正面において、アーム22,23の一端結合部24と、アーム22,23の他端結合部25を挟んだ両側部とには、測定用光源としての3個ずつの第1〜第3赤外LED(発光ダイオード)261〜263と、第4〜第6赤外LED264〜266と、第7〜第9赤外LED267〜269とがそれぞれ配置されている。つまり、プローブ本体21には、合計9個の第1〜第9赤外LED261〜269が配置されている。
スタイラス27は、プローブ本体21のアーム22,23の他端結合部25から一端結合部24とは反対側に突出して設けられ、先端に球状の接触子28を有している。このように、プローブ本体21に対して第1〜第9赤外LED261〜269と接触子28とが所定の位置関係で配置されているため、第1〜第9赤外LED261〜269の座標を求めることにより、これらの座標から接触子28の座標を求めることができる。
また、プローブ2は、図2および図3に示すように、姿勢センサとしての3軸地磁気センサ29と、動きセンサとしての3軸加速度センサ30と、判断結果報知部31と、プローブ記憶部32と、プローブ制御部33とを備えている。
3軸地磁気センサ29および3軸加速度センサ30は、プローブ本体21における一端結合部24の内部に設けられている。なお、3軸地磁気センサ29および3軸加速度センサ30は、プローブ2と一体的に設けられていれば、どの位置に設けられていてもよい。また、3軸地磁気センサ29および3軸加速度センサ30の個数は、1個であってもよいし複数個であってもよい。
3軸地磁気センサ29は、プローブ制御部33の制御により地磁気の大きさや方向を検出し、その検出結果をプローブ制御部33に出力する。
3軸加速度センサ30は、プローブ制御部33の制御によりプローブ2の加速度の大きさや方向を検出し、その検出結果をプローブ制御部33に出力する。
判断結果報知部31は、正対LED311と、非正対LED312とを備えている。正対LED311および非正対LED312は、それぞれ緑色LEDおよび赤色LEDで構成され、プローブ本体21における一端結合部24の上面から露出するように設けられている。正対LED311は、撮像装置5に対してプローブ2が正対している場合、プローブ制御部33の制御により点灯する。非正対LED312は、撮像装置5に対してプローブ2が正対していない場合、プローブ制御部33の制御により点灯する。
なお、「撮像装置5に対してプローブ2が正対している状態」とは、撮像装置5の後述するケース52における基準面(例えば、検出部531〜533が露出している面)に対して、プローブ2のプローブ本体21における対向面(例えば、第1〜第9赤外LED261〜269が露出している面)が平行な状態であってもよいし、接触子28の三次元座標の演算に影響を及ぼさない程度に傾いている状態であってもよい。すなわち、後述する第1,第2姿勢情報が表す姿勢(向き)と第1,第2基準姿勢情報が表す姿勢(向き)との差が全くない状態であってもよいし、当該差が許容範囲内にある状態であってもよい。
プローブ制御部33は、プローブ記憶部32に記憶されたプログラムおよびデータをCPU(Central Processing Unit)が処理することにより構成されている。プローブ制御部33は、点灯制御部331と、異常判定部332と、姿勢演算部としての第1姿勢演算部333と、正対判断部としての第1正対判断部334とを備えている。
点灯制御部331は、演算制御装置6から発信されるパルス信号に同期して、第1〜第9赤外LED261〜269を順番に点灯させる。
異常判定部332は、3軸地磁気センサ29および3軸加速度センサ30から検出結果を取得する。そして、異常判定部332は、3軸地磁気センサ29および3軸加速度センサ30のうち少なくとも一方の検出結果が異常であると判断した場合、異常信号を演算制御装置6へ送信する。
第1姿勢演算部333は、3軸地磁気センサ29の検出結果に基づいて、撮像装置5に対するプローブ2の姿勢を表す姿勢情報としての第1姿勢情報を演算する。なお、第1姿勢情報としては、プローブ本体21における撮像装置5に対する対向面(例えば、第1〜第9赤外LED261〜269が露出している面)の向きを表す情報が例示できる。そして、第1姿勢演算部333は、プローブ記憶部32に第1基準姿勢情報が記憶されていない場合、第1姿勢情報を基準姿勢情報としての第1基準姿勢情報としてプローブ記憶部32に記憶させる。
第1正対判断部334は、第1姿勢演算部333で演算された第1姿勢情報が表す向きと、プローブ記憶部32に記憶された第1基準姿勢情報が表す向きとに基づいて、撮像装置5に対してプローブ2が正対しているか否かを判断する。そして、第1正対判断部334は、判断結果に基づいて判断結果報知部31を制御するとともに、判断結果を表す信号を演算制御装置6へ送信する。
撮像装置5は、図1および図3に示すように、三脚51と、この三脚51によって略水平に支持された横長箱状のケース52と、3つの検出部531,532,533と、フレームグラバ57と、撮像制御部58とを備えている。
3つの検出部531,532,533は、図4にも示すように、ケース52の正面3箇所、つまり、左右および中央に配置されている。検出部531〜533は、集光領域59から入射した光を1軸上に集光させるシリンドリカルレンズ541〜543と、このシリンドリカルレンズ541〜543によって集光された光を受光し、1軸上における輝度分布を表す輝度分布信号を出力するラインセンサ551〜553と、シリンドリカルレンズ541〜543への光の入射を制御するシャッタ561〜563を備えている。ラインセンサ551〜553は、例えば、CCD(Charge Coupled Device)を一列に配列した構成である。
