JP6226253B2 - 符号化方法、復号方法、符号化器、及び、復号器 - Google Patents
符号化方法、復号方法、符号化器、及び、復号器 Download PDFInfo
- Publication number
- JP6226253B2 JP6226253B2 JP2016220068A JP2016220068A JP6226253B2 JP 6226253 B2 JP6226253 B2 JP 6226253B2 JP 2016220068 A JP2016220068 A JP 2016220068A JP 2016220068 A JP2016220068 A JP 2016220068A JP 6226253 B2 JP6226253 B2 JP 6226253B2
- Authority
- JP
- Japan
- Prior art keywords
- parity check
- ldpc
- parity
- check polynomial
- check matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/1154—Low-density parity-check convolutional codes [LDPC-CC]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1111—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/033—Theoretical methods to calculate these checking codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/033—Theoretical methods to calculate these checking codes
- H03M13/036—Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/118—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/23—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/611—Specific encoding aspects, e.g. encoding by means of decoding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/615—Use of computational or mathematical techniques
- H03M13/616—Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/615—Use of computational or mathematical techniques
- H03M13/617—Polynomial operations, e.g. operations related to generator polynomials or parity-check polynomials
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
- H04L1/0058—Block-coded modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0059—Convolutional codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/23—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
- H03M13/235—Encoding of convolutional codes, e.g. methods or arrangements for parallel or block-wise encoding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/3988—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes for rate k/n convolutional codes, with k>1, obtained by convolutional encoders with k inputs and n outputs
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Error Detection And Correction (AREA)
Description
優れた誤り訂正能力をもつ、時変周期が3より大きいパリティ検査多項式に基づくLDPC−CCの符号構成方法について説明する。
はじめに、例として、時変周期6のLDPC−CCについて説明する。
このとき、X1(D)、X2(D)、・・・、Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現であり、Dは遅延演算子である。
。式(4−0)〜(4−5)において、例えば、符号化率1/2の場合、X1(D)及びP(D)の項のみが存在し、X2(D)、・・・、Xn−1(D)の項は存在しない。同様に、符号化率2/3の場合、X1(D)、X2(D)、及びP(D)の項のみが存在し、X3(D)、・・・、Xn−1(D)の項は存在しない。その他の符号化率についても同様に考えればよい。
ここで、高い誤り訂正能力を得ることができる、式(6−0)〜(6−5)のパリティ検査多項式における条件の例を記述する。
「a#0,1,1%6=a#1,1,1%6=a#2,1,1%6=a#3,1,1%6=a#4,1,1%6=a#5,1,1%6=vp=1 (vp=1:固定値)」
「a#0,2,1%6=a#1,2,1%6=a#2,2,1%6=a#3,2,1%6=a#4,2,1%6=a#5,2,1%6=vp=2 (vp=2:固定値)」
「a#0,3,1%6=a#1,3,1%6=a#2,3,1%6=a#3,3,1%6=a#4,3,1%6=a#5,3,1%6=vp=3 (vp=3:固定値)」
「a#0,4,1%6=a#1,4,1%6=a#2,4,1%6=a#3,4,1%6=a#4,4,1%6=a#5,4,1%6=vp=4 (vp=4:固定値)」
・
・
・
「a#0,k,1%6=a#1,k,1%6=a#2,k,1%6=a#3,k,1%6=a#4,k,1%6=a#5,k,1%6=vp=k (vp=k:固定値) (したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,1%6=a#1,n−2,1%6=a#2,n−2,1%6=a#3,n−2,1%6=a#4,n−2,1%6=a#5,n−2,1%6=vp=n−2 (vp=n−2:固定値)」
「a#0,n−1,1%6=a#1,n−1,1%6=a#2,n−1,1%6=a#3,n−1,1%6=a#4,n−1,1%6=a#5,n−1,1%6=vp=n−1 (vp=n−1:固定値)」
及び、
「b#0,1%6=b#1,1%6=b#2,1%6=b#3,1%6=b#4,1%6=b#5,1%6=w (w:固定値)」
<条件#1−2>
「a#0,1,2%6=a#1,1,2%6=a#2,1,2%6=a#3,1,2%6=a#4,1,2%6=a#5,1,2%6=yp=1 (yp=1:固定値)」
「a#0,2,2%6=a#1,2,2%6=a#2,2,2%6=a#3,2,2%6=a#4,2,2%6=a#5,2,2%6=yp=2 (yp=2:固定値)」
「a#0,3,2%6=a#1,3,2%6=a#2,3,2%6=a#3,3,2%6=a#4,3,2%6=a#5,3,2%6=yp=3 (yp=3:固定値)」
「a#0,4,2%6=a#1,4,2%6=a#2,4,2%6=a#3,4,2%6=a#4,4,2%6=a#5,4,2%6=yp=4 (yp=4:固定値)」
・
・
・
「a#0,k,2%6=a#1,k,2%6=a#2,k,2%6=a#3,k,2%6=a#4,k,2%6=a#5,k,2%6=yp=k (yp=k:固定値) (したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,2%6=a#1,n−2,2%6=a#2,n−2,2%6=a#3,n−2,2%6=a#4,n−2,2%6=a#5,n−2,2%6=yp=n−2 (yp=n−2:固定値)」
「a#0,n−1,2%6=a#1,n−1,2%6=a#2,n−1,2%6=a#3,n−1,2%6=a#4,n−1,2%6=a#5,n−1,2%6=yp=n−1 (yp=n−1:固定値)」
及び、
「b#0,2%6=b#1,2%6=b#2,2%6=b#3,2%6=b#4,2%6=b#5,2%6=z (z:固定値)」
<条件#1−1>及び<条件#1−2>を制約条件とすることにより、制約条件を満たすLDPC−CCは、正則(Regular)LDPC符号となるので、高い誤り訂正能力を得ることができる。
<条件#1−1>において、vp=1、vp=2、vp=3、vp=4、・・・、vp=k 、・・・、vp=n−2、vp=n−1、及び、wを、「1」、「4」、「5」に設定する。つまり、vp=k(k=1、2、・・・、n−1)及びwを、「1」、及び、「時変周期6の約数以外の自然数」に設定する。
<条件#1−2>において、yp=1、yp=2、yp=3、yp=4、・・・、yp=k 、・・・、yp=n−2、yp=n−1及び、zを「1」、「4」、「5」と設定する。つまり、yp=k(k=1、2、・・・、n−1)及びzを、「1」、及び、「時変周期6の約数以外の自然数」に設定する。
「vp=1、vp=2、vp=3、vp=4、・・・、vp=k 、・・・、vp=n−2、vp=n−1(k=1、2、・・・、n−1)及びwを、時変周期6の約数のうち、1を除く約数に設定する」ことになる。
以上を考慮すると、時変周期が素数であることが、時変周期を大きくした効果を得るための重要な条件となる。
また、式(9−g)のサブ行列(ベクトル)をHgとするとパリティ検査行列は、 [パリティ検査多項式に基づくLDPC−CC]で述べた方法で作成することができる。ここで、第0サブ行列、第1サブ行列、第2サブ行列、第3サブ行列、第4サブ行列、第5サブ行列、第6サブ行列を、式(11−0)〜(11−6)のようにあらわす。
ここで、高い誤り訂正能力を得るための、式(9−0)〜式(9−6)におけるパリティ検査多項式の条件は、時変周期6と同様に以下のようになる。なお、以下の各条件において「%」はmoduloを意味し、例えば、「α%7」は、αを7で除算したときの余りを示す。
「a#0,1,1%7=a#1,1,1%7=a#2,1,1%7=a#3,1,1%7=a#4,1,1%7=a#5,1,1%7=a#6,1,1%7=vp=1 (vp=1:固定値)」
「a#0,2,1%7=a#1,2,1%7=a#2,2,1%7=a#3,2,1%7=a#4,2,1%7=a#5,2,1%7=a#6,2,1%7=vp=2 (vp=2:固定値)」
「a#0,3,1%7=a#1,3,1%7=a#2,3,1%7=a#3,3,1%7=a#4,3,1%7=a#5,3,1%7==a#6,3,1%7vp=3 (vp=3:固定値)」
「a#0,4,1%7=a#1,4,1%7=a#2,4,1%7=a#3,4,1%7=a#4,4,1%7=a#5,4,1%7=a#6,4,1%7=vp=4 (vp=4:固定値)」
・
・
・
「a#0,k,1%7=a#1,k,1%7=a#2,k,1%7=a#3,k,1%7=a#4,k,1%7=a#5,k,1%7=a#6,k,1%7=vp=k (vp=k:固定値) (したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,1%7=a#1,n−2,1%7=a#2,n−2,1%7=a#3,n−2,1%7=a#4,n−2,1%7=a#5,n−2,1%7=a#6,n−2,1%7=vp=n−2 (vp=n−2:固定値)」
「a#0,n−1,1%7=a#1,n−1,1%7=a#2,n−1,1%7=a#3,n−1,1%7=a#4,n−1,1%7=a#5,n−1,1%7=a#6,n−1,1%7=vp=n−1 (vp=n−1:固定値)」
及び、
「b#0,1%7=b#1,1%7=b#2,1%7=b#3,1%7=b#4,1%7=b#5,1%7=b#6,1%7=w (w:固定値)」
<条件#1−2’>
「a#0,1,2%7=a#1,1,2%7=a#2,1,2%7=a#3,1,2%7=a#4,1,2%7=a#5,1,2%7=a#6,1,2%7=yp=1 (yp=1:固定値)」
「a#0,2,2%7=a#1,2,2%7=a#2,2,2%7=a#3,2,2%7=a#4,2,2%7=a#5,2,2%7=a#6,2,2%7=yp=2 (yp=2:固定値)」
「a#0,3,2%7=a#1,3,2%7=a#2,3,2%7=a#3,3,2%7=a#4,3,2%7=a#5,3,2%7=a#6,3,2%7=yp=3 (yp=3:固定値)」
「a#0,4,2%7=a#1,4,2%7=a#2,4,2%7=a#3,4,2%7=a#4,4,2%7=a#5,4,2%7=a#6,4,2%7=yp=4 (yp=4:固定値)」
・
・
・
「a#0,k,2%7=a#1,k,2%7=a#2,k,2%7=a#3,k,2%7=a#4,k,2%7=a#5,k,2%7=a#6,k,2%7=yp=k (yp=k:固定値) (したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,2%7=a#1,n−2,2%7=a#2,n−2,2%7=a#3,n−2,2%7=a#4,n−2,2%7=a#5,n−2,2%7=a#6,n−2,2%7=yp=n−2 (yp=n−2:固定値)」
「a#0,n−1,2%7=a#1,n−1,2%7=a#2,n−1,2%7=a#3,n−1,2%7=a#4,n−1,2%7=a#5,n−1,2%7=a#6,n−1,2%7=yp=n−1 (yp=n−1:固定値)」
及び、
「b#0,2%7=b#1,2%7=b#2,2%7=b#3,2%7=b#4,2%7=b#5,2%7=b#6,2%7=z (z:固定値)」
<条件#1−1’>及び<条件#1−2’>を制約条件とすることにより、制約条件を満たすLDPC−CCは、正則(Regular)LDPC符号となるので、高い誤り訂正能力を得ることができる。
<条件#1−1’>において、vp=1、vp=2、vp=3、vp=4、・・・、vp=k 、・・・、vp=n−2、vp=n−1(k=1、2、・・・、n−1)及びwの値は、「0、1、2、3、4、5、6」のいずれの値であってもよい。
<条件#1−2’>において、yp=1、yp=2、yp=3、yp=4、・・・、yp=k 、・・・、yp=n−2、yp=n−1(k=1、2、・・・、n−1)及びzの値は、「0,1、2、3、4、5、6」のいずれの値であってもよい。
先ず、符号化率(n−1)/n、時変周期q(qは3より大きい素数)のg番目(g=0、1、・・・、q−1)のパリティ検査多項式が式(13)のようにあらわされる場合について考える。
式(13)において、a#g,p,1、a#g,p,2は1以上の自然数とし、a#g,p,1≠a#g,p,2が成立するものとする。また、b#g,1、b#g,2は1以上の自然数とし、b#g,1≠b#g,2が成立するものとする(g=0、1、2、・・・、q−2、q−1;p=1、2、・・・、n−1)。
<条件#3−1>
「a#0,1,1%q=a#1,1,1%q=a#2,1,1%q=a#3,1,1%q=・・・=a#g,1,1%q=・・・=a#q−2,1,1%q=a#q−1,1,1%q=vp=1 (vp=1:固定値)」
「a#0,2,1%q=a#1,2,1%q=a#2,2,1%q=a#3,2,1%q=・・・=a#g,2,1%q=・・・=a#q−2,2,1%q=a#q−1,2,1%q=vp=2 (vp=2:固定値)」
「a#0,3,1%q=a#1,3,1%q=a#2,3,1%q=a#3,3,1%q=・・・=a#g,3,1%q=・・・=a#q−2,3,1%q=a#q−1,3,1%q=vp=3 (vp=3:固定値)」
「a#0,4,1%q=a#1,4,1%q=a#2,4,1%q=a#3,4,1%q=・・・=a#g,4,1%q=・・・=a#q−2,4,1%q=a#q−1,4,1%q=vp=4 (vp=4:固定値)」
・
・
・
「a#0,k,1%q=a#1,k,1%q=a#2,k,1%q=a#3,k,1%q=・・・=a#g,k,1%q=・・・=a#q−2,k,1%q=a#q−1,k,1%q=vp=k (vp=k:固定値)
(したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,1%q=a#1,n−2,1%q=a#2,n−2,1%q=a#3,n−2,1%q=・・・=a#g,n−2,1%q=・・・=a#q−2,n−2,1%q=a#q−1,n−2,1%q=vp=n−2 (vp=n−2:固定値)」
「a#0,n−1,1%q=a#1,n−1,1%q=a#2,n−1,1%q=a#3,n−1,1%q=・・・=a#g,n−1,1%q=・・・=a#q−2,n−1,1%q=a#q−1,n−1,1%q=vp=n−1 (vp=n−1:固定値)」
及び、
「b#0,1%q=b#1,1%q=b#2,1%q=b#3,1%q=・・・=b#g,1%q=・・・=b#q−2,1%q=b#q−1,1%q=w (w:固定値)」
<条件#3−2>
「a#0,1,2%q=a#1,1,2%q=a#2,1,2%q=a#3,1,2%q=・・・=a#g,1,2%q=・・・=a#q−2,1,2%q=a#q−1,1,2%q=yp=1 (yp=1:固定値)」
「a#0,2,2%q=a#1,2,2%q=a#2,2,2%q=a#3,2,2%q=・・・=a#g,2,2%q=・・・=a#q−2,2,2%q=a#q−1,2,2%q=yp=2 (yp=2:固定値)」
「a#0,3,2%q=a#1,3,2%q=a#2,3,2%q=a#3,3,2%q=・・・=a#g,3,2%q=・・・=a#q−2,3,2%q=a#q−1,3,2%q=yp=3 (yp=3:固定値)」
「a#0,4,2%q=a#1,4,2%q=a#2,4,2%q=a#3,4,2%q=・・・=a#g,4,2%q=・・・=a#q−2,4,2%q=a#q−1,4,2%q=yp=4 (yp=4:固定値)」
・
・
・
「a#0,k,2%q=a#1,k,2%q=a#2,k,2%q=a#3,k,2%q=・・・=a#g,k,2%q=・・・=a#q−2,k,2%q=a#q−1,k,2%q=yp=k (yp=k:固定値)
(したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,2%q=a#1,n−2,2%q=a#2,n−2,2%q=a#3,n−2,2%q=・・・=a#g,n−2,2%q=・・・=a#q−2,n−2,2%q=a#q−1,n−2,2%q=yp=n−2 (yp=n−2:固定値)」
「a#0,n−1,2%q=a#1,n−1,2%q=a#2,n−1,2%q=a#3,n−1,2%q=・・・=a#g,n−1,2%q=・・・=a#q−2,n−1,2%q=a#q−1,n−1,2%q=yp=n−1 (yp=n−1:固定値)」
及び、
「b#0,2%q=b#1,2%q=b#2,2%q=b#3,2%q=・・・=b#g,2%q=・・・=b#q−2,2%q=b#q−1,2%q=z (z:固定値)」
加えて、(vp=1,yp=1)、(vp=2,yp=2)、(vp=3,yp=3)、・・・(vp=k,yp=k)、・・・、(vp=n−2,yp=n−2)、(vp=n−1,yp=n−1)、及び、(w,z)のセットに対し、<条件#4−1>又は<条件#4−2>が成立すると、高い誤り訂正能力を得ることができる。ここで、k=1、2、・・・、n−1である。
<条件#4−1>
(vp=i,yp=i)及び(vp=j,yp=j)を考える。ただし、i=1,2,・・・,n−1、j=1,2,・・・,n−1、及び、i≠jとする。このとき、(vp=i,yp=i)≠(vp=j,yp=j)及び(vp=i,yp=i)≠(yp=j,vp=j)が成立するi,j(i≠j)が存在する。
(vp=i,yp=i)及び(w,z)を考える。ただし、i=1,2,・・・,n−1とする。このとき、(vp=i,yp=i)≠(w,z)及び(vp=i,yp=i)≠(z,w)が成立するiが存在する。
(vp=i,yp=i)及び(vp=j,yp=j)を考える。ただし、i=1,2,・・・,n−1、j=1,2,・・・,n−1、及び、i≠jとする。このとき、(vp=i,yp=i)≠(vp=j,yp=j)及び(vp=i,yp=i)≠(yp=j,vp=j)がすべてのi,j(i≠j)で成立する。
(vp=i,yp=i)及び(w,z)を考える。ただし、i=1,2,・・・,n−1とする。このとき、(vp=i,yp=i)≠(w,z)及び(vp=i,yp=i)≠(z,w)がすべてのiで成立する。
次に、時変周期hが、3より大きい素数以外の整数の場合における符号構成方法について考える。
上述での説明と同様に、以下に記載する<条件#6−1>及び<条件#6−2>は、LDPC−CCが高い誤り訂正能力を得る上で重要な要件の一つとなる。なお、以下の各条件において「%」はmoduloを意味し、例えば、「α%h」は、αをhで除算したときの余りを示す。
<条件#6−1>
「a#0,1,1%h=a#1,1,1%h=a#2,1,1%h=a#3,1,1%h=・・・=a#g,1,1%h=・・・=a#h−2,1,1%h=a#h−1,1,1%h=vp=1 (vp=1:固定値)」
「a#0,2,1%h=a#1,2,1%h=a#2,2,1%h=a#3,2,1%h=・・・=a#g,2,1%h=・・・=a#h−2,2,1%h=a#h−1,2,1%h=vp=2 (vp=2:固定値)」
「a#0,3,1%h=a#1,3,1%h=a#2,3,1%h=a#3,3,1%h=・・・=a#g,3,1%h=・・・=a#h−2,3,1%h=a#h−1,3,1%h=vp=3 (vp=3:固定値)」
「a#0,4,1%h=a#1,4,1%h=a#2,4,1%h=a#3,4,1%h=・・・=a#g,4,1%h=・・・=a#h−2,4,1%h=a#h−1,4,1%h=vp=4 (vp=4:固定値)」
・
・
・
「a#0,k,1%h=a#1,k,1%h=a#2,k,1%h=a#3,k,1%h=・・・=a#g,k,1%h=・・・=a#h−2,k,1%h=a#h−1,k,1%h=vp=k (vp=k:固定値)
(したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,1%h=a#1,n−2,1%h=a#2,n−2,1%h=a#3,n−2,1%h=・・・=a#g,n−2,1%h=・・・=a#h−2,n−2,1%h=a#h−1,n−2,1%h=vp=n−2 (vp=n−2:固定値)」
「a#0,n−1,1%h=a#1,n−1,1%h=a#2,n−1,1%h=a#3,n−1,1%h=・・・=a#g,n−1,1%h=・・・=a#h−2,n−1,1%h=a#h−1,n−1,1%h=vp=n−1 (vp=n−1:固定値)」
及び、
「b#0,1%h=b#1,1%h=b#2,1%h=b#3,1%h=・・・=b#g,1%h=・・・=b#h−2,1%h=b#h−1,1%h=w (w:固定値)」
<条件#6−2>
「a#0,1,2%h=a#1,1,2%h=a#2,1,2%h=a#3,1,2%h=・・・=a#g,1,2%h=・・・=a#h−2,1,2%h=a#h−1,1,2%h=yp=1 (yp=1:固定値)」
「a#0,2,2%h=a#1,2,2%h=a#2,2,2%h=a#3,2,2%h=・・・=a#g,2,2%h=・・・=a#h−2,2,2%h=a#h−1,2,2%h=yp=2 (yp=2:固定値)」
「a#0,3,2%h=a#1,3,2%h=a#2,3,2%h=a#3,3,2%h=・・・=a#g,3,2%h=・・・=a#h−2,3,2%h=a#h−1,3,2%h=yp=3 (yp=3:固定値)」
「a#0,4,2%h=a#1,4,2%h=a#2,4,2%h=a#3,4,2%h=・・・=a#g,4,2%h=・・・=a#h−2,4,2%h=a#h−1,4,2%h=yp=4 (yp=4:固定値)」
・
・
・
「a#0,k,2%h=a#1,k,2%h=a#2,k,2%h=a#3,k,2%h=・・・=a#g,k,2%h=・・・=a#h−2,k,2%h=a#h−1,k,2%h=yp=k (yp=k:固定値)
(したがって、k=1、2、・・・、n−1となる。)」
・
・
・
「a#0,n−2,2%h=a#1,n−2,2%h=a#2,n−2,2%h=a#3,n−2,2%h=・・・=a#g,n−2,2%h=・・・=a#h−2,n−2,2%h=a#h−1,n−2,2%h=yp=n−2 (yp=n−2:固定値)」
「a#0,n−1,2%h=a#1,n−1,2%h=a#2,n−1,2%h=a#3,n−1,2%h=・・・=a#g,n−1,2%h=・・・=a#h−2,n−1,2%h=a#h−1,n−1,2%h=yp=n−1 (yp=n−1:固定値)」
及び、
「b#0,2%h=b#1,2%h=b#2,2%h=b#3,2%h=・・・=b#g,2%h=・・・=b#h−2,2%h=b#h−1,2%h=z (z:固定値)」
加えて、上述で説明したように、<条件#7−1>又は<条件#7−2>を付加することにより、より高い誤り訂正能力を得ることができる。
<条件#7−1>
<条件#6−1>において、vp=1、vp=2、vp=3、vp=4、・・・、vp=k 、・・・、vp=n−2、vp=n−1(k=1、2、・・・、n−1)及びwを、「1」、及び、「時変周期hの約数以外の自然数」に設定する。
<条件#6−2>において、yp=1、yp=2、yp=3、yp=4、・・・、yp=k 、・・・、yp=n−2、yp=n−1(k=1、2、・・・、n−1)及びzを、「1」、及び、「時変周期hの約数以外の自然数」に設定する。
そして、(vp=1,yp=1)、(vp=2,yp=2)、(vp=3,yp=3)、・・・(vp=k,yp=k)、・・・、(vp=n−2,yp=n−2)、(vp=n−1,yp=n−1)、及び、(w,z)のセットを考える。ここで、k=1、2、・・・、n−1である。すると、<条件#8−1>又は<条件#8−2>が成立すると、より高い誤り訂正能力を得ることができる。
(vp=i,yp=i)及び(vp=j,yp=j)を考える。ただし、i=1,2,・・・,n−1、j=1,2,・・・,n−1、及び、i≠jとする。このとき、(vp=i,yp=i)≠(vp=j,yp=j)及び(vp=i,yp=i)≠(yp=j,vp=j)が成立するi,j(i≠j)が存在する。
(vp=i,yp=i)及び(w,z)を考える。ただし、i=1,2,・・・,n−1とする。このとき、(vp=i,yp=i)≠(w,z)及び(vp=i,yp=i)≠(z,w)が成立するiが存在する。
(vp=i,yp=i)及び(vp=j,yp=j)を考える。ただし、i=1,2,・・・,n−1、j=1,2,・・・,n−1、及び、i≠jとする。このとき、(vp=i,yp=i)≠(vp=j,yp=j)及び(vp=i,yp=i)≠(yp=j,vp=j)がすべてのi,j(i≠j)で成立する。
(vp=i,yp=i)及び(w,z)を考える。ただし、i=1,2,・・・,n−1とする。このとき、(vp=i,yp=i)≠(w,z)及び(vp=i,yp=i)≠(z,w)がすべてのiで成立する。
また、vp=i≠yp=i(i=1,2,・・・,n−1)、w≠zが成立する場合、タナーグラフにおいて、短いループの発生を抑えることができる。
次に、上記で述べたパリティ検査多項式に基づくLDPC−CCの符号化方法及び符号化器の構成について記述する。
このとき、式(17−0)に相当する回路を図9に示し、式(17−1)に相当する回路を図10に示し、式(17−2)に相当する回路を図11に示す。(ただし、テイルバイティングを行っていないものとする。)
そして、時点i=3kのとき、式(16−0)、つまり、式(17−0)に相当する図9に示す回路により、時点iのパリティビットを求めることになる。時点i=3k+1のとき、式(16−1)、つまり、式(17−1)に相当する図10に示す回路により、時点iのパリティビットを求めることになる。時点i=3k+2のとき、式(16−2)、つまり、式(17−2)に相当する図11に示す回路により、時点iのパリティビットを求めることになる。したがって、符号化器は、図12の構成を採ることができる。図12において、ウェイト制御部130は、時間とともに、ウェイトをコントロールするための信号を出力する。そして、図12の112−0から112−M、および、122−0から122―Mは、このウェイトをコントロールするための信号に基づき、ウェイトを時間とともに変更することになる。
ところで、LDPC−CCは畳み込み符号の一種となるため、情報ビットの復号における信頼度を確保するために、ターミネーションもしくはテイルバイティング(tail-biting)が必要、または、テイルバイティングを行うことになる。ここでは、ターミネーションを行う場合(「Information-zero-termination」又は簡単に「ゼロターミネーション(Zero-termination)」と呼ぶ)について考える。
以上のように、符号化器は、時点iの情報ビットXr[i](r=1,2,…,n−1)を入力とし、式(19)を用いて、上述で述べたように、時点iのパリティビットP[i]を生成し、パリティビット[i]を出力することにより、LDPC−CCの符号化を行うことができる。
[パリティ検査多項式に基づくLDPC−CC]
以下では、従来の符号化率R=(n−1)/nの(nは2以上の整数)時変LDPC−CCについて記載する。
X1,X2,・・・,Xn−1の情報ビット及びパリティビットPの時点jにおけるビットを、それぞれX1,j,X2,j,・・・,Xn−1,j及びPjとあらわす。そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,・・・,Xn−1,j,Pj)とあらわす。また、符号化系列をu=(u0,u1,・・・,uj,・・・)Tとあらわす。Dを遅延演算子とすると、情報ビットX1,X2,・・・,Xn−1の多項式はX1(D),X2(D),・・・,Xn−1(D)とあらわされ、パリティビットPの多項式はP(D)とあらわされる。このとき、式(21)であらわされる0を満たすパリティ検査多項式を考える。
式(22)において、AXδ,i(D)(δ=1,2,・・・,n−1)及びBi(D)のDの最大次数をそれぞれΓXδ,i及びΓP,iとあらわす。そして、ΓXδ,i及びΓP,iの最大値をΓiとする。そして、Γi(i=0,1,・・・,m−1)の最大値をΓとする。符号化系列uを考慮すると、Γを用いることにより、i番目のパリティ検査多項式に相当するベクトルhiは式(23)のようにあらわされる。
なぜなら、式(22)のパリティ検査多項式は、αi,v,XwDvXw(D)及びβi,vDvP(D)(w=1,2,・・・,n−1、かつ、αi,v,Xw,βi,v∈[0,1])をもつからである。この場合、式(22)の0を満たすパリティ検査多項式は、D0X1(D),D0X2(D),・・・,D0Xn−1(D)及びD0P(D)をもつので、式(25)を満たす。
符号化率R=1/2,生成行列G=[1 G1(D)/G0(D)]の組織的畳み込み符号を考える。このとき、G1はフィードフォワード多項式、G0はフィードバック多項式をあらわしている。
すると、式(32)から時点jのパリティPjを求めることができる。式(32)の0を満たすパリティ検査多項式に基づき生成されたパリティ検査行列で定義される符号が時変周期mのLDPC−CC(TV-m-LDPC-CC:Time-varying LDPC-CC with a time period of m)となる。
復号部は、時不変LDPC−CCでは式(30)からパリティ検査行列Hを作成し、TV-m-LDPC-CCでは式(32)からパリティ検査行列Hを作成する。そして、復号部は、符号化系列u=(u0,u1,・・・,uj,・・・)Tに対して、式(28)を用いてBP復号を行い、情報系列を得る。
(∀(y,z) | y, z=1,2,・・・,ε、y≠z)。
式(33)に基づく異なるパリティ検査多項式をm個用意する(mは2以上の整数)。その0を満たすパリティ検査多項式を以下のようにあらわす。
パリティ検査多項式#αのDa#α,p,iXp(D)の項とパリティ検査多項式#βのDa#β,p,jXp(D)の項(α,β=0,1,・・・,m−1;p=1,2,・・・,n-1; i,j=1,2,・・・,rp)において、また、パリティ検査多項式#αのDb#α,iP(D)の項とパリティ検査多項式#βのDb#β,jP(D)の項(α,β=0,1,・・・,m−1 (β≧α); i,j=1,2,・・・,rp)において以下の関係をもつ。
{a#α,p,i mod m=a#β,p,j mod m}∩{i≠j}が成立するとき、図15のようにパリティ検査多項式#αに相当するチェックノード及びパリティ検査多項式#βに相当するチェックノードの両者、とエッジを形成する変数ノード$1が存在する。
β−α=Lとする。
(a#β,p,j mod m)−(a#α,p,i mod m)=Lのとき、図15のようにパリティ検査多項式#αに相当するチェックノード及びパリティ検査多項式#βに相当するチェックノードの両者、とエッジを形成する変数ノード$1が存在する。
(a#β,p,j mod m)−(a#α,p,i mod m)=L+mのとき、図15のようにパリティ検査多項式#αに相当するチェックノード及びパリティ検査多項式#βに相当するチェックノードの両者、とエッジを形成する変数ノード$1が存在する。
(b#β,j mod m)−(b#α,i mod m)=Lのとき、図15のようにパリティ検査多項式#αに相当するチェックノードとパリティ検査多項式#βに相当するチェックノードの両者とエッジを形成する変数ノード$1が存在する。
(b#β,j mod m)−(b#α,i mod m)=L+mのとき、図15のようにパリティ検査多項式#αに相当するチェックノードとパリティ検査多項式#βに相当するチェックノードの両者とエッジを形成する変数ノード$1が存在する。
p=1, q=0おいて、a#0,1,imod m=a#0,1,j mod m=a#0,1,k mod mのときに少なくとも1つのCL6が存在することが証明できれば、X2(D),・・・, Xn-1(D), P(D)についても、X1(D)をX2(D),・・・, Xn-1(D), P(D)に置き換えて考えることにより、q=0のとき、C#1,1, C#1.2が成立すれば、少なくとも1つのCL6が存在することが証明できる。
以降で扱う符号化率(n−1)/nのTV-m-LDPC-CCの#q番目の0を満たすパリティ検査多項式を式(30)に基づき以下のように与える(q=0,・・・,m−1)。
非特許文献9には、二元入力対象出力通信路において、一様ランダムな正則LDPC符号を最尤復号したときの復号誤り率が示されており、一様ランダムな正則LDPC符号によってGallagerの信頼度関数(非特許文献10参照)が達成できることが示されている。ただし、BP復号を行ったときに、一様ランダムな正則LDPC符号によりGallagerの信頼度関数が達成できるかどうかは不明である。
BP復号を用いたとき、C#2の条件を満足する正則TV-m-LDPC-CCにおいて、TV-m-LDPC-CCの時変周期mが大きくなると、パリティ検査行列において、「1」の存在する位置に対し、一様ランダムに近づき、誤り訂正能力の高い符号が得られる。
本議論で扱う符号化率(n−1)/nのC#2の条件を満足する正則TV-m-LDPC-CCの#q番目の0を満たすパリティ検査多項式である式(38)に関する、ツリーを描いた際に成り立つ性質を述べる。
C#2の条件を満足する正則TV-m-LDPC-CCにおいて、時変周期mが素数の場合、X1(D),・・・, Xn-1(D)のいずれかの項に着目し、C#3.1が成立する場合を考える。
C#2の条件を満足する正則TV-m-LDPC-CCにおいて、時変周期mが素数でない場合、X1(D),・・・, Xn-1(D)のいずれかの項に着目し、C#4.1が成立する場合を考える。
C#2の条件を満足する正則TV-m-LDPC-CCにおいて、時変周期mが偶数の場合、X1(D),・・・,Xn-1(D)のいずれかの項に着目し、C#5.1が成立する場合を考える。
C#2の条件を満足する正則TV-m-LDPC-CCの0を満たすパリティ検査多項式(38)において、C#5.2を満たすDb#q,iP(D), Db#q,jP(D)に対応する変数ノードのみに限ってツリーを描く場合を考える。このとき、性質1から、式(38)の0を満たす#q番目のパリティ検査多項式に相当するチェックノードを起点とするツリーには、qが奇数のとき、奇数番目のパリティ検査多項式に相当するチェックノードしか存在しない。また、qが偶数のとき、式(38)の0を満たす#q番目のパリティ検査多項式に相当するチェックノードを起点とするツリーには、偶数番目のパリティ検査多項式に相当するチェックノードしか存在しない。
C#2の条件を満足する正則TV-m-LDPC-CCにおいて、高い誤り訂正能力を与えるための設計指針を考える。ここで、C#6.1,C#6.2のような場合を考える。
定理3:C#2の条件を満足する正則TV-m-LDPC-CCにおいて、時変周期mが偶数の場合、設計指針を満たす符号は存在しない。
したがって、設計指針を満たすためには、時変周期mは奇数でなければならない。また、設計指針を満たすためには、性質2および性質3から、下記条件が有効である。
(1)時変周期mをα×βとする。
先ず、一例として、非特許文献13に記載されているパリティ検査多項式に基づくLDPC−CCについて説明する。
上述で説明したパリティ検査多項式に基づくLDPC−CCにおいて、時変周期qの0を満たすg番目(g=0、1、・・・、q−1)のパリティ検査多項式(式(40)参照)を式(45)のように表す。
非特許文献14において、テイルバイティングを行ったときの検査行列が記載されている。パリティ検査行列は以下のとおりである。
・パリティ検査行列の行数は、qの倍数である。
例えば、式(48)で定義される時変LDPC−CCでは、P(D)は以下のように表される。
手順1の保持しているレジスタの状態から(したがって、式(49)のX1[z]、X2[z]、・・・、Xn−1[z]、P[z]において、zが1より小さい場合について、手順1で得られている値を用いることになる。)、再度、時点i=1から符号化を行い、パリティを求める。
このときのパリティ検査行列の構成について図20及び図21を用いて説明する。
受信装置2210は、受信部2211と、対数尤度比生成部2212と、復号化器2213とを含んで構成される。受信部2211は、受信信号を入力とし、増幅、周波数変換、直交復調、チャネル推定、デマッピング等の処理を施し、ベースバンド信号、及び、チャネル推定信号を出力する。対数尤度比生成部2212は、ベースバンド信号、及び、チャネル推定信号を入力とし、ビット単位の対数尤度比を生成し、対数尤度比信号を出力する。復号化器2213は、対数尤度比信号を入力とし、ここでは、特に、BP(Belief Propagation)復号(非特許文献4、非特許文献6、非特許文献7、非特許文献8)を用いた反復復号を行い、推定送信系列、または(及び)、推定情報系列を出力する。
次に、(特許文献2)に示されている符号化率(n−1)/nの(nは2以上の整数)改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCについて述べる。
まず、一般的なテイルバイティング方法を用いたLDPC畳み込み符号の課題について説明する。
符号化率R=(n−1)/n、時変周期mのLDPC−CCを作成するために、0を満たすパリティ検査多項式を用意する。式(52)に基づくi番目(i=0,1,・・・,m−1)の0を満たすパリティ検査多項式を式(53)のように表す。
ここで、符号化率R=(n−1)/n、時変周期mのLDPC−CCのためのi番目(i=0,1,・・・,m−1)の0を満たすパリティ検査多項式を次式のようにあらわす。
符号化率R=(n−1)/n、時変周期mのLDPC−CCのための0を満たすパリティ検査多項式として、i番目(i=0,1,・・・,m−1)の0を満たすパリティ検査多項式において、P(D)の項は2個以上存在する場合に、テイルバイティングを行うことを考える。このとき、符号化器では、符号化により、情報ビットX1,X2,・・・,Xn−1、から、パリティPを求めることになる。
送信ベクトルuをu=(X1,1、X2,1、・・・、Xn−1,1、P1、X1,2、X2,2、・・・、Xn−1,2、P2、・・・、X1,k、X2,k、・・・、Xn−1,k、Pk、・・・・)Tとし、テイルバイティング方法を用いた符号化率R=(n−1)/n、時変周期mのLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす。(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)したがって、パリティP1、P2、・・・、Pk、・・・は、Hu=0の連立方程式を解くことで得ることになるが、このとき、P(D)の項は2個以上存在することから、パリティを求めるための演算規模(回路規模)が大きいという課題がある。
この点を考慮し、パリティを求めるための演算規模(回路規模)を小さいするために、フィードフォワード型の時変周期mのLDPC−CCを用いたテイルバイティング方法があるが、誤り訂正能力が低いことが一般的に知られている(拘束長を同一とした場合、フィードバックLDPC−CCのほうが、フィードバックLDPC−CCより誤り訂正能力が高くなる可能性が高い)。
上記の2つの課題に対し、誤り訂正能力が高く、かつ、符号化器の演算(回路)規模が小さくすることが可能な、改良したティルバイティング方法を用いたLDPC−CCについて、特許文献2に記載している。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCについて説明する。なお、nは2以上の自然数となる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCでは、ベースとして(基礎的な構造として)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCを利用する。
ベースとなる、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのためのi番目(i=0,1,・・・,m−1)の0を満たすパリティ検査多項式を次式のようにあらわす。
したがって、ベースとなる、式(59)の符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのための0を満たすi番目(i=0,1,・・・,m−1)パリティ検査多項式は、P(D)の項を2個もつことになる。これが、パリティPを逐次的に求めることができ、演算(回路)規模を削減することができる一つの重要な要件となる。
式(59)の0を満たすパリティ検査多項式の多項式の部分に対し、以下の関数を定義する。
次に、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの、ベース(基礎的な構造)となる、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの式(59)の0を満たすパリティ検査多項式の時変周期mと提案する符号化率R=(n−1)/nのテイルバイティング方法を用いたLDPC−CCのブロックサイズの関係について説明する。
この点については、より高い誤り訂正能力を得るために、ベース(基礎的な構造)となる、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CC(0を満たすパリティ検査多項式は式(59)で定義される。)は、テイルバイティングを行う際、以下の条件が重要となる。
・パリティ検査行列の行数は、mの倍数である。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおける、ベース(基礎的な構造)となる、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの式(59)の0を満たすパリティ検査多項式のパリティのみの項で形成する
図5、図6、図8、図17、図18のようなツリーを描いた場合、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、逐次的にパリティを求めることが可能とするための条件として、図6、図8、図17のように、式(59)の0番目からm−1番目のすべてのパリティ検査多項式に相当するチェックノードがツリーに出現する必要がある。したがって、以下の条件が有効な方法となる。
<条件#A2−1>
・式(59)の0を満たすパリティ検査多項式において、iは0以上m−1以下の整数であり、かつ、jは0以上m−1以下の整数であり、かつ、i≠jであり、この条件を満たす、すべてi、すべてのjで、b1,i%m=b1,j%m=β(βは自然数であり、βは固定値)を満たす。
・「mの約数のうち、1を除いた、約数の集合をR」としたとき、βはRに属してはならない。
ただし、本実施の形態において(本明細書の中で共通である)、「%」はmoduloを意味し、例えば、「α%q」は、αをqで除算したときの余りである。(αは0以上の整数、qは自然数である。)
なお、「mの約数のうち、1を除いた、約数の集合をRとしたとき、少なくともβはRに属してはならない。」という条件に加え、新たに、以下の条件を満たすとよい。
<条件#A2−3>
・βは1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。β/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。なお、集合Rは<条件#A2−2>で定義している。
なお、<条件#A2−3>を別の表現をすると、<条件#A2−3’>となる。
<条件#A2−3’>
・βは1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。βの約数の集合をSとしたとき、R∩Sは空集合である。
なお、<条件#A2−3><条件#A2−3’>を別の表現をすると、<条件#A2−3”>となる。
<条件#A2−3”>
・βは1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。βとmの最大公約数が1である。
上記について補足を行う。<条件#A2−1>から、βの取り得る値は1以上m−1以下の整数となる。そして、<条件A2−2>かつ<条件A2−3>を満たした場合、βは「mの約数のうち1を除く約数」でなく、かつ、βは「mの約数のうち1を除く約数の整数倍で表現できる値」ではない、ことになる。
以下では、例を用いて説明する。時変周期m=6とする。すると、<条件#A2−1>において、βは自然数であることから、βは{1、2、3、4、5}となる。
そして、<条件#A2−2>「「mの約数のうち、1を除いた、約数の集合をR」としたとき、βはRに属してはならない。」と記載している。このとき、集合Rは{2、3、6}となる(約数のうち1を除くので)。したがって、<条件#A2−1>かつ<条件#A2−2>を満たしたとき、βは{1、4、5}となる。
<条件#A2−3>について考える。(<条件#A2−3’><条件#A2−3”>を考えても同様である。)まず、βは1以上m−1以下の整数の集合に属することから、βとして{1、2、3、4、5}を考えることができる。
次に、「β/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。」を考える。上記で説明したように、集合Rは{2,3、6}となる。
βが1のとき、集合Sは{1}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが2のとき、集合Sは{1,2}となる。したがって、R∩Sは{2}となり、<条件#A2−3>を満たさない。
βが3のとき、集合Sは{1,3}となる。したがって、R∩Sは{3}となり、<条件#A2−3>を満たさない。
βが4のとき、集合Sは{1,2,4}となる。したがって、R∩Sは{2}となり、<条件#A2−3>を満たさない。
βが5のとき、集合Sは{1,5}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
したがって、<条件#A2−1>かつ<条件#A2−3>を満たすβは{1、5}となる。
以下では、別の例を説明する。時変周期m=7とする。すると、<条件#A2−1>において、βは自然数であることから、βは{1、2、3、4、5、6}となる。
そして、<条件#A2−2>「「mの約数のうち、1を除いた、約数の集合をR」としたとき、βはRに属してはならない。」と記載している。このとき、集合Rは{7}となる(約数のうち1を除くので)。したがって、<条件#A2−1>かつ<条件#A2−2>を満たしたとき、βは{1、2、3、4、5、6}となる。
<条件#A2−3>について考える。まず、βは1以上m−1以下の整数であることから、βとして{1、2、3、4、5、6}を考えることができる。
次に、「β/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。」を考える。上記で説明したように、集合Rは{7}となる。
βが1のとき、集合Sは{1}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが2のとき、集合Sは{1,2}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが3のとき、集合Sは{1,3}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが4のとき、集合Sは{1,2,4}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが5のとき、集合Sは{1,5}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
βが6のとき、集合Sは{1,2,3,6}となる。したがって、R∩Sは空集合であり、<条件#A2−3>を満たす。
したがって、<条件#A2−1>かつ<条件#A2−3>を満たすβは{1、2、3、4、5、6}となる。
また、非特許文献2に示されているように、パリティ検査行列において、「1」の存在する位置は、random-likeであると、高い誤り訂正能力が得られる可能性がある。そのために、以下の条件を満たすとよい。
<条件#A2−4>
・「式(59)の0を満たすパリティ検査多項式において、iは0以上m−1以下の整数であり、かつ、jは0以上m−1以下の整数であり、かつ、i≠jであり、この条件を満たす、すべてi、すべてのjで、b1,i%m=b1,j%m=β(βは自然数であり、βは固定値)を満たし」、
かつ、
「vは0以上m−1以下の整数であり、かつ、wは0以上m−1以下の整数であり、かつ、v≠wであり、b1,v≠b1,wを満たすv、wが存在する」
ただし、条件#A2−4を満たさなくても、高い誤り訂正能力が得られる可能性はある。また、よりランダム性を得るために以下の条件を考えることができる。
<条件#A2−5>
・「式(59)の0を満たすパリティ検査多項式において、iは0以上m−1以下の整数であり、かつ、jは0以上m−1以下の整数であり、かつ、i≠jであり、この条件を満たす、すべてi、すべてのjで、b1,i%m=b1,j%m=β(βは自然数であり、βは固定値)を満たし」、
かつ、
「vは0以上m−1以下の整数であり、かつ、wは0以上m−1以下の整数であり、かつ、v≠wであり、この条件を満たす、すべてのv、すべてのwにおいて、b1,v≠b1,wを満たす。」
ただし、条件#A2−5を満たさなくても、高い誤り訂正能力が得られる可能性はある。
また、畳み込み符号ということを考慮する、拘束長は大きい方が高い誤り訂正能力を得ることができる可能性が高い。この点を考慮すると、以下の条件を満たすとよい。
<条件#A2−6>
・「式(59)の0を満たすパリティ検査多項式において、iは0以上m−1以下の整数であり、この条件を満たす、すべてiで、b1,i=1を満たす。」を満たさない。
ただし、条件#A2−6を満たさなくても、高い誤り訂正能力が得られる可能性はある。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCでは、「ベースとして(基礎的な構造として)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式を利用する」と記載したが、この点について説明する。
これまでに、テイルバイティング方法について説明した。
まず、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式のみで、周期的時変LDPC−CCを形成したときのパリティ検査行列について考える。
図23は、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式のみでテイルバイティングを行って、テイルバイティングを行った周期的時変LDPC−CCを形成したときのパリティ検査行列Hの構成を示している。
図23は、<条件#A1>を満たしているので、パリティ検査行列の行数はm×z、パリティ検査行列の列数はn×m×zとなる。
図23のパリティ検査行列の第1行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「0番目のパリティ検査多項式」を変換することで得られる(「0番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。したがって、図23では「0番目のパリティ検査多項式に相当する行」と記述している。
図23のパリティ検査行列の第2行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「1番目のパリティ検査多項式」を変換することで得られる(「1番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。したがって、図23では「1番目のパリティ検査多項式に相当する行」と記述している。
・
・
・
図23のパリティ検査行列の第m−1行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「m−2番目のパリティ検査多項式」を変換することで得られる(「m−2番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。したがって、図23では「m−2番目のパリティ検査多項式に相当する行」と記述している。
