JP6227336B2 - Method for producing soft magnetic core - Google Patents

Method for producing soft magnetic core Download PDF

Info

Publication number
JP6227336B2
JP6227336B2 JP2013187092A JP2013187092A JP6227336B2 JP 6227336 B2 JP6227336 B2 JP 6227336B2 JP 2013187092 A JP2013187092 A JP 2013187092A JP 2013187092 A JP2013187092 A JP 2013187092A JP 6227336 B2 JP6227336 B2 JP 6227336B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
soft magnetic
temperature
alloy ribbon
endothermic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013187092A
Other languages
Japanese (ja)
Other versions
JP2015056424A (en
JP2015056424A5 (en
Inventor
浦田 顕理
顕理 浦田
芳 佐竹
芳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2013187092A priority Critical patent/JP6227336B2/en
Publication of JP2015056424A publication Critical patent/JP2015056424A/en
Publication of JP2015056424A5 publication Critical patent/JP2015056424A5/ja
Application granted granted Critical
Publication of JP6227336B2 publication Critical patent/JP6227336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、トランスやインダクタ、リアクトルなどに使用されるFe基ナノ結晶合金を用いた軟磁性コアの製造方法に関する。   The present invention relates to a method for manufacturing a soft magnetic core using an Fe-based nanocrystalline alloy used for a transformer, an inductor, a reactor, and the like.

Fe基ナノ結晶合金は、高飽和磁束密度と低磁歪の両立が可能な軟磁性材料である。このFe基ナノ結晶合金を用いた軟磁性コアの製造においては、アモルファス構造を有する合金組成物の薄帯を積層してコアを形成し、コアに熱処理を施して微細なbccFe結晶を析出させる必要がある。   The Fe-based nanocrystalline alloy is a soft magnetic material that can achieve both high saturation magnetic flux density and low magnetostriction. In manufacturing a soft magnetic core using this Fe-based nanocrystalline alloy, it is necessary to form a core by laminating thin ribbons of an alloy composition having an amorphous structure, and heat-treating the core to precipitate fine bccFe crystals There is.

しかし、熱処理によってbccFe結晶を析出させる際、bccFe結晶の結晶化に伴う自己発熱による過剰な温度上昇が起こり、bccFe結晶の結晶粒の肥大化とFe−B、Fe−PなどのFe化合物の析出による軟磁気特性の低下が生じる問題がある。   However, when the bccFe crystal is precipitated by heat treatment, an excessive temperature rise occurs due to self-heating due to the crystallization of the bccFe crystal, and the crystal grains of the bccFe crystal are enlarged and Fe compounds such as Fe-B and Fe-P are precipitated. There is a problem that the soft magnetic characteristics are deteriorated due to.

上記問題の対策として、特許文献1には、微細なbccFe結晶を析出させる熱処理方法として、アモルファス相を主体とする急冷体を加熱して、bccFe結晶の結晶化に伴う発熱が開始した時点で1回目の熱処理を終了し、結晶化の発熱の終了後に2回目の熱処理を行う熱処理方法が開示されている。これにより、結晶化開始温度よりも高く、かつ化合物相を実質的に形成しない温度で熱処理を行うことで、結晶化に伴う自己発熱による過剰な温度上昇を防止して結晶粒の肥大化を防止することができ、軟磁気特性に優れたFe基軟磁性合金の軟磁性コアを製造することができるとしている。   As a countermeasure against the above problem, Patent Document 1 discloses, as a heat treatment method for precipitating fine bccFe crystals, heating a rapidly cooled body mainly composed of an amorphous phase and starting heat generation associated with crystallization of bccFe crystals. A heat treatment method is disclosed in which the second heat treatment is performed after the second heat treatment is finished and the crystallization heat generation is finished. As a result, heat treatment is performed at a temperature that is higher than the crystallization start temperature and does not substantially form a compound phase, thereby preventing excessive temperature rise due to self-heating due to crystallization and preventing crystal grain enlargement. It is said that a soft magnetic core of an Fe-based soft magnetic alloy having excellent soft magnetic properties can be manufactured.

特開2003−213331号公報JP 2003-213331 A

特許文献1では、bccFe結晶の結晶化による自己発熱の開始時点を検出する方法として、熱処理炉内部の雰囲気温度と、アモルファス構造を有する合金組成物を積層したコアの温度を同時に連続して計測し、コアの温度上昇率が雰囲気温度の上昇率よりも高くなった時点を検出することで検知できるとしている。   In Patent Document 1, as a method of detecting the start time of self-heating due to crystallization of bccFe crystal, the atmospheric temperature inside the heat treatment furnace and the temperature of the core on which the alloy composition having an amorphous structure is laminated are measured simultaneously. The temperature rise rate of the core can be detected by detecting the point in time when the temperature rise rate is higher than the rate of increase of the ambient temperature.