ここで、検出部531,533において、ラインセンサ551,553は、互いに離間して配置された第1ラインセンサを構成している。ラインセンサ551,553は、集光領域59のX軸(第1軸)と直交するY軸に対して直交し、かつ、X軸に対して僅か内向きに傾斜して配置されている。
シリンドリカルレンズ541,543は、第1光学系を構成している。シリンドリカルレンズ541,543は、ラインセンサ551,553の略中央位置でラインセンサ551,553に対して直交して(Y軸と平行に)配置されている。つまり、検出部531,533は、その向きが中央の検出部532側に僅かに向くように、内向きに傾斜して配置されている。これにより、集光領域59から入射した光は、ラインセンサ551,553によってX軸上の第1輝度分布として検出される。
また、検出部532において、ラインセンサ552は、第2ラインセンサを構成している。ラインセンサ552は、集光領域59のY軸と平行に配置されている。
シリンドリカルレンズ542は、第2光学系を構成している。シリンドリカルレンズ542は、ラインセンサ552の略中央位置でラインセンサ552に対して直交して(X軸と平行に)配置されている。これにより、集光領域59から入射した光は、ラインセンサ552によってY軸上の第2輝度分布として検出される。
各シャッタ561〜563は、各シリンドリカルレンズ541〜543に対し、各ラインセンサ551〜553と反対側に設けられている。
フレームグラバ57は、CCD素子から光強度プロファイル(X軸:ピクセル、Y軸:光強度)を取得する。
撮像制御部58は、図示しない記憶部に記憶されたプログラムおよびデータをCPUが処理することにより構成されている。撮像制御部58は、演算制御装置6から発信されるパルス信号に同期して、検出部531〜533のシャッタ561〜563の開閉を制御する。そして、撮像制御部58は、フレームグラバ57を介して、シャッタ561〜563が開いているラインセンサ551〜553からの画像を取り込み、輝度分布信号として演算制御装置6へ送信する。
演算制御装置6は、演算記憶部61と、演算制御部62とを備えている。
演算制御部62は、演算記憶部61に記憶されたプログラムおよびデータをCPUが処理することにより構成されている。演算制御部62は、タイミング制御部621と、第2姿勢演算部622と、第2正対判断部623と、位置演算部624とを備えている。
タイミング制御部621は、プローブ2の第1〜第9赤外LED261〜269を順番に点灯させるパルス信号を発信すると同時に、これに同期して、撮像装置5に対してもラインセンサ551〜553の輝度分布信号の取り込みを制御するパルス信号を発信する。
第2姿勢演算部622は、撮像装置5からの輝度分布信号に基づいて、プローブ2の姿勢を表す第2姿勢情報を演算する。具体的には、第2姿勢演算部622は、三角測量法を用いて、第1〜第9赤外LED261〜269の三次元座標を演算する。なお、各第1〜第9赤外LED261〜269の三次元座標は、特開2005−233759号公報に開示された公知の方法によって求めることができる。そして、第2姿勢演算部622は、この演算で得られた第1〜第9赤外LED261〜269の三次元座標に基づいて、第2姿勢情報を演算する。例えば、第2姿勢演算部622は、第1〜第3赤外LED261〜263の三次元座標を平均した第1平均座標、第4〜第6赤外LED264〜266の三次元座標を平均した第2平均座標、第7〜第9赤外LED267〜269の三次元座標を平均した第3平均座標を演算する。この後、第2姿勢演算部622は、この第1〜第3平均座標を含む平面の向きを第2姿勢情報として演算する。
さらに、第2姿勢演算部622は、演算記憶部61に第2基準姿勢情報が記憶されていない場合、第2姿勢情報を第2基準姿勢情報として演算記憶部61に記憶させる。
第2正対判断部623は、第2姿勢演算部622で演算された第2姿勢情報が表す向きと、演算記憶部61に記憶された第2基準姿勢情報が表す向きとに基づいて、撮像装置5に対してプローブ2が正対しているか否かを判断する。
位置演算部624は、プローブ2の位置(第1〜第9赤外LED261〜269の三次元座標)と、プローブ2の第1〜第9赤外LED261〜269に対する接触子28の位置とから、三次元測定システム1における接触子28の三次元座標を演算する。なお、接触子28の三次元座標は、本発明の位置情報に該当する。
そして、位置演算部624は、第1,第2正対判断部334,623におけるプローブ2が正対しているか否かの判断結果に基づいて、接触子28の三次元座標の測定結果を有効にしたり、表示装置7に表示させたりする。
<ワーク測定処理>
次に、三次元測定システム1を用いたワークの測定処理について説明する。
まず、図5に示すように、測定者が図示しないコンピュータ等を用いて、演算制御装置6に測定条件をセットする(ステップS1)。測定条件としては、例えば第1〜第9赤外LED261〜269の点灯サイクル、点灯時間、点灯数(制御対象により異なる場合がある)、カメラ撮像タイミングが例示できる。
その後、測定者がプローブ2の接触子28をワークの測定部位に接触させた状態において、プローブ2に設けられた図示省略の測定スイッチを押す。すると、プローブ2のプローブ制御部33は、3軸地磁気センサ29および3軸加速度センサ30を駆動させる。また、演算制御装置6のタイミング制御部621は、測定条件に基づいて、プローブ2および撮像装置5にパルス信号を送信する。具体的には、タイミング制御部621は、図7(A)に示すような、測定サイクルを表すパルス信号(サイクル信号)と、図7(B)に示すような、第1〜第9赤外LED261〜269を順番に点灯(オンオフ)させるためのパルス信号(点灯信号)をプローブ2に送信する。さらにタイミング制御部621は、サイクル信号と、撮像装置5のシャッタ561〜563を開閉させるためのパルス信号(開閉信号)とを撮像装置5に送信する。