図23のパリティ検査行列の第m行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「m−1番目のパリティ検査多項式」を変換することで得られる(「m−1番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。したがって、図23では「m−1番目のパリティ検査多項式に相当する行」と記述している。
・
・
・
図23のパリティ検査行列の第m×z−1行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「m−2番目のパリティ検査多項式」を変換することで得られる(「m−2番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。
図23のパリティ検査行列の第m×z行は、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「m−1番目のパリティ検査多項式」を変換することで得られる(「m−1番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。
よって、図23のパリティ検査行列の第k行は(kは1以上m×z以下の整数)、式(59)の0を満たす0番目のパリティ検査多項式からm−1番目パリティ検査多項式のうちの、「(k−1)%m番目のパリティ検査多項式」を変換することで得られる(「(k−1)%m番目のパリティ検査多項式」から1行、n×m×z列のベクトルを生成することで得られる。)。
以下の説明の準備のため、図23の符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式のみでテイルバイティングを行って、テイルバイティングを行った周期的時変LDPC−CCを形成したときのパリティ検査行列Hの数式表現を行う。図23のパリティ検査行列Hの第k行目の1行、n×m×z列のベクトルをhkとすると、図23のパリティ検査行列Hは次式であらわされる。
図24に特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの構成例の一例を示す。なお、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproは、<条件#A1>を満たすことになる。
図24の特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの第k行目の1行、n×m×z列のベクトルをgkとすると、図24のパリティ検査行列Hproは次式であらわされる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの構成例の一例である図24ではパリティ検査行列Hproの1行目を除く行、つまり、図24のパリティ検査行列Hproの第2行から第m×z行の構成は、図23のパリティ検査行列Hの第2行から第m×z行の構成と同一となる(図23および図24参照)。したがって、図24において、第1行目の2401には、「「0’」番目のパリティ検査多項式に相当する行」、と記述している(この点については後で説明する)。よって、式(64−1)および式(64−2)から、以下の関係式が成立する。
次に、パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(67)のg1の構成方法について説明する。
パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(67)のg1の構成方法の一つの例は、ベースとなる(基礎的な構造となる)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式を利用して作成することができる。
g1は特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの第1行目なので、(行番号−1)%m=(1−1)%m=0であるので、ベースとなる(基礎的な構造となる)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、式(59)の0を満たすパリティ検査多項式の、0番目のパリティ検査多項式
を変形した0を満たすパリティ検査多項式から、g1を生成するものとする。一例として、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの第1行のベクトルg1を生成するための0を満たすパリティ検査多項式は、式(59)を利用し、次式とする。
なお、式(69)の0を満たすパリティ検査多項式を「0を満たすパリティ検査多項式Y」と名付ける。
よって、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproの第1行は、式(69)の0を満たすパリティ検査多項式Yを変換することで得られる(つまり、1行、n×m×z列のg1が得られる。)
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの第sブロックの送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,k、Xs,2,k、・・・、Xs,n−1,k、Ppro,s,k、・・・、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)Tであり、この送信系列を得るために、m×z個の0を満たすパリティ検査多項式が必要となる。このとき、m×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上m×z−1以下の整数)。したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
m×z−2番目:「第m×z−2番目の0を満たすパリティ検査多項式」
m×z−1番目:「第m×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproを式(64−2)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、
第0番目の0を満たすパリティ検査多項式は、「式(69)の0を満たすパリティ検査多項式Y」であり、
第1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす1番目のパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m−2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−2番目のパリティ検査多項式」であり、
第m−1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−1番目のパリティ検査多項式」であり、
第m番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす0番目のパリティ検査多項式」であり、
第m+1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす1番目のパリティ検査多項式」であり、
第m+2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第2m−2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−2番目のパリティ検査多項式」であり、
第2m−1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−1番目のパリティ検査多項式」であり、
第2m番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす0番目のパリティ検査多項式」であり、
第2m+1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす1番目のパリティ検査多項式」であり、
第2m+2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m×z−2番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−2番目のパリティ検査多項式」であり、
第m×z−1番目の0を満たすパリティ検査多項式は、「式(59)の0を満たすm−1番目のパリティ検査多項式」
となる。つまり、
「第0番目の0を満たすパリティ検査多項式は、「式(69)の0を満たすパリティ検査多項式Y」であり、第e番目(eは1以上m×z−1の整数)の0を満たすパリティ検査多項式は、「式(59)の0を満たすe%m番目のパリティ検査多項式」
となる。
そして、上記の特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCは、本実施の形態で述べた<条件#A1>、かつ、<条件A2−1>、かつ、<条件#A2−2>を満たすと、逐次的に複数のパリティを求めることができるため、回路(演算)規模を小さくすることができるという利点を得ることができる。
なお、<条件#A1>、かつ、<条件A2−1>、かつ、<条件#A2−2>かつ、<条件#A2−3>を満たすと、多くのパリティが逐次的に求めることができるという利点がある。(<条件#A1>、かつ、<条件A2−1>、かつ、<条件#A2−2>かつ、<条件#A2−3’>を満たすという条件であってもよいし、<条件#A1>、かつ、<条件#A2−1>、かつ、<条件#A2−2>かつ、<条件#A2−3”>を満たすという条件であってもよい。)
以下では、「パリティを逐次的に求めることができる」ことについて説明する。
上述の例の場合、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの第sブロックの送信系列(符号化系列(符号語))vs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,k、Xs,2,k、・・・、Xs,n−1,k、Ppro,s,k、・・・、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)Tに対し(k=1、2、・・・、m×z−1、m×z)、Hprovs=0が成立することから、式(67)より、g1vs=0が成立する。g1は式(69)の0を満たすパリティ検査多項式Yを変換することで得られるることから、g1vs=0より、Ppro,s,1が求まる(式(69)の0を満たすパリティ検査多項式において、P(D)の項が一つしかないことから、Ppro,s,1が求まる。)。
そして、Xs,j,kは、jは1以上n−1以下の整数とし、kは1以上m×z以下の整数とし、これを満たす、すべてのj、すべてのkで既知のビット(符号化前のビット)であり、かつ、Ppro,s,1が得られていることを利用し、Hproにおけるa[2]行目(a[2]≠1)のベクトルga[2](式(64−2)参照)とvsから、ga[2]vs=0が成立することにより、Ppro,s,a[2]が求まる。
そして、Xs,j,kは、jは1以上n−1以下の整数とし、kは1以上m×z以下の整数とし、これを満たす、すべてのj、すべてのkで既知のビット(符号化前のビット)であり、かつ、Ppro,s,a[2]が得られていることを利用し、Hproにおけるa[3]行目(a[3]≠1、かつ、a[3]≠a[2])のベクトルga[3](式(64−2)参照)とvsから、ga[3]vs=0が成立することにより、Ppro,s,a[3]が求まる。
そして、Xs,j,kは、jは1以上n−1以下の整数とし、kは1以上m×z以下の整数とし、これを満たす、すべてのj、すべてのkで既知のビット(符号化前のビット)であり、かつ、Ppro,s,a[3]が得られていることを利用し、Hproにおけるa[4]行目(a[4]≠1、かつ、a[4]≠a[2]、かつ、a[4]≠a[3])のベクトルga[4](式(64−2)参照)とvsから、ga[4]vs=0が成立することにより、Ppro,s,a[4]が求まる。
以上と同様の操作を繰り返すことで、複数のパリティPpro,s,kが求まる。このことを「パリティを逐次的に求めることができる」とよんでおり、複雑な連立方程式を解くことなく、複数のパリティPpro,s,kを得ることができ、したがって符号化器の回路(演算)規模を小さくすることができるという利点を有することになる。なお、以上と同様の操作を繰り返すことで、kは1以上m×z以下の整数であるすべてのkでPpro,s,kが求まると、非常に回路(演算)規模を小さくすることができるという利点がある。
なお、上述の説明において、<条件#A2−4><条件#A2−5><条件#A2−6>の3つの条件のうち、一つ以上の条件を満たすと高い誤り訂正能力を得られる可能性があるが、満たさなくても高い誤り訂正能力が得られることもある。
以上のように、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCは、高い誤り訂正能力が得られるとともに、複数のパリティを逐次的に求めることが可能となるため、符号化器の回路規模を小さくすることができるという利点をもつことになる。
なお、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの、ベースとなる(基礎的な構造となる)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式において、情報X1(D)項の数、情報X2(D)項の数、・・・、情報Xn−2(D)項の数、情報Xn−1(D)項の数のいずれか、または、すべてにおいて、2以上、または、3以上に設定すると高い誤り訂正能力得ることができる可能性があり、この場合、タナ−グラフを描いた際、時変周期を大きくした効果を得るためには、時変周期mは奇数であるとよく、有効な条件の例としては、
(1)時変周期mが素数であること。
ただし、A、Bともに、1を除く奇数であり、かつ、素数であり、A≠Bとし、u、vともに1以上の整数。
ただし、A、B、Cいずれも1を除く奇数であり、かつ、素数であり、A≠B、A≠C、B≠Cとし、u、v、wいずれも1以上の整数。
ただし、A、B、C、Dいずれも1を除く奇数であり、かつ、素数であり、A≠B、A≠C、A≠D、B≠C、B≠D、C≠Dとし、u、v、w、xいずれも1以上の整数。
となる。ただし、時変周期mが偶数とすると高い誤り訂正能力をもつ符号が得られない、というわけではなく、例えば、時変周期mが偶数のとき、以下のような条件を満たしてもよい。
(10)時変周期mを2g×Kとする。
ただし、Kが素数であり、かつ、gは1以上の整数とする。
ただし、Lが奇数であり、かつ、Lの約数の数が少ないこと、かつ、gは1以上の整数とする。
ただし、A、Bともに1を除く奇数であり、かつ、A、Bともには素数であり、A≠Bとし、かつ、u、vともに1以上の整数であり、かつ、gは1以上の整数とする。
ただし、A、B、Cいずれも1を除く奇数であり、かつ、A、B、Cいずれも素数であり、A≠B、A≠C、B≠Cとし、u、v、wいずれも1以上の整数であり、かつ、gは1以上の整数とする。
ただし、A、B、C、Dいずれも1を除く奇数であり、かつ、A、B、C、Dいずれも素数であり、A≠B、A≠C、A≠D、B≠C、B≠D、C≠Dとし、u、v、w、xいずれも1以上の整数とし、かつ、gは1以上の整数とする。
ただし、時変周期mが上記の(1)から(9)を満たさない奇数の場合でも、高い誤り訂正能力を得ることができる可能性があり、また、時変周期mが上記の(10)から(18)を満たさない偶数の場合でも、高い誤り訂正能力を得ることができる可能性がある。 また、時変周期mが小さいと符号化率が小さいとき高いビット誤り率でエラーフロアーを発生する可能性がある。この点が、通信システム、放送システム、ストレージ、メモリ等で使用したとき問題となるとき、時変周期mは3より大きいことが望まれるが、システム上、許容範囲の場合、時変周期mを小さく設定してもよい。
図25の受信装置2520の復号化器2523は、対数尤度比生成部2522が出力する、例えば、第sブロックの送信系列(符号化系列(符号語))vs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,k、Xs,2,k、・・・、Xs,n−1,k、Ppro,s,k、・・・、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)Tの各ビットのそれそれの対数尤度比を入力とし、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hproに基づいて、例えば、非特許文献4、非特許文献6、非特許文献7、非特許文献8に示されているような、min-sum復号、offset BP復号、Normalized BP復号等の簡易的なBP復号、行演算(Horizontal演算)と列演算(Vertical演算)に対しスケジューリングを行った、Shuffled BP復号、Layered BP復号等のBP(Belief Propagation)(信頼度伝搬)復号、または、非特許文献17に示されているようなビットフリッピング復号等、のLDPC符号のための復号が行われ、第sブロックの推定送信系列(推定符号化系列)(受信系列)を得、出力する。
上記では、通信システムを例に、符号化器、復号化器の動作を説明したが、これに限ったものではなく、ストレージ、メモリ等の分野でも符号化器、復号化器を活用することができる。
以下では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の具体的な構成例について説明する。
よって、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックのn×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,m×z−1、Xs,2,m×z−1、・・・、Xs,n−1,m×z−1、Ppro,s,m×z−1、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,m×z−1、λpro,s,m×z)Tとあらわすことができ、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上n−1以下の整数)、Ppro,s,kは特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティのビットであり、λpro,s,k=(Xs,1,k、Xs,2,k、・・・、Xs,n−1,k、Ppro,s,k)である(したがって、n=2のとき、λpro,s,k=(Xs,1,k、Ppro,s,k)となり、n=3のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Ppro,s,k)となり、n=4のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Ppro,s,k)となり、n=5のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Xs,4,k、Ppro,s,k)となり、n=6のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Xs,4,k、Xs,5,k、Ppro,s,k)となる。)。ただし、k=1、2、・・・、m×z−1、m×z、つまり、kは1以上m×z以下の整数である。また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの行数は、m×zとなる。
このとき、ap,i,q(p=1,2,・・・,n−1(pは1以上n−1以下の整数);q=1,2,・・・,rp(qは1以上rp以下の整数))は自然数とする。また、y,z=1,2,・・・,rp(y,zは1以上rp以下の整数)かつy≠zであり、これを満たす、∀(y,z)に対して(すべてのyおよびすべてのzに対して)、ap,i,y≠ap,i,zを満たす。
そして、高い誤り訂正能力を得るために、r1、r2、・・・、rn−2、rn−1いずれも3以上に設定する(1以上n−1以下の整数であり、これを満たす、すべてのkにおいてrkは3以上)。つまり、式(70)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。また、b1,iは自然数となる。
上述で述べたように、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックのn×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,m×z−1、Xs,2,m×z−1、・・・、Xs,n−1,m×z−1、Ppro,s,m×z−1、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,m×z−1、λpro,s,m×z)Tであり、この送信系列を得るために、m×z個の0を満たすパリティ検査多項式が必要となる。このとき、m×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上m×z−1以下の整数)。したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
m×z−2番目:「第m×z−2番目の0を満たすパリティ検査多項式」
m×z−1番目:「第m×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。
第0番目の0を満たすパリティ検査多項式は、「式(71)の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第m−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」であり、
第m番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす0番目のパリティ検査多項式」であり、
第m+1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第m+2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第2m−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第2m−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」であり、
第2m番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす0番目のパリティ検査多項式」であり、
第2m+1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第2m+2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m×z−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第m×z−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」
となる。つまり、
「第0番目の0を満たすパリティ検査多項式は、「式(71)の0を満たすパリティ検査多項式」であり、第e番目(eは1以上m×z−1の整数)の0を満たすパリティ検査多項式は、「式(70)の0を満たすe%m番目のパリティ検査多項式」
となる。
次に、上述の場合のパリティ検査行列の構成について、詳しく説明する。
上述で述べたように、式(70)と式(71)により定義することができる特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックのn×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,n−1,1、Ppro,s,1、Xs,1,2、Xs,2,2、・・・、Xs,n−1,2、Ppro,s,2、・・・、Xs,1,m×z−1、Xs,2,m×z−1、・・・、Xs,n−1,m×z−1、Ppro,s,m×z−1、Xs,1,m×z、Xs,2,m×z、・・・、Xs,n−1,m×z、Ppro,s,m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,m×z−1、λpro,s,m×z)Tとあらわすことができ、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上n−1以下の整数)、Ppro,s,kは特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティのビットであり、λpro,s,k=(Xs,1,k、Xs,2,k、・・・、Xs,n−1,k、Ppro,s,k)である(したがって、n=2のとき、λpro,s,k=(Xs,1,k、Ppro,s,k)となり、n=3のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Ppro,s,k)となり、n=4のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Ppro,s,k)となり、n=5のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Xs,4,k、Ppro,s,k)となり、n=6のとき、λpro,s,k=(Xs,1,k、Xs,2,k、Xs,3,k、Xs,4,k、Xs,5,k、Ppro,s,k)となる。)。ただし、k=1、2、・・・、m×z−1、m×z、つまり、kは1以上m×z以下の整数である。また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの行数は、m×zとなる。
以上について、図26を用いて補足説明をすると、図26には記載していないが、図26のようにあらわした、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproにおいて、第1行を抽出して得られるベクトルは、0を満たすパリティ検査多項式である式(71)に相当するベクトルとなる。
そして、図26のようにあらわした、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproのe+1行で構成されるベクトル(ただし、eは1以上m×z−1以下の整数とする。)は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのi番目(iは0以上m−1以下の整数)のパリティ検査多項式である式(70)のうちの、e%m番目の0を満たすパリティ検査多項式に相当するベクトルとなる。
なお、ΛXk,s=(Xs,k,1、Xs,k,2、Xs,k,3、・・・、Xs,k,m×z−2、Xs,k,m×z−1、Xs,k,m×z)(ただし、kは1以上n−1以下の整数)、および、Λpro,s=(Ppro,s,1、Ppro,s,2、Ppro,s,3、・・・、Ppro,s,m×z−2、Ppro,s,m×z−1、Ppro,s,m×z)とあらわされる。したがって、例えば、n=2のとき、us=(ΛX1,s、Λpro,s)T、n=3のとき、us=(ΛX1,s、ΛX2,s、Λpro,s)T、n=4のとき、us=(ΛX1,s、ΛX2,s、ΛX3,s、Λpro,s)T、n=5のとき、us=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、Λpro,s)T、n=6のとき、us=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、Λpro,s)T、n=7のとき、us=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、Λpro,s)T、n=8のとき、us=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、Λpro,s)Tとあらわされる。
このとき、1ブロックに含まれる情報X1のビットはm×zビット、1ブロックに含まれる情報X2のビットはm×zビット、・・・、1ブロックに含まれる情報Xn−2のビットはm×zビット、1ブロックに含まれる情報Xn−1のビットはm×zビット、(したがって、1ブロックに含まれる情報Xkのビットはm×zビット(kは1以上n−1以下の整数))、1ブロックに含まれるパリティビットPproのビットはm×zビットであるので、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mは、図28のように、Hpro_m=[Hx,1、Hx,2、・・・、Hx,n−2、Hx,n−1、Hp]とあらわすことができる。
そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(Xs,1,1、Xs,1,2、・・・、Xs,1,m×z、Xs,2,1、Xs,2,2、・・・、Xs,2,m×z、・・・、Xs,n−2,1、Xs,n−2,2、・・・、Xs,n−2,m×z、Xs,n−1,1、Xs,n−1,2、・・・、Xs,n−1,m×z、Ppro,s,1、Ppro,s,2、・・・、Ppro,s,m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、・・・、ΛXn−2,s、ΛXn−1,s、Λpro,s)Tとしているので、Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、・・・、Hx,n−2は情報Xn−2に関連する部分行列、Hx,n−1は情報Xn−1に関連する部分行列(したがって、Hx,kは情報Xkに関連する部分行列(kは1以上n−1以下の整数))、HpはパリティPproに関連する部分行列となり、図28に示すように、パリティ検査行列Hpro_mは、m×z行、n×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、m×z行、m×z列の行列、情報X2に関連する部分行列Hx,2は、m×z行、m×z列の行列、・・・、情報Xn−2に関連する部分行列Hx,n−2は、m×z行、m×z列の行列、情報Xn−1に関連する部分行列Hx,n−1は、m×z行、m×z列の行列(したがって、情報Xkに関連する部分行列Hx,kは、m×z行、m×z列の行列(kは1以上n−1以下の整数))、パリティPproに関連する部分行列Hpは、m×z行、m×z列の行列となる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックのn×m×zのビット数で構成される送信系列(符号化系列(符号語))usはus=(Xs,1,1、Xs,1,2、・・・、Xs,1,m×z、Xs,2,1、Xs,2,2、・・・、Xs,2,m×z、・・・、Xs,n−2,1、Xs,n−2,2、・・・、Xs,n−2,m×z、Xs,n−1,1、Xs,n−1,2、・・・、Xs,n−1,m×z、Ppro,s,1、Ppro,s,2、・・・、Ppro,s,m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、・・・、ΛXn−2,s、ΛXn−1,s、Λpro,s)Tであり、この送信系列を得るために、m×z個の0を満たすパリティ検査多項式が必要となる。このとき、m×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上m×z−1以下の整数)。したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
m×z−2番目:「第m×z−2番目の0を満たすパリティ検査多項式」
m×z−1番目:「第m×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。(なお、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。
第0番目の0を満たすパリティ検査多項式は、「式(71)の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第m−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」であり、
第m番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす0番目のパリティ検査多項式」であり、
第m+1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第m+2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第2m−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第2m−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」であり、
第2m番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす0番目のパリティ検査多項式」であり、
第2m+1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす1番目のパリティ検査多項式」であり、
第2m+2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たす2番目のパリティ検査多項式」であり、
・
・
・
第m×z−2番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−2番目のパリティ検査多項式」であり、
第m×z−1番目の0を満たすパリティ検査多項式は、「式(70)の0を満たすm−1番目のパリティ検査多項式」
となる。つまり、
「第0番目の0を満たすパリティ検査多項式は、「式(71)の0を満たすパリティ検査多項式」であり、第e番目(eは1以上m×z−1以下の整数)の0を満たすパリティ検査多項式は、「式(70)の0を満たすe%m番目のパリティ検査多項式」
となる。
図29は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの構成を示している。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第3行目を構成するベクトルは、第2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
・
・
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m−1行目を構成するベクトルは、第m−2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m行目を構成するベクトルは、第m−1番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−1番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m+1行目を構成するベクトルは、第m番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす0番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m+2行目を構成するベクトルは、第m+1番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす1番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m+3行目を構成するベクトルは、第m+2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
・
・
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第2m−1行目を構成するベクトルは、第2m−2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第2m行目を構成するベクトルは、第2m−1番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−1番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第2m+1行目を構成するベクトルは、第2m番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす0番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第2m+2行目を構成するベクトルは、第2m+1番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす1番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第2m+3行目を構成するベクトルは、第2m+2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たす2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
・
・
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m×z−1行目を構成するベクトルは、第m×z−2番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−2番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第m×z行目を構成するベクトルは、第m×z−1番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすm−1番目のパリティ検査多項式」のパリティに関連する項から生成することができる。
「特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第1行目を構成するベクトルは、第0番目の0を満たすパリティ検査多項式、つまり、「式(71)の0を満たすパリティ検査多項式」のパリティに関連する項から生成することができ、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの第e+1行目(eは1以上m×z−1以下の整数)を構成するベクトルは、第e番目の0を満たすパリティ検査多項式、つまり、「式(70)の0を満たすe%m番目のパリティ検査多項式」のパリティに関連する項から生成することができる。」
なお、mは、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/nのパリティ検査多項式に基づくLDPC−CCの時変周期である。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、パリティPproに関連する部分行列Hpの第1行目に関連するパリティ検査多項式は、式(71)となる。
したがって、パリティPproに関連する部分行列Hpの第1行目において、要素が「1」を満たす場合は、
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、パリティPproに関連する部分行列Hpの第s行目において、(sは2以上m×z以下の整数)(s−1)%m=k(%はモジュラ演算(modulo)を示す。)とすると、パリティPproに関連する部分行列Hpの第s行目に関連するパリティ検査多項式は、式(70)から、以下のようにあらわされる。
なお、式(77)は、式(76)におけるD0P(D)(=P(D))に相当する要素であり(図29の行列の対角成分の「1」に相当する)、また、式(78−1,78−2)における分類は、パリティPproに関連する部分行列Hpの行は1からm×zまで存在し、列も1からm×zまで存在するからである。
また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおけるパリティPproに関連する部分行列Hpの行と、式(70)、および、式(71)のパリティ検査多項式の関係は、図29に示したようになり、この点は、上述で説明した図24と同様である。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、情報X1に関連する部分行列Hx,1の第1行目のパリティ検査行列は、式(71)となる。
したがって、情報X1に関連する部分行列Hx,1の第1行目において、要素が「1」を満たす場合は、
となる。そして、情報X1に関連する部分行列Hx,1の第1行のHx,1,comp[1][j]において、式(79)、式(80)以外の要素は「0」なる。つまり、{j≠1}、かつ、{j≠1−a1,0,y+m×zを、すべてのyで満たす。ただし、yは1以上r1以下の整数。}を満たす、すべてのj(ただし、jは1以上m×z以下の整数)において、Hx,1,comp[1][j]=0となる。
なお、式(79)は、式(71)におけるD0X1(D)(=X1(D))に相当する要素であり(図30の行列の対角成分の「1」に相当する)、また、式(80)となるのは、情報X1に関連する部分行列Hx,1の行は1からm×zまで存在し、列も1からm×zまで存在するからである。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、情報X1に関連する部分行列Hx,1の第s行目において、(sは2以上m×z以下の整数)(s−1)%m=k(%はモジュラ演算(modulo)を示す。)とすると、情報X1に関連する部分行列Hx,1の第s行目に関連するパリティ検査多項式は、式(70)から、式(76)とあらわされる。
したがって、情報X1に関連する部分行列Hx,1の第s行目において、要素が「1」を満たす場合は、
なお、式(81)は、式(76)におけるD0X1(D)(=X1(D))に相当する要素であり(図30の行列の対角成分の「1」に相当する)、また、式(82−1,82−2)における分類は、情報X1に関連する部分行列Hx,1の行は1からm×zまで存在し、列も1からm×zまで存在するからである。
また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1の行と、式(70)、および、式(71)のパリティ検査多項式の関係は、図30(なお、q=1)に示したようになり、この点は、上述で説明した図24と同様である。
上述では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1の構成について説明したが、以下では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおける情報Xq(qは1以上n−1以下の整数)に関連する部分行列Hx,qの構成について説明する。(部分行列Hx,qの構成は、上述の部分行列Hx,1の説明と同様に、説明することができる。)
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおける情報Xqに関連する部分行列Hx,qの構成は、図30のとおりである。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、情報Xqに関連する部分行列Hx,qの第1行目のパリティ検査行列は、式(71)となる。
したがって、情報Xqに関連する部分行列Hx,qの第1行目において、要素が「1」を満たす場合は、
となる。そして、情報Xqに関連する部分行列Hx,qの第1行のHx, q,comp[1][j]において、式(83)、式(84)以外の要素は「0」なる。つまり、{j≠1}、かつ、{j≠1−aq,0,y+m×zを、すべてのyで満たす。ただし、yは1以上rq以下の整数。}を満たす、すべてのj(ただし、jは1以上m×z以下の整数)において、Hx, q,comp[1][j]=0となる。
なお、式(83)は、式(71)におけるD0Xq(D)(=Xq(D))に相当する要素であり(図30の行列の対角成分の「1」に相当する)、また、式(84)となるのは、情報Xqに関連する部分行列Hx,qの行は1からm×zまで存在し、列も1からm×zまで存在するからである。
特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCにおいて、0を満たすパリティ検査多項式が、式(70)および式(71)を満たすとき、情報Xqに関連する部分行列Hx,qの第s行目において、(sは2以上m×z以下の整数)(s−1)%m=k(%はモジュラ演算(modulo)を示す。)とすると、情報Xqに関連する部分行列Hx,qの第s行目に関連するパリティ検査多項式は、式(70)から、式(76)とあらわされる。
したがって、情報Xqに関連する部分行列Hx,qの第s行目において、要素が「1」を満たす場合は、
なお、式(85)は、式(76)におけるD0Xq(D)(=Xq(D))に相当する要素であり(図30の行列の対角成分の「1」に相当する)、また、式(86−1,86−2)における分類は、情報Xqに関連する部分行列Hx,qの行は1からm×zまで存在し、列も1からm×zまで存在するからである。
また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mにおける情報Xqに関連する部分行列Hx,qの行と、式(70)、および、式(71)のパリティ検査多項式の関係は、図30に示したようになり、この点は、上述で説明した図24と同様である。
上記では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mの構成について説明した。以下では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mと等価なパリティ検査行列の生成方法について説明する。
図31は、符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号のパリティ検査行列Hの構成を示しており、例えば、図31のパリティ検査行列は、M行N列の行列となる。そして、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mを、図31のパリティ検査行列Hであらわすものとする。(したがって、Hpro_m=(図31の)Hとなる。以下では、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列をHと記載することにする。)
図31において、第j番目のブロックの送信系列(符号語)vj T=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)とする(組織符号の場合、Yj,k(kは1以上N以下の整数)は、情報XまたはパリティP(パリティPpro)となる。)。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号のパリティ検査行列(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列)Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列)Hは、以下のようにあらわされる。
そして、蓄積および並び替え部(インタリーブ部)3204は、符号化後のデータ3203を入力とし、符号化後のデータ3203を蓄積し、順番の並び替えを行い、インタリーブ後のデータ3205を出力する。したがって、蓄積および並び替え部(インタリーブ部)3204は、第j番目のブロックの送信系列vjを、vj=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)Tを入力とし、送信系列vjの要素の順番の入れ替えを行った結果、図32に示すように送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tを出力することになる(v’jは一例である。)。なお、前述でも触れたように第j番目のブロックの送信系列vjに対し、送信系列vjの要素の順番の入れ替えを行った送信系列がv’jとなる。したがって、v’jは、1行N列のベクトルであり、v’jのN個の要素には、Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,Nがそれぞれ一つ存在することになる。
つまり、第j番目のブロックの送信系列v’jの第i行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第i列目の要素)は、Yj,g(g=1、2、3、・・・、N−2、N−1、N)とあらわされたとき、パリティ検査行列H’の第i列目を抽出したベクトルは、上述で説明したベクトルckを用いると、cgとなる。
よって、当然ながら、インタリーブを施した送信系列(符号語)(v’j)を元の順番に戻した送信系列(vj)は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの送信系列(符号語)である。したがって、インタリーブを施した送信系列(符号語)(v’j)とインタリーブを施した送信系列(符号語)(v’j)に対応するパリティ検査行列H’に対し、元の順番に戻し、送信系列vjを得、送信系列vj対応するパリティ検査行列を得ることができ、そのパリティ検査行列は、上述で述べた、図31のパリティ検査行列Hとなる、つまり、符号化率(n−1)/nの特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列Hpro_mである。
例えば、送信装置が、第jブロックの送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tを送信したものとする。すると、各ビットの対数尤度比計算部3400は、受信信号から、Yj,32の対数尤度比、Yj,99の対数尤度比、Yj,23の対数尤度比、・・・、Yj,234の対数尤度比、Yj,3の対数尤度比、Yj,43の対数尤度比を計算し、出力することになる(図34の3406に相当)。
したがって、符号化率(n−1)/nの特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCの送信系列(符号語)に対し、インタリーブを施した場合、上述のように、符号化率(n−1)/nの特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列に対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)のパリティ検査行列を受信装置は用いることで、得られた各ビットの対数尤度比に対し、デインタリーブを行わなくても、信頼度伝播復号を行い、推定系列を得ることができる。
上述では、送信系列のインタリーブとパリティ検査行列の関係について説明したが、以降では、パリティ検査行列における行並び替え(行置換)について説明する。
そして、図35のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列)Hは、以下のようにあらわされる。
次に、図35のパリティ検査行列Hに対し、行並び替え(行置換)を行ったパリティ検査行列を考える。
図36は図35のパリティ検査行列Hに対し、行並び替え(行置換)を行ったパリティ検査行列H’の一例を示しており、パリティ検査行列H’は、図35と同様、符号化率(N−M)/NのLDPC(ブロック)符号(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC)の第j番目のブロックの送信系列(符号語)vj T=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)に対応するパリティ検査行列(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列)となる。
図36のパリティ検査行列H’は、図35のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkで構成されており、一例として、パリティ検査行列H’の第1行目はz130、第2行目はz24、第3行目はz45、・・・、第M−2行目はz33、第M−1行目はz9、第M行目はz3で構成されているものとする。なお、パリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したベクトルM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
このとき、LDPC(ブロック)符号(つまり、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC)のパリティ検査行列H’は、以下のようにあらわされ、
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
なお、「第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。」の規則にしたがって、パリティ検査行列を作成すれば、上記の例に限らず、第j番目のブロックの送信系列vjのパリティ検査行列を得ることができる。
したがって、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCを用いていても、上述で説明したパリティ検査行列、および、図26から図30を用いて説明したパリティ検査行列を、送信装置、および、受信装置で用いているとは限らない。よって、例えば、上述で説明したパリティ検査行列に対し、上述で説明した列並び替え(列置換)を行った行列、または、行並び替え(行置換)を行った行列、および、図26から図30を用いて説明したパリティ検査行列に対し、上述で説明した列並び替え(列置換)を行った行列、または、行並び替え(行置換)を行った行列をパリティ検査行列として、送信装置、および、受信装置は、使用してもよい。
また、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列に対し、上述で説明した列並び替え(列置換)および行並び替え(行置換)の両者を施すことにより得た行列をパリティ検査行列としてもよい。
このとき、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列に対し、列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H1を得る。そして、パリティ検査行列H1に対し、行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H2を得、送信装置、および、受信装置は、パリティ検査行列H2を用いて、符号化、復号化を行ってもよい。