コアの温度の計測は、実際的には熱処理炉内に収容されている全てのコアについて実施することは製造コストを考慮すると現実的ではないので、温度を計測するコアを限定する必要がある。しかし、bccFe結晶の結晶化による自己発熱の開始時点は、炉の場所による温度条件や、熱処理炉の昇温速度、あるいはコアの大きさ、コアの製造時による組成ばらつきなどによって、個々のコアによってばらつきがあるので、限定されたコアによる温度計測では検出にもずれを生じることとなり、コアによっては昇温停止のタイミングに遅れが生じて、結晶化に伴う自己発熱よる過加熱でFe化合物が析出して軟磁気特性が劣化する問題がある。   In practice, it is not practical to measure the temperature of the core with respect to all the cores accommodated in the heat treatment furnace, so that it is not practical to consider the manufacturing cost. However, the starting point of self-heating due to the crystallization of the bccFe crystal depends on the temperature of the furnace location, the heating rate of the heat treatment furnace, the size of the core, the composition variation due to the manufacture of the core, etc. Due to the variation, temperature measurement with a limited core will also cause a deviation in detection. Depending on the core, the timing of temperature rise stop may be delayed, and Fe compound may precipitate due to overheating due to self-heating due to crystallization. Thus, there is a problem that the soft magnetic characteristics deteriorate.

また、bccFe結晶の結晶化に伴う自己発熱を検知して昇温を停止したとしても、炉内温度が降下するには時間遅れが有るので、自己発熱による温度上昇はしばらくの間継続することになり、bccFe結晶化温度(第1結晶化温度)とFe−Bなどの化合物の結晶化温度(第2結晶化温度)との差が小さいアモルファス合金組成物の場合には、コア内部の温度はFe化合物の結晶化温度を超え、Fe化合物が析出して軟磁気特性が劣化する問題もある。   Further, even if self-heating due to crystallization of the bccFe crystal is detected and the temperature rise is stopped, there is a time delay for the furnace temperature to drop, so the temperature rise due to self-heating will continue for a while. In the case of an amorphous alloy composition in which the difference between the bccFe crystallization temperature (first crystallization temperature) and the crystallization temperature of the compound such as Fe-B (second crystallization temperature) is small, the temperature inside the core is There is also a problem that the crystallization temperature of the Fe compound is exceeded, and the Fe compound is precipitated and the soft magnetic properties are deteriorated.

本発明は、上記従来技術が抱える問題点を解決し、Fe化合物の析出を抑制し、軟磁気特性に優れた軟磁性コアの製造方法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a soft magnetic core that suppresses the precipitation of Fe compounds and has excellent soft magnetic properties.

上記の目的を達成するため、本発明による軟磁性コアの製造方法は、Feを主成分として、すくなくともB、P、およびCuを含有するアモルファス合金薄帯を積層して形成される軟磁性コアの製造方法において、前記アモルファス合金薄帯のすくなくとも一方の面に、吸熱反応温度が、前記アモルファス合金薄帯のbccFeの結晶化による発熱が開始する第1結晶化温度と、Fe化合物の結晶化による発熱が開始する第2結晶化温度の間にある吸熱反応物質を配置して、熱処理を行うことを特徴とする。   In order to achieve the above object, a method of manufacturing a soft magnetic core according to the present invention includes a soft magnetic core formed by laminating amorphous alloy ribbons containing Fe as a main component and at least B, P, and Cu. In the production method, at least one surface of the amorphous alloy ribbon has an endothermic reaction temperature, a first crystallization temperature at which heat generation due to crystallization of bccFe of the amorphous alloy ribbon starts, and heat generation due to crystallization of the Fe compound. An endothermic reaction substance located between the second crystallization temperatures at which is started is disposed and heat treatment is performed.

また本発明では、前記吸熱反応物質が、メラミン樹脂、炭酸塩化合物、ZnまたはZnを含む合金から選択される一種類以上の物質であることが望ましい。   In the present invention, it is desirable that the endothermic reaction substance is one or more kinds of substances selected from melamine resin, carbonate compound, Zn or an alloy containing Zn.

また本発明では、前記軟磁性コアが、前記アモルファス合金薄帯を、トロイダル状に巻いて形成されることが望ましい。   In the present invention, it is preferable that the soft magnetic core is formed by winding the amorphous alloy ribbon in a toroidal shape.

本発明において、第1結晶化温度とは、アモルファス合金薄帯のbccFeの結晶化による発熱が開始する温度であり、第2結晶化温度とは、Fe−B、Fe−PなどのFe化合物の結晶化による発熱が開始する温度である。   In the present invention, the first crystallization temperature is a temperature at which heat generation due to crystallization of bccFe of an amorphous alloy ribbon starts, and the second crystallization temperature is an Fe compound such as Fe-B or Fe-P. This is the temperature at which heat generation due to crystallization starts.