ここで、タイミング制御部621は、第1〜第9赤外LED261〜269から撮像装置5に入射される光量が閾値未満の場合、図7(C)に示すように、第1〜第9赤外LED261〜269の点灯時間と同じ時間だけ、シャッタ561〜563を開くような開閉信号を送信してもよい。一方、タイミング制御部621は、撮像装置5に入射される光量が閾値以上の場合、図7(D)に示すように、第1〜第9赤外LED261〜269の点灯時間より短い時間だけ、シャッタ561〜563を開くような開閉信号を送信してもよい。
なお、第1〜第9赤外LED261〜269から撮像装置5に入射される光量が閾値未満か否かを判断する構成としては、図示しない光量計からの測定結果に基づきタイミング制御部621が判断してもよいし、図示しないコンピュータ等を用いた測定者の設定入力によりタイミング制御部621が判断してもよい。
プローブ2が演算制御装置6からサイクル信号および点灯信号を受信すると、図5に示すように、異常判定部332は、サイクルの開始を表すサイクル信号に同期して、3軸地磁気センサ29および3軸加速度センサ30での検出結果の取り込みを開始する(ステップS2)。さらに、プローブ2による第1〜第9赤外LED261〜269と、撮像装置5による撮像を開始する(ステップS3)。このとき、プローブ2の点灯制御部331は、点灯信号に同期して、第1〜第9赤外LED261〜269を順番に点灯させる。また、撮像装置5の撮像制御部58は、開閉信号に同期して、シャッタ561〜563を同時に開閉する。このような処理により、撮像装置5の各検出部531〜533において、第1〜第9赤外LED261〜269からの光に基づいて、輝度分布信号が検出される。そして、この輝度分布信号が演算制御装置6に送信される。
そして、異常判定部332は、サイクル信号に基づいて1サイクルが終了したか否かを判断する(ステップS4)。このステップS4において、異常判定部332は、サイクルの終了を表すサイクル信号を受信していない場合、1サイクルが終了していないと判断し、所定時間経過後にステップS4の処理を行う。一方、異常判定部332は、ステップS4において、サイクルの終了を表すサイクル信号を受信している場合、1サイクルが終了したと判断し、当該サイクル信号に同期して、3軸地磁気センサ29および3軸加速度センサ30での検出結果の取り込みを終了する(ステップS5)。
なお、本実施形態では、第1〜第9赤外LED261〜269の全てを1回ずつ点灯させる周期を1サイクルとしたが、2回ずつあるいは3回以上ずつ点灯させる周期を1サイクルとしてもよい。
この後、異常判定部332は、3軸地磁気センサ29および3軸加速度センサ30の検出結果が正常か否かを判断する(ステップS6)。このステップS6において、異常判定部332は、3軸地磁気センサ29および3軸加速度センサ30のうち少なくとも一方からの信号の乱れや、信号が出力されていないこと等により、両センサからの検出結果を取り込むことができなかった場合、検出結果が異常であったと判断し、検出結果が異常であったことを表す異常信号を演算制御装置6へ送信する。これにより、ステップS2に戻り、タイミング制御部621からサイクル信号、点灯信号、開閉信号がプローブ2および撮像装置5にそれぞれ送信され、再測定が行われる。
一方、ステップS6において、異常判定部332は、3軸地磁気センサ29および3軸加速度センサ30の両方からの検出結果を正常に取り込むことができたと判断した場合、3軸加速度センサ30からの検出結果に基づいて、第1〜第9赤外LED261〜269の撮像中に、プローブ2が静止していたか否かを判断する(ステップS7)。
このステップS7において、異常判定部332は、プローブ2が動いていたと判断した場合、プローブ2が動いていたことを表す異常信号を演算制御装置6へ送信し、ステップS2の処理を行う。これにより、再測定が行われる。一方、ステップS7において、異常判定部332がプローブ2が静止していたと判断した場合、第1姿勢演算部333は、3軸地磁気センサ29の検出結果に基づいて、プローブ2の第1姿勢情報を演算する(ステップS8)。また、異常判定部332は、プローブ2が静止していたことを表す静止信号を演算制御装置6へ送信する。
なお、異常判定部332は、プローブ2が完全に静止している場合のみ静止していたと判断してもよいし、多少動いた場合でも、接触子28の三次元座標の演算に影響を及ぼさない程度であれば、静止していたと判断してもよい。
この後、静止信号を演算制御装置6が受信すると、撮像装置5での撮像結果に基づいて、第2姿勢演算部622がプローブ2の第2姿勢情報を演算するとともに、位置演算部624が接触子28の三次元座標を演算する(ステップS9)。これにより、プローブ2の接触子28が接触したワークの測定部位の座標を求めることができる。
そして、第1,第2姿勢演算部333,622は、第1,第2基準姿勢情報がプローブ記憶部32および演算記憶部61にそれぞれ記憶されているか否かを判断する。すなわち、図6に示すように、第1,第2姿勢演算部333,622は、第1,第2基準姿勢情報を設定済みか否かを判断する(ステップS10)。このステップS10において、第1,第2姿勢演算部333,622は、設定済みでないと判断した場合、第1姿勢情報を第1基準姿勢情報としてプローブ記憶部32に記憶させるとともに、第2姿勢情報を第2基準姿勢情報として演算記憶部61に記憶させる。すなわち、第1,第2姿勢演算部333,622は、第1,第2姿勢情報を第1,第2基準姿勢情報として設定する(ステップS11)。その後、ステップS2に戻り、再測定が行われる。