次に、パリティ検査行列H2,1に対し、2回目の列並び替え(列置換)を行い、パリティ検査行列H1,2を得る。そして、パリティ検査行列H1,2に対し、2回目の行並び替え(行置換)を行い、パリティ検査行列H2,2を得る。
以上のような、列並び替え(列置換)、および、行並び替え(行置換)をs(sは2以上の整数)回繰り返して、パリティ検査行列H2,sを得る。このとき、パリティ検査行列H2,k−1に対し、k(kは2以上s以下の整数)回目の列並び替え(列置換)を行い、パリティ検査行列H1,kを得る。そして、パリティ検査行列H1,kに対し、k回目の行並び替え(行置換)を行い、パリティ検査行列H2,kを得ることになる。なお、1回目については、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのパリティ検査行列に対し、1回目の列並び替え(列置換)を行い、パリティ検査行列H1,1を得る。そして、パリティ検査行列H1,1に対し、1回目の行並び替え(行置換)を行い、パリティ検査行列H2,1を得ることになる。
そして、送信装置、および、受信装置は、パリティ検査行列H2,sを用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H4,sを用いて、符号化、復号化を行ってもよい。
次に、パリティ検査行列H6,1に対し、2回目の列並び替え(列置換)を行い、パリティ検査行列H5,2を得る。そして、パリティ検査行列H5,2に対し、2回目の行並び替え(行置換)を行い、パリティ検査行列H6,2を得る。
そして、送信装置、および、受信装置は、パリティ検査行列H6,sを用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H8,sを用いて、符号化、復号化を行ってもよい。
このとき、ap,i,q(p=1,2,・・・,n−1(pは1以上n−1以下の整数);q=1,2,・・・,rp(qは1以上rp以下の整数))は0以上の整数とする。また、y,z=1,2,・・・,rp(y,zは1以上rp以下の整数)かつy≠zであり、これを満たす、∀(y,z)に対して(すべてのyおよびすべてのzに対して)、ap,i,y≠ap,i,zを満たす。
そして、高い誤り訂正能力を得るために、r1、r2、・・・、rn−2、rn−1いずれも4以上に設定する(1以上n−1以下の整数であり、これを満たす、すべてのkにおいてrkは4以上)。つまり、式(91)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。また、b1,iは自然数となる。
また、別の方法として、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのi番目(iは0以上m−1以下の整数)のパリティ検査多項式において、パリティ検査多項式ごとに、Xk(D)の項数(kは1以上n−1以下の整数)を設定してもよい。すると、例えば、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのi番目(iは0以上m−1以下の整数)のパリティ検査多項式として、式(70)の代わりに次式を扱ってもよい。
このとき、ap,i,q(p=1,2,・・・,n−1(pは1以上n−1以下の整数);q=1,2,・・・,rp,i(qは1以上rp,i以下の整数))は自然数とする。また、y,z=1,2,・・・,rp,i(y,zは1以上rp,i以下の整数)かつy≠zであり、これを満たす、∀(y,z)に対して(すべてのyおよびすべてのzに対して)、ap,i,y≠ap,i,zを満たす。また、b1,iは自然数となる。なお、式(93)において、iごとに、rp,iを設定することができる点が、式(93)の特徴である。
そして、高い誤り訂正能力を得るために、pは1以上n−1以下の整数、iは0以上m−1以下の整数であり、これを満たす、すべてのp、すべてのiにおいて、rp,iを1以上に設定するとよい。
さらに、別の方法として、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのi番目(iは0以上m−1以下の整数)のパリティ検査多項式において、パリティ検査多項式ごとに、Xk(D)の項数(kは1以上n−1以下の整数)を設定してもよい。すると、例えば、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCのi番目(iは0以上m−1以下の整数)のパリティ検査多項式として、式(70)の代わりに次式を扱ってもよい。
そして、高い誤り訂正能力を得るために、pは1以上n−1以下の整数、iは0以上m−1以下の整数であり、これを満たす、すべてのp、すべてのiにおいて、rp,iを2以上に設定するとよい。
「高い誤り訂正能力を得るために、r1、r2、・・・、rn−2、rn−1いずれも3以上に設定する(1以上n−1以下の整数であり、これを満たす、すべてのkにおいてrkは3以上)。つまり、式(B1)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。」
とした。以下では、r1、r2、・・・、rn−2、rn−1いずれも3以上と設定したとき、高い誤り訂正能力を得るための条件の例について説明する。
なお、式(71)のパリティ検査多項式は、式(70)のパリティ検査多項式の0番目を利用して作成されているため、
「式(71)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。」
となる。そして、上述で説明したように、式(70)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの0を満たすi番目(iは0以上m−1以下の整数)のパリティ検査多項式となり、式(71)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/n(nは2以上の整数)の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの第1行目のベクトルを生成するための0を満たすパリティ検査多項式となる。
「a1,0,1%m=a1,1,1%m=a1,2,1%m=a1,3,1%m=・・・=a1,g,1%m=・・・=a1,m−2,1%m=a1,m−1,1%m=v1,1 (v1,1:固定値)」
「a1,0,2%m=a1,1,2%m=a1,2,2%m=a1,3,2%m=・・・=a1,g,2%m=・・・=a1,m−2,2%m=a1,m−1,2%m=v1,2 (v1,2:固定値)」
(gは0以上m−1以下の整数)
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X2に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
「a2,0,1%m=a2,1,1%m=a2,2,1%m=a2,3,1%m=・・・=a2,g,1%m=・・・=a2,m−2,1%m=a2,m−1,1%m=v2,1 (v2,1:固定値)」
「a2,0,2%m=a2,1,2%m=a2,2,2%m=a2,3,2%m=・・・=a2,g,2%m=・・・=a2,m−2,2%m=a2,m−1,2%m=v2,2 (v2,2:固定値)」
(gは0以上m−1以下の整数)
・
・
・
一般化すると、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xkに関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。(kは、1以上n−1以下の整数)
<条件#B−1−k>
「ak,0,1%m=ak,1,1%m=ak,2,1%m=ak,3,1%m=・・・=ak,g,1%m=・・・=ak,m−2,1%m=ak,m−1,1%m=vk,1 (vk,1:固定値)」
「ak,0,2%m=ak,1,2%m=ak,2,2%m=ak,3,2%m=・・・=ak,g,2%m=・・・=ak,m−2,2%m=ak,m−1,2%m=vk,2 (vk,2:固定値)」
(gは0以上m−1以下の整数)
・
・
・
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xn−1に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
「an−1,0,1%m=an−1,1,1%m=an−1,2,1%m=an−1,3,1%m=・・・=an−1,g,1%m=・・・=an−1,m−2,1%m=an−1,m−1,1%m=vn−1,1 (vn−1,1:固定値)」
「an−1,0,2%m=an−1,1,2%m=an−1,2,2%m=an−1,3,2%m=・・・=an−1,g,2%m=・・・=an−1,m−2,2%m=an−1,m−1,2%m=vn−1,2 (vn−1,2:固定値)」
(gは0以上m−1以下の整数)
なお、上記において、「%」はmoduloを意味する、つまり、「α%m」は、αをmで除算したときの余りを示す。<条件#B−1−1>から<条件#B−1−(n−1)>を別の表現をすると、以下のように表現することができる。なお、jは1、2である。
<条件#B−1’−1>
「a1,g,j%m=v1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa1,g,j%m=v1,j(v1,j:固定値)が成立する。)
<条件#B−1’−2>
「a2,g,j%m=v2,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v2,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa2,g,j%m=v2,j(v2,j:固定値)が成立する。)
・
・
・
一般化すると、以下のようになる。
「ak,g,j%m=vk,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vk,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでak,g,j%m=vk,j(vk,j:固定値)が成立する。)
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−1’−(n−1)>
「an−1,g,j%m=vn−1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vn−1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでan−1,g,j%m=vn−1,j(vn−1,j:固定値)が成立する。)
さらに、以下の条件を満たすと、高い誤り訂正能力を得ることができる。
<条件#B−2−1>
「v1,1≠0、かつ、v1,2≠0が成立する。」
かつ
「v1,1≠v1,2が成立する。」
<条件#B−2−2>
「v2,1≠0、かつ、v2,2≠0が成立する。」
かつ
「v2,1≠v2,2が成立する。」
・
・
・
一般化すると、以下のようになる。
<条件#B−2−k>
「vk,1≠0、かつ、vk,2≠0が成立する。」
かつ
「vk,1≠vk,2が成立する。」
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−2−(n−1)>
「vn−1,1≠0、かつ、vn−1,2≠0が成立する。」
かつ
「vn−1,1≠vn−1,2が成立する。」
そして、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1から情報Xn−1に関連する部分行列がイレギュラー」でなければならないので、以下の条件を与える。
<条件#B−3−1>
「a1,g,v%m=a1,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでa1,g,v%m=a1,h,v%mが成立する。)・・・条件#Xa−1
vは3以上r1以下の整数であり、すべてのvで「条件#Xa−1」を満たすことはない。
<条件#B−3−2>
「a2,g,v%m=a2,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでa2,g,v%m=a2,h,v%mが成立する。)・・・条件#Xa−2
vは3以上r2以下の整数であり、すべてのvで「条件#Xa−2」を満たすことはない。
・
・
・
一般化すると、以下のようになる。
<条件#B−3−k>
「ak,g,v%m=ak,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでak,g,v%m=ak,h,v%mが成立する。)・・・条件#Xa−k
vは3以上rk以下の整数であり、すべてのvで「条件#Xa−k」を満たすことはない。
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−3−(n−1)>
「an−1,g,v%m=an−1,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでan−1,g,v%m=an−1,h,v%mが成立する。)・・・条件#Xa−(n−1)
vは3以上rn−1以下の整数であり、すべてのvで「条件#Xa−(n−1)」を満たすことはない。
なお、<条件#B−3−1>から<条件#B−3−(n−1)>を別の表現をすると以下のような条件となる。
<条件#B−3’−1>
「a1,g,v%m≠a1,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、a1,g,v%m≠a1,h,v%mが成立するg、hが存在する。)・・・条件#Ya−1
vは3以上r1以下の整数であり、すべてのvで「条件#Ya−1」を満たす。
<条件#B−3’−2>
「a2,g,v%m≠a2,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、a2,g,v%m≠a2,h,v%mが成立するg、hが存在する。)・・・条件#Ya−2
vは3以上r2以下の整数であり、すべてのvで「条件#Ya−2」を満たす。
・
・
・
一般化すると、以下のようになる。
<条件#B−3’−k>
「ak,g,v%m≠ak,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、ak,g,v%m≠ak,h,v%mが成立するg、hが存在する。)・・・条件#Ya−k
vは3以上rk以下の整数であり、すべてのvで「条件#Ya−k」を満たす。
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−3’−(n−1)>
「an−1,g,v%m≠an−1,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、an−1,g,v%m≠an−1,h,v%mが成立するg、hが存在する。)・・・条件#Ya−(n−1)
vは3以上rn−1以下の整数であり、すべてのvで「条件#Ya−(n−1)」を満たす。
このようにすることで、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1に関連する部分行列、情報X2に関連する部分行列、・・・、情報Xn−1に関連する部分行列において、最低列重みを3となり」、以上の条件を満した、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とすることで、「イレギュラーLDPC符号」を生成することができ、高い誤り訂正能力を得ることができる。
なお、以上の条件を踏まえて、高い誤り訂正能力をもつ符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を生成することになるが、このとき、高い誤り訂正能力をもつ符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を容易に得るためには、r1=r2=・・・=rn−2=rn−1=r(rは3以上)と設定するとよい。
また、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を形成するためのパリティ検査多項式、式(70)および式(71)に相当するチェックノードが、ツリーを描いたときに、可能な限り多く出現するとよい可能性がある。
これを実現するために、上記で記載した、vk,1およびvk,2(kは、1以上n−1以下の整数)は、以下の条件を満たすとよい。
<条件#B−4−1>
・「mの約数のうち、1を除いた、約数の集合をR」としたとき、vk,1はRに属してはならない。
<条件#B−4−2>
・「mの約数のうち、1を除いた、約数の集合をR」としたとき、vk,2はRに属してはならない。
さらに、以下の条件を満たしてもよい。
<条件#B−5−1>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。なお、集合Rは<条件#B−4−1>で定義している。
<条件#B−5−2>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。なお、集合Rは<条件#B−4−2>で定義している。
なお、<条件#B−5−1>、<条件#B−5−2>を別の表現をすると、<条件#B−5−1’>、<条件#B−5−2’>となる。
<条件#B−5−1’>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1の約数の集合をSとしたとき、R∩Sは空集合である。
<条件#B−5−2’>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2の約数の集合をSとしたとき、R∩Sは空集合である。
なお、<条件#B−5−1><条件#B−5−1’>を別の表現をすると、<条件#B−5−1”>となり、<条件#B−5−2><条件#B−5−2’>を別の表現をすると、<条件#B−5−2”>。
<条件#B−5−1”>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1とmの最大公約数が1である。
<条件#B−5−2”>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2とmの最大公約数が1である。
「高い誤り訂正能力を得るために、r1、r2、・・・、rn−2、rn−1いずれも4以上に設定する(1以上n−1以下の整数であり、これを満たす、すべてのkにおいてrkは3以上)。つまり、式(B1)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。」
とした。以下では、r1、r2、・・・、rn−2、rn−1いずれも4以上と設定したとき、高い誤り訂正能力を得るための条件の例について説明する。
なお、式(92)のパリティ検査多項式は、式(91)のパリティ検査多項式の0番目を利用して作成されているため、
「式(92)において、1以上n−1以下の整数であり、これを満たす、すべてのkにおいて、Xk(D)の項数は4以上となる。」
となる。そして、上述で説明したように、式(91)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの0を満たすi番目(iは0以上m−1以下の整数)のパリティ検査多項式となり、式(92)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/n(nは2以上の整数)の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの第1行目のベクトルを生成するための0を満たすパリティ検査多項式となる。
このとき、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。なお、パリティ検査行列のα列において、α列を抽出したベクトルにおいて、そのベクトルの要素において、「1」が存在する数がα列の列重みとなる。
<条件#B−6−1>
「a1,0,1%m=a1,1,1%m=a1,2,1%m=a1,3,1%m=・・・=a1,g,1%m=・・・=a1,m−2,1%m=a1,m−1,1%m=v1,1 (v1,1:固定値)」
「a1,0,2%m=a1,1,2%m=a1,2,2%m=a1,3,2%m=・・・=a1,g,2%m=・・・=a1,m−2,2%m=a1,m−1,2%m=v1,2 (v1,2:固定値)」
「a1,0,3%m=a1,1,3%m=a1,2,3%m=a1,3,3%m=・・・=a1,g,3%m=・・・=a1,m−2,3%m=a1,m−1,3%m=v1,3 (v1,3:固定値)」
(gは0以上m−1以下の整数)
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X2に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−6−2>
「a2,0,1%m=a2,1,1%m=a2,2,1%m=a2,3,1%m=・・・=a2,g,1%m=・・・=a2,m−2,1%m=a2,m−1,1%m=v2,1 (v2,1:固定値)」
「a2,0,2%m=a2,1,2%m=a2,2,2%m=a2,3,2%m=・・・=a2,g,2%m=・・・=a2,m−2,2%m=a2,m−1,2%m=v2,2 (v2,2:固定値)」
「a2,0,3%m=a2,1,3%m=a2,2,3%m=a2,3,3%m=・・・=a2,g,3%m=・・・=a2,m−2,3%m=a2,m−1,3%m=v2,3 (v2,3:固定値)」
(gは0以上m−1以下の整数)
・
・
・
一般化すると、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xkに関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。(kは、1以上n−1以下の整数)
<条件#B−6−k>
「ak,0,1%m=ak,1,1%m=ak,2,1%m=ak,3,1%m=・・・=ak,g,1%m=・・・=ak,m−2,1%m=ak,m−1,1%m=vk,1 (vk,1:固定値)」
「ak,0,2%m=ak,1,2%m=ak,2,2%m=ak,3,2%m=・・・=ak,g,2%m=・・・=ak,m−2,2%m=ak,m−1,2%m=vk,2 (vk,2:固定値)」
「ak,0,3%m=ak,1,3%m=ak,2,3%m=ak,3,3%m=・・・=ak,g,3%m=・・・=ak,m−2,3%m=ak,m−1,3%m=vk,3 (vk,3:固定値)」
(gは0以上m−1以下の整数)
・
・
・
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xn−1に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−6−(n−1)>
「an−1,0,1%m=an−1,1,1%m=an−1,2,1%m=an−1,3,1%m=・・・=an−1,g,1%m=・・・=an−1,m−2,1%m=an−1,m−1,1%m=vn−1,1 (vn−1,1:固定値)」
「an−1,0,2%m=an−1,1,2%m=an−1,2,2%m=an−1,3,2%m=・・・=an−1,g,2%m=・・・=an−1,m−2,2%m=an−1,m−1,2%m=vn−1,2 (vn−1,2:固定値)」
「an−1,0,3%m=an−1,1,3%m=an−1,2,3%m=an−1,3,3%m=・・・=an−1,g,3%m=・・・=an−1,m−2,3%m=an−1,m−1,3%m=vn−1,3 (vn−1,3:固定値)」
(gは0以上m−1以下の整数)
なお、上記において、「%」はmoduloを意味する、つまり、「α%m」は、αをmで除算したときの余りを示す。<条件#B−6−1>から<条件#B−6−(n−1)>を別の表現をすると、以下のように表現することができる。なお、jは1、2、3である。
<条件#B−6’−1>
「a1,g,j%m=v1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa1,g,j%m=v1,j(v1,j:固定値)が成立する。)
<条件#B−6’−2>
「a2,g,j%m=v2,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v2,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa2,g,j%m=v2,j(v2,j:固定値)が成立する。)
・
・
・
一般化すると、以下のようになる。
<条件#B−6’−k>
「ak,g,j%m=vk,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vk,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでak,g,j%m=vk,j(vk,j:固定値)が成立する。)
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−6’−(n−1)>
「an−1,g,j%m=vn−1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vn−1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでan−1,g,j%m=vn−1,j(vn−1,j:固定値)が成立する。)
さらに、以下の条件を満たすと、高い誤り訂正能力を得ることができる。
<条件#B−7−1>
「v1,1≠v1,2、v1,1≠v1,3、v1,2≠v1,3が成立する。」
<条件#B−7−2>
「v2,1≠v2,2、v2,1≠v2,3、v2,2≠v2,3が成立する。」
・
・
・
一般化すると、以下のようになる。
<条件#B−7−k>
「vk,1≠vk,2、vk,1≠vk,3、vk,2≠vk,3が成立する。」
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−7−(n−1)>
「vn−1,1≠vn−1,2、vn−1,1≠vn−1,3、vn−1,2≠vn−1,3が成立する。」
そして、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1から情報Xn−1に関連する部分行列がイレギュラー」でなければならないので、以下の条件を与える。
<条件#B−8−1>
「a1,g,v%m=a1,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでa1,g,v%m=a1,h,v%mが成立する。)・・・条件#Xa−1
vは4以上r1以下の整数であり、すべてのvで「条件#Xa−1」を満たすことはない。
<条件#B−8−2>
「a2,g,v%m=a2,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでa2,g,v%m=a2,h,v%mが成立する。)・・・条件#Xa−2
vは4以上r2以下の整数であり、すべてのvで「条件#Xa−2」を満たすことはない。
・
・
・
一般化すると、以下のようになる。
<条件#B−8−k>
「ak,g,v%m=ak,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでak,g,v%m=ak,h,v%mが成立する。)・・・条件#Xa−k
vは4以上rk以下の整数であり、すべてのvで「条件#Xa−k」を満たすことはない。
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−8−(n−1)>
「an−1,g,v%m=an−1,h,v%m for ∀g∀h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、これを満たす、すべてのg、すべてのhでan−1,g,v%m=an−1,h,v%mが成立する。)・・・条件#Xa−(n−1)
vは4以上rn−1以下の整数であり、すべてのvで「条件#Xa−(n−1)」を満たすことはない。
なお、<条件#B−8−1>から<条件#B−8−(n−1)>を別の表現をすると以下のような条件となる。
<条件#B−8’−1>
「a1,g,v%m≠a1,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、a1,g,v%m≠a1,h,v%mが成立するg、hが存在する。)・・・条件#Ya−1
vは4以上r1以下の整数であり、すべてのvで「条件#Ya−1」を満たす。
<条件#B−8’−2>
「a2,g,v%m≠a2,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、a2,g,v%m≠a2,h,v%mが成立するg、hが存在する。)・・・条件#Ya−2
vは4以上r2以下の整数であり、すべてのvで「条件#Ya−2」を満たす。
・
・
・
一般化すると、以下のようになる。
<条件#B−8’−k>
「ak,g,v%m≠ak,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、ak,g,v%m≠ak,h,v%mが成立するg、hが存在する。)・・・条件#Ya−k
vは4以上rk以下の整数であり、すべてのvで「条件#Ya−k」を満たす。
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−8’−(n−1)>
「an−1,g,v%m≠an−1,h,v%m for ∃g∃h g,h=0,1,2,・・・,m−3,m−2,m−1;g≠h」
(gは0以上m−1以下の整数であり、かつ、hは0以上m−1以下の整数であり、かつ、g≠hであり、an−1,g,v%m≠an−1,h,v%mが成立するg、hが存在する。)・・・条件#Ya−(n−1)
vは4以上rn−1以下の整数であり、すべてのvで「条件#Ya−(n−1)」を満たす。
このようにすることで、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1に関連する部分行列、情報X2に関連する部分行列、・・・、情報Xn−1に関連する部分行列において、最低列重みを3となり」、以上の条件を満した、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とすることで、「イレギュラーLDPC符号」を生成することができ、高い誤り訂正能力を得ることができる。
なお、以上の条件を踏まえて、高い誤り訂正能力をもつ符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を生成することになるが、このとき、高い誤り訂正能力をもつ符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を容易に得るためには、r1=r2=・・・=rn−2=rn−1=r(rは4以上)と設定するとよい。
高い誤り訂正能力を得るために、iは0以上m−1以下の整数であり、これを満たす、すべてのiにおいて、r1,i、r2,i、・・・、rn−2,i、rn−1,iいずれも2以上に設定する。このとき、高い誤り訂正能力を得るための条件の例について説明する。
上述で説明したように、式(93)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの0を満たすi番目(iは0以上m−1以下の整数)のパリティ検査多項式となり、式(94)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/n(nは2以上の整数)の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの第1行目のベクトルを生成するための0を満たすパリティ検査多項式となる。
<条件#B−9−1>
「a1,0,1%m=a1,1,1%m=a1,2,1%m=a1,3,1%m=・・・=a1,g,1%m=・・・=a1,m−2,1%m=a1,m−1,1%m=v1,1 (v1,1:固定値)」
「a1,0,2%m=a1,1,2%m=a1,2,2%m=a1,3,2%m=・・・=a1,g,2%m=・・・=a1,m−2,2%m=a1,m−1,2%m=v1,2 (v1,2:固定値)」
(gは0以上m−1以下の整数)
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X2に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−9−2>
「a2,0,1%m=a2,1,1%m=a2,2,1%m=a2,3,1%m=・・・=a2,g,1%m=・・・=a2,m−2,1%m=a2,m−1,1%m=v2,1 (v2,1:固定値)」
「a2,0,2%m=a2,1,2%m=a2,2,2%m=a2,3,2%m=・・・=a2,g,2%m=・・・=a2,m−2,2%m=a2,m−1,2%m=v2,2 (v2,2:固定値)」
(gは0以上m−1以下の整数)
・
・
・
一般化すると、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xkに関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。(kは、1以上n−1以下の整数)
<条件#B−9−k>
「ak,0,1%m=ak,1,1%m=ak,2,1%m=ak,3,1%m=・・・=ak,g,1%m=・・・=ak,m−2,1%m=ak,m−1,1%m=vk,1 (vk,1:固定値)」
「ak,0,2%m=ak,1,2%m=ak,2,2%m=ak,3,2%m=・・・=ak,g,2%m=・・・=ak,m−2,2%m=ak,m−1,2%m=vk,2 (vk,2:固定値)」
(gは0以上m−1以下の整数)
・
・
・
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xn−1に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−9−(n−1)>
「an−1,0,1%m=an−1,1,1%m=an−1,2,1%m=an−1,3,1%m=・・・=an−1,g,1%m=・・・=an−1,m−2,1%m=an−1,m−1,1%m=vn−1,1 (vn−1,1:固定値)」
「an−1,0,2%m=an−1,1,2%m=an−1,2,2%m=an−1,3,2%m=・・・=an−1,g,2%m=・・・=an−1,m−2,2%m=an−1,m−1,2%m=vn−1,2 (vn−1,2:固定値)」
(gは0以上m−1以下の整数)
なお、上記において、「%」はmoduloを意味する、つまり、「α%m」は、αをmで除算したときの余りを示す。<条件#B−9−1>から<条件#B−9−(n−1)>を別の表現をすると、以下のように表現することができる。なお、jは1、2である。
<条件#B−9’−1>
「a1,g,j%m=v1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa1,g,j%m=v1,j(v1,j:固定値)が成立する。)
<条件#B−9’−2>
「a2,g,j%m=v2,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v2,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa2,g,j%m=v2,j(v2,j:固定値)が成立する。)
・
・
・
一般化すると、以下のようになる。
<条件#B−9’−k>
「ak,g,j%m=vk,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vk,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでak,g,j%m=vk,j(vk,j:固定値)が成立する。)
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−9’−(n−1)>
「an−1,g,j%m=vn−1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vn−1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでan−1,g,j%m=vn−1,j(vn−1,j:固定値)が成立する。)
さらに、以下の条件を満たすと、高い誤り訂正能力を得ることができる。
<条件#B−10−1>
「v1,1≠0、かつ、v1,2≠0が成立する。」
かつ
「v1,1≠v1,2が成立する。」
<条件#B−10−2>
「v2,1≠0、かつ、v2,2≠0が成立する。」
かつ
「v2,1≠v2,2が成立する。」
・
・
・
一般化すると、以下のようになる。
<条件#B−10−k>
「vk,1≠0、かつ、vk,2≠0が成立する。」
かつ
「vk,1≠vk,2が成立する。」
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−10−(n−1)>
「vn−1,1≠0、かつ、vn−1,2≠0が成立する。」
かつ
「vn−1,1≠vn−1,2が成立する。」
このようにすることで、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1に関連する部分行列、情報X2に関連する部分行列、・・・、情報Xn−1に関連する部分行列において、最低列重みを3となり」、以上の条件を満した、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とすることで、「イレギュラーLDPC符号」を生成することができ、高い誤り訂正能力を得ることができる。
また、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を形成するためのパリティ検査多項式、式(93)および式(94)に相当するチェックノードが、ツリーを描いたときに、可能な限り多く出現するとよい可能性がある。
これを実現するために、上記で記載した、vk,1およびvk,2(kは、1以上n−1以下の整数)は、以下の条件を満たすとよい。
<条件#B−11−1>
・「mの約数のうち、1を除いた、約数の集合をR」としたとき、vk,1はRに属してはならない。
<条件#B−11−2>
・「mの約数のうち、1を除いた、約数の集合をR」としたとき、vk,2はRに属してはならない。
さらに、以下の条件を満たしてもよい。
<条件#B−12−1>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。なお、集合Rは<条件#B−11−1>で定義している。
<条件#B−12−2>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2/w=g(gは自然数)を満たす、すべてのwを抽出した集合をSとしたとき、R∩Sは空集合である。なお、集合Rは<条件#B−11−2>で定義している。
なお、<条件#B−12−1>、<条件#B−12−2>を別の表現をすると、<条件#B−12−1’>、<条件#B−12−2’>となる。
<条件#B−12−1’>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1の約数の集合をSとしたとき、R∩Sは空集合である。
<条件#B−12−2’>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2の約数の集合をSとしたとき、R∩Sは空集合である。
なお、<条件#B−12−1><条件#B−12−1’>を別の表現をすると、<条件#B−12−1”>となり、<条件#B−12−2><条件#B−12−2’>を別の表現をすると、<条件#B−12−2”>。
<条件#B−12−1”>
・vk,1は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,1とmの最大公約数が1である。
<条件#B−12−2”>
・vk,2は1以上m−1以下の整数の集合に属し、かつ、次の条件を満たす。vk,2とmの最大公約数が1である。
符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を形成するためのパリティ検査多項式として、式(95)および式(96)をあつかった。以下では、高い誤り訂正能力を得るための、パリティ検査多項式の式(95)および式(96)の条件の例について説明する。
高い誤り訂正能力を得るために、iは0以上m−1以下の整数であり、これを満たす、すべてのiにおいて、r1,i、r2,i、・・・、rn−2,i、rn−1,iいずれも3以上に設定する。このとき、高い誤り訂正能力を得るための条件の例について説明する。
上述で説明したように、式(95)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CCのベースとなる符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの0を満たすi番目(iは0以上m−1以下の整数)のパリティ検査多項式となり、式(96)の0を満たすパリティ検査多項式は、特許文献2の符号化率R=(n−1)/n(nは2以上の整数)の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの第1行目のベクトルを生成するための0を満たすパリティ検査多項式となる。
<条件#B−13−1>
「a1,0,1%m=a1,1,1%m=a1,2,1%m=a1,3,1%m=・・・=a1,g,1%m=・・・=a1,m−2,1%m=a1,m−1,1%m=v1,1 (v1,1:固定値)」
「a1,0,2%m=a1,1,2%m=a1,2,2%m=a1,3,2%m=・・・=a1,g,2%m=・・・=a1,m−2,2%m=a1,m−1,2%m=v1,2 (v1,2:固定値)」
「a1,0,3%m=a1,1,3%m=a1,2,3%m=a1,3,3%m=・・・=a1,g,3%m=・・・=a1,m−2,3%m=a1,m−1,3%m=v1,3 (v1,3:固定値)」
(gは0以上m−1以下の整数)
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X2に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−13−2>
「a2,0,1%m=a2,1,1%m=a2,2,1%m=a2,3,1%m=・・・=a2,g,1%m=・・・=a2,m−2,1%m=a2,m−1,1%m=v2,1 (v2,1:固定値)」
「a2,0,2%m=a2,1,2%m=a2,2,2%m=a2,3,2%m=・・・=a2,g,2%m=・・・=a2,m−2,2%m=a2,m−1,2%m=v2,2 (v2,2:固定値)」
「a2,0,3%m=a2,1,3%m=a2,2,3%m=a2,3,3%m=・・・=a2,g,3%m=・・・=a2,m−2,3%m=a2,m−1,3%m=v2,3 (v2,3:固定値)」
(gは0以上m−1以下の整数)
・
・
・
一般化すると、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xkに関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。(kは、1以上n−1以下の整数)
<条件#B−13−k>
「ak,0,1%m=ak,1,1%m=ak,2,1%m=ak,3,1%m=・・・=ak,g,1%m=・・・=ak,m−2,1%m=ak,m−1,1%m=vk,1 (vk,1:固定値)」
「ak,0,2%m=ak,1,2%m=ak,2,2%m=ak,3,2%m=・・・=ak,g,2%m=・・・=ak,m−2,2%m=ak,m−1,2%m=vk,2 (vk,2:固定値)」
「ak,0,3%m=ak,1,3%m=ak,2,3%m=ak,3,3%m=・・・=ak,g,3%m=・・・=ak,m−2,3%m=ak,m−1,3%m=vk,3 (vk,3:固定値)」
(gは0以上m−1以下の整数)
・
・
・
同様に、図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報Xn−1に関連する部分行列において、最低列重みを3とするために以下の条件を与えると、高い誤り訂正能力を得ることができる。
<条件#B−13−(n−1)>
「an−1,0,1%m=an−1,1,1%m=an−1,2,1%m=an−1,3,1%m=・・・=an−1,g,1%m=・・・=an−1,m−2,1%m=an−1,m−1,1%m=vn−1,1 (vn−1,1:固定値)」
「an−1,0,2%m=an−1,1,2%m=an−1,2,2%m=an−1,3,2%m=・・・=an−1,g,2%m=・・・=an−1,m−2,2%m=an−1,m−1,2%m=vn−1,2 (vn−1,2:固定値)」
「an−1,0,3%m=an−1,1,3%m=an−1,2,3%m=an−1,3,3%m=・・・=an−1,g,3%m=・・・=an−1,m−2,3%m=an−1,m−1,3%m=vn−1,3 (vn−1,3:固定値)」
(gは0以上m−1以下の整数)
なお、上記において、「%」はmoduloを意味する、つまり、「α%m」は、αをmで除算したときの余りを示す。<条件#B−13−1>から<条件#B−13−(n−1)>を別の表現をすると、以下のように表現することができる。なお、jは1、2、3である。
<条件#B−13’−1>
「a1,g,j%m=v1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa1,g,j%m=v1,j(v1,j:固定値)が成立する。)
<条件#B−13’−2>
「a2,g,j%m=v2,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(v2,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでa2,g,j%m=v2,j(v2,j:固定値)が成立する。)
・
・
・
一般化すると、以下のようになる。
<条件#B−13’−k>
「ak,g,j%m=vk,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vk,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでak,g,j%m=vk,j(vk,j:固定値)が成立する。)
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−13’−(n−1)>
「an−1,g,j%m=vn−1,j for ∀g g=0,1,2,・・・,m−3,m−2,m−1(vn−1,j:固定値)」
(gは0以上m−1以下の整数であり、すべてのgでan−1,g,j%m=vn−1,j(vn−1,j:固定値)が成立する。)
さらに、以下の条件を満たすと、高い誤り訂正能力を得ることができる。
<条件#B−14−1>
「v1,1≠v1,2、v1,1≠v1,3、v1,2≠v1,3が成立する。」
<条件#B−14−2>
「v2,1≠v2,2、v2,1≠v2,3、v2,2≠v2,3が成立する。」
・
・
・
一般化すると、以下のようになる。
<条件#B−14−k>
「vk,1≠vk,2、vk,1≠vk,3、vk,2≠vk,3が成立する。」
(kは、1以上n−1以下の整数)
・
・
・
<条件#B−14−(n−1)>
「vn−1,1≠vn−1,2、vn−1,1≠vn−1,3、vn−1,2≠vn−1,3が成立する。」
このようにすることで、「図28で示した符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの情報X1に関連する部分行列、情報X2に関連する部分行列、・・・、情報Xn−1に関連する部分行列において、最低列重みを3となり」、以上の条件を満した、符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とすることで、「イレギュラーLDPC符号」を生成することができ、高い誤り訂正能力を得ることができる。
上述では、特許文献2に示されている符号化率R=(n−1)/nの改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の例について説明した。上述の例では、ベースとして(基礎的な構造として)、符号化率R=(n−1)/n、時変周期mのパリティ検査多項式に基づくLDPC−CCの、0を満たすパリティ検査多項式を利用し、パリティ検査行列の第1行に対し、特殊な0を満たすパリティ検査多項式を適用する場合について説明したが、特許文献2では、パリティ検査行列の第j行(jは自然数)に対し、特殊な0を満たすパリティ検査多項式を適用する方法についても説明している。
本実施の形態では、符号化率(n−1)/nを満たさないLDPC−Cの一例として、符号化率2/4のパリティ検査多項式に基づくLDPC−CCの構成方法について説明する。なお、符号化率2/4=1/2となるが、従来の符号化率(n−1)/nのLDPC−CCまたは符号化率(n−1)/nを満たさない改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とは生成方法が異なる。
X1,X2の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j及びP1,j,P2,jとあらわす。
そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,P1,j,P2,j)とあらわす。
Dを遅延演算子とすると、情報ビットX1,X2の多項式は、それぞれ、X1(D),X2(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
そして、時変周期2mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCを考える。
時変周期2mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのための0を満たすパリティ検査多項式として、以下の式を与える。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)において、α#(2i),p,q(pは1以上2以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(97−1−1)または式(97−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(97−2−1)または式(97−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i)―第1式」は、各iに対し、式(97−1−1)または式(97−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(97−1−1)においてi=0とした0を満たすパリティ検査多項式または式(97−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−1−1)においてi=1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−1−1)においてi=2とした0を満たすパリティ検査多項式または式(97−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−1−1)においてi=zとした0を満たすパリティ検査多項式または式(97−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i)―第2式」は、各iに対し、式(97−2−1)または式(97−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(97−2−1)においてi=0とした0を満たすパリティ検査多項式または式(97−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−2−1)においてi=1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−2−1)においてi=2とした0を満たすパリティ検査多項式または式(97−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−2−1)においてi=zとした0を満たすパリティ検査多項式または式(97−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)において、α#(2i+1),p,q(pは1以上2以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(98−1−1)または式(98−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(98−2−1)または式(98−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i+1)―第1式」は、各iに対し、式(98−1−1)または式(98−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(98−1−1)においてi=0とした0を満たすパリティ検査多項式または式(98−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−1−1)においてi=1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−1−1)においてi=2とした0を満たすパリティ検査多項式または式(98−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−1−1)においてi=zとした0を満たすパリティ検査多項式または式(98−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i+1)―第2式」は、各iに対し、式(98−2−1)または式(98−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(98−2−1)においてi=0とした0を満たすパリティ検査多項式または式(98−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−2−1)においてi=1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−2−1)においてi=2とした0を満たすパリティ検査多項式または式(98−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−2−1)においてi=zとした0を満たすパリティ検査多項式または式(98−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(X1,1,X2,1,P1,1,P2,1,X1,2,X2,2,P1,2,P2,2,X1,3,X2,3,P1,3,P2,3,・・・X1,y−1,X2,y−1,P1,y−1,P2,y−1,X1,y,X2,y,P1,y,P2,y,X1,y+1,X2,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