また、本発明において、吸熱反応温度とは、吸熱反応による吸熱量が最大となる温度である。   In the present invention, the endothermic reaction temperature is a temperature at which the endothermic amount due to the endothermic reaction is maximized.

本発明による軟磁性コアの製造方法は、アモルファス合金薄帯に吸熱反応物質を配置して熱処理を行うため、アモルファス合金相から析出するbccFe結晶の、結晶化による自己発熱による熱量は、吸熱反応物質による吸熱反応によって自律的に吸収することができるので、熱処理炉などのコア外部の温度条件の特別な制御等を必要とせずにコアの過加熱を防ぐことで、結晶粒の肥大化による軟磁気特性の劣化を抑制することが可能となる。   In the method of manufacturing a soft magnetic core according to the present invention, an endothermic reaction material is disposed on an amorphous alloy ribbon and heat treatment is performed. Therefore, the amount of heat generated by self-heating of the bccFe crystal precipitated from the amorphous alloy phase is determined by the endothermic reaction material. Can be absorbed autonomously by the endothermic reaction due to the heat, so the core can be prevented from overheating without requiring special control of the temperature conditions outside the core, such as a heat treatment furnace. It becomes possible to suppress deterioration of characteristics.

また、吸熱反応物質の吸熱反応温度は、アモルファス合金薄帯の第1結晶化温度と第2結晶化温度の間にあるので、熱処理におけるコアの到達温度は第1結晶化温度を超え、bccFe結晶を確実に析出させることができる。一方、吸熱反応温度を超える過加熱は、吸熱反応によって抑制されるので、コアが第2結晶化温度へ到達することはなく、Fe化合物の析出が防止されるため、優れた軟磁気特性を有する軟磁性コアを得ることが可能となる。   In addition, since the endothermic reaction temperature of the endothermic reactant is between the first crystallization temperature and the second crystallization temperature of the amorphous alloy ribbon, the temperature reached by the core in the heat treatment exceeds the first crystallization temperature, and the bccFe crystal Can be reliably deposited. On the other hand, since overheating exceeding the endothermic reaction temperature is suppressed by the endothermic reaction, the core does not reach the second crystallization temperature and the precipitation of the Fe compound is prevented, so that it has excellent soft magnetic characteristics. A soft magnetic core can be obtained.

以上のように、本発明によれば、bccFe結晶の肥大化と、Fe化合物の析出を抑制し、優れた軟磁気特性を有する軟磁性コアの製造方法が提供できる。   As described above, according to the present invention, it is possible to provide a method for producing a soft magnetic core having excellent soft magnetic properties by suppressing the enlargement of bccFe crystals and precipitation of Fe compounds.

本発明による軟磁性コアの製造方法の一例を示す図で、図1(a)は、軟磁性コアの斜視図であり、図1(b)は、図1(a)におけるA面の部分拡大断面図を示している。FIG. 1A is a perspective view of a soft magnetic core according to an embodiment of the present invention, and FIG. 1B is a partially enlarged view of an A surface in FIG. A cross-sectional view is shown. 本発明の実施例における、アモルファス合金薄帯と吸熱反応物質の示差走査型熱量分析計(DSC)によるDSC曲線を示す。The DSC curve by the differential scanning calorimetry (DSC) of the amorphous alloy ribbon and the endothermic reaction substance in the Example of this invention is shown. 本発明の実施例2、3における、熱処理後の薄帯表面のエックス線回折(XRD)の結果を示す。The result of the X-ray diffraction (XRD) of the ribbon surface after heat processing in Examples 2 and 3 of the present invention is shown.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は、本発明による軟磁性コアの製造方法の一例を示す図で、図1(a)は、片面に吸熱反応物質の層が形成されたアモルファス合金薄帯をトロイダル状に巻いて積層した熱処理前の軟磁性コアの斜視図を示す。図1(b)は、図1(a)におけるA面の部分拡大断面図を示している。アモルファス合金薄帯2の片面に吸熱反応物質3の層が形成されており、アモルファス合金薄帯2を積層することによって、吸熱反応物質3とアモルファス合金薄帯2が交互に配置されるので、本発明における吸熱作用が効果的に発揮できる。   FIG. 1 is a diagram showing an example of a method for producing a soft magnetic core according to the present invention. FIG. 1 (a) is a diagram of laminating an amorphous alloy ribbon having an endothermic reaction material layer formed on one side in a toroidal shape. The perspective view of the soft-magnetic core before heat processing is shown. FIG.1 (b) has shown the partial expanded sectional view of the A surface in Fig.1 (a). A layer of the endothermic reaction material 3 is formed on one surface of the amorphous alloy ribbon 2, and the endothermic reaction material 3 and the amorphous alloy ribbon 2 are alternately arranged by laminating the amorphous alloy ribbon 2. The endothermic action in the invention can be effectively exhibited.