ここで、測定者は、プローブ2をワークに接触させるとき、精度よく測定するために、プローブ2を撮像装置5に正対させるようにプローブ2の姿勢を調整する。このため、通常、第1,第2姿勢情報は、測定者により調整されたプローブ2と撮像装置5とが正対している姿勢(向き)を表す。本実施形態では、このように測定者が調整したプローブ2の向きを、プローブ2と撮像装置5とが正対している向きを表す第1,第2基準姿勢情報として用いる。
このような構成により、撮像装置5の設置場所や向きが変わった場合でも、当該設置場所や向きに対応する新しい第1,第2基準姿勢情報を、測定者が手動で入力するといった手間をかけることなく、第1,第2基準姿勢情報を設定することができる。
一方、ステップS10において、第1,第2姿勢演算部333,622が第1,第2基準姿勢情報を設定済みであると判断した場合、第1,第2正対判断部334,623は、撮像装置5に対してプローブ2が正対しているか否かを演算する(ステップS12)。このとき、第1正対判断部334は、第1基準姿勢情報が表す向き最新の第1姿勢情報が表す向きとの差を演算し、第2正対判断部623は、第2基準姿勢情報が表す向きと最新の第2姿勢情報が表す向きとの差を演算する。
この後、第1正対判断部334は、プローブ2の正対状態を表示する(ステップS13)。このとき、第1正対判断部334は、ステップS12での演算結果に基づいて、撮像装置5に対してプローブ2が正対していると判断した場合、正対LED311を点灯させるとともに、正対信号を演算制御装置6へ送信する。また、第1正対判断部334は、正対していないと判断した場合、非正対LED312を点灯させるとともに、非正対信号を演算制御装置6へ送信する。
演算制御装置6の位置演算部624は、第1正対判断部334からの正対信号または非正対信号を受信すると、撮像装置5に対してプローブ2が正対しているか否かを判断する(ステップS14)。このとき、位置演算部624は、第1正対判断部334において3軸地磁気センサ29での検出結果に基づき正対していると判断され、かつ、第2正対判断部623において撮像装置5での撮像結果に基づき正対していると判断した場合のみ、撮像装置5に対してプローブ2が正対していると判断する。一方、位置演算部624は、撮像装置5での撮像結果にかかわらず、第1正対判断部334において正対していないと判断された場合、撮像装置5に対してプローブ2が正対していると判断する。このように、撮像装置5での撮像結果よりも3軸地磁気センサ29での検出結果を重視する理由は、上述したように、測定原理上、撮像結果を用いてプローブ2の姿勢を検出する場合、撮像装置5に対する前後方向の姿勢の検出精度がよくない一方で、3軸地磁気センサ29での検出精度が高いためである。
そして、ステップS14において、位置演算部624は、正対していないと判断した場合、接触子28の三次元座標の測定結果を無効にする(ステップS15)。その後、ステップS2に戻り、再測定が行われる。
一方、ステップS14において、位置演算部624は、正対していると判断した場合、接触子28の三次元座標の測定結果を有効にする(ステップS16)とともに、測定結果を表示装置7に表示する。
なお、ステップS15,S16における処理は、例えば以下のような処理であってもよい。すなわち、ステップS15において、測定結果を演算記憶部61に記憶させない処理を行う場合、ステップS16において、測定結果を演算記憶部61に記憶させる処理を行ってもよい。また、ステップS15において、測定結果を演算記憶部61に記憶させるとともに、当該測定結果に無効であることを示す情報(例えば、フラグ情報)を関連付ける処理を行う場合、ステップS16において、測定結果を演算記憶部61に記憶させるとともに、当該測定結果に有効であることを示す情報(例えば、フラグ情報)を関連付ける処理を行ってもよい。
そして、タイミング制御部621は、測定が終了したか否か、例えば設定された全ての設定部位の測定が終了したか否かを判断する(ステップS17)。このステップS17において、タイミング制御部621は、終了していないと判断した場合、ステップS2に戻る。これにより、次の測定部位の測定が行われる。一方、ステップS17において、タイミング制御部621は、終了したと判断した場合、処理を終了する。
<実施形態の効果>
本実施形態によれば、撮像装置5による第1〜第9赤外LED261〜269の撮像中に、3軸地磁気センサ29がプローブ2の姿勢を検出する。そして、プローブ2の第1姿勢演算部333が3軸地磁気センサ29における検出結果に基づいて、第1姿勢情報を演算し、第1正対判断部334が第1姿勢情報と第1基準姿勢情報に基づいて、撮像装置5に対してプローブ2が正対しているか否かを判断する。
このように、プローブ2の姿勢を3軸地磁気センサ29で直接検出するため、撮像装置5での撮像結果に基づき姿勢を検出する構成と比べて、撮像装置5に対する前後方向の姿勢の検出精度を向上できる。したがって、撮像装置5に対してプローブ2が正対しているか否かの判断を高精度に行うことができ、プローブ2の位置を精度よく検出することができる。
また、撮像装置5による第1〜第9赤外LED261〜269の撮像中に、3軸加速度センサ30がプローブ2の動きを検出する。そして、演算制御装置6の位置演算部624は、プローブ2が静止していた場合のみ接触子28の三次元座標を演算する。
このため、適切に検出された第1,第2輝度分布に基づいて、接触子28の位置を正確に検出できる。
さらに、演算制御装置6の位置演算部624は、プローブ2の第1正対判断部334において、撮像装置5に対してプローブ2が正対していると判断された場合、接触子28の三次元座標の測定結果を有効にし、正対していないと判断された場合、測定結果を無効にする。
このため、精度よく測定可能な場合のみ測定結果を有効にするため、プローブ2の位置検出結果の信頼性を向上できる。
プローブ2の判断結果報知部31は、第1正対判断部334での判断結果を表示する。