図37に示すように、
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
図38は、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列(H)の構成を示している。なお、パリティ検査行列の最左の列を第1列とする。そして、1列左に行くごとに、列の番号を1、増加させる。したがって、最左の列を第1列、その一つ左の列を第2列、以降、第3列、第4列、・・・となる。
図38に示すように、
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第4×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+3列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+4列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
図39は、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列を示している。
時点j=1のときのパリティ検査多項式は、式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)において、i=0としたパリティ検査多項式となる。
図39の第1行のベクトルは、式(97−1−1)または式(97−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(97−1−1)、式(97−1−2)において、
・1×X1(D)の項、が存在する。
・1×X2(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項、が存在することから、図39の第1行のベクトルにおけるX1に関連する列は「1」となる。また、図38の関係、および、1×X2(D)の項が存在しないことから、図39の第1行のベクトルにおけるX2に関連する列は「0」となる。加えて、図38の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図39の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図39の3900−1のように、「1010」となる。
図39の第2行のベクトルは、式(97−2−1)、式(97−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(97−2−1)、式(97−2−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在しないことから、図39の第2行のベクトルにおけるX1に関連する列は「0」となる。また、図38の関係、および、1×X2(D)の項が存在することから、図39の第2行のベクトルにおけるX2に関連する列は「1」となる。加えて、図38の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図39の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
したがって、図39の3900−2のように、「01Y1」となる。
時点j=2のときのパリティ検査多項式は、式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)において、i=0としたパリティ検査多項式となる。
図39の第3行のベクトルは、式(98−1−1)、式(98−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(98−1−1)、式(98−1−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在しないことから、図39の第3行のベクトルにおけるX1に関連する列は「0」となる。また、図38の関係、および、1×X2(D)の項が存在することから、図39の第3行のベクトルにおけるX2に関連する列は「1」となる。加えて、図38の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図39の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図39の3901−1のように、「0110」となる。
図39の第4行のベクトルは、式(98−2−1)、式(98−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(98−2−1)、式(98−2−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在することから、図39の第4行のベクトルにおけるX1に関連する列は「1」となる。また、図38の関係、および、1×X2(D)の項が存在しないことから、図39の第4行のベクトルにおけるX2に関連する列は「0」となる。加えて、図38の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図39の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
したがって、図39の3901−2のように、「10Y1」となる。
つまり、時点j=2k+1のとき(kは0以上の整数)、パリティ検査多項式は、式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)を使用することになるので、図39のように、パリティ検査行列Hの第2×(2k+1)―1行には、「1010」が存在し、パリティ検査行列Hの第2×(2k+1)行には、「01Y1」が存在する。
以下では、テイルバイティングを行わないときの「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列について説明する。
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列のu行v列の要素をHcom[u][v](uおよびvは1以上の整数)とあらわすものとする。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第4×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+3列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+4列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
以上をもとに、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行(gは1以上の整数となる。)の構成要素Hcom[2×g−1][v]、および、第2×g行の構成要素Hcom[2×g][v]について説明する。
先にも述べたように、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。
そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(97−1−1)または式(97−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(98−1−1)または式(98−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
また、
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。wは1とする。
uは1以上の整数とし、{u≠(2×f−1)−0、かつ、u≠(2×f−1)―α#(2c),w,1、かつ、u≠(2×f−1)―α#(2c),w,2}を満たす、すべてのuにおいて、次式が成立する。
Hcom[2×(2×f−1)−1][4×(u−1)+w]=0
…(103−4)
そして、X2について以下が成立する。ただし、zは2とし、yは3以上r#(2c),z以下の整数とする。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yは3以上r#(2c),z以下の整数とする。
そして、
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
また、
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yは3以上r#(2d+1),z以下の整数とする。
また、
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
また、
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、wは1とする。
(実施の形態2)
本実施の形態では、実施の形態1で述べた符号化率2/4のパリティ検査多項式に基づくLDPC−CCの構成方法を、一般化したときの符号構成方法について説明する。
X1,X2の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j及びP1,j,P2,jとあらわす。
そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,P1,j,P2,j)とあらわす。
Dを遅延演算子とすると、情報ビットX1,X2の多項式は、それぞれ、X1(D),X2(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
そして、時変周期2mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCを考える。
時変周期2mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのための0を満たすパリティ検査多項式として、以下の式を与える。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(131−1−1)、式(131−1−2)、式(131−2−1)、式(131−2−2)において、α#(2i),p,q(pは1以上2以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
また、R#(2i),pは自然数であり、1≦R#(2i),p<r#(2i),pが成立する。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(131−1−1)または式(131−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(131−2−1)または式(131−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i)―第1式」は、各iに対し、式(131−1−1)または式(131−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(131−1−1)においてi=0とした0を満たすパリティ検査多項式または式(131−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(131−1−1)においてi=1とした0を満たすパリティ検査多項式または式(131−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(131−1−1)においてi=2とした0を満たすパリティ検査多項式または式(131−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(131−1−1)においてi=zとした0を満たすパリティ検査多項式または式(131−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(131−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(131−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i)―第2式」は、各iに対し、式(131−2−1)または式(131−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(131−2−1)においてi=0とした0を満たすパリティ検査多項式または式(131−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(131−2−1)においてi=1とした0を満たすパリティ検査多項式または式(131−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(131−2−1)においてi=2とした0を満たすパリティ検査多項式または式(131−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(131−2−1)においてi=zとした0を満たすパリティ検査多項式または式(131−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(131−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(131−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)におけるiは0以上m−1以下の整数となる(i=0、1、・・・、m−2、m−1)。
式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)において、α#(2i+1),p,q(pは1以上2以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
また、R#(2i+1),pは自然数であり、1≦R#(2i+1),p<r#(2i+1),pが成立する。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(132−1−1)または式(132−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(132−2−1)または式(132−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i+1)―第1式」は、各iに対し、式(132−1−1)または式(132−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(132−1−1)においてi=0とした0を満たすパリティ検査多項式または式(132−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(132−1−1)においてi=1とした0を満たすパリティ検査多項式または式(132−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(132−1−1)においてi=2とした0を満たすパリティ検査多項式または式(132−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(132−1−1)においてi=zとした0を満たすパリティ検査多項式または式(132−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(132−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(132−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i+1)―第2式」は、各iに対し、式(132−2−1)または式(132−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(132−2−1)においてi=0とした0を満たすパリティ検査多項式または式(132−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(132−2−1)においてi=1とした0を満たすパリティ検査多項式または式(132−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(132−2−1)においてi=2とした0を満たすパリティ検査多項式または式(132−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(132−2−1)においてi=zとした0を満たすパリティ検査多項式または式(132−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(132−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(132−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCを定義することができる。
なお、mは1以上の整数とする。また、式(131−1−1または131−1−2)、式(131−2−1または131−2−2)、式(132−1−1または132−1−2)、式(132−2−1または132−2−2)の4×m個の0を満たすパリティ検査多項式により、時変周期2×mとなるように、異なるパリティ検査多項式を用意する必要がある。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
次に、時点jと式(131−1−1)、式(131−1−2)、式(131−2−1)、式(131−2−2)、式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)の関係について説明する。(jを0以上の整数とする。)
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
次に、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列の構成方法について説明する。
上述で述べたように、時点jにおけるベクトルujをuj=(X1,j,X2,j,P1,j,P2,j)とあらわした(なお、jは0以上の整数とする。)。このとき、送信ベクトルをuとする。ただし、上述の説明とは異なり、jは1以上の整数とする。(パリティ検査行列の列番号および行番号との対応関係をわかりやすくするため)
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(X1,1,X2,1,P1,1,P2,1,X1,2,X2,2,P1,2,P2,2,X1,3,X2,3,P1,3,P2,3,・・・X1,y−1,X2,y−1,P1,y−1,P2,y−1,X1,y,X2,y,P1,y,P2,y,X1,y+1,X2,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
図38は、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列(H)の構成を示している。なお、パリティ検査行列Hpro_mの最左の列を第1列とする。そして、1列左に行くごとに、列の番号を1、増加させる。したがって、最左の列を第1列、その一つ左の列を第2列、以降、第3列、第4列、・・・となる。
図38に示すように、
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第4×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+3列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+4列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
図39の第1行のベクトルは、式(131−1−1)または式(131−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(131−1−1)、式(131−1−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在することから、図39の第1行のベクトルにおけるX1に関連する列は「1」となる。また、図38の関係、および、1×X2(D)の項が存在しないことから、図39の第1行のベクトルにおけるX2に関連する列は「0」となる。加えて、図38の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図39の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図39の3900−1のように、「1010」となる。
図39の第2行のベクトルは、式(131−2−1)、式(131−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(131−2−1)、式(131−2−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在しないことから、図39の第2行のベクトルにおけるX1に関連する列は「0」となる。また、図38の関係、および、1×X2(D)の項が存在することから、図39の第2行のベクトルにおけるX2に関連する列は「1」となる。加えて、図38の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図39の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
したがって、図39の3900−2のように、「01Y1」となる。
時点j=2のときのパリティ検査多項式は、式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)において、i=0としたパリティ検査多項式となる。
図39の第3行のベクトルは、式(132−1−1)、式(132−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(132−1−1)、式(132−1−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在しないことから、図39の第3行のベクトルにおけるX1に関連する列は「0」となる。また、図38の関係、および、1×X2(D)の項が存在することから、図39の第3行のベクトルにおけるX2に関連する列は「1」となる。加えて、図38の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図39の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図39の3901−1のように、「0110」となる。
図39の第4行のベクトルは、式(132−2−1)、式(132−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図37参照)
式(132−2−1)、式(132−2−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,P1,P2の関係は、図38のようになる。図38の関係、および、1×X1(D)の項が存在することから、図39の第4行のベクトルにおけるX1に関連する列は「1」となる。また、図38の関係、および、1×X2(D)の項が存在しないことから、図39の第4行のベクトルにおけるX2に関連する列は「0」となる。加えて、図38の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図39の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
したがって、図39の3901−2のように、「10Y1」となる。
時点j=3、4、5についても同様に考えることができるので、パリティ検査行列Hは、図39のような構成になる。
つまり、時点j=2k+1のとき(kは0以上の整数)、パリティ検査多項式は、式(131−1−1)、式(131−1−2)、式(131−2−1)、式(131−2−2)を使用することになるので、図39のように、パリティ検査行列Hの第2×(2k+1)―1行には、「1010」が存在し、パリティ検査行列Hの第2×(2k+1)行には、「01Y1」が存在する。
そして、時点j=2k+2のとき(kは0以上の整数)、パリティ検査多項式は、式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)を使用することになるので、図39のように、パリティ検査行列Hの第2×(2k+2)−1行には、「0110」が存在し、パリティ検査行列Hの第2×(2k+2)行には、「10Y1」が存在するようになる。
したがって、図39に示すように、「1010」(例えば、図39の3900−1)が存在する行において、この「1010」の最も左の列の「1」が存在する列番号をaとしたとき、この「1010」が存在する行の2行下の行のa+4列から「0110」(例えば、図39の3901−1)が存在することになる。
同様に、図39に示すように、「01Y1」(例えば、図39の3900−2)が存在する行において、この「01Y1」の最も左の列の「1」が存在する列番号をbとしたとき、この「01Y1」が存在する行の2行下の行のb+4列から「10Y1」(例えば、図39の3901−2)が存在することになる。
以下では、テイルバイティングを行わないときの「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列について説明する。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第4×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+3列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第4×(j−1)+4列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
以上をもとに、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行(gは1以上の整数となる。)の構成要素Hcom[2×g−1][v]、および、第2×g行の構成要素Hcom[2×g][v]について説明する。
先にも述べたように、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(131−1−1)または式(131−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(132−1−1)または式(132−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(131−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、wは1とする。
また、
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(131−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、wは1とする。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(131−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yはR#(2c),z+1以上r#(2c),z以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(131−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yはR#(2c),z+1以上r#(2c),z以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(132−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yはR#(2d+1),z+1以上r#(2d+1),z以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(132−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、zは1とし、yはR#(2d+1),z+1以上r#(2d+1),z以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(132−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、wは1とする。
また、
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(132−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、wは1とする。
(実施の形態3)
本実施の形態では、実施の形態1、実施の形態2で説明した符号化率2/4のパリティ検査多項式に基づくLDPC−CCを用いた機器について説明する。
P2用演算部4004−2は、直列に接続されたシフトレジスタと各シフトレジスタの出力のいくつかのビットを集めて排他的論理和を行う演算部とで構成されている(図2および図22参照)。
排他的論理和(演算部)4005−1は、X1用演算後のビット4002−1−1からX2用演算後のビット4002−2−1、および、P1用演算後のビット4005−1−1、および、P2用演算後のビット4005−2−1を入力とし、排他的論理和の演算を行い、時点jのパリティP1のビットP1,jを出力する。
排他的論理和(演算部)4005−2は、X1用演算後のビット4002−1−2からX2用演算後のビット4002−2−2、および、P1用演算後のビット4005−1−2、および、P2用演算後のビット4005−2−2を入力とし、排他的論理和の演算を行い、時点jのパリティP2のビットP2,jを出力する。
なお、図40における、Xz用演算部4001−z、および、P1用演算部4004−1、P2用演算部4004−2それぞれが具備するシフトレジスタの初期値は0(ゼロ)であるとよい。これにより、初期値設定以前のパリティP1、P2を受信装置に送信する必要がなくなる。
次に、ゼロターミネーション方法について説明する。
そして、時点s+1から時点s+gの情報X1およびX2を0とする(gは1以上の整数とする)、つまり、時点tの情報X1およびX2をそれぞれ、X1,t,X2,tとあらわしたとき、tがs+1以上s+g以下の整数のときのX1,t=0,X2,t=0が成立するものとする。そして、符号化を行うことで、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを得ることになる。送信装置は、上記の情報とパリティに加え、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを送信するものとする。
また、時点sにおいて、iを1以上f以下の整数としたときのXi,sは、送信装置が送信したい情報であり、kをf+1の整数としたときXk,sは0(ゼロ)とする。
なお、上述では、通信装置を例に説明しているが、これに限ったものではなく、記録メディア(ストレージ)において、誤り訂正符号を導入してもよい。このとき、記録メディア(ストレージ)に記録しておきたい情報に対し、実施の形態1、実施の形態2で説明した符号化率2/4のパリティ検査多項式に基づくLDPC−CCで符号化を行い、情報とパリティを記録メディア(ストレージ)に記録しておくことになる。このとき、上述で説明したように、ゼロターミネーションを導入し、上述で説明した、ゼロターミネーションを適用したときに送信装置が送信するデータ系列(情報とパリティ)に相当するデータ系列を記録メディア(ストレージ)に記録しておくとよい。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、実施の形態1、実施の形態2で説明した符号化率2/4のパリティ検査多項式に基づくLDPC−CCを用いることができる。
(実施の形態4)
本実施の形態では、実施の形態1、実施の形態2で説明した符号化率2/4のパリティ検査多項式に基づくLDPC−CCの構成方法に基づいた「符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)」の構成方法について説明する。
なお、符号化率2/4=1/2となるが、従来の符号化率(n−1)/nのLDPC−CCまたは符号化率(n−1)/nを満たさない改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とは生成方法が異なる。
符号化率2/4の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCでは、ベースとして(基礎的な構造として)、実施の形態1、実施の形態2で説明した符号化率R=2/4、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する。
まず、以下の0を満たすパリティ検査多項式を用意する。
式(165−1−1)、式(165−1−2)、式(165−2−1)、式(165−2−2)において、α#(2i),p,q(pは1以上2以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
また、R#(2i),pは自然数であり、1≦R#(2i),p<r#(2i),pが成立する。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(165−1−1)または式(165−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(165−2−1)または式(165−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(165−1−1)においてi=0とした0を満たすパリティ検査多項式または式(165−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(165−1−1)においてi=1とした0を満たすパリティ検査多項式または式(165−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(165−1−1)においてi=2とした0を満たすパリティ検査多項式または式(165−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(165−1−1)においてi=zとした0を満たすパリティ検査多項式または式(165−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(165−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(165−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i)―第2式」は、各iに対し、式(165−2−1)または式(165−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(165−2−1)においてi=0とした0を満たすパリティ検査多項式または式(165−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(165−2−1)においてi=1とした0を満たすパリティ検査多項式または式(165−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(165−2−1)においてi=2とした0を満たすパリティ検査多項式または式(165−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(165−2−1)においてi=zとした0を満たすパリティ検査多項式または式(165−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(165−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(165−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、以下の0を満たすパリティ検査多項式を与える。
式(166−1−1)、式(166−1−2)、式(166−2−1)、式(166−2−2)におけるiは0以上m−1以下の整数となる(i=0、1、・・・、m−2、m−1)。
式(166−1−1)、式(166−1−2)、式(166−2−1)、式(166−2−2)において、α#(2i+1),p,q(pは1以上2以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
また、R#(2i),pは自然数であり、1≦R#(2i+1),p<r#(2i+1),pが成立する。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(166−1−1)または式(166−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(166−2−1)または式(166−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i+1)―第1式」は、各iに対し、式(166−1−1)または式(166−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(166−1−1)においてi=0とした0を満たすパリティ検査多項式または式(166−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(166−1−1)においてi=1とした0を満たすパリティ検査多項式または式(166−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(166−1−1)においてi=2とした0を満たすパリティ検査多項式または式(166−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(166−1−1)においてi=zとした0を満たすパリティ検査多項式または式(166−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(166−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(166−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(166−2−1)においてi=0とした0を満たすパリティ検査多項式または式(166−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(166−2−1)においてi=1とした0を満たすパリティ検査多項式または式(166−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(166−2−1)においてi=2とした0を満たすパリティ検査多項式または式(166−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(166−2−1)においてi=zとした0を満たすパリティ検査多項式または式(166−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(166−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(166−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、時変周期2×mの符号化率2/4のパリティ検査多項式に基づくLDPC−CCを定義することができる。
なお、mは1以上の整数とする。また、式(165−1−1または165−1−2)、式(165−2−1または165−2−2)、式(166−1−1または166−1−2)、式(166−2−1または166−2−2)の4×m個の0を満たすパリティ検査多項式により、時変周期2×mとなるように、異なるパリティ検査多項式を用意する必要がある。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
次に、時点jと式(165−1−1)、式(165−1−2)、式(165−2−1)、式(165−2−2)、式(166−1−1)、式(166−1−2)、式(166−2−1)、式(166−2−2)の関係について説明する。(jを0以上の整数とする。)
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
なお、式(165−1−1)、式(165−1−2)、式(165−2−1)、式(165−2−2)、式(166−1−1)、式(166−1−2)、式(166−2−1)、式(166−2−2)の0を満たすパリティ検査多項式において、P1(D)の項の数とP2(D)の項の数の和が2となる。これにより、パリティP1およびP2を、改良したテイルバイティングを適用した際、逐次的に求めることができ、演算(回路)規模を削減することができる一つの重要な要件となる。
次に、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の、ベース(基礎的な構造)となる、実施の形態1、実施の形態2で説明した符号化率R=2/4、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式の時変周期と提案する符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のブロックサイズの関係について説明する。
この点については、より高い誤り訂正能力を得るために、ベース(基礎的な構造)となる、実施の形態1、実施の形態2で説明した符号化率R=2/4、時変周期2mのパリティ検査多項式に基づくLDPC−CCが形成するタナ−グラフと符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のタナ−グラフが類似するような構成となることが望まれる。したがって、以下の条件が重要となる。
・符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の行数は、4×mの倍数である。
なお、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とベース(基礎的な構造)となる、実施の形態1、実施の形態2で説明した符号化率R=2/4、時変周期2mのパリティ検査多項式に基づくLDPC−CCの関係については、あとで詳しく述べる。
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproとすると、Hproの列数は4×2×m×zとあらわすことができる(zは自然数)。
よって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。
なお、Xs,j,kは情報Xjのビットであり(jは1以上2以下の整数)、Ppro s,1,kは符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
また、λpro,s,k=(Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k)となる。
そして、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの行数は、4×m×zとなる。
図43は、<条件#N1>を満たしているので、パリティ検査行列の行数は4×m×z、パリティ検査行列の列数は4×2×m×zとなる。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上2×m×z以下の整数となる。)
・・・
「パリティ検査行列Hの第2×(2m−1)×z−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)×z行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
となる。
図44に符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの構成例の一例を示す。なお、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproは、<条件#N1>を満たすことになる。
図44の符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第k行目の1行、4×2×m×z列のベクトルをgkとすると、図44のパリティ検査行列Hproは次式であらわされる。
Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、
・・・、
Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、
・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=
(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ
(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。
なお、Xs,j,kは情報Xjのビットであり(jは1以上2以下の整数)、Ppro s,1,kは符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの構成例の一例である図44ではパリティ検査行列Hproの1行目を除く行、つまり、図44のパリティ検査行列Hproの第2行から第2×(2×m)×z行の構成は、図43のパリティ検査行列Hの第2行から第2×(2×m)×z行の構成と同一となる(図43および図44参照)。したがって、図44において、第1行目の4401には、「#「0’」―第1式」、と記述している(この点については後で説明する)。よって、式(167)および式(168)から、以下の関係式が成立する。
パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(171)のg1の構成方法の一つの例は、ベースとなる(基礎的な構造となる)、
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の「#0−第1式」の0を満たすパリティ検査多項式を利用して作成することができる。
g1は符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第1行目なので、「#0−第1式」の0を満たすパリティ検査多項式を変形した0を満たすパリティ検査多項式から、g1を生成するものとする。上述のように、「#0−第1式」の0を満たすパリティ検査多項式は式(172−1−1)、式(172−1−2)いずれかであらわされる。
なお、(173)の0を満たすパリティ検査多項式を#「0’」―第1式と名付ける。
よって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第1行は、式(173)の#「0’」―第1式を変換することで得られる(つまり、1行、4×2×m×z列のg1が得られる。)
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、
・・・、
Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、
・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T
=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、この送信系列を得るために、2×(2×m)×z個の0を満たすパリティ検査多項式が必要となる。
このとき、2×(2×m)×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上2×(2×m)×z−1以下の整数)。
したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproを式(168)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以上のように、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)は、高い誤り訂正能力が得られるとともに、複数のパリティを逐次的に求めることが可能となるため、符号化器の回路規模を小さくすることができるという利点をもつことになる。
以下では、「パリティを逐次的に求めることができる」ことについて説明する。
上述の例の場合、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の
第0番目の0を満たすパリティ検査多項式、つまり、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」から、情報X1およびX2のビットはもともと得られている値であることから、Ppro s,1,1を求めることができる。
そして、別の0を満たすパリティ検査多項式から、情報X1およびX2のビットおよびPpro s,1,1から、別のパリティ(これをPc=1)を求めることができる。
また、別の0を満たすパリティ検査多項式から、情報X1およびX2のビットおよびPc=1から、別のパリティ(これをPc=2)を求めることができる。
この操作を繰り返し、ある0を満たすパリティ検査多項式から、情報X1およびX2のビットおよびPc=hから、別のパリティ(これをPc=h+1)を求めることができる。
このことを「パリティを逐次的に求めることができる」とよんでおり、複雑な連立方程式を解くことなく、複数のパリティを得ることができ、したがって符号化器の回路(演算)規模を小さくすることができるという利点を有することになる。
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を通信システムで用いた場合を一例として考える。符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を通信システムに適用したとき、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の符号化器、復号化器の特徴は、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro、および、Hprovs=0の関係に基づき符号化器、復号化器が構成され、動作する点である。
図25の通信システムの略図を用いて説明する。送信装置2501の符号化器2511は、第sブロックの情報系列(Xs,1,1、Xs,2,1、
Xs,1,2、Xs,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z)
を入力とし、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro、および、Hprovs=0の関係に基づき符号化を行い、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))
vs=(Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、
・・・、Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、
・・・、Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tを生成し、出力する。なお、上述で説明したように、パリティは逐次的に求めることができることが、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の特徴となる。
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、
・・・、Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、
・・・、Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tの各ビットのそれそれの対数尤度比を入力とし、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproに基づいて、例えば、非特許文献4、非特許文献6、非特許文献7、非特許文献8に示されているような、min-sum復号、offset BP復号、Normalized BP復号等の簡易的なBP復号、行演算(Horizontal演算)と列演算(Vertical演算)に対しスケジューリングを行った、Shuffled BP復号、Layered BP復号等のBP(Belief Propagation)(信頼度伝搬)復号、または、非特許文献17に示されているようなビットフリッピング復号等、のLDPC符号のための復号が行われ、第sブロックの推定送信系列(推定符号化系列)(受信系列)を得、出力する。
上記では、通信システムを例に、符号化器、復号化器の動作を説明したが、これに限ったものではなく、ストレージ、メモリ等の分野でも符号化器、復号化器を活用することができる。
次に、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の具体的な構成例について説明する。
よって、上述のように、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの4×2×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。