吸熱反応物質としては、吸熱反応温度がアモルファス合金薄帯の第1結晶化温度と第2結晶化温度の間に有れば、特に限定されない。吸熱反応として昇華を利用する物質、融解を利用する物質、分解反応を利用する物質などを使用することができ、それぞれ昇華温度、融解温度、分解温度が吸熱反応温度として作用する。   The endothermic reaction substance is not particularly limited as long as the endothermic reaction temperature is between the first crystallization temperature and the second crystallization temperature of the amorphous alloy ribbon. As the endothermic reaction, a substance that uses sublimation, a substance that uses melting, a substance that uses a decomposition reaction, or the like can be used, and the sublimation temperature, melting temperature, and decomposition temperature act as the endothermic reaction temperature.

昇華を吸熱反応として利用する吸熱反応物質としては、メラミン樹脂が好ましく、特にメラミンシアヌレートは吸熱量が大きく好適である。   As the endothermic reaction substance utilizing sublimation as an endothermic reaction, a melamine resin is preferable, and melamine cyanurate is particularly preferable because of its large endothermic amount.

融解を吸熱反応として利用する吸熱反応物質としては、ZnおよびZnを含む合金が好ましい。特にZnは融点が420℃であり、上述のアモルファス合金薄帯の第1結晶化温度に近く、効率的な吸熱作用を得ることができる。   As an endothermic reaction substance that uses melting as an endothermic reaction, an alloy containing Zn and Zn is preferable. In particular, Zn has a melting point of 420 ° C., is close to the first crystallization temperature of the amorphous alloy ribbon described above, and can obtain an efficient endothermic effect.

またZnを主成分とするCuやAlの合金は、融解温度が組成によって変化するので、融解温度すなわち吸熱反応温度を、アモルファス合金薄帯の第1結晶化温度および第2結晶化温度の高低に合わせて選択することができるため好都合である。   In addition, since the melting temperature of the Cu or Al alloy containing Zn as a main component varies depending on the composition, the melting temperature, that is, the endothermic reaction temperature, is set to be higher or lower than the first crystallization temperature and the second crystallization temperature of the amorphous alloy ribbon. It is convenient because they can be selected together.

分解反応を吸熱反応として利用する吸熱反応物質としては、炭酸マグネシウムや炭酸アルミニウムなどの炭酸塩化合物が好ましい。特に炭酸マグネシウムは吸熱量が大きく好適である。   As the endothermic reaction substance utilizing the decomposition reaction as an endothermic reaction, a carbonate compound such as magnesium carbonate or aluminum carbonate is preferable. Magnesium carbonate is particularly suitable because of its large endotherm.

吸熱反応物質をアモルファス合金薄帯の表面に配置する方法としては、アモルファス合金薄帯の表面に吸熱反応物質の層を形成する方法、吸熱反応物質の薄板をアモルファス合金薄帯と重ねる方法などが有る。これらの方法は、吸熱反応物質の形状に応じて選択することができる。   There are several methods for placing the endothermic reaction material on the surface of the amorphous alloy ribbon, such as a method of forming a layer of the endothermic reaction material on the surface of the amorphous alloy ribbon, and a method of superimposing a thin plate of the endothermic reaction material on the amorphous alloy ribbon. . These methods can be selected according to the shape of the endothermic reactant.

吸熱反応物質の層を形成する方法としては、吸熱反応物質を溶媒に溶解して塗布する方法、吸熱反応物質の粉末を溶媒中に分散させて塗布する方法などが適用できる。   As a method for forming the layer of the endothermic reactant, a method in which the endothermic reactant is dissolved and applied, a method in which powder of the endothermic reactant is dispersed in the solvent, and the like are applicable.

また、アモルファス合金薄帯を積層してコアを作成後、吸熱反応物質が溶解している溶液または吸熱反応物質が分散している分散液に浸漬して、アモルファス合金薄帯の積層面の隙間に浸透させても良い。   Also, after creating a core by laminating amorphous alloy ribbons, immersing them in a solution in which endothermic reactants are dissolved or in a dispersion in which endothermic reactants are dispersed, and in the gaps between the laminated surfaces of the amorphous alloy ribbons It may be infiltrated.