このため、測定者は、プローブ2が撮像装置5に正対しているか否かを容易に認識することができ、プローブ2の位置測定結果が正確なものか否かを容易に判断できる。また、測定者は、プローブ2が撮像装置5に正対するようにプローブ2の姿勢を直すことで、再測定を容易に行うことができる。
本発明の被測定体として、接触子28を有するプローブ2を用いている。
このため、接触子28をワークの測定部位に接触させれば、ワークの測定部位を正確に測定することができる。
<変形例>
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は、本発明に含まれる。
例えば、本発明の被測定体として、接触子28を先端に有する接触式のプローブ2を例に説明したが、これに限らず、非接触式のプローブであってもよい。
例えば、図8に示すように、非接触式のプローブ2Aは、プローブ本体21Aに、光をワークに向けて射出する発光器361Aと、ワークからの反射光を受光する受光器362Aと、この受光器362Aにおいて光を受光した位置からプローブ本体21Aに対するワークの位置情報を演算する演算器(図示省略)とを備えた非接触測定器36Aとを内蔵させた構成を有している。また、プローブ2Aには、3軸地磁気センサ29と、3軸加速度センサ30と、判断結果報知部31と、40個の赤外LED901,902,903…とが設けられている。
この場合、演算制御装置6の位置演算部624は、撮像装置5のよる赤外LEDの撮像結果に基づき求められたプローブ2Aの位置と、非接触測定器36Aによって求められた測定点の位置とから、非接触測定器36Aの光照射位置の座標を求める。
なお、非接触式のプローブ2Aでは、ワークに接触させる必要がないため、より複雑な形状をもつワークを測定することが可能となるが、そのためにプローブ2Aの様々な姿勢を検出できるように、より多くの赤外LED、例えば、40個の赤外LED901,902,903…が搭載されている。ただ、プローブ2Aの姿勢を検出するためには、必ずしも全ての赤外LEDが検出できなくてもよく、少なくとも3個の赤外LEDが検出できればプローブ2Aの姿勢を求めることができる。
さらに、本発明の被測定体としては、プローブに限らず、測定の対象となる公知の装置や公知の物体等を採用することができる。
また、本発明の姿勢演算部および正対判断部をプローブ2に設けた構成を例示したが、姿勢演算部を、プローブ2および演算制御装置6のうち少なくとも一方に設けてもよいし、正対判断部を、プローブ2および演算制御装置6のうち少なくとも一方に設けてもよい。
例えば、プローブ2に異常判定部332、第1姿勢演算部333および第1正対判断部334を設けずに、演算制御装置6に異常判定部332を設けるとともに、第2姿勢演算部622および第2正対判断部623に異常判定部332および第1正対判断部334の処理を実施させるように構成してもよい。
この場合、三次元測定システム1は、例えば以下のような処理を実施する。まず、3軸地磁気センサ29および3軸加速度センサ30は、検出結果を演算制御装置6に送信する。そして、撮像中にプローブ2が静止していたと演算制御装置6の異常判定部332が判断した場合、第2姿勢演算部622は、3軸地磁気センサ29での検出結果に基づく第1姿勢情報と、撮像装置5での撮像結果に基づく第2姿勢情報とを演算し、必要に応じて第1,第2姿勢情報を第1,第2基準姿勢情報として演算記憶部61に記憶させる。その後、位置演算部624は、第2正対判断部623において、第1,第2姿勢情報と第1,第2基準姿勢情報とに基づき、撮像装置5に対してプローブ2が正対していると判断された場合、測定結果を有効にする。
さらに、プローブ2に第1姿勢演算部333を設けずに、演算制御装置6に異常判定部332を設けるとともに、第2姿勢演算部622に第1姿勢演算部333の処理を実施させるように構成してもよい。
この場合、三次元測定システム1は、例えば以下のような処理を実施する。まず、3軸地磁気センサ29および3軸加速度センサ30は、検出結果を演算制御装置6に送信する。そして、撮像中にプローブ2が静止していたと演算制御装置6の異常判定部332が判断した場合、第2姿勢演算部622は、第1姿勢情報と、第2姿勢情報とを演算し、必要に応じて第2姿勢情報を第2基準姿勢情報として演算記憶部61に記憶させる。また、第2姿勢演算部622は、第1姿勢情報をプローブ2に送信する。プローブ2の第1正対判断部334は、第2姿勢演算部622からの第1姿勢情報を第1基準姿勢情報としてプローブ記憶部32に記憶させる。そして、第1正対判断部334は、第2姿勢演算部622から新しい第1姿勢情報を取得すると、この取得した第1姿勢情報と第1基準姿勢情報とに基づき、撮像装置5に対してプローブ2が正対しているか否かを判断する。
また、プローブ2に第1正対判断部334を設けずに、演算制御装置6の第2正対判断部623に第1正対判断部334の処理を実施させるように構成してもよい。
この場合、三次元測定システム1は、例えば以下のような処理を実施する。まず、プローブ2の第1姿勢演算部333は、第1姿勢情報を演算制御装置6に送信する。そして、演算制御装置6の第2正対判断部623は、第1姿勢情報を第1基準姿勢情報として演算記憶部61に記憶させる。そして、第2正対判断部623は、第1姿勢演算部333から新しい第1姿勢情報を取得すると、この取得した第1姿勢情報と第1基準姿勢情報とに基づき、撮像装置5に対してプローブ2が正対しているか否かを判断する。
また、第1,第2姿勢演算部333,622の両方で、第1姿勢情報を演算して必要に応じて第1基準姿勢情報として各記憶部32,61に記憶させるとともに、第1,第2正対判断部334,623の両方で、第1姿勢情報と第1基準姿勢情報とに基づき、撮像装置5に対してプローブ2が正対しているか否かを判断してもよい。