なお、Xs,j,kは情報Xjのビットであり(jは1以上2以下の整数)、Ppro s,1,kは符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
また、λpro,s,k=(Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k)となる。
そして、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの行数は、4×m×zとなる。
上述では、第s番目のブロックの送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、Hprovs=0(なお、「Hprovs=0(ゼロ)の「0(ゼロ)」」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproとしていたが、以降では、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、Λpro1,s、Λpro2,s)Tとあらわされたとき、Hpro_mus=0(なお、「Hpro_mus=0(ゼロ)の「0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成について説明する。
なお、ΛXf,s=(Xs,f,1、Xs,f,2、Xs,f,3、・・・、Xs,f,2×m×z−2、Xs,f,2×m×z−1、Xs,f,2×m×z)(ただし、fは1以上2以下の整数)(なお、ΛXf,sは1行2×m×z列のベクトルである。)、および、Λpro1,s=(Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z)および、Λpro2,s=(Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)とあらわされる(なお、Λpro1,sは1行2×m×z列のベクトルであり、Λpro2,sも1行2×m×z列のベクトルである)。
このとき、1ブロックに含まれる情報X1のビットは2×m×zビット、1ブロックに含まれる情報X2のビットは2×m×zビット、1ブロックに含まれるパリティビットP1のビットは2×m×zビット、1ブロックに含まれるパリティビットP2のビットは2×m×zビットであるので、
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、図45のように、Hpro_m=[Hx,1、Hx,2、Hp1、Hp2]とあらわすことができる。そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、Λpro1,s、Λpro2,s)Tとしているので、
Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、Hp1はパリティP1に関連する部分行列、Hp2はパリティP2に関連する部分行列となり、図45に示すように、パリティ検査行列Hpro_mは、4×m×z行、4×2×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列、情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列、パリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列、パリティP2に関連する部分行列Hp2は、4×m×z行、2×m×z列の行列となる。
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの4×2×m×zのビット数で構成される送信系列(符号化系列(符号語))usはus=(Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、ΛX8,s、ΛX9,s、ΛX10,s、ΛX11,s、ΛX12,s、ΛX13,s、Λpro1,s、Λpro2,s)Tであり、この送信系列を得るために、4×m×z個の0を満たすパリティ検査多項式が必要となる。
このとき、2×(2×m)×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上2×(2×m)×z−1以下の整数)。
したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。
よって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
ただし、本実施の形態において(本明細書の中で共通である)、「%」はmoduloを意味し、例えば、「α%q」は、αをqで除算したときの余りである。(αは0以上の整数、qは自然数である。)
以上に基づき、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成の詳細について説明する。
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、第1行から第4×m×z行が存在し、第1列から第4×2×m×z列が存在することになる。
よって、パリティ検査行列Hpro_mの最上の行を第1行とする。そして、1行下がるごとに、行の番号を1、増加させる。したがって、最上の行を第1行、その一つ下の行を第2行、以降、第3行、第4行、・・・となる。
また、パリティ検査行列Hpro_mの最左の列を第1列とする。そして、1列左に行くごとに、列の番号を1、増加させる。したがって、最左の列を第1列、その一つ左の列を第2列、以降、第3列、第4列、・・・となる。
パリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列であり、情報X1に関連する部分行列Hx,1のu行v列の要素をHx,1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
同様に、パリティ検査行列Hpro_mにおける情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列であり、情報X2に関連する部分行列Hx,2のu行v列の要素をHx,2,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(199)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
上述の関係から、Hx,1,comp[u][v]、Hx,2,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]をあらわすことができる。
まず、パリティ検査行列Hpro_mの第1行目、つまり、u=1のときのHx,1,comp[u][v]、Hx,2,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]の構成について説明する。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになる。したがって、Hx,1,comp[1][v]、は、以下のようにあらわされる。ただし、wは1とする。
したがって、Hx,1,comp[2][v]、は、以下のようにあらわされる。
<1>「「#0−第2式」の0を満たすパリティ検査多項式」が式(165−2−1)のようにあらわされた場合:
Hx,1,comp[2][v]は以下のようにあらわされる。ただし、Ωは1とする。
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
したがって、
g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(165−1−1)または式(165−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルは、「#(((2×f−1)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(165−2−1)または式(165−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上のm×z以下の整数。)、
符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(166−1−1)または式(166−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルは、「#(((2×f)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(166−2−1)または式(166−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(165−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。ただし、wは1とする。
{v≠((2×f−1)−0−1)+1}、
かつ、
{v≠((2×f−1)―α#(2c),w,y−1)+1}、
かつ、
{v≠((2×f−1)―α#(2c),w,y−1)+1+(2×m×z)}
を満たす(なお、yは1以上R#(2c),w以下の整数)、
すべてのvにおいて、次式が成立する。
Hx,w,comp[2×(2×f−1)−1][v]=0 …(186−4)
そして、Hx,2,comp[2×(2×f−1)−1][v]について以下が成立する。ただし、Ωは2とし、yはR#(2c),Ω+1以上r#(2c),Ω以下の整数とする。
また、
(2)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(165−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。ただし、wは1とする。
また、
(3)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(165−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
また、
(4)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(165−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、Ωは1とし、yはR#(2c),Ω+1以上r#(2c),Ω以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(166−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、Ωは1とし、yはR#(2d+1),Ω+1以上r#(2d+1),Ω以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(166−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、Ωは1とし、yはR#(2d+1),Ω+1以上r#(2d+1),Ω以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(166−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。ただし、wは1とする。
また、
(8)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(166−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。ただし、wは1とする。
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(165−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「式(165−1−1)または式(166−1−1)の「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「式(165−2−1)または式(166−2−1)の#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
したがって、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mにおいて、
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「式(165−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「式(165−1−1)または式(166−1−1)の「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「式(165−2−1)または式(166−2−1)の#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
なお、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成方法については、上述で説明したとおりとなる。
実施の形態4では、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)、および、この符号のパリティ検査行列の構成方法について説明した。
図31において、第j番目のブロックの送信系列(符号語)vj T=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)とする(組織符号の場合、Yj,k(kは1以上N以下の整数)は、情報XまたはパリティP(パリティPpro)となる。)。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、パリティ検査行列Hは、以下のようにあらわされる。
そして、蓄積および並び替え部(インタリーブ部)3204は、符号化後のデータ3203を入力とし、符号化後のデータ3203を蓄積し、順番の並び替えを行い、インタリーブ後のデータ3205を出力する。したがって、蓄積および並び替え部(インタリーブ部)3204は、第j番目のブロックの送信系列vjを、vj=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)Tを入力とし、送信系列vjの要素の順番の入れ替えを行った結果、図32に示すように送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tを出力することになる(v’jは一例である。)。なお、前述でも触れたように第j番目のブロックの送信系列vjに対し、送信系列vjの要素の順番の入れ替えを行った送信系列がv’jとなる。したがって、v’jは、1行N列のベクトルであり、v’jのN個の要素には、Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,Nがそれぞれ一つ存在することになる。
図33に、送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tとした場合の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hと等価のパリティ検査行列H’の構成を示す。このとき、第j番目のブロックの送信系列v’jの第1行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第1列目の要素)は、Yj,32である。したがって、パリティ検査行列H’の第1列目を抽出したベクトルは、上述で説明したベクトルck(k=1、2、3、・・・、N−2、N−1、N)を用いると、c32となる。同様に、第j番目のブロックの送信系列v’jの第2行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第2列目の要素)は、Yj,99である。したがって、パリティ検査行列H’の第2列目を抽出したベクトルは、c99となる。また、図33から、パリティ検査行列H’の第3列目を抽出したベクトルは、c23となり、パリティ検査行列H’の第N−2列目を抽出したベクトルは、c234となり、パリティ検査行列H’の第N−1列目を抽出したベクトルは、c3となり、パリティ検査行列H’の第N列目を抽出したベクトルは、c43となる。
つまり、第j番目のブロックの送信系列v’jの第i行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第i列目の要素)は、Yj,g(g=1、2、3、・・・、N−2、N−1、N)とあらわされたとき、パリティ検査行列H’の第i列目を抽出したベクトルは、上述で説明したベクトルckを用いると、cgとなる。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)のパリティ検査行列となる。
よって、当然ながら、インタリーブを施した送信系列(符号語)(v’j)を元の順番に戻した送信系列(vj)は、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)である。したがって、インタリーブを施した送信系列(符号語)(v’j)とインタリーブを施した送信系列(符号語)(v’j)に対応するパリティ検査行列H’に対し、元の順番に戻し、送信系列vjを得、送信系列vj対応するパリティ検査行列を得ることができ、そのパリティ検査行列は、上述で述べた、図31のパリティ検査行列Hとなる。
例えば、送信装置が、第jブロックの送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tを送信したものとする。すると、各ビットの対数尤度比計算部3400は、受信信号から、Yj,32の対数尤度比、Yj,99の対数尤度比、Yj,23の対数尤度比、・・・、Yj,234の対数尤度比、Yj,3の対数尤度比、Yj,43の対数尤度比を計算し、出力することになる(図34の3406に相当)。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列に対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)に対するパリティ検査行列であり、このパリティ検査行列を受信装置は用いることで、得られた各ビットの対数尤度比に対し、デインタリーブを行わなくても、信頼度伝播復号を行い、推定系列を得ることができる。
上述では、送信系列のインタリーブとパリティ検査行列の関係について説明したが、以降では、パリティ検査行列における行並び替え(行置換)について説明する。
そして、図35の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列Hは、以下のようにあらわされる。
図36は図35のパリティ検査行列Hに対し、行並び替え(行置換)を行ったパリティ検査行列H’の一例を示しており、パリティ検査行列H’は、図35と同様、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の第j番目のブロックの送信系列(符号語)vj T=(Yj,1、Yj,2、Yj,3、・・・、Yj,N−2、Yj,N−1、Yj,N)に対応するパリティ検査行列となる。
図36のパリティ検査行列H’は、図35のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkで構成されており、一例として、パリティ検査行列H’の第1行目はz130、第2行目はz24、第3行目はz45、・・・、第M−2行目はz33、第M−1行目はz9、第M行目はz3で構成されているものとする。なお、パリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したベクトルM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
このとき、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列H’は、以下のようにあらわされ、
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
なお、「第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。」の規則にしたがって、パリティ検査行列を作成すれば、上記の例に限らず、第j番目のブロックの送信系列vjのパリティ検査行列を得ることができる。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」を用いていても、パリティ検査行列Hを、送信装置、および、受信装置で用いているとは限らない。よって、例えば、パリティ検査行列Hに対し、上述で説明した列並び替え(列置換)を行った行列、または、行並び替え(行置換)を行った行列、および、パリティ検査行列Hに対し、上述で説明した列並び替え(列置換)を行った行列、または、行並び替え(行置換)を行った行列、をパリティ検査行列として、送信装置、および、受信装置は、使用してもよい。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H1,1を得る。そして、パリティ検査行列H1,1に対し、1回目の行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H2,1を得る。
次に、パリティ検査行列H2,1に対し、2回目の列並び替え(列置換)を行い、パリティ検査行列H1,2を得る。そして、パリティ検査行列H1,2に対し、2回目の行並び替え(行置換)を行い、パリティ検査行列H2,2を得る。
以上のような、列並び替え(列置換)、および、行並び替え(行置換)をs(sは2以上の整数)回繰り返して、パリティ検査行列H2,sを得る。このとき、パリティ検査行列H2,k−1に対し、k(kは2以上s以下の整数)回目の列並び替え(列置換)を行い、パリティ検査行列H1,kを得る。そして、パリティ検査行列H1,kに対し、k回目の行並び替え(行置換)を行い、パリティ検査行列H2,kを得ることになる。なお、1回目については、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の列並び替え(列置換)を行い、パリティ検査行列H1,1を得る。そして、パリティ検査行列H1,1に対し、1回目の行並び替え(行置換)を行い、パリティ検査行列H2,1を得ることになる。
そして、送信装置、および、受信装置は、パリティ検査行列H2,sを用いて、符号化、復号化を行ってもよい。
次に、パリティ検査行列H4,1に対し、2回目の行並び替え(行置換)を行い、パリティ検査行列H3,2を得る。そして、パリティ検査行列H3,2に対し、2回目の列並び替え(列置換)を行い、パリティ検査行列H4,2を得る。
以上のような、行並び替え(行置換)、および、列並び替え(列置換)をs(sは2以上の整数)回繰り返して、パリティ検査行列H4,sを得る。このとき、パリティ検査行列H4,k−1に対し、k(kは2以上s以下の整数)回目の行並び替え(行置換)を行い、パリティ検査行列H3,kを得る。そして、パリティ検査行列H3,kに対し、k回目の列並び替え(列置換)を行い、パリティ検査行列H4,kを得ることになる。なお、1回目については、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の行並び替え(行置換)を行い、パリティ検査行列H3,1を得る。そして、パリティ検査行列H3,1に対し、1回目の列並び替え(列置換)を行い、パリティ検査行列H4,1を得ることになる。
そして、送信装置、および、受信装置は、パリティ検査行列H4,sを用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H6,sを用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H8,sを用いて、符号化、復号化を行ってもよい。
本実施の形態では、実施の形態4で説明した符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いた機器について説明する。
復号化器2213は、各ビットの対数尤度比を入力とし、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列に基づき、信頼度伝播復号(例えば、sum-product復号、スケジューリングされたsum-product復号(Layered BP(Belief propagation)復号)、min-sum復号、Normalized BP復号、offset BP復号等)が行われ、推定系列を出力する。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いることができる。
装置内で使用する符号化率2/4の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のブロック長を16000(ビット)(情報ビット8000ビット、パリティビット8000ビット)とする。
このとき、1ブロックに対し、符号化するためには情報ビット8000ビットが必要であるが、装置の符号化部に、情報ビット8000ビットより少ない数の情報しか入力されない場合がある。例えば、情報ビット7000ビットが、符号化部に入力されたものとする。
すると、符号化部は、入力された情報ビット7000ビットに対し、情報のパディングビット1000ビットを加え、入力された情報ビット7000ビットとパディングビット1000ビットの計8000ビットを用い、符号化を行い8000ビットのパリティを生成するものとする。なお、パディングビット1000ビットはすべて既知のビット、例えば、1000ビットの「0」であるものとする。
また、送信装置は、入力された情報ビット7000ビットとパリティビット8000ビットに対し、パンクチャを行い15000ビットより少ないビットを送信してもよい。
なお、上述のような送信を行うにあたって、送信装置は、上述のような送信を行ったことを通知するための情報を受信装置に対し、送信する必要がある。
いくつかの実施の形態において、LDPCブロック符号、この符号を用いた符号化器、復号化器について説明した。本実施の形態では、通信装置の基地局(または、アクセスポイント、放送局)および端末におけるLDPCブロック符号の符号長(ブロック長)の設定方法について説明する。
まず、基地局(放送局、アクセスポイント等)の送信装置が、二つのストリームを送信する場合の伝送方法について、図48を用いて説明する。
図48の符号化部4802は、情報4801および、制御信号4812を入力とし、制御信号4812に含まれる符号化率、符号長(ブロック長)の情報に基づき、符号化を行い、符号化後のデータ4803を出力する。
すると、マッピング部4804は、x+yビットのデータのうちのxビットのデータに対し、変調方式αで変調し、ベースバンド信号s1(t)(4805A)を生成、出力し、また、残りのyビットのデータのデータに対し、変調方式βで変調し、ベースバンド信号s2(t)(4805B)を出力する。なお、s1(t)およびs2(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、s1およびs2は、s1(f)およびs2(f)のように周波数fの関数、または、s1(t,f)およびs2(t,f)のように時間t、周波数fの関数と考えることもできる。
同様に、パワー変更部4806Bは、ベースバンド信号s2(t)(4805B)、および、制御信号4812を入力とし、実数P2を設定し、P2×s2(t)をパワー変更後の信号4807Bとして出力する。(なお、P2を実数としているが、複素数であってもよい。)
重み付け合成部4808は、パワー変更後の信号4807A、パワー変更後の信号4807B、および、制御信号4812を入力とし、制御信号4812に基づき、プリコーディング行列F(またはF(i))を設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部4808は、以下の演算を行う。
同様に、パワー変更部4810Bは、重み付け合成後の信号4809B(u2(i))、および、制御信号4812を入力とし、制御信号4812に基づき、実数Q2を設定し、Q2×u2(t)をパワー変更後の信号4811A(z2(i))として出力する。(なお、Q2を実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
位相変更部4901は、式(A1)におけるu2(i)を重み付け合成後の信号4809Bおよび制御信号4812を入力とし、制御信号4812に基づき、式(A1)におけるu2(i)を重み付け合成後の信号4809Bの位相を変更する。したがって、式(A1)におけるu2(i)を重み付け合成後の信号4809Bの位相を変更後の信号は、ejθ(i)×u2(i)とあらわされ、ejθ(i)×u2(i)が位相変更後の信号4902として、位相変更部4901は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
そして、図49のパワー変更部4810Aおよび4810Bは、入力信号のパワー変更をそれぞれ行う。したがって、図49におけるパワー変更部4810Aおよび4810Bのそれぞれの出力z1(i)、z2(i)は、次式のようにあらわされる。
なお、式(A3)のz1(i)と式(A4)のz1(i)は等しく、また、式(A3)のz2(i)と式(A4)のz2(i)も等しい。
図51は、図48から図50で得られた信号z1(i)、z2(i)に対し、施す信号処理部の構成の一例を示している。
挿入部5104Aは、信号z1(i)(5101A)、パイロットシンボル5102A、制御情報シンボル5103A、制御信号4812を入力とし、制御信号4812に含まれるフレーム構成にしたがって、信号(シンボル)z1(i)(5101A)に、パイロットシンボル5102A、制御情報シンボル5103Aを挿入し、フレーム構成にしたがった、変調信号5105Aを出力する。
なお、パイロットシンボル5102A、制御情報シンボル5103Aは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部5106Aは、変調信号5105Aおよび制御信号4812を入力とし、制御信号4812に基づき、変調信号5105Aに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号5107Aを出力し、送信信号5107Aはアンテナ5108Aから電波として出力される。
なお、パイロットシンボル5102B、制御情報シンボル5103Bは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部5106Bは、変調信号5105Bおよび制御信号4812を入力とし、制御信号4812に基づき、変調信号5105Bに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号5107Bを出力し、送信信号5107Bはアンテナ5108Bから電波として出力される。
また、パイロットシンボル5102Aおよびパイロットシンボル5102Bは、受信装置において、信号検出、周波数オフセットの推定、ゲインコントロール、チャネル推定等を行うためのシンボルであり、ここでは、パイロットシンボルと名付けているが、リファレンスシンボル等、別の呼び方をしてもよい。
そして、制御情報シンボル5103Aおよび制御情報シンボル5103Bは、送信装置が用いた変調方式の情報、伝送方式の情報、プリコーディング方式の情報、誤り訂正符号方式の情報、誤り訂正符号の符号化率の情報、誤り訂正符号のブロック長(符号長)の情報等を、受信装置に伝送するためのシンボルである。なお、制御情報シンボル5103Aおよび制御情報シンボル5103Bの一方のみで、制御情報シンボルを送信してもよい。
図53は、図51のアンテナ5106Aから送信する送信信号のフレーム構成とアンテナ5108Bから送信する送信信号のフレームを同時に示している。
図53において、図51のアンテナ5106Aから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z1(i)に相当する。そして、パイロットシンボルは、パイロットシンボル5102Aに相当する。
図53において、図51のアンテナ5106Bから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z2(i)に相当する。そして、パイロットシンボルは、パイロットシンボル5102Bに相当する。
なお、図53では、データシンボルとパイロットシンボルしか記述していないが、他のシンボル、例えば、制御情報シンボル等のシンボルがフレームに含まれていてもよい。
図48の符号化部4802は、情報4801および、制御信号4812を入力とし、制御信号4812に含まれる符号化率、符号長(ブロック長)の情報に基づき、符号化を行い、符号化後のデータ4803を出力する。
すると、マッピング部4804は、zビットのデータに対し、変調方式γで変調し、ベースバンド信号S(t)を生成する。そして、s1(t)=s2(t)=S(t)とし、マッピング部4804は、ベースバンド信号s1(t)=S(t)(4805A)およびベースバンド信号s2(t)=S(t)(4805B)を出力する。
なお、s1(t)およびs2(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、s1およびs2は、s1(f)およびs2(f)のように周波数fの関数、または、s1(t,f)およびs2(t,f)のように時間t、周波数fの関数と考えることもできる。
同様に、パワー変更部4806Bは、ベースバンド信号s2(t)=S(t)(4805B)、および、制御信号4812を入力とし、実数P2を設定し、P2×s2(t)をパワー変更後の信号4807Bとして出力する。(なお、P2を実数としているが、複素数であってもよい。)
重み付け合成部4808は、パワー変更後の信号4807A、パワー変更後の信号4807B、および、制御信号4812を入力とし、制御信号4812に基づき、プリコーディング行列Fを設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部4808は、以下の演算を行う。
同様に、パワー変更部4810Bは、重み付け合成後の信号4809B(u2(i))、および、制御信号4812を入力とし、制御信号4812に基づき、実数Q2を設定し、Q2×u2(t)をパワー変更後の信号4811A(z2(i))として出力する。(なお、Q2を実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
位相変更部4901は、式(A5)におけるu2(i)を重み付け合成後の信号4809Bおよび制御信号4812を入力とし、制御信号4812に基づき、式(A5)におけるu2(i)を重み付け合成後の信号4809Bの位相を変更する。したがって、式(A5)におけるu2(i)を重み付け合成後の信号4809Bの位相を変更後の信号は、ejθ(i)×u2(i)とあらわされ、ejθ(i)×u2(i)が位相変更後の信号4902として、位相変更部4901は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
そして、図49のパワー変更部4810Aおよび4810Bは、入力信号のパワー変更をそれぞれ行う。したがって、図49におけるパワー変更部4810Aおよび4810Bのそれぞれの出力z1(i)、z2(i)は、次式のようにあらわされる。
挿入部5104Aは、信号z1(i)(5101A)、パイロットシンボル5102A、制御情報シンボル5103A、制御信号4812を入力とし、制御信号4812に含まれるフレーム構成にしたがって、信号(シンボル)z1(i)(5101A)に、パイロットシンボル5102A、制御情報シンボル5103Aを挿入し、フレーム構成にしたがった、変調信号5105Aを出力する。
なお、パイロットシンボル5102A、制御情報シンボル5103Aは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部5106Aは、変調信号5105Aおよび制御信号4812を入力とし、制御信号4812に基づき、変調信号5105Aに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号5107Aを出力し、送信信号5107Aはアンテナ5108Aから電波として出力される。
なお、パイロットシンボル5102B、制御情報シンボル5103Bは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部5106Bは、変調信号5105Bおよび制御信号4812を入力とし、制御信号4812に基づき、変調信号5105Bに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号5107Bを出力し、送信信号5107Bはアンテナ5108Bから電波として出力される。
また、パイロットシンボル5102Aおよびパイロットシンボル5102Bは、受信装置において、信号検出、周波数オフセットの推定、ゲインコントロール、チャネル推定等を行うためのシンボルであり、ここでは、パイロットシンボルと名付けているが、リファレンスシンボル等、別の呼び方をしてもよい。
そして、制御情報シンボル5103Aおよび制御情報シンボル5103Bは、送信装置が用いた変調方式の情報、伝送方式の情報、プリコーディング方式の情報、誤り訂正符号方式の情報、誤り訂正符号の符号化率の情報、誤り訂正符号のブロック長(符号長)の情報等を、受信装置に伝送するためのシンボルである。なお、制御情報シンボル5103Aおよび制御情報シンボル5103Bの一方のみで、制御情報シンボルを送信してもよい。
図52は、図51のアンテナ5106Aから送信する送信信号のフレーム構成とアンテナ5108Bから送信する送信信号のフレームを同時に示している。
図52において、図51のアンテナ5106Aから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z1(i)に相当する。そして、パイロットシンボルは、パイロットシンボル5102Aに相当する。
図52において、図51のアンテナ5106Bから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z2(i)に相当する。そして、パイロットシンボルは、パイロットシンボル5102Bに相当する。
なお、図52では、データシンボルとパイロットシンボルしか記述していないが、他のシンボル、例えば、制御情報シンボル等のシンボルがフレームに含まれていてもよい。
(実施の形態8)
以下では、上記各実施の形態で示した符号化及び復号化方法を、送信方法及び受信方法に応用する例とそれを用いたシステムの構成例を説明する。
次に、多重化データの構造の一例について詳細に説明する。放送に用いられるデータ構造としてはMPEG2−トランスポートストリーム(TS)が一般的であり、ここではMPEG2−TSを例に挙げて説明する。しかし、上記各実施の形態で示した送信方法及び受信方法で伝送される多重化データのデータ構造はMPEG2−TSに限られず、他のいかなるデータ構造であっても上記の各実施の形態で説明した効果を得られることは言うまでもない。
ァイルは、図61に示すように多重化データの管理情報であり、多重化データと1対1に
対応し、クリップ情報、ストリーム属性情報とエントリマップから構成される。
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobilephone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェース(例えば、USB)を介して接続できるような形態であることも考えられる。
図65は、本明細書で示した誤り訂正符号化及び復号方法を応用する、例えばBDやDVDなどの光ディスクに対してデータを記録および再生する光ディスク装置における、データを記録する処理系とデータを再生する処理系に関する部分の構成例を示す図である。
(実施の形態D1)
本実施の形態では、符号化率(n−1)/nを満たさないLDPC−Cの一例として、符号化率3/5のパリティ検査多項式に基づくLDPC−CCの構成方法について説明する。
式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)において、α#(2i),p,q(pは1以上3以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
なお、以降で、説明を簡単にするために、式(97−1−1)または式(97−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(97−2−1)または式(97−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(97−1−1)においてi=0とした0を満たすパリティ検査多項式または式(97−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−1−1)においてi=1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−1−1)においてi=2とした0を満たすパリティ検査多項式または式(97−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−1−1)においてi=zとした0を満たすパリティ検査多項式または式(97−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i)―第2式」は、各iに対し、式(97−2−1)または式(97−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(97−2−1)においてi=0とした0を満たすパリティ検査多項式または式(97−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−2−1)においてi=1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−2−1)においてi=2とした0を満たすパリティ検査多項式または式(97−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−2−1)においてi=zとした0を満たすパリティ検査多項式または式(97−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
なお、以降で、説明を簡単にするために、式(98−1−1)または式(98−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(98−2−1)または式(98−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(98−1−1)においてi=0とした0を満たすパリティ検査多項式または式(98−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−1−1)においてi=1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−1−1)においてi=2とした0を満たすパリティ検査多項式または式(98−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−1−1)においてi=zとした0を満たすパリティ検査多項式または式(98−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(98−2−1)においてi=0とした0を満たすパリティ検査多項式または式(98−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−2−1)においてi=1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−2−1)においてi=2とした0を満たすパリティ検査多項式または式(98−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−2−1)においてi=zとした0を満たすパリティ検査多項式または式(98−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
次に、時点jと式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)、式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)の関係について説明する。(jを0以上の整数とする。)
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
次に、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列の構成方法について説明する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,P1,1,P2,1,
X1,2,X2,2,X3,2,P1,2,P2,2,
X1,3,X2,3,X3,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第5×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+4列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+5列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
時点j=1のときのパリティ検査多項式は、式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)において、i=0としたパリティ検査多項式となる。
式(97−1−1)、式(97−1−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項、1×X3(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在することから、図68の第1行のベクトルにおけるX1に関連する列は「1」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在しないことから、図68の第1行のベクトルにおけるX2,X3に関連する列は「0」となる。加えて、図67の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図68の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図68の第2行のベクトルは、式(97−2−1)、式(97−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図66参照)
式(97−2−1)、式(97−2−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項、1×X3(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在しないことから、図68の第2行のベクトルにおけるX1に関連する列は「0」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在することから、図68の第2行のベクトルにおけるX2,X3に関連する列は「1」となる。加えて、図67の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図68の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
時点j=2のときのパリティ検査多項式は、式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)において、i=0としたパリティ検査多項式となる。
式(98−1−1)、式(98−1−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項、1×X3(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在しないことから、図68の第3行のベクトルにおけるX1に関連する列は「0」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在することから、図68の第3行のベクトルにおけるX2,X3に関連する列は「1」となる。加えて、図67の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図68の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図68の第4行のベクトルは、式(98−2−1)、式(98−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図66参照)
式(98−2−1)、式(98−2−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項、1×X3(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在することから、図68の第4行のベクトルにおけるX1に関連する列は「1」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在しないことから、図68の第4行のベクトルにおけるX2,X3に関連する列は「0」となる。加えて、図67の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図68の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
時点j=3、4、5についても同様に考えることができるので、パリティ検査行列Hは、図68のような構成になる。
以下では、テイルバイティングを行わないときの「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列について説明する。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第5×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+4列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+5列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
以上をもとに、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行(gは1以上の整数となる。)の構成要素Hcom[2×g−1][v]、および、第2×g行の構成要素Hcom[2×g][v]について説明する。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(97−1−1)または式(97−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(98−1−1)または式(98−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。
また、
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。
X1について以下が成立する。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。
X1について以下が成立する。ただし、yは3以上r#(2c),1以下の整数とする。
また、
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2d+1),1以下の整数とする。
また、
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
また、
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態D2)
本実施の形態では、実施の形態D1で述べた符号化率3/5のパリティ検査多項式に基づくLDPC−CCの構成方法を、一般化したときの符号構成方法について説明する。
X1,X2,X3の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j,X3,j及びP1,j,P2,jとあらわす。
なお、以降で、説明を簡単にするために、式(131−1−1)または式(131−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(131−2−1)または式(131−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(131−1−1)においてi=0とした0を満たすパリティ検査多項式または式(131−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(131−1−1)においてi=1とした0を満たすパリティ検査多項式または式(131−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(131−1−1)においてi=2とした0を満たすパリティ検査多項式または式(131−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(131−1−1)においてi=zとした0を満たすパリティ検査多項式または式(131−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(131−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(131−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(131−2−1)においてi=0とした0を満たすパリティ検査多項式または式(131−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(131−2−1)においてi=1とした0を満たすパリティ検査多項式または式(131−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(131−2−1)においてi=2とした0を満たすパリティ検査多項式または式(131−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(131−2−1)においてi=zとした0を満たすパリティ検査多項式または式(131−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(131−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(131−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(132−1−1)、式(132−1−2)、式(132−2−1)、式(132−2−2)において、α#(2i+1),p,q(pは1以上3以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