吸熱反応物質が金属の場合にはメッキも適用できるが、アモルファス合金薄帯と吸熱反応物質との密着性は特に必要とはしない。アモルファス合金薄帯の表面に吸熱反応物質の層が形成できれば良く、上記の方法に限定されない。   When the endothermic reaction material is a metal, plating can be applied, but the adhesion between the amorphous alloy ribbon and the endothermic reaction material is not particularly required. The layer of the endothermic reaction material only needs to be formed on the surface of the amorphous alloy ribbon, and is not limited to the above method.

吸熱反応物質の吸熱量については、アモルファス合金薄帯の第1結晶化温度と吸熱反応物質の吸熱温度との差や、吸熱反応の温度特性などに依存するが、アモルファス合金薄帯のbccFe結晶化による発熱量と同じ程度か、それよりも多い吸熱量があることが望ましい。   Although the endothermic amount of the endothermic reaction material depends on the difference between the first crystallization temperature of the amorphous alloy ribbon and the endothermic temperature of the endothermic reaction material, the temperature characteristics of the endothermic reaction, etc., the bccFe crystallization of the amorphous alloy ribbon It is desirable that the amount of heat absorbed is equal to or greater than the amount of heat generated by

一方、吸熱反応物質の層を形成することによって、軟磁性コア中のFe基ナノ結晶合金の占有率は減少する。したがって吸熱反応物質の層厚としては、占有率の減少による熱処理後の軟磁性コアの軟磁気特性の低下が顕著にならない層厚を選択する必要があり、具体的には、吸熱反応物質の層厚はアモルファス合金薄帯の厚さの1/4以下とすることが望ましい。   On the other hand, by forming the endothermic reaction material layer, the occupation ratio of the Fe-based nanocrystalline alloy in the soft magnetic core is reduced. Therefore, as the layer thickness of the endothermic reactant, it is necessary to select a layer thickness that does not cause a significant decrease in the soft magnetic properties of the soft magnetic core after the heat treatment due to the decrease in the occupation ratio. The thickness is desirably ¼ or less of the thickness of the amorphous alloy ribbon.

軟磁性コアの作製方法としては、片面に吸熱反応物質の層が形成されたアモルファス合金薄帯を、トロイダル状に巻いて積層して作製することができる。また打ち抜きなどの方法によってリング状の薄板に加工し、このリング状の薄板を積層して軟磁性コアを作成しても良い。この場合、吸熱反応物質の層の形成は、アモルファス合金薄帯をリング状に加工した後でも良く、コアを作成したときにアモルファス合金薄帯と吸熱反応物質が交互に積層されていれば良く、順序は問わない。   As a method for producing a soft magnetic core, an amorphous alloy ribbon having an endothermic reaction material layer formed on one side can be wound and laminated in a toroidal shape. Alternatively, a soft magnetic core may be formed by processing into a ring-shaped thin plate by a method such as punching and laminating the ring-shaped thin plate. In this case, the layer of the endothermic reactant may be formed after the amorphous alloy ribbon is processed into a ring shape, as long as the amorphous alloy ribbon and the endothermic reactant are alternately laminated when the core is formed, The order does not matter.

本発明におけるアモルファス合金薄帯は、Feを主成分として、少なくともB、P、およびCuを含有し、組成式FeSiCuで表され、79.0≦a≦86.0at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、および0.06≦z/x≦1.20である組成に適用できる。例えば、組成式がFe83.3Cu0.7、Fe83.3SiCu0.7、Fe83.3SiCu0.7などのアモルファス合金に適用できるが、これらの組成に限定されることはなく、第1結晶化温度と第2結晶化温度を有するアモルファス合金であれば適用が可能である。また、耐食性の改善や電気抵抗の調整などを目的として、Feの一部をTi、Zr、Hf、Nb,Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、S、Sn、As、Sb、Bi、Y、N、Oおよび希土類元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下であっても良く、例えば組成式がFe82.3SiCu0.7Nbであるアモルファス合金でもよい。 Amorphous alloy ribbon of the present invention, as a main component Fe, contains at least B, P, and Cu, expressed by a composition formula Fe a B b Si c P x C y Cu z, 79.0 ≦ a ≦ 86.0 at%, 5 ≦ b ≦ 13 at%, 0 ≦ c ≦ 8 at%, 1 ≦ x ≦ 10 at%, 0 ≦ y ≦ 5 at%, 0.4 ≦ z ≦ 1.4 at%, and 0.06 ≦ z It can be applied to compositions where /x≦1.20. For example, the composition formula is amorphous such as Fe 83.3 B 8 P 8 Cu 0.7, Fe 83.3 Si 4 B 6 P 6 Cu 0.7 , Fe 83.3 Si 4 B 8 P 4 Cu 0.7 Although it can be applied to an alloy, it is not limited to these compositions, and any amorphous alloy having a first crystallization temperature and a second crystallization temperature is applicable. For the purpose of improving corrosion resistance and adjusting electric resistance, a part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Zn, S, One or more of Sn, As, Sb, Bi, Y, N, O and rare earth elements replace 3 at% or less of the entire composition, and the total with Fe is 79.0 at% or more, 86.0 at% For example, it may be an amorphous alloy having a composition formula of Fe 82.3 Si 4 B 8 P 4 Cu 0.7 Nb 1 .