さらに、3軸加速度センサ30を設けずに、プローブ2が静止していたか否かにかかわらず、演算制御装置6の位置演算部624が接触子28の三次元座標を演算してもよい。
また、第2正対判断部623において撮像装置5に対してプローブ2が正対していないと判断された場合、演算制御装置6の位置演算部624が接触子28の三次元座標を演算しなくてもよい。
さらに、プローブ2に判断結果報知部31を設けたが、プローブ2と撮像装置5と演算制御装置6のうち少なくとも1つの装置に設けてもよいし、全ての装置に設けなくてもよい。
また、第2姿勢演算部622および第2正対判断部623を設けずに、3軸地磁気センサ29の検出結果のみで判断された正対状態に基づいて、位置演算部624が接触子28の三次元座標の測定結果を有効にしたり無効にしたりしてもよい。
さらに、例えば撮像装置5の設置場所が固定されている場合には、測定者がコンピュータ等を用いて第1,第2基準姿勢情報を測定前に設定しておけば、第1,第2基準姿勢情報を更新する必要がなくなる。
また、第1基準姿勢情報の設定方法としては、以下の方法を採用してもよい。例えば撮像装置5からプローブ2にレーザ光を照射し、プローブ2からの反射光を撮像装置5が受光できるようにプローブ2の姿勢を調整する。そして、調整後のプローブ2の姿勢を表す情報を、第1基準姿勢情報として設定してもよい。
また、本発明の姿勢センサとしては、3軸地磁気センサ29に限らず、ジャイロセンサ、3軸加速度センサ、ロータリーセンサ、傾斜角センサ等の公知のセンサを採用することができ、これらを組み合わせた構成を採用することもできる。
さらに、本発明の動きセンサとしては、3軸加速度センサ30に限らず、振動センサ、ジャイロセンサ、3軸地磁気センサ等の公知のセンサを採用することができ、これらを組み合わせた構成を採用することもできる。
また、本発明の判断結果報知部としては、正対LED311および非正対LED312のような色で判断結果を報知する光源に限らず、文字や記号や色あるいは画像で判断結果を報知する表示装置、音で判断結果を報知する音声出力装置等の公知の構成を採用することができ、これらを組み合わせた構成を採用することもできる。
本発明の測定用光源として9個の第1〜第9赤外LED261〜269を配置したが、少なくとも3個あればよい。
本発明の測定用光源としては、LED以外の公知の光源を採用することができ、発光する光も赤外線以外の光を採用することができる。
検出部531〜533の構成としては、シリンドリカルレンズ541〜543とラインセンサ551〜553とを含んで構成したが、集光領域59からの光を1軸方向へ集光できる光学素子であれば、シリンドリカルレンズでなくてもよい。
1…三次元測定システム
2,2A…プローブ(被測定体)
4…位置検出装置
5…撮像装置
6…演算制御装置
27…スタイラス
28…接触子
29…3軸地磁気センサ(姿勢センサ)
30…3軸加速度センサ(動きセンサ)
31…判断結果報知部
261〜269…第1〜第9赤外LED(測定用光源)
333…第1姿勢演算部(姿勢演算部)
334…第1正対判断部(正対判断部)
541,543…シリンドリカルレンズ(第1光学系)
542…シリンドリカルレンズ(第2光学系)
551,553…ラインセンサ(第1ラインセンサ)
552…ラインセンサ(第2ラインセンサ)
624…位置演算部
901,902,903…赤外LED(測定用光源)

Claims (9)

  1. 互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムであって、
    前記被測定体は、当該被測定体の姿勢を検出する姿勢センサを備え、
    前記位置検出装置は、撮像装置と、演算制御装置とを備え、
    前記撮像装置は、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、
    この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、
    前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、
    この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを備え、
    前記演算制御装置は、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する位置演算部を備え、
    前記被測定体および前記演算制御装置のうち少なくとも一方は、前記姿勢センサにおける検出結果に基づいて、前記撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算する姿勢演算部を備え、
    前記被測定体および前記演算制御装置のうち少なくとも一方は、前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢演算部で演算された前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する正対判断部を備えていることを特徴とする三次元測定システム。
  2. 請求項1に記載の三次元測定システムにおいて、
    前記被測定体は、当該被測定体の動きを検出する動きセンサを備え、
    前記位置演算部は、前記動きセンサにおける検出結果に基づいて、前記第1ラインセンサおよび前記第2ラインセンサにおける受光の開始から終了までの間に、前記被測定体が動いていると判断した場合、前記位置情報を演算せずに、前記被測定体が動いていないと判断した場合、前記位置情報を演算することを特徴とする三次元測定システム。
  3. 請求項1または請求項2に記載の三次元測定システムにおいて、