なお、以降で、説明を簡単にするために、式(132−1−1)または式(132−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(132−2−1)または式(132−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(132−1−1)においてi=0とした0を満たすパリティ検査多項式または式(132−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(132−1−1)においてi=1とした0を満たすパリティ検査多項式または式(132−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(132−1−1)においてi=2とした0を満たすパリティ検査多項式または式(132−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(132−1−1)においてi=zとした0を満たすパリティ検査多項式または式(132−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(132−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(132−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(132−2−1)においてi=0とした0を満たすパリティ検査多項式または式(132−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(132−2−1)においてi=1とした0を満たすパリティ検査多項式または式(132−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(132−2−1)においてi=2とした0を満たすパリティ検査多項式または式(132−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(132−2−1)においてi=zとした0を満たすパリティ検査多項式または式(132−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(132−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(132−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCを定義することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,P1,1,P2,1,
X1,2,X2,2,X3,2,P1,2,P2,2,
X1,3,X2,3,X3,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第5×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+4列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+5列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
図68の第1行のベクトルは、式(131−1−1)または式(131−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図66参照)
式(131−1−1)、式(131−1−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項、1×X3(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在することから、図68の第1行のベクトルにおけるX1に関連する列は「1」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在しないことから、図68の第1行のベクトルにおけるX2,X3に関連する列は「0」となる。加えて、図67の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図68の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図68の第2行のベクトルは、式(131−2−1)、式(131−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図66参照)
式(131−2−1)、式(131−2−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項、1×X3(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在しないことから、図68の第2行のベクトルにおけるX1に関連する列は「0」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在することから、図68の第2行のベクトルにおけるX2,X3に関連する列は「1」となる。加えて、図67の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図68の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
図68の第3行のベクトルは、式(132−1−1)、式(132−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図66参照)
式(132−1−1)、式(132−1−2)において、
・1×X1(D)の項が存在しない。
・1×X2(D)の項、1×X3(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在しないことから、図68の第3行のベクトルにおけるX1に関連する列は「0」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在することから、図68の第3行のベクトルにおけるX2,X3に関連する列は「1」となる。加えて、図67の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図68の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(132−2−1)、式(132−2−2)において、
・1×X1(D)の項が存在する。
・1×X2(D)の項、1×X3(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,P1,P2の関係は、図67のようになる。図67の関係、および、1×X1(D)の項が存在することから、図68の第4行のベクトルにおけるX1に関連する列は「1」となる。また、図67の関係、および、1×X2(D)の項、1×X3(D)の項が存在しないことから、図68の第4行のベクトルにおけるX2,X3に関連する列は「0」となる。加えて、図67の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図68の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
したがって、図68の3901−2のように、「100Y1」となる。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第5×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+4列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第5×(j−1)+5列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
先にも述べたように、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(131−1−1)または式(131−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(132−1−1)または式(132−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(131−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
また、
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(131−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
また、
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(131−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
また、
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(131−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(131−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
そして、
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(132−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
また、
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(132−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
また、
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(132−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
また、
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(132−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(132−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
以上のように、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式を用いることで、時変周期2×mの符号化率3/5のパリティ検査多項式に基づくLDPC−CCを生成することができるとともに、生成した符号は、高い誤り訂正能力を得ることができるという効果を得ることができる。
(実施の形態D3)
本実施の形態では、実施の形態D1、実施の形態D2で説明した符号化率3/5のパリティ検査多項式に基づくLDPC−CCを用いた機器について説明する。
そして、時点s+1から時点s+gの情報X1からX3を0とする(gは1以上の整数とする)、つまり、時点tの情報X1からX3をそれぞれ、X1,t,X2,t,X3,tとあらわしたとき、tがs+1以上s+g以下の整数のときのX1,t=0,X2,t=0,X3,t=0が成立するものとする。そして、符号化を行うことで、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを得ることになる。送信装置は、上記の情報とパリティに加え、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを送信するものとする。
また、時点sにおいて、iを1以上f以下の整数としたときのXi,sは、送信装置が送信したい情報であり、kをf+1以上3以下の整数としたときXk,sは0(ゼロ)とする。
なお、上述では、通信装置を例に説明しているが、これに限ったものではなく、記録メディア(ストレージ)において、誤り訂正符号を導入してもよい。このとき、記録メディア(ストレージ)に記録しておきたい情報に対し、実施の形態D1、実施の形態D2で説明した符号化率3/5のパリティ検査多項式に基づくLDPC−CCで符号化を行い、情報とパリティを記録メディア(ストレージ)に記録しておくことになる。このとき、上述で説明したように、ゼロターミネーションを導入し、上述で説明した、ゼロターミネーションを適用したときに送信装置が送信するデータ系列(情報とパリティ)に相当するデータ系列を記録メディア(ストレージ)に記録しておくとよい。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、実施の形態D1、実施の形態D2で説明した符号化率3/5のパリティ検査多項式に基づくLDPC−CCを用いることができる。
本実施の形態では、実施の形態D1、実施の形態D2で説明した符号化率3/5のパリティ検査多項式に基づくLDPC−CCの構成方法に基づいた「符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)」の構成方法について説明する。
符号化率3/5の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCでは、ベースとして(基礎的な構造として)、実施の形態D1、実施の形態D2で説明した符号化率R=3/5、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する。
まず、以下の0を満たすパリティ検査多項式を用意する。
なお、以降で、説明を簡単にするために、式(165−1−1)または式(165−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(165−2−1)または式(165−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(165−1−1)においてi=0とした0を満たすパリティ検査多項式または式(165−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(165−1−1)においてi=1とした0を満たすパリティ検査多項式または式(165−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(165−1−1)においてi=2とした0を満たすパリティ検査多項式または式(165−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(165−1−1)においてi=zとした0を満たすパリティ検査多項式または式(165−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(165−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(165−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(165−2−1)においてi=0とした0を満たすパリティ検査多項式または式(165−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(165−2−1)においてi=1とした0を満たすパリティ検査多項式または式(165−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(165−2−1)においてi=2とした0を満たすパリティ検査多項式または式(165−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(165−2−1)においてi=zとした0を満たすパリティ検査多項式または式(165−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(165−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(165−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(166−1−1)または式(166−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(166−2−1)または式(166−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(166−1−1)においてi=0とした0を満たすパリティ検査多項式または式(166−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(166−1−1)においてi=1とした0を満たすパリティ検査多項式または式(166−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(166−1−1)においてi=2とした0を満たすパリティ検査多項式または式(166−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(166−1−1)においてi=zとした0を満たすパリティ検査多項式または式(166−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(166−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(166−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(166−2−1)においてi=0とした0を満たすパリティ検査多項式または式(166−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(166−2−1)においてi=1とした0を満たすパリティ検査多項式または式(166−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(166−2−1)においてi=2とした0を満たすパリティ検査多項式または式(166−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(166−2−1)においてi=zとした0を満たすパリティ検査多項式または式(166−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(166−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(166−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
<条件#N1>
・符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の行数は、4×mの倍数である。
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上3以下の整数)、Ppro s,1,kは符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上2×m×z以下の整数となる。)
・・・
「パリティ検査行列Hの第2×(2m−1)×z−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)×z行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
となる。
なお、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)T
とあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上3以下の整数)、Ppro s,1,kは符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
よって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第1行は、式(173)の#「0’」―第1式を変換することで得られる(つまり、1行、5×2×m×z列のg1が得られる。)
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)T
であり、この送信系列を得るために、2×(2×m)×z個の0を満たすパリティ検査多項式が必要となる。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproを式(168)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以下では、「パリティを逐次的に求めることができる」ことについて説明する。
第0番目の0を満たすパリティ検査多項式、つまり、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」から、情報X1からX3のビットはもともと得られている値であることから、Ppro s,1,1を求めることができる。
次に、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の符号化器、復号化器の構成、および、動作について説明する。
Xs,1,1、Xs,2,1、Xs,3,1、
Xs,1,2、Xs,2,2、Xs,3,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z)を入力とし、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro、および、Hprovs=0の関係に基づき符号化を行い、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vs=(
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tを生成し、出力する。なお、上述で説明したように、パリティは逐次的に求めることができることが、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の特徴となる。
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T
の各ビットのそれそれの対数尤度比を入力とし、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproに基づいて、例えば、非特許文献4、非特許文献6、非特許文献7、非特許文献8に示されているような、min-sum復号、offset BP復号、Normalized BP復号等の簡易的なBP復号、行演算(Horizontal演算)と列演算(Vertical演算)に対しスケジューリングを行った、Shuffled BP復号、Layered BP復号等のBP(Belief Propagation)(信頼度伝搬)復号、または、非特許文献17に示されているようなビットフリッピング復号等、のLDPC符号のための復号が行われ、第sブロックの推定送信系列(推定符号化系列)(受信系列)を得、出力する。
よって、上述のように、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの5×2×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)T
とあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上3以下の整数)、Ppro s,1,kは符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
Xs,1,1、Xs,2,1、Xs,3,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、Xs,3,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、Xs,3,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、Xs,3,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)T
であり、Hprovs=0(なお、「Hprovs=0(ゼロ)の「0(ゼロ)」」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproとしていたが、以降では、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、Λpro1,s、Λpro2,s)Tとあらわされたとき、Hpro_mus=0(なお、「Hpro_mus=0(ゼロ)の「0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成について説明する。
なお、ΛXf,s=(Xs,f,1、Xs,f,2、Xs,f,3、・・・、Xs,f,2×m×z−2、Xs,f,2×m×z−1、Xs,f,2×m×z)(ただし、fは1以上3以下の整数)(なお、ΛXf,sは1行2×m×z列のベクトルである。)、および、Λpro1,s=(Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z)および、Λpro2,s=(Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)とあらわされる(なお、Λpro1,sは1行2×m×z列のベクトルであり、Λpro2,sも1行2×m×z列のベクトルである)。
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、図74のように、Hpro_m=[Hx,1、Hx,2、Hx,3、Hp1、Hp2]とあらわすことができる。そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、Λpro1,s、Λpro2,s)Tとしているので、
Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、Hx,3は情報X3に関連する部分行列、Hp1はパリティP1に関連する部分行列、Hp2はパリティP2に関連する部分行列となり、図74に示すように、パリティ検査行列Hpro_mは、4×m×z行、5×2×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列、情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列、情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列、パリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列、パリティP2に関連する部分行列Hp2は、4×m×z行、2×m×z列の行列となる。
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、Λpro1,s、Λpro2,s)Tであり、この送信系列を得るために、4×m×z個の0を満たすパリティ検査多項式が必要となる。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。
よって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以上に基づき、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成の詳細について説明する。
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、4×m×z行、5×2×m×z列の行列となる。
パリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列であり、情報X1に関連する部分行列Hx,1のu行v列の要素をHx,1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
上述の関係から、Hx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]をあらわすことができる。
まず、パリティ検査行列Hpro_mの第1行目、つまり、u=1のときのHx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]の構成について説明する。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになる。 したがって、Hx,1,comp[1][v]、は、以下のようにあらわされる。
したがって、Hx,1,comp[2][v]、は、以下のようにあらわされる。
<1>「「#0−第2式」の0を満たすパリティ検査多項式」が式(165−2−1)のようにあらわされた場合:
Hx,1,comp[2][v]は以下のようにあらわされる。
上述で説明したように、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
したがって、
g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(165−1−1)または式(165−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルは、「#(((2×f−1)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(165−2−1)または式(165−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上のm×z以下の整数。)、
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(166−1−1)または式(166−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
(1)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(165−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(2)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(165−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
また、
(3)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(165−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(165−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(165−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(166−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(166−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(166−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(166−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(166−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
第0番目の0を満たすパリティ検査多項式は、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(165−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「式(165−1−1)または式(166−1−1)の「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「式(165−2−1)または式(166−2−1)の#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(173)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「式(165−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「式(165−1−1)または式(166−1−1)の「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「式(165−2−1)または式(166−2−1)の#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
なお、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成方法については、上述で説明したとおりとなる。
(実施の形態D5)
実施の形態D4では、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)、および、この符号のパリティ検査行列の構成方法について説明した。
図31は、符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号のパリティ検査行列Hの構成を示しており、例えば、図31のパリティ検査行列は、M行N列の行列となる。なお、ここでは、一般的に説明するために、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」を定義するためのパリティ検査行列Hを図31で示したものとする。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、パリティ検査行列Hは、以下のようにあらわされる。
図33に、送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tとした場合の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hと等価のパリティ検査行列H’の構成を示す。このとき、第j番目のブロックの送信系列v’jの第1行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第1列目の要素)は、Yj,32である。したがって、パリティ検査行列H’の第1列目を抽出したベクトルは、上述で説明したベクトルck(k=1、2、3、・・・、N−2、N−1、N)を用いると、c32となる。同様に、第j番目のブロックの送信系列v’jの第2行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第2列目の要素)は、Yj,99である。したがって、パリティ検査行列H’の第2列目を抽出したベクトルは、c99となる。また、図33から、パリティ検査行列H’の第3列目を抽出したベクトルは、c23となり、パリティ検査行列H’の第N−2列目を抽出したベクトルは、c234となり、パリティ検査行列H’の第N−1列目を抽出したベクトルは、c3となり、パリティ検査行列H’の第N列目を抽出したベクトルは、c43となる。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)のパリティ検査行列となる。
そして、図35の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列Hは、以下のようにあらわされる。
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
別の方法として、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H3を得る。そして、パリティ検査行列H3に対し、列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H4を得、送信装置、および、受信装置は、パリティ検査行列H4を用いて、符号化、復号化を行ってもよい。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H3,1を得る。そして、パリティ検査行列H3,1に対し、1回目の列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H4,1を得る。
本実施の形態では、実施の形態D4で説明した符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いた機器について説明する。
復号化器2213は、各ビットの対数尤度比を入力とし、符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列に基づき、信頼度伝播復号(例えば、sum-product復号、スケジューリングされたsum-product復号(Layered BP(Belief propagation)復号)、min-sum復号、Normalized BP復号、offset BP復号等)が行われ、推定系列を出力する。
符号化率3/5の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)等のブロック符号を装置で用いた際、特別な処理が必要となるときがある。
このとき、1ブロックに対し、符号化するためには情報ビット6000ビットが必要であるが、装置の符号化部に、情報ビット6000ビットより少ない数の情報しか入力されない場合がある。例えば、情報ビット5000ビットが、符号化部に入力されたものとする。
(実施の形態E1)
本実施の形態では、符号化率(n−1)/nを満たさないLDPC−Cの一例として、符号化率5/7のパリティ検査多項式に基づくLDPC−CCの構成方法について説明する。
X1,X2,X3,X4,X5の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j,X3,j,X4,j,X5,j及びP1,j,P2,jとあらわす。
Dを遅延演算子とすると、情報ビットX1,X2,X3,X4,X5の多項式は、それぞれ、X1(D),X2(D),X3(D),X4(D),X5(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
時変周期2mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのための0を満たすパリティ検査多項式として、以下の式を与える。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)において、α#(2i),p,q(pは1以上5以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
なお、以降で、説明を簡単にするために、式(97−1−1)または式(97−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(97−2−1)または式(97−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
よって、時変周期2mを実現するための「#(2i)―第1式」は、各iに対し、式(97−1−1)または式(97−1−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(97−1−1)においてi=0とした0を満たすパリティ検査多項式または式(97−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−1−1)においてi=1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−1−1)においてi=2とした0を満たすパリティ検査多項式または式(97−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−1−1)においてi=zとした0を満たすパリティ検査多項式または式(97−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、時変周期2mを実現するための「#(2i)―第2式」は、各iに対し、式(97−2−1)または式(97−2−2)のいずれかであらわされる0を満たすパリティ検査多項式を用意する。つまり、
「i=0のときとして、式(97−2−1)においてi=0とした0を満たすパリティ検査多項式または式(97−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−2−1)においてi=1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−2−1)においてi=2とした0を満たすパリティ検査多項式または式(97−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−2−1)においてi=zとした0を満たすパリティ検査多項式または式(97−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)において、α#(2i+1),p,q(pは1以上5以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(98−1−1)または式(98−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(98−2−1)または式(98−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(98−1−1)においてi=0とした0を満たすパリティ検査多項式または式(98−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−1−1)においてi=1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−1−1)においてi=2とした0を満たすパリティ検査多項式または式(98−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−1−1)においてi=zとした0を満たすパリティ検査多項式または式(98−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(98−2−1)においてi=0とした0を満たすパリティ検査多項式または式(98−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−2−1)においてi=1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−2−1)においてi=2とした0を満たすパリティ検査多項式または式(98−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−2−1)においてi=zとした0を満たすパリティ検査多項式または式(98−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
次に、時点jと式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)、式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)の関係について説明する。(jを0以上の整数とする。)
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,X4,1,X5,1,P1,1,P2,1,
X1,2,X2,2,X3,2,X4,2,X5,2,P1,2,P2,2,
X1,3,X2,3,X3,3,X4,3,X5,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,X4,y,X5,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
図76は、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列(H)の構成を示している。なお、パリティ検査行列の最左の列を第1列とする。そして、1列左に行くごとに、列の番号を1、増加させる。したがって、最左の列を第1列、その一つ左の列を第2列、以降、第3列、第4列、・・・となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第7×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+6列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+7列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
式(97−1−1)、式(97−1−2)において、
・1×X1(D)の項、1×X2(D)の項が存在する。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在することから、図77の第1行のベクトルにおけるX1,X2に関連する列は「1」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しないことから、図77の第1行のベクトルにおけるX3,X4,X5に関連する列は「0」となる。加えて、図76の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図77の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図77の3900−1のように、「1100010」となる。
式(97−2−1)、式(97−2−2)において、
・1×X1(D)の項、1×X2(D)の項が存在しない。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在しないことから、図77の第2行のベクトルにおけるX1,X2に関連する列は「0」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在することから、図77の第2行のベクトルにおけるX3,X4,X5に関連する列は「1」となる。加えて、図76の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図77の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
式(98−1−1)、式(98−1−2)において、
・1×X1(D)の項、1×X2(D)の項が存在しない。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在しないことから、図77の第3行のベクトルにおけるX1,X2に関連する列は「0」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在することから、図77の第3行のベクトルにおけるX3,X4,X5に関連する列は「1」となる。加えて、図76の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図77の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(98−2−1)、式(98−2−2)において、
・1×X1(D)の項、1×X2(D)の項が存在する。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在することから、図77の第4行のベクトルにおけるX1,X2に関連する列は「1」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しないことから、図77の第4行のベクトルにおけるX3,X4,X5に関連する列は「0」となる。加えて、図76の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図77の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第7×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+6列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+7列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(97−1−1)または式(97−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(98−1−1)または式(98−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
また、
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
Hcom[2×(2×f−1)][7×(u−1)+3]=0
…(113−4)
同様に考えると、Xwについて以下が成立する。ただし、wは3以上5以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態E2)
本実施の形態では、実施の形態E1で述べた符号化率5/7のパリティ検査多項式に基づくLDPC−CCの構成方法を、一般化したときの符号構成方法について説明する。
X1,X2,X3,X4,X5の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j,X3,j,X4,j,X5,j及びP1,j,P2,jとあらわす。
そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,X3,j,X4,j,X5,j,P1,j,P2,j)とあらわす。
Dを遅延演算子とすると、情報ビットX1,X2,X3,X4,X5の多項式は、それぞれ、X1(D),X2(D),X3(D),X4(D),X5(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
また、R#(2i),pは自然数であり、1≦R#(2i),p<r#(2i),pが成立する。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(147−1−1)または式(147−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(147−2−1)または式(147−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(147−1−1)においてi=0とした0を満たすパリティ検査多項式または式(147−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−1−1)においてi=1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−1−1)においてi=2とした0を満たすパリティ検査多項式または式(147−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−1−1)においてi=zとした0を満たすパリティ検査多項式または式(147−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(147−2−1)においてi=0とした0を満たすパリティ検査多項式または式(147−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−2−1)においてi=1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−2−1)においてi=2とした0を満たすパリティ検査多項式または式(147−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−2−1)においてi=zとした0を満たすパリティ検査多項式または式(147−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
同様に、まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
また、R#(2i),pは自然数であり、1≦R#(2i+1),p<r#(2i+1),pが成立する。