(実施例1)
組成式がFe83.3Cu0.7となる様に工業鉄、Fe−B合金、Fe−P合金および電気銅を秤量して高周波誘導加熱炉で溶解し、単ロール液体急冷法を用いて幅30mm厚さ25μmのアモルファス合金薄帯を作製した。このアモルファス合金薄帯の結晶化温度と、炭酸マグネシウムの吸熱反応温度を示差走査型熱量分析計(DSC)を用いて分析を行った。測定結果(DSC曲線)を図2に示す。図2より、炭酸マグネシウムの吸熱反応温度は約435℃で、アモルファス合金薄帯の第1結晶化温度405℃と第2結晶化温度505℃の間にあることを確認した。
Example 1
Industrial iron, Fe-B alloy, Fe-P alloy and electrolytic copper are weighed and dissolved in a high-frequency induction heating furnace so that the composition formula is Fe 83.3 B 8 P 8 Cu 0.7. Using this method, an amorphous alloy ribbon having a width of 30 mm and a thickness of 25 μm was produced. The crystallization temperature of the amorphous alloy ribbon and the endothermic reaction temperature of magnesium carbonate were analyzed using a differential scanning calorimeter (DSC). The measurement results (DSC curve) are shown in FIG. From FIG. 2, it was confirmed that the endothermic reaction temperature of magnesium carbonate was about 435 ° C., and was between the first crystallization temperature 405 ° C. and the second crystallization temperature 505 ° C. of the amorphous alloy ribbon.

次に炭酸マグネシウムの粉末をアルコール中に分散させて分散液とし、幅10mmにスリット加工したアモルファス合金薄帯の表面に塗布した後、室温で24時間自然乾燥させ、炭酸マグネシウムの層を形成した。層の厚さは4μmから5μmであった。   Next, the magnesium carbonate powder was dispersed in alcohol to form a dispersion, which was applied to the surface of the amorphous alloy ribbon that had been slit to a width of 10 mm, and then naturally dried at room temperature for 24 hours to form a magnesium carbonate layer. The layer thickness was 4 μm to 5 μm.

炭酸マグネシウムの層を形成したアモルファス合金薄帯を、トロイダル状に巻いて外径22mm、内径12mm、重量が20gのコアを作製した。このトロイダル状のコアを、アルゴン雰囲気中にて380℃、20分間熱処理を行い軟磁性コアを作製した。   An amorphous alloy ribbon having a magnesium carbonate layer was wound in a toroidal shape to produce a core having an outer diameter of 22 mm, an inner diameter of 12 mm, and a weight of 20 g. The toroidal core was heat-treated at 380 ° C. for 20 minutes in an argon atmosphere to produce a soft magnetic core.

熱処理後の軟磁性コアに巻き線を施し、インピーダンスアナライザを用いて1kHzにおける初透磁率を測定した。また交流BHアナライザを用いてコアロスの測定を行った。また熱処理後の薄帯を、エックス線回折(XRD)により測定を行い、析出物の同定を行った。結果を表1に示す。   The soft magnetic core after the heat treatment was wound, and the initial permeability at 1 kHz was measured using an impedance analyzer. The core loss was measured using an AC BH analyzer. Moreover, the thin strip after heat processing was measured by X-ray diffraction (XRD), and the deposit was identified. The results are shown in Table 1.

Figure 0006227336
Figure 0006227336

(実施例2)
実施例1における炭酸マグネシウムを、メラミンシアヌレートに換えて軟磁性コアを作製した。示差走査熱量分析の結果を図2に、初透磁率、コアロスの測定および析出物の結果を表1に示す。図2より、メラミンシアヌレートの吸熱反応温度は約460℃である。
(Example 2)
A soft magnetic core was produced by replacing the magnesium carbonate in Example 1 with melamine cyanurate. The results of differential scanning calorimetry are shown in FIG. 2, and the initial permeability and core loss measurements and the results of precipitates are shown in Table 1. From FIG. 2, the endothermic reaction temperature of melamine cyanurate is about 460 ° C.

(実施例3)
実施例1における炭酸マグネシウムを、Znに換えて軟磁性コアを作製した。示差走査熱量分析の結果を図2に、初透磁率、コアロスの測定および析出物の結果を表1に示す。図2より、Znの吸熱反応温度は、Znの融点と同じ420℃である。
(Example 3)
A soft magnetic core was produced by replacing the magnesium carbonate in Example 1 with Zn. The results of differential scanning calorimetry are shown in FIG. 2, and the initial permeability and core loss measurements and the results of precipitates are shown in Table 1. From FIG. 2, the endothermic reaction temperature of Zn is 420 ° C., which is the same as the melting point of Zn.