    前記位置演算部は、前記正対判断部において前記撮像装置に対して前記被測定体が正対していると判断された場合、前記位置情報を有効にし、前記正対していないと判断された場合、前記位置情報を無効にすることを特徴とする三次元測定システム。
  4. 請求項1から請求項3のいずれかに記載の三次元測定システムにおいて、
    前記被測定体および前記演算制御装置のうち少なくとも一方は、前記正対判断部での判断結果を報知する判断結果報知部を備えていることを特徴とする三次元測定システム。
  5. 請求項1から請求項4のいずれかに記載の三次元測定システムにおいて、
    前記被測定体は、任意の位置に移動可能なプローブであり、
    前記プローブは、前記測定用光源および前記姿勢センサを備えたプローブ本体と、このプローブ本体に一体的に設けられ先端にワークと接触する接触子を有するスタイラスとを備え、
    前記位置演算部は、前記測定用光源に対する前記接触子の配置位置、前記第1輝度分布および前記第2輝度分布に基づいて、前記接触子の位置情報を演算することを特徴とする三次元測定システム。
  6. 請求項1から請求項4のいずれかに記載の三次元測定システムにおいて、
    前記被測定体は、任意の位置に移動可能なプローブであり、
    前記プローブは、前記測定用光源および前記姿勢センサを備えたプローブ本体と、このプローブ本体に設けられ光を照射するとともに光の照射位置を検出可能な非接触位置検出器とを備え、
    前記位置演算部は、前記非接触位置検出器によって検出された光の照射位置、前記第1輝度分布および前記第2輝度分布に基づいて、前記光の照射位置を表す位置情報を演算することを特徴とする三次元測定システム。
  7. 互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを用いた三次元測定方法であって、
    前記被測定体に、当該被測定体の姿勢を検出する姿勢センサを設け、
    前記位置検出装置を、撮像装置と、演算制御装置とで構成し、
    前記撮像装置に、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、
    この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、
    前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、
    この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを設け、
    前記3個以上の測定用光源が、1個ずつ発光する工程と、
    前記姿勢センサが、前記発光する工程の実行中に前記被測定体の姿勢を検出する工程と、
    前記第1ラインセンサおよび前記第2ラインセンサが、前記測定用光源からの光を受光し、前記第1輝度分布および前記第2輝度分布を検出する工程と、
    前記演算制御装置が、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する工程と、
    前記被測定体および前記演算制御装置のうち少なくとも一方が、前記姿勢センサにおける検出結果に基づいて、前記撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算し、
    前記被測定体および前記演算制御装置のうち少なくとも一方が、前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する工程とを実行することを特徴とする三次元測定方法。
  8. 互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムに用いられる前記被測定体であって、
    当該被測定体の姿勢を検出する姿勢センサと、
    前記姿勢センサにおける前記姿勢の検出結果に基づいて、前記位置検出装置を構成する撮像装置に対する前記被測定体の姿勢を表す姿勢情報を演算する姿勢演算部と、
    前記撮像装置に対して前記被測定体が正対している姿勢を表す基準姿勢情報と前記姿勢演算部で演算された前記姿勢情報に基づいて、前記撮像装置に対して前記被測定体が正対しているか否かを判断する正対判断部とを備えていることを特徴とする被測定体。
  9. 互いに離間した3個以上の測定用光源が配置され、任意の位置に移動可能な被測定体と、前記測定用光源からの光を受光し、前記被測定体の位置を検出する位置検出装置とを備えた三次元測定システムに用いられる前記位置検出装置であって、
    撮像装置と、演算制御装置とを備え、
    前記撮像装置は、互いに離間して設けられ、前記測定用光源からの光を第1軸上に集光する一対の第1光学系と、
    この一対の第1光学系によって前記第1軸上に集光された光を受光し、前記第1軸上における第1輝度分布を検出する一対の第1ラインセンサと、
    前記測定用光源からの光を前記第1軸と直交する第2軸上に集光する第2光学系と、
    この第2光学系によって前記第2軸上に集光された光を受光し、前記第2軸上における第2輝度分布を検出する第2ラインセンサとを備え、
    前記演算制御装置は、前記第1輝度分布および前記第2輝度分布に基づいて、前記被測定体の位置を表す位置情報を演算する位置演算部を備え、
    前記位置演算部は、前記被測定体から送信される正対信号に基づいて、前記撮像装置に対して前記被測定体が正対していると判断した場合、前記位置情報を有効にし、前記正対していないと判断した場合、前記位置情報を無効にすることを特徴とする位置検出装置。