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i+1),p,y≠α#(2i+1),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(148−1−1)または式(148−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(148−2−1)または式(148−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(148−1−1)においてi=0とした0を満たすパリティ検査多項式または式(148−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−1−1)においてi=1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−1−1)においてi=2とした0を満たすパリティ検査多項式または式(148−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−1−1)においてi=zとした0を満たすパリティ検査多項式または式(148−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(148−2−1)においてi=0とした0を満たすパリティ検査多項式または式(148−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−2−1)においてi=1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−2−1)においてi=2とした0を満たすパリティ検査多項式または式(148−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−2−1)においてi=zとした0を満たすパリティ検査多項式または式(148−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,X4,1,X5,1,P1,1,P2,1,
X1,2,X2,2,X3,2,X4,2,X5,2,P1,2,P2,2,
X1,3,X2,3,X3,3,X4,3,X5,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,X4,y,X5,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第7×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+6列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+7列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
時点j=1のときのパリティ検査多項式は、式(147−1−1)、式(147−1−2)、式(147−2−1)、式(147−2−2)において、i=0としたパリティ検査多項式となる。
図77の第1行のベクトルは、式(147−1−1)または式(147−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図75参照)
式(147−1−1)、式(147−1−2)において、
・1×X1(D)の項、1×X2(D)の項が存在する。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在することから、図77の第1行のベクトルにおけるX1,X2に関連する列は「1」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しないことから、図77の第1行のベクトルにおけるX3,X4,X5に関連する列は「0」となる。加えて、図76の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図77の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図77の3900−1のように、「1100010」となる。
式(147−2−1)、式(147−2−2)において、
・1×X1(D)の項、1×X2(D)の項が存在しない。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在しないことから、図77の第2行のベクトルにおけるX1,X2に関連する列は「0」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在することから、図77の第2行のベクトルにおけるX3,X4,X5に関連する列は「1」となる。加えて、図76の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図77の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
時点j=2のときのパリティ検査多項式は、式(148−1−1)、式(148−1−2)、式(148−2−1)、式(148−2−2)において、i=0としたパリティ検査多項式となる。
式(148−1−1)、式(148−1−2)において、
・1×X1(D)の項、1×X2(D)の項が存在しない。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在しないことから、図77の第3行のベクトルにおけるX1,X2に関連する列は「0」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在することから、図77の第3行のベクトルにおけるX3,X4,X5に関連する列は「1」となる。加えて、図76の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図77の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(148−2−1)、式(148−2−2)において、
・1×X1(D)の項、1×X2(D)の項が存在する。
・1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,P1,P2の関係は、図76のようになる。図76の関係、および、1×X1(D)の項、1×X2(D)の項が存在することから、図77の第4行のベクトルにおけるX1,X2に関連する列は「1」となる。また、図76の関係、および、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項が存在しないことから、図77の第4行のベクトルにおけるX3,X4,X5に関連する列は「0」となる。加えて、図76の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図77の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
時点j=3、4、5についても同様に考えることができるので、パリティ検査行列Hは、図77のような構成になる。
そして、時点j=2k+2のとき(kは0以上の整数)、パリティ検査多項式は、式(148−1−1)、式(148−1−2)、式(148−2−1)、式(148−2−2)を使用することになるので、図77のように、パリティ検査行列Hの第2×(2k+2)−1行には、「0011110」が存在し、パリティ検査行列Hの第2×(2k+2)行には、「11000Y1」が存在するようになる。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第7×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+6列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第7×(j−1)+7列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
以上をもとに、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行(gは1以上の整数となる。)の構成要素Hcom[2×g−1][v]、および、第2×g行の構成要素Hcom[2×g][v]について説明する。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(147−1−1)または式(147−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(148−1−1)または式(148−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
Hcom[2×(2×f−1)][7×(u−1)+3]=0
…(169−3)
同様に考えると、Xwについて以下が成立する。ただし、wは3以上5以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率5/7のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態E3)
本実施の形態では、実施の形態E1、実施の形態E2で説明した符号化率5/7のパリティ検査多項式に基づくLDPC−CCを用いた機器について説明する。
そして、時点s+1から時点s+gの情報X1からX5を0とする(gは1以上の整数とする)、つまり、時点tの情報X1からX5をそれぞれ、X1,t,X2,t,X3,t,X4,t,X5,tとあらわしたとき、tがs+1以上s+g以下の整数のときのX1,t=0,X2,t=0,X3,t=0,X4,t=0,X5,t=0が成立するものとする。そして、符号化を行うことで、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを得ることになる。送信装置は、上記の情報とパリティに加え、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを送信するものとする。
また、時点sにおいて、iを1以上f以下の整数としたときのXi,sは、送信装置が送信したい情報であり、kをf+1以上5以下の整数としたときXk,sは0(ゼロ)とする。
(実施の形態E4)
本実施の形態では、実施の形態E1、実施の形態E2で説明した符号化率5/7のパリティ検査多項式に基づくLDPC−CCの構成方法に基づいた「符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)」の構成方法について説明する。
[符号化率5/7の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CC]
符号化率5/7の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCでは、ベースとして(基礎的な構造として)、実施の形態E1、実施の形態E2で説明した符号化率R=5/7、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する。
なお、以降で、説明を簡単にするために、式(197−1−1)または式(197−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(197−2−1)または式(197−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(197−1−1)においてi=0とした0を満たすパリティ検査多項式または式(197−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−1−1)においてi=1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−1−1)においてi=2とした0を満たすパリティ検査多項式または式(197−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−1−1)においてi=zとした0を満たすパリティ検査多項式または式(197−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(197−2−1)においてi=0とした0を満たすパリティ検査多項式または式(197−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−2−1)においてi=1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−2−1)においてi=2とした0を満たすパリティ検査多項式または式(197−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−2−1)においてi=zとした0を満たすパリティ検査多項式または式(197−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(198−1−1)、式(198−1−2)、式(198−2−1)、式(198−2−2)において、α#(2i+1),p,q(pは1以上5以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
なお、以降で、説明を簡単にするために、式(198−1−1)または式(198−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(198−2−1)または式(198−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(198−1−1)においてi=0とした0を満たすパリティ検査多項式または式(198−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−1−1)においてi=1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−1−1)においてi=2とした0を満たすパリティ検査多項式または式(198−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−1−1)においてi=zとした0を満たすパリティ検査多項式または式(198−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(198−2−1)においてi=0とした0を満たすパリティ検査多項式または式(198−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−2−1)においてi=1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−2−1)においてi=2とした0を満たすパリティ検査多項式または式(198−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−2−1)においてi=zとした0を満たすパリティ検査多項式または式(198−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
なお、式(197−1−1)、式(197−1−2)、式(197−2−1)、式(197−2−2)、式(198−1−1)、式(198−1−2)、式(198−2−1)、式(198−2−2)の0を満たすパリティ検査多項式において、P1(D)の項の数とP2(D)の項の数の和が2となる。これにより、パリティP1およびP2を、改良したテイルバイティングを適用した際、逐次的に求めることができ、演算(回路)規模を削減することができる一つの重要な要件となる。
<条件#N1>
・符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の行数は、4×mの倍数である。
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproとすると、Hproの列数は7×2×m×zとあらわすことができる(zは自然数)。
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=
(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上5以下の整数)、Ppro s,1,kは符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
そして、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列をHproの行数は、4×m×zとなる。
図81に示すように、
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上2×m×z以下の整数となる。)
・・・
「パリティ検査行列Hの第2×(2m−1)×z−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)×z行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
となる。
以下の説明の準備のため、図81の実施の形態E1、実施の形態E2で説明した符号化率R=5/7、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式のみで、テイルバイティングを行ったときの周期的時変LDPC−CCを形成したときのパリティ検査行列Hの数式表現を行う。図81のパリティ検査行列Hの第k行目の1行、7×2×m×z列のベクトルをhkとすると、図81のパリティ検査行列Hは次式であらわされる。
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上5以下の整数)、Ppro s,1,kは符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(203)のg1の構成方法の一つの例は、ベースとなる(基礎的な構造となる)、
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の「#0−第1式」の0を満たすパリティ検査多項式を利用して作成することができる。
g1は符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第1行目なので、「#0−第1式」の0を満たすパリティ検査多項式を変形した0を満たすパリティ検査多項式から、g1を生成するものとする。上述のように、「#0−第1式」の0を満たすパリティ検査多項式は式(204−1−1)、式(204−1−2)いずれかであらわされる。
一例として、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)Hproの第1行のベクトルg1を生成するための0を満たすパリティ検査多項式は、「#0−第1式」の0を満たすパリティ検査多項式が、式(204−1−1)、式(204−1−2)いずれであっても、次式とする。
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、この送信系列を得るために、2×(2×m)×z個の0を満たすパリティ検査多項式が必要となる。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproを式(200)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以下では、「パリティを逐次的に求めることができる」ことについて説明する。
第0番目の0を満たすパリティ検査多項式、つまり、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」から、情報X1からX5のビットはもともと得られている値であることから、Ppro s,1,1を求めることができる。
次に、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の符号化器、復号化器の構成、および、動作について説明する。
Xs,1,1、Xs,2,1、・・・、Xs,5,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z)を入力とし、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro、および、Hprovs=0の関係に基づき符号化を行い、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vs=(
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tを生成し、出力する。なお、上述で説明したように、パリティは逐次的に求めることができることが、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の特徴となる。
図25の受信装置2520の復号化器2523は、対数尤度比生成部2522が出力する、例えば、第sブロックの送信系列(符号化系列(符号語))vs=(
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tの各ビットのそれそれの対数尤度比を入力とし、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproに基づいて、例えば、非特許文献4、非特許文献6、非特許文献7、非特許文献8に示されているような、min-sum復号、offset BP復号、Normalized BP復号等の簡易的なBP復号、行演算(Horizontal演算)と列演算(Vertical演算)に対しスケジューリングを行った、Shuffled BP復号、Layered BP復号等のBP(Belief Propagation)(信頼度伝搬)復号、または、非特許文献17に示されているようなビットフリッピング復号等、のLDPC符号のための復号が行われ、第sブロックの推定送信系列(推定符号化系列)(受信系列)を得、出力する。
よって、上述のように、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの7×2×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上5以下の整数)、Ppro s,1,kは符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
なお、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の0を満たすパリティ検査多項式の構成方法については、上述で説明したとおりである。
上述では、第s番目のブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,5,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,5,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,5,k、Ppro s,1,k、Ppro s,2,k、・・・、Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,5,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、Hprovs=0(なお、「Hprovs=0(ゼロ)の「0(ゼロ)」」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproとしていたが、以降では、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、Λpro1,s、Λpro2,s)Tとあらわされたとき、Hpro_mus=0(なお、「Hpro_mus=0(ゼロ)の「0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成について説明する。
このとき、1ブロックに含まれる情報X1のビットは2×m×zビット、1ブロックに含まれる情報X2のビットは2×m×zビット、1ブロックに含まれる情報X3のビットは2×m×zビット、1ブロックに含まれる情報X4のビットは2×m×zビット、1ブロックに含まれる情報X5のビットは2×m×zビット、1ブロックに含まれるパリティビットP1のビットは2×m×zビット、1ブロックに含まれるパリティビットP2のビットは2×m×zビットであるので、
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、図83のように、Hpro_m=[Hx,1、Hx,2、Hx,3、Hx,4、Hx,5、Hp1、Hp2]とあらわすことができる。そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、Λpro1,s、Λpro2,s)Tとしているので、
Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、Hx,3は情報X3に関連する部分行列、Hx,4は情報X4に関連する部分行列、Hx,5は情報X5に関連する部分行列、Hp1はパリティP1に関連する部分行列、Hp2はパリティP2に関連する部分行列となり、図83に示すように、パリティ検査行列Hpro_mは、4×m×z行、7×2×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列、情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列、情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列、情報X4に関連する部分行列Hx,4は、4×m×z行、2×m×z列の行列、情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列、、パリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列、パリティP2に関連する部分行列Hp2は、4×m×z行、2×m×z列の行列となる。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。
よって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以上に基づき、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成の詳細について説明する。
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、4×m×z行、7×2×m×z列の行列となる。
パリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列であり、情報X1に関連する部分行列Hx,1のu行v列の要素をHx,1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
同様に、パリティ検査行列Hpro_mにおける情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列であり、情報X2に関連する部分行列Hx,2のu行v列の要素をHx,2,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列であり、情報X3に関連する部分行列Hx,3のu行v列の要素をHx,3,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列であり、情報X5に関連する部分行列Hx,5のu行v列の要素をHx,5,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
また、パリティ検査行列Hpro_mにおけるパリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列であり、パリティP1に関連する部分行列Hp1のu行v列の要素をHp1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
上述の関係から、Hx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hx,4,comp[u][v]、Hx,5,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]をあらわすことができる。
<1>「「#0−第2式」の0を満たすパリティ検査多項式」が式(197−2−1)のようにあらわされた場合:
Hx,1,comp[2][v]は以下のようにあらわされる。
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
したがって、
g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(197−1−1)または式(197−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上のm×z以下の整数。)、
符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−1−1)または式(198−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルは、「#(((2×f)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−2−1)または式(198−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(2)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(3)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
(6)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
このとき、0を満たすパリティ検査多項式の利用方法を限定した構成として、以下のような方法も考えられる。
第1番目の0を満たすパリティ検査多項式は、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「式(197−1−1)または式(198−1−1)の「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「式(197−2−1)または式(198−2−1)の#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
したがって、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mにおいて、
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「式(197−1−1)または式(198−1−1)の「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「式(197−2−1)または式(198−2−1)の#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
なお、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成方法については、上述で説明したとおりとなる。
(実施の形態E5)
実施の形態E4では、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)、および、この符号のパリティ検査行列の構成方法について説明した。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、パリティ検査行列Hは、以下のようにあらわされる。
図33に、送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tとした場合の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hと等価のパリティ検査行列H’の構成を示す。このとき、第j番目のブロックの送信系列v’jの第1行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第1列目の要素)は、Yj,32である。したがって、パリティ検査行列H’の第1列目を抽出したベクトルは、上述で説明したベクトルck(k=1、2、3、・・・、N−2、N−1、N)を用いると、c32となる。同様に、第j番目のブロックの送信系列v’jの第2行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第2列目の要素)は、Yj,99である。したがって、パリティ検査行列H’の第2列目を抽出したベクトルは、c99となる。また、図33から、パリティ検査行列H’の第3列目を抽出したベクトルは、c23となり、パリティ検査行列H’の第N−2列目を抽出したベクトルは、c234となり、パリティ検査行列H’の第N−1列目を抽出したベクトルは、c3となり、パリティ検査行列H’の第N列目を抽出したベクトルは、c43となる。
つまり、第j番目のブロックの送信系列v’jの第i行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第i列目の要素)は、Yj,g(g=1、2、3、・・・、N−2、N−1、N)とあらわされたとき、パリティ検査行列H’の第i列目を抽出したベクトルは、上述で説明したベクトルckを用いると、cgとなる。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)のパリティ検査行列となる。
よって、当然ながら、インタリーブを施した送信系列(符号語)(v’j)を元の順番に戻した送信系列(vj)は、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)である。したがって、インタリーブを施した送信系列(符号語)(v’j)とインタリーブを施した送信系列(符号語)(v’j)に対応するパリティ検査行列H’に対し、元の順番に戻し、送信系列vjを得、送信系列vj対応するパリティ検査行列を得ることができ、そのパリティ検査行列は、上述で述べた、図31のパリティ検査行列Hとなる。
例えば、送信装置が、第jブロックの送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tを送信したものとする。すると、各ビットの対数尤度比計算部3400は、受信信号から、Yj,32の対数尤度比、Yj,99の対数尤度比、Yj,23の対数尤度比、・・・、Yj,234の対数尤度比、Yj,3の対数尤度比、Yj,43の対数尤度比を計算し、出力することになる(図34の3406に相当)。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列に対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)に対するパリティ検査行列であり、このパリティ検査行列を受信装置は用いることで、得られた各ビットの対数尤度比に対し、デインタリーブを行わなくても、信頼度伝播復号を行い、推定系列を得ることができる。
上述では、送信系列のインタリーブとパリティ検査行列の関係について説明したが、以降では、パリティ検査行列における行並び替え(行置換)について説明する。
そして、図35の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列Hは、以下のようにあらわされる。
このとき、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列H’は、以下のようにあらわされ、
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
別の方法として、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H3を得る。そして、パリティ検査行列H3に対し、列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H4を得、送信装置、および、受信装置は、パリティ検査行列H4を用いて、符号化、復号化を行ってもよい。
同様に、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、上述で説明した列並び替え(列置換)および行並び替え(行置換)の両者を施すことにより得た行列をパリティ検査行列としてもよい。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H5,1を得る。そして、パリティ検査行列H5,1に対し、1回目の行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H6,1を得る。
本実施の形態では、実施の形態E4で説明した符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いた機器について説明する。
復号化器2213は、各ビットの対数尤度比を入力とし、符号化率5/7の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列に基づき、信頼度伝播復号(例えば、sum-product復号、スケジューリングされたsum-product復号(Layered BP(Belief propagation)復号)、min-sum復号、Normalized BP復号、offset BP復号等)が行われ、推定系列を出力する。
なお、上述のような送信を行うにあたって、送信装置は、上述のような送信を行ったことを通知するための情報を受信装置に対し、送信する必要がある。
(実施の形態F1)
本実施の形態では、符号化率(n−1)/nを満たさないLDPC−Cの一例として、符号化率7/9のパリティ検査多項式に基づくLDPC−CCの構成方法について説明する。
Dを遅延演算子とすると、情報ビットX1,X2,X3,X4,X5,X6,X7の多項式は、それぞれ、X1(D),X2(D),X3(D),X4(D),X5(D),X6(D),X7(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(97−1−1)または式(97−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(97−2−1)または式(97−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(97−1−1)においてi=0とした0を満たすパリティ検査多項式または式(97−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−1−1)においてi=1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−1−1)においてi=2とした0を満たすパリティ検査多項式または式(97−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−1−1)においてi=zとした0を満たすパリティ検査多項式または式(97−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(97−2−1)においてi=0とした0を満たすパリティ検査多項式または式(97−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−2−1)においてi=1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−2−1)においてi=2とした0を満たすパリティ検査多項式または式(97−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−2−1)においてi=zとした0を満たすパリティ検査多項式または式(97−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
なお、以降で、説明を簡単にするために、式(98−1−1)または式(98−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(98−2−1)または式(98−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(98−1−1)においてi=0とした0を満たすパリティ検査多項式または式(98−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−1−1)においてi=1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−1−1)においてi=2とした0を満たすパリティ検査多項式または式(98−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−1−1)においてi=zとした0を満たすパリティ検査多項式または式(98−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(98−2−1)においてi=0とした0を満たすパリティ検査多項式または式(98−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−2−1)においてi=1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−2−1)においてi=2とした0を満たすパリティ検査多項式または式(98−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−2−1)においてi=zとした0を満たすパリティ検査多項式または式(98−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,X4,1,X5,1,X6,1,X7,1,P1,1,P2,1,
X1,2,X2,2,X3,2,X4,2,X5,2,X6,2,X7,2,P1,2,P2,2,
X1,3,X2,3,X3,3,X4,3,X5,3,X6,3,X7,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,X6,y−1,X7,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,X4,y,X5,y,X6,y,X7,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,X6,y+1,X7,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のX6に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のX7に関連するベクトルとなる。」
「パリティ検査行列Hの第8列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第9×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+8列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+9列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
式(97−1−1)、式(97−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在する。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在することから、図86の第1行のベクトルにおけるX1,X2,X3に関連する列は「1」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しないことから、図86の第1行のベクトルにおけるX4,X5,X6,X7に関連する列は「0」となる。加えて、図85の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図86の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(97−2−1)、式(97−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在しない。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項が存在しないことから、図86の第2行のベクトルにおけるX1,X2,X3に関連する列は「0」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在することから、図86の第2行のベクトルにおけるX4,X5,X6,X7に関連する列は「1」となる。加えて、図85の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図86の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
時点j=2のときのパリティ検査多項式は、式(98−1−1)、式(98−1−2)、式(98−2−1)、式(98−2−2)において、i=0としたパリティ検査多項式となる。
式(98−1−1)、式(98−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項の項が存在しない。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項の項が存在しないことから、図86の第3行のベクトルにおけるX1,X2,X3に関連する列は「0」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在することから、図86の第3行のベクトルにおけるX4,X5,X6,X7に関連する列は「1」となる。加えて、図85の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図86の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図86の第4行のベクトルは、式(98−2−1)、式(98−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図84参照)
式(98−2−1)、式(98−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在する。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在することから、図86の第4行のベクトルにおけるX1,X2,X3に関連する列は「1」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しないことから、図86の第4行のベクトルにおけるX4,X5,X6,X7に関連する列は「0」となる。加えて、図85の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図86の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
図84を用いて説明したように、
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第9×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+8列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+9列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
以上をもとに、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行(gは1以上の整数となる。)の構成要素Hcom[2×g−1][v]、および、第2×g行の構成要素Hcom[2×g][v]について説明する。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(97−1−1)または式(97−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(98−1−1)または式(98−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態F2)
本実施の形態では、実施の形態F1で述べた符号化率7/9のパリティ検査多項式に基づくLDPC−CCの構成方法を、一般化したときの符号構成方法について説明する。
X1,X2,X3,X4,X5,X6,X7の情報ビット及びパリティビットP1,P2の時点jにおけるビットを、それぞれX1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j及びP1,j,P2,jとあらわす。
そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,P1,j,P2,j)とあらわす。
Dを遅延演算子とすると、情報ビットX1,X2,X3,X4,X5,X6,X7の多項式は、それぞれ、X1(D),X2(D),X3(D),X4(D),X5(D),X6(D),X7(D)とあらわされ、パリティビットP1,P2の多項式は、それぞれ、P1(D),P2(D)とあらわされる。
そして、時変周期2mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCを考える。
時変周期2mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのための0を満たすパリティ検査多項式として、以下の式を与える。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
式(147−1−1)、式(147−1−2)、式(147−2−1)、式(147−2−2)において、α#(2i),p,q(pは1以上7以下の整数、qは1以上r#(2i),p以下の整数。(ただし、r#(2i),pは自然数))及びβ#(2i),0は自然数、β#(2i),1は自然数、β#(2i),2は0以上の整数、β#(2i),3は自然数とする。
なお、以降で、説明を簡単にするために、式(147−1−1)または式(147−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(147−2−1)または式(147−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(147−1−1)においてi=0とした0を満たすパリティ検査多項式または式(147−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−1−1)においてi=1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−1−1)においてi=2とした0を満たすパリティ検査多項式または式(147−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−1−1)においてi=zとした0を満たすパリティ検査多項式または式(147−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(147−2−1)においてi=0とした0を満たすパリティ検査多項式または式(147−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−2−1)においてi=1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−2−1)においてi=2とした0を満たすパリティ検査多項式または式(147−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−2−1)においてi=zとした0を満たすパリティ検査多項式または式(147−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(148−1−1)、式(148−1−2)、式(148−2−1)、式(148−2−2)において、α#(2i+1),p,q(pは1以上7以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
なお、以降で、説明を簡単にするために、式(148−1−1)または式(148−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(148−2−1)または式(148−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(148−1−1)においてi=0とした0を満たすパリティ検査多項式または式(148−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−1−1)においてi=1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−1−1)においてi=2とした0を満たすパリティ検査多項式または式(148−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−1−1)においてi=zとした0を満たすパリティ検査多項式または式(148−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(148−2−1)においてi=0とした0を満たすパリティ検査多項式または式(148−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−2−1)においてi=1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−2−1)においてi=2とした0を満たすパリティ検査多項式または式(148−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−2−1)においてi=zとした0を満たすパリティ検査多項式または式(148−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(
X1,1,X2,1,X3,1,X4,1,X5,1,X6,1,X7,1,P1,1,P2,1,
X1,2,X2,2,X3,2,X4,2,X5,2,X6,2,X7,2,P1,2,P2,2,
X1,3,X2,3,X3,3,X4,3,X5,3,X6,3,X7,3,P1,3,P2,3,・・・
X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,X6,y−1,X7,y−1,P1,y−1,P2,y−1,
X1,y,X2,y,X3,y,X4,y,X5,y,X6,y,X7,y,P1,y,P2,y,
X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,X6,y+1,X7,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