(比較例1)
実施例1と同じアモルファス合金薄帯を、幅10mmにスリット加工し、トロイダル状に巻いて外径22mm、内径12mm、重量が20gのコアを作製した。このトロイダル状のコアを、実施例と同様にアルゴン雰囲気中にて380℃、20分間熱処理を行い軟磁性コアを作製し、インピーダンスアナライザを用いて1kHzにおける初透磁率を測定した。また交流BHアナライザを用いてコアロスの測定を行った。結果を表1に示す。
(Comparative Example 1)
The same amorphous alloy ribbon as in Example 1 was slit to a width of 10 mm and wound in a toroidal shape to produce a core having an outer diameter of 22 mm, an inner diameter of 12 mm, and a weight of 20 g. This toroidal core was heat-treated in an argon atmosphere at 380 ° C. for 20 minutes in the same manner as in the Example to produce a soft magnetic core, and the initial permeability at 1 kHz was measured using an impedance analyzer. The core loss was measured using an AC BH analyzer. The results are shown in Table 1.

表1より、本発明による軟磁性コアは、初透磁率が大きくコアロスが小さく、軟磁気特性に優れている。比較例1ではFe−P相やFe−B相のFe化合物が薄帯中に析出して特性が大幅に低下しているが、本発明である実施例1〜3ではFe−P相やFe−B相などのFe化合物は析出しておらず、初透磁率、コアロスとも良好な特性を得た。   From Table 1, the soft magnetic core according to the present invention has a high initial magnetic permeability and a small core loss, and is excellent in soft magnetic characteristics. In Comparative Example 1, the Fe-P phase and Fe-B phase Fe compounds are precipitated in the ribbon and the characteristics are greatly reduced. In Examples 1 to 3, which are the present invention, the Fe-P phase and Fe Fe compounds such as -B phase were not precipitated, and good characteristics were obtained for both initial permeability and core loss.

図3に、実施例2、3における熱処理後の薄帯表面のエックス線回折(XRD)結果を示す。表1に示したようにbccFe相以外にはアモルファス合金に由来するFe化合物は検出されていない。一方、吸熱反応物質であるメラミンシアヌレート(実施例2)およびZn(実施例3)が表面に残存しているが、軟磁気特性への影響は、Fe化合物の析出に比べると非常に小さいものである。   FIG. 3 shows X-ray diffraction (XRD) results of the ribbon surface after heat treatment in Examples 2 and 3. As shown in Table 1, no Fe compound derived from the amorphous alloy was detected other than the bccFe phase. On the other hand, melamine cyanurate (Example 2) and Zn (Example 3), which are endothermic reactants, remain on the surface, but the influence on soft magnetic properties is very small compared to precipitation of Fe compounds. It is.

以上の通り、アモルファス合金薄帯のすくなくとも一方の面に、吸熱反応温度が前記アモルファス合金薄帯の第1結晶化温度と第2結晶化温度の間にある吸熱反応物質の層を形成して積層したコアを熱処理して軟磁性コアを製造することにより、Fe化合物の析出を抑制し、軟磁気特性の優れた軟磁性コアの製造方法が得られる。   As described above, an endothermic reaction material layer having an endothermic reaction temperature between the first crystallization temperature and the second crystallization temperature of the amorphous alloy ribbon is formed on at least one surface of the amorphous alloy ribbon. By producing a soft magnetic core by heat-treating the prepared core, a method for producing a soft magnetic core excellent in soft magnetic properties can be obtained by suppressing the precipitation of Fe compounds.

1 軟磁性コア
2 アモルファス合金薄帯
3 吸熱反応物質
1 Soft magnetic core 2 Amorphous alloy ribbon 3 Endothermic reactant

Claims (4)