JP2013261186A 2013-12-18 2013-12-18 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置 Active JP6227395B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261186A JP6227395B2 (ja) 2013-12-18 2013-12-18 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261186A JP6227395B2 (ja) 2013-12-18 2013-12-18 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置

Publications (2)

Publication Number Publication Date
JP2015117993A JP2015117993A (ja) 2015-06-25
JP6227395B2 true JP6227395B2 (ja) 2017-11-08

Family

ID=53530845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261186A Active JP6227395B2 (ja) 2013-12-18 2013-12-18 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置

Country Status (1)

Country Link
JP (1) JP6227395B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348961A4 (en) * 2015-09-07 2018-08-22 Panasonic Intellectual Property Management Co., Ltd. In-vehicle stereo camera device and method for correcting same
JP7277267B2 (ja) * 2019-06-05 2023-05-18 キヤノン株式会社 計測装置、撮像装置、計測システム及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
JP3324809B2 (ja) * 1993-01-12 2002-09-17 三洋機工株式会社 三次元測定用測定点指示具
WO2000039576A1 (en) * 1998-12-23 2000-07-06 Image Guided Technologies, Inc. A hybrid 3-d probe tracked by multiple sensors
JP4307189B2 (ja) * 2003-09-05 2009-08-05 キヤノン株式会社 情報処理方法、情報処理装置、識別方法
JP4045341B2 (ja) * 2004-02-19 2008-02-13 独立行政法人海上技術安全研究所 3次元計測システム
JP2013068541A (ja) * 2011-09-22 2013-04-18 Nikon Corp 撮像装置、位置計測装置及び撮像方法、位置計測方法、並びに構造物の製造方法

Also Published As

Publication number Publication date
JP2015117993A (ja) 2015-06-25

Similar Documents

Publication Publication Date Title
US9329683B2 (en) Method for detecting point of gaze and device for detecting point of gaze
JP4644540B2 (ja) 撮像装置
KR100871595B1 (ko) 고속카메라를 이용한 구형물체의 비행정보 측정 시스템
TWI437205B (zh) 具有自行校準之影像式便攜量測方法及裝置
TWI420081B (zh) 測距系統及測距方法
JP2014514563A5 (ja)
US10397565B2 (en) Imaging device with alignment analysis
JP2016519757A (ja) 三次元座標スキャナと操作方法
JP6164679B2 (ja) カメラのキャリブレーション方法及びカメラのキャリブレーション装置
JP2014515107A5 (ja)
JP5749319B2 (ja) センサの位置合わせ用携帯端末機
JP2013219541A (ja) 撮影システムおよび撮影方法
CH709876B1 (it) Strumento di geodesia.
US20210190483A1 (en) Optical sensor with overview camera
JP2020187097A (ja) 三次元座標測定装置
JP2009002761A (ja) 測距装置およびその測距方法
JP2014219393A (ja) 機械要素の位置を求める装置
JP6227395B2 (ja) 三次元測定システム、三次元測定方法、被測定体、および、位置検出装置
JP5714951B2 (ja) 両眼瞳孔検査装置
JP2015108582A (ja) 3次元計測方法と装置
JP2009192292A (ja) 軌道検測装置および軌道検測方法
KR101246515B1 (ko) 위치 모니터링 시스템을 통한 융합 의료영상 시스템
CN204944449U (zh) 深度数据测量系统
JP6097624B2 (ja) 三次元測定システム
JP2007033315A (ja) 3次元物体測量装置および測量写真解析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250