Feを主成分として、すくなくともB、P、およびCuを含有するアモルファス合金薄帯を積層して形成される軟磁性コアの製造方法において、前記アモルファス合金薄帯のすくなくとも一方の面に、吸熱反応温度が、前記アモルファス合金薄帯のbccFeの結晶化による発熱が開始する第1結晶化温度と、Fe化合物の結晶化による発熱が開始する第2結晶化温度の間にある吸熱反応物質を配置して、熱処理を行う軟磁性コアの製造方法。   In a method for producing a soft magnetic core formed by laminating an amorphous alloy ribbon containing Fe as a main component and containing at least B, P, and Cu, an endothermic reaction temperature is applied to at least one surface of the amorphous alloy ribbon. However, an endothermic reactant is disposed between the first crystallization temperature at which heat generation due to crystallization of bccFe of the amorphous alloy ribbon starts and the second crystallization temperature at which heat generation due to crystallization of the Fe compound starts. The manufacturing method of the soft-magnetic core which performs heat processing. 前記吸熱反応物質が、メラミン樹脂、炭酸塩化合物、ZnまたはZnを含む合金から選択される一種類以上の物質であることを特徴とする請求項1に記載の軟磁性コアの製造方法。   2. The method of manufacturing a soft magnetic core according to claim 1, wherein the endothermic reaction substance is one or more kinds of substances selected from a melamine resin, a carbonate compound, Zn, or an alloy containing Zn. 前記アモルファス合金薄帯を、トロイダル状に巻いて形成される請求項1または請求項2に記載の軟磁性コアの製造方法。   The method for producing a soft magnetic core according to claim 1, wherein the amorphous alloy ribbon is formed by winding in a toroidal shape. Feを主成分として、すくなくともB、P、およびCuを含有するアモルファス合金薄帯と、前記アモルファス合金薄帯のすくなくとも一方の面に吸熱反応後の物質を備え、前記アモルファス合金薄帯と前記吸熱反応後の物質とが積層して形成された軟磁性コア。An amorphous alloy ribbon containing Fe as a main component and containing at least B, P, and Cu, and a material after endothermic reaction on at least one surface of the amorphous alloy ribbon, the amorphous alloy ribbon and the endothermic reaction A soft magnetic core formed by laminating a later substance.
JP2013187092A 2013-09-10 2013-09-10 Method for producing soft magnetic core Active JP6227336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187092A JP6227336B2 (en) 2013-09-10 2013-09-10 Method for producing soft magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187092A JP6227336B2 (en) 2013-09-10 2013-09-10 Method for producing soft magnetic core

Publications (3)

Publication Number Publication Date
JP2015056424A JP2015056424A (en) 2015-03-23
JP2015056424A5 JP2015056424A5 (en) 2016-11-24
JP6227336B2 true JP6227336B2 (en) 2017-11-08

Family

ID=52820653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187092A Active JP6227336B2 (en) 2013-09-10 2013-09-10 Method for producing soft magnetic core

Country Status (1)

Country Link
JP (1) JP6227336B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876580B (en) * 2016-02-09 2022-04-29 阿尔卑斯阿尔派株式会社 Heat treatment apparatus for amorphous alloy ribbon laminate
JP7234809B2 (en) * 2019-06-06 2023-03-08 トヨタ自動車株式会社 Method for manufacturing alloy strip

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856245B2 (en) * 1994-07-20 2006-12-13 日立金属株式会社 Method for producing high permeability nanocrystalline alloy
BRPI0906063B1 (en) * 2008-08-22 2019-12-10 Makino Akihiro alloy composition and method for forming an iron-based nanocrystalline alloy
JP5274381B2 (en) * 2009-06-05 2013-08-28 アルプス電気株式会社 Method for producing Fe-based soft magnetic alloy powder
JP2012119137A (en) * 2010-11-30 2012-06-21 Panasonic Corp Battery module
JP2013046032A (en) * 2011-08-26 2013-03-04 Nec Tokin Corp Laminate core

Also Published As

Publication number Publication date
JP2015056424A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP6046357B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP4514828B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP4815014B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
WO2017006868A1 (en) Layered magnetic core and method for manufacturing same
JP5912239B2 (en) Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP2007107095A (en) Magnetic alloy, amorphous alloy thin band, and magnetic component
JP2008231533A5 (en)
JP6195693B2 (en) Soft magnetic alloy, soft magnetic alloy magnetic core and method for producing the same
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP5932861B2 (en) Alloy composition, Fe-based nanocrystalline alloy ribbon, Fe-based nanocrystalline alloy powder and magnetic component
EP3157021B1 (en) Method for producing fe-based nanocrystalline alloy core
JP6024831B2 (en) Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
JP2019094532A (en) Soft magnetic alloy and magnetic component
US10950374B2 (en) Fe-based alloy composition, soft magnetic material, magnetic members, electric/electronic component, and device
JP6227336B2 (en) Method for producing soft magnetic core
JP2022001667A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND ITS MANUFACTURING METHOD, AS WELL AS MAGNETIC COMPONENT
JP2019094531A (en) Soft magnetic alloy and magnetic component
JP2019070175A (en) Soft magnetic alloy and magnetic component
JP6327835B2 (en) Laminated magnetic body, laminated magnetic core and manufacturing method thereof
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2021193204A (en) HIGH MAGNETIC FLUX DENSITY SOFT-MAGNETIC Fe-BASED AMORPHOUS ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250