図85に示すように、
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のX6に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のX7に関連するベクトルとなる。」
「パリティ検査行列Hの第8列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第9×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+8列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+9列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
図86の第1行のベクトルは、式(147−1−1)または式(147−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図84参照)
式(147−1−1)、式(147−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在する。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在することから、図86の第1行のベクトルにおけるX1,X2,X3に関連する列は「1」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しないことから、図86の第1行のベクトルにおけるX4,X5,X6,X7に関連する列は「0」となる。加えて、図85の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図86の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図86の第2行のベクトルは、式(147−2−1)、式(147−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図84参照)
式(147−2−1)、式(147−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在しない。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項が存在しないことから、図86の第2行のベクトルにおけるX1,X2,X3に関連する列は「0」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在することから、図86の第2行のベクトルにおけるX4,X5,X6,X7に関連する列は「1」となる。加えて、図85の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図86の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
したがって、図86の3900−2のように、「0001111Y1」となる。
時点j=2のときのパリティ検査多項式は、式(148−1−1)、式(148−1−2)、式(148−2−1)、式(148−2−2)において、i=0としたパリティ検査多項式となる。
図86の第3行のベクトルは、式(148−1−1)、式(148−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図84参照)
式(148−1−1)、式(148−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項の項が存在しない。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項の項が存在しないことから、図86の第3行のベクトルにおけるX1,X2,X3に関連する列は「0」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在することから、図86の第3行のベクトルにおけるX4,X5,X6,X7に関連する列は「1」となる。加えて、図85の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図86の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
図86の第4行のベクトルは、式(148−2−1)、式(148−2−2)においてi=0としたパリティ検査多項式から生成することができる。(図84参照)
式(148−2−1)、式(148−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在する。
・1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,P1,P2の関係は、図85のようになる。図85の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項が存在することから、図86の第4行のベクトルにおけるX1,X2,X3に関連する列は「1」となる。また、図85の関係、および、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項、1×X7(D)の項が存在しないことから、図86の第4行のベクトルにおけるX4,X5,X6,X7に関連する列は「0」となる。加えて、図85の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図86の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
したがって、図86の3901−2のように、「1110000Y1」となる。
つまり、時点j=2k+1のとき(kは0以上の整数)、パリティ検査多項式は、式(97−1−1)、式(97−1−2)、式(97−2−1)、式(97−2−2)を使用することになるので、図86のように、パリティ検査行列Hの第2×(2k+1)―1行には、「111000010」が存在し、パリティ検査行列Hの第2×(2k+1)行には、「0001111Y1」が存在する。
図84を用いて説明したように、
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第9×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+8列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第9×(j−1)+9列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(147−1−1)または式(147−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(148−1−1)または式(148−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
また、
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
以上のように、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式を用いることで、時変周期2×mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCを生成することができるとともに、生成した符号は、高い誤り訂正能力を得ることができるという効果を得ることができる。
(実施の形態F3)
本実施の形態では、実施の形態F1、実施の形態F2で説明した符号化率7/9のパリティ検査多項式に基づくLDPC−CCを用いた機器について説明する。
P2用演算部4004−2は、直列に接続されたシフトレジスタと各シフトレジスタの出力のいくつかのビットを集めて排他的論理和を行う演算部とで構成されている(図2および図22参照)。
排他的論理和(演算部)4005−1は、X1用演算後のビット4002−1−1からX7用演算後のビット4002−7−1、および、P1用演算後のビット4005−1−1、および、P2用演算後のビット4005−2−1を入力とし、排他的論理和の演算を行い、時点jのパリティP1のビットP1,jを出力する。
排他的論理和(演算部)4005−2は、X1用演算後のビット4002−1−2からX7用演算後のビット4002−7−2、および、P1用演算後のビット4005−1−2、および、P2用演算後のビット4005−2−2を入力とし、排他的論理和の演算を行い、時点jのパリティP2のビットP2,jを出力する。
なお、図87における、Xz用演算部4001−z、および、P1用演算部4004−1、P2用演算部4004−2それぞれが具備するシフトレジスタの初期値は0(ゼロ)であるとよい。これにより、初期値設定以前のパリティP1、P2を受信装置に送信する必要がなくなる。
次に、ゼロターミネーション方法について説明する。
そして、時点s+1から時点s+gの情報X1からX7を0とする(gは1以上の整数とする)、つまり、時点tの情報X1からX7をそれぞれ、X1,t,X2,t,X3,t,X4,t,X5,t,X6,t,X7,tとあらわしたとき、tがs+1以上s+g以下の整数のときのX1,t=0,X2,t=0,X3,t=0,X4,t=0,X5,t=0,X6,t=0,X7,t=0が成立するものとする。そして、符号化を行うことで、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを得ることになる。送信装置は、上記の情報とパリティに加え、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを送信するものとする。
図88とは、別の例を図89に示す。時点0から情報X1からX7が存在し、時点s(sは0以上の整数)の情報Xfが最後の情報ビットであったとする。なお、fは1以上12以下の整数とする。なお、図88では、一例として、f=5としている。つまり、時点jの情報X1からX13をそれぞれ、X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,jとあらわしたとき、jが0以上s−1以下の整数のときの情報X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j、および、iを1以上f以下の整数とたときのXi,sが、送信装置が受信装置に伝送したい情報であるものとする。
このとき、情報X1からX7およびパリティP1およびP2において、時点0から時点s−1までの情報X1からX13およびパリティP1およびP2、つまり、jが0以上s−1以下の整数のX1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,P1,j,P2,jを、送信装置は、送信することになる。(ただし、時点jのパリティP1およびP2をP1,j,P2,jとする。)
また、時点sにおいて、iを1以上f以下の整数としたときのXi,sは、送信装置が送信したい情報であり、kをf+1以上7以下の整数としたときXk,sは0(ゼロ)とする。
なお、上述では、通信装置を例に説明しているが、これに限ったものではなく、記録メディア(ストレージ)において、誤り訂正符号を導入してもよい。このとき、記録メディア(ストレージ)に記録しておきたい情報に対し、実施の形態F1、実施の形態F2で説明した符号化率7/9のパリティ検査多項式に基づくLDPC−CCで符号化を行い、情報とパリティを記録メディア(ストレージ)に記録しておくことになる。このとき、上述で説明したように、ゼロターミネーションを導入し、上述で説明した、ゼロターミネーションを適用したときに送信装置が送信するデータ系列(情報とパリティ)に相当するデータ系列を記録メディア(ストレージ)に記録しておくとよい。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、実施の形態F1、実施の形態F2で説明した符号化率7/9のパリティ検査多項式に基づくLDPC−CCを用いることができる。
(実施の形態F4)
本実施の形態では、実施の形態F1、実施の形態F2で説明した符号化率7/9のパリティ検査多項式に基づくLDPC−CCの構成方法に基づいた「符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)」の構成方法について説明する。
[符号化率7/9の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CC]
符号化率7/9の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCでは、ベースとして(基礎的な構造として)、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する。
実施の形態F2で説明したように、時変周期2mの符号化率7/9のパリティ検査多項式に基づくLDPC−CCの構成方法は以下のとおりである。
なお、以降で、説明を簡単にするために、式(197−1−1)または式(197−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(197−2−1)または式(197−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(197−1−1)においてi=0とした0を満たすパリティ検査多項式または式(197−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−1−1)においてi=1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−1−1)においてi=2とした0を満たすパリティ検査多項式または式(197−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−1−1)においてi=zとした0を満たすパリティ検査多項式または式(197−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(197−2−1)においてi=0とした0を満たすパリティ検査多項式または式(197−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−2−1)においてi=1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−2−1)においてi=2とした0を満たすパリティ検査多項式または式(197−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−2−1)においてi=zとした0を満たすパリティ検査多項式または式(197−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(198−1−1)、式(198−1−2)、式(198−2−1)、式(198−2−2)において、α#(2i+1),p,q(pは1以上7以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
なお、以降で、説明を簡単にするために、式(198−1−1)または式(198−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(198−2−1)または式(198−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(198−1−1)においてi=0とした0を満たすパリティ検査多項式または式(198−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−1−1)においてi=1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−1−1)においてi=2とした0を満たすパリティ検査多項式または式(198−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−1−1)においてi=zとした0を満たすパリティ検査多項式または式(198−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(198−2−1)においてi=0とした0を満たすパリティ検査多項式または式(198−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−2−1)においてi=1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−2−1)においてi=2とした0を満たすパリティ検査多項式または式(198−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−2−1)においてi=zとした0を満たすパリティ検査多項式または式(198−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
次に、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の、ベース(基礎的な構造)となる、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式の時変周期と提案する符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のブロックサイズの関係について説明する。
この点については、より高い誤り訂正能力を得るために、ベース(基礎的な構造)となる、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCが形成するタナ−グラフと符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のタナ−グラフが類似するような構成となることが望まれる。したがって、以下の条件が重要となる。
<条件#N1>
・符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の行数は、4×mの倍数である。
なお、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とベース(基礎的な構造)となる、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCの関係については、あとで詳しく述べる。
よって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=
(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上7以下の整数)、Ppro s,1,kは符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)では、「ベースとして(基礎的な構造として)、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する」と記載したが、この点について説明する。
まず、実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式のみで、テイルバイティングを行ったときの周期的時変LDPC−CCを形成したときのパリティ検査行列について考える。
図90に示すように、
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上2×m×z以下の整数となる。)
・・・
「パリティ検査行列Hの第2×(2m−1)×z−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)×z行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
となる。
以下の説明の準備のため、図90の実施の形態F1、実施の形態F2で説明した符号化率R=7/9、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式のみで、テイルバイティングを行ったときの周期的時変LDPC−CCを形成したときのパリティ検査行列Hの数式表現を行う。図90のパリティ検査行列Hの第k行目の1行、9×2×m×z列のベクトルをhkとすると、図90のパリティ検査行列Hは次式であらわされる。
図91の符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第k行目の1行、9×2×m×z列のベクトルをgkとすると、図91のパリティ検査行列Hproは次式であらわされる。
なお、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上7以下の整数)、Ppro s,1,kは符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
次に、パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(203)のg1の構成方法について説明する。
パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(203)のg1の構成方法の一つの例は、ベースとなる(基礎的な構造となる)、
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の「#0−第1式」の0を満たすパリティ検査多項式を利用して作成することができる。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、この送信系列を得るために、2×(2×m)×z個の0を満たすパリティ検査多項式が必要となる。
このとき、2×(2×m)×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上2×(2×m)×z−1以下の整数)。
したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproを式(200)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以上のように、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)は、高い誤り訂正能力が得られるとともに、複数のパリティを逐次的に求めることが可能となるため、符号化器の回路規模を小さくすることができるという利点をもつことになる。
上述の例の場合、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の
第0番目の0を満たすパリティ検査多項式、つまり、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」から、情報X1からX7のビットはもともと得られている値であることから、Ppro s,1,1を求めることができる。
次に、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の符号化器、復号化器の構成、および、動作について説明する。
図25の通信システムの略図を用いて説明する。送信装置2501の符号化器2511は、第sブロックの情報系列(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z)を入力とし、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro、および、Hprovs=0の関係に基づき符号化を行い、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tを生成し、出力する。なお、上述で説明したように、パリティは逐次的に求めることができることが、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の特徴となる。
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)Tの各ビットのそれそれの対数尤度比を入力とし、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproに基づいて、例えば、非特許文献4、非特許文献6、非特許文献7、非特許文献8に示されているような、min-sum復号、offset BP復号、Normalized BP復号等の簡易的なBP復号、行演算(Horizontal演算)と列演算(Vertical演算)に対しスケジューリングを行った、Shuffled BP復号、Layered BP復号等のBP(Belief Propagation)(信頼度伝搬)復号、または、非特許文献17に示されているようなビットフリッピング復号等、のLDPC符号のための復号が行われ、第sブロックの推定送信系列(推定符号化系列)(受信系列)を得、出力する。
次に、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の具体的な構成例について説明する。
よって、上述のように、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの9×2×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上7以下の整数)、Ppro s,1,kは符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
なお、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の0を満たすパリティ検査多項式の構成方法については、上述で説明したとおりである。
上述では、第s番目のブロックの送信系列(符号化系列(符号語))vsはvs=(
Xs,1,1、Xs,2,1、・・・、Xs,7,1、Ppro s,1,1、Ppro s,2,1、
Xs,1,2、Xs,2,2、・・・、Xs,7,2、Ppro s,1,2、Ppro s,2,2、・・・、
Xs,1,k、Xs,2,k、・・・、Xs,7,k、Ppro s,1,k、Ppro s,2,k、・・・、
Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,7,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、Hprovs=0(なお、「Hprovs=0(ゼロ)の「0(ゼロ)」」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproとしていたが、以降では、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、
Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、Λpro1,s、Λpro2,s)Tとあらわされたとき、Hpro_mus=0(なお、「Hpro_mus=0(ゼロ)の「0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成について説明する。
なお、ΛXf,s=(Xs,f,1、Xs,f,2、Xs,f,3、・・・、Xs,f,2×m×z−2、Xs,f,2×m×z−1、Xs,f,2×m×z)(ただし、fは1以上7以下の整数)(なお、ΛXf,sは1行2×m×z列のベクトルである。)、および、Λpro1,s=(Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z)および、Λpro2,s=(Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)とあらわされる(なお、Λpro1,sは1行2×m×z列のベクトルであり、Λpro2,sも1行2×m×z列のベクトルである)。
このとき、1ブロックに含まれる情報X1のビットは2×m×zビット、1ブロックに含まれる情報X2のビットは2×m×zビット、1ブロックに含まれる情報X3のビットは2×m×zビット、1ブロックに含まれる情報X4のビットは2×m×zビット、1ブロックに含まれる情報X5のビットは2×m×zビット、1ブロックに含まれる情報X6のビットは2×m×zビット、1ブロックに含まれる情報X7のビットは2×m×zビット、
1ブロックに含まれるパリティビットP1のビットは2×m×zビット、1ブロックに含まれるパリティビットP2のビットは2×m×zビットであるので、
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、図92のように、Hpro_m=[Hx,1、Hx,2、Hx,3、Hx,4、Hx,5、Hx,6、Hx,7、Hp1、Hp2]とあらわすことができる。そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、
Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、Λpro1,s、Λpro2,s)Tとしているので、
Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、Hx,3は情報X3に関連する部分行列、Hx,4は情報X4に関連する部分行列、Hx,5は情報X5に関連する部分行列、Hx,6は情報X6に関連する部分行列、Hx,7は情報X7に関連する部分行列、Hp1はパリティP1に関連する部分行列、Hp2はパリティP2に関連する部分行列となり、図92に示すように、パリティ検査行列Hpro_mは、4×m×z行、9×2×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列、情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列、情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列、情報X4に関連する部分行列Hx,4は、4×m×z行、2×m×z列の行列、情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列、情報X6に関連する部分行列Hx,6は、4×m×z行、2×m×z列の行列、情報X7に関連する部分行列Hx,7は、4×m×z行、2×m×z列の行列、パリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列、パリティP2に関連する部分行列Hp2は、4×m×z行、2×m×z列の行列となる。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの9×2×m×zのビット数で構成される送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、
Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、Λpro1,s、Λpro2,s)Tであり、この送信系列を得るために、4×m×z個の0を満たすパリティ検査多項式が必要となる。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。
よって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
以上に基づき、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成の詳細について説明する。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、4×m×z行、9×2×m×z列の行列となる。
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、第1行から第4×m×z行が存在し、第1列から第9×2×m×z列が存在することになる。
そして、
パリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列であり、情報X1に関連する部分行列Hx,1のu行v列の要素をHx,1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
同様に、パリティ検査行列Hpro_mにおける情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列であり、情報X2に関連する部分行列Hx,2のu行v列の要素をHx,2,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列であり、情報X3に関連する部分行列Hx,3のu行v列の要素をHx,3,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列であり、情報X5に関連する部分行列Hx,5のu行v列の要素をHx,5,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X6に関連する部分行列Hx,6は、4×m×z行、2×m×z列の行列であり、情報X6に関連する部分行列Hx,6のu行v列の要素をHx,6,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X7に関連する部分行列Hx,7は、4×m×z行、2×m×z列の行列であり、情報X7に関連する部分行列Hx,7のu行v列の要素をHx,7,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
上述の関係から、Hx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hx,4,comp[u][v]、Hx,5,comp[u][v]、Hx,6,comp[u][v]、Hx,7,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]をあらわすことができる。
まず、パリティ検査行列Hpro_mの第1行目、つまり、u=1のときのHx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hx,4,comp[u][v]、Hx,5,comp[u][v]、Hx,6,comp[u][v]、Hx,7,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]の構成について説明する。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになる。したがって、Hx,1,comp[1][v]、は、以下のようにあらわされる。
<1>「「#0−第2式」の0を満たすパリティ検査多項式」が式(197−2−1)のようにあらわされた場合:
Hx,1,comp[2][v]は以下のようにあらわされる。
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
したがって、
g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(197−1−1)または式(197−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルは、「#(((2×f−1)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(197−2−1)または式(197−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上のm×z以下の整数。)、
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−1−1)または式(198−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルは、「#(((2×f)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−2−1)または式(198−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f−1)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(2)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f−1)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(3)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f−1)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f−1)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
(7)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
なお、上述では、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の0を満たすパリティ検査多項式を以下のように設定した。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
このとき、0を満たすパリティ検査多項式の利用方法を限定した構成として、以下のような方法も考えられる。
符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の0を満たすパリティ検査多項式を以下のように設定する。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「式(197−1−1)または式(198−1−1)の「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「式(197−2−1)または式(198−2−1)の#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「式(197−1−1)または式(198−1−1)の「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「式(197−2−1)または式(198−2−1)の#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
なお、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成方法については、上述で説明したとおりとなる。
(実施の形態F5)
実施の形態F4では、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)、および、この符号のパリティ検査行列の構成方法について説明した。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、パリティ検査行列Hは、以下のようにあらわされる。
図33に、送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tとした場合の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hと等価のパリティ検査行列H’の構成を示す。このとき、第j番目のブロックの送信系列v’jの第1行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第1列目の要素)は、Yj,32である。したがって、パリティ検査行列H’の第1列目を抽出したベクトルは、上述で説明したベクトルck(k=1、2、3、・・・、N−2、N−1、N)を用いると、c32となる。同様に、第j番目のブロックの送信系列v’jの第2行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第2列目の要素)は、Yj,99である。したがって、パリティ検査行列H’の第2列目を抽出したベクトルは、c99となる。また、図33から、パリティ検査行列H’の第3列目を抽出したベクトルは、c23となり、パリティ検査行列H’の第N−2列目を抽出したベクトルは、c234となり、パリティ検査行列H’の第N−1列目を抽出したベクトルは、c3となり、パリティ検査行列H’の第N列目を抽出したベクトルは、c43となる。
よって、当然ながら、インタリーブを施した送信系列(符号語)(v’j)を元の順番に戻した送信系列(vj)は、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)である。したがって、インタリーブを施した送信系列(符号語)(v’j)とインタリーブを施した送信系列(符号語)(v’j)に対応するパリティ検査行列H’に対し、元の順番に戻し、送信系列vjを得、送信系列vj対応するパリティ検査行列を得ることができ、そのパリティ検査行列は、上述で述べた、図31のパリティ検査行列Hとなる。
したがって、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」の送信系列(符号語)に対し、インタリーブを施した場合、上述のように、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列に対し、列並び替え(列置換)を行った行列が、インタリーブを施した送信系列(符号語)に対するパリティ検査行列であり、このパリティ検査行列を受信装置は用いることで、得られた各ビットの対数尤度比に対し、デインタリーブを行わなくても、信頼度伝播復号を行い、推定系列を得ることができる。
そして、図35の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列Hは、以下のようにあらわされる。
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、上述で説明した列並び替え(列置換)および行並び替え(行置換)の両者を施すことにより得た行列をパリティ検査行列としてもよい。
別の方法として、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H3を得る。そして、パリティ検査行列H3に対し、列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H4を得、送信装置、および、受信装置は、パリティ検査行列H4を用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H4,sを用いて、符号化、復号化を行ってもよい。
同様に、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、上述で説明した列並び替え(列置換)および行並び替え(行置換)の両者を施すことにより得た行列をパリティ検査行列としてもよい。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H5,1を得る。そして、パリティ検査行列H5,1に対し、1回目の行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H6,1を得る。
また、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hに対し、1回目の行並び替え(行置換)を行い(例えば、図35のパリティ検査行列から図36のパリティ検査行列のような変換を行う)、パリティ検査行列H7,1を得る。そして、パリティ検査行列H7,1に対し、1回目の列並び替え(列置換)を行い(例えば、図31のパリティ検査行列から図33のパリティ検査行列のような変換を行う)、パリティ検査行列H8,1を得る。
(実施の形態F6)
本実施の形態では、実施の形態F4で説明した符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いた機器について説明する。
復号化器2213は、各ビットの対数尤度比を入力とし、符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列に基づき、信頼度伝播復号(例えば、sum-product復号、スケジューリングされたsum-product復号(Layered BP(Belief propagation)復号)、min-sum復号、Normalized BP復号、offset BP復号等)が行われ、推定系列を出力する。
装置内で使用する符号化率7/9の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のブロック長を18000(ビット)(情報ビット14000ビット、パリティビット4000ビット)とする。
(実施の形態G1)
本実施の形態では、符号化率(n−1)/nを満たさないLDPC−Cの一例として、符号化率13/15のパリティ検査多項式に基づくLDPC−CCの構成方法について説明する。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たす。ここで、∀は、全称記号(universal quantifier)である。(yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たす。)
なお、以降で、説明を簡単にするために、式(97−1−1)または式(97−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(97−2−1)または式(97−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(97−1−1)においてi=0とした0を満たすパリティ検査多項式または式(97−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−1−1)においてi=1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−1−1)においてi=2とした0を満たすパリティ検査多項式または式(97−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−1−1)においてi=zとした0を満たすパリティ検査多項式または式(97−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(97−2−1)においてi=0とした0を満たすパリティ検査多項式または式(97−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(97−2−1)においてi=1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(97−2−1)においてi=2とした0を満たすパリティ検査多項式または式(97−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(97−2−1)においてi=zとした0を満たすパリティ検査多項式または式(97−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(97−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(97−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
なお、以降で、説明を簡単にするために、式(98−1−1)または式(98−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(98−2−1)または式(98−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(98−1−1)においてi=0とした0を満たすパリティ検査多項式または式(98−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−1−1)においてi=1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−1−1)においてi=2とした0を満たすパリティ検査多項式または式(98−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−1−1)においてi=zとした0を満たすパリティ検査多項式または式(98−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(98−2−1)においてi=0とした0を満たすパリティ検査多項式または式(98−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(98−2−1)においてi=1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(98−2−1)においてi=2とした0を満たすパリティ検査多項式または式(98−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(98−2−1)においてi=zとした0を満たすパリティ検査多項式または式(98−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(98−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(98−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCを定義することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(X1,1,X2,1,X3,1,X4,1,X5,1,X6,1,X7,1,X8,1,X9,1,X10,1,X11,1,X12,1,X13,1,P1,1,P2,1,X1,2,X2,2,X3,2,X4,2,X5,2,X6,2,X7,2,X8,2,X9,2,X10,2,X11,2,X12,2,X13,2,P1,2,P2,2,X1,3,X2,3,X3,3,X4,3,X5,3,X6,3,X7,3,X8,3,X9,3,X10,3,X11,3,X12,3,X13,3,P1,3,P2,3,・・・X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,X6,y−1,X7,y−1,X8,y−1,X9,y−1,X10,y−1,X11,y−1,X12,y−1,X13,y−1,P1,y−1,P2,y−1,X1,y,X2,y,X3,y,X4,y,X5,y,X6,y,X7,y,X8,y,X9,y,X10,y,X11,y,X12,y,X13,y,P1,y,P2,y,X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,X6,y+1,X7,y+1,X8,y+1,X9,y+1,X10,y+1,X11,y+1,X12,y+1,X13,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のX6に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のX7に関連するベクトルとなる。」
「パリティ検査行列Hの第8列のベクトルは、時点1のX8に関連するベクトルとなる。」
「パリティ検査行列Hの第9列のベクトルは、時点1のX9に関連するベクトルとなる。」
「パリティ検査行列Hの第10列のベクトルは、時点1のX10に関連するベクトルとなる。」
「パリティ検査行列Hの第11列のベクトルは、時点1のX11に関連するベクトルとなる。」
「パリティ検査行列Hの第12列のベクトルは、時点1のX12に関連するベクトルとなる。」
「パリティ検査行列Hの第13列のベクトルは、時点1のX13に関連するベクトルとなる。」
「パリティ検査行列Hの第14列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第15×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+8列のベクトルは、時点jのX8に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+9列のベクトルは、時点jのX9に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+10列のベクトルは、時点jのX10に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+11列のベクトルは、時点jのX11に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+12列のベクトルは、時点jのX12に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+13列のベクトルは、時点jのX13に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+14列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+15列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
図95の第1行のベクトルは、式(97−1−1)または式(97−1−2)においてi=0としたパリティ検査多項式から生成することができる。(図93参照)
式(97−1−1)、式(97−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在する。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在することから、図95の第1行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「1」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しないことから、図95の第1行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「0」となる。加えて、図94の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図95の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図95の3900−1のように、「111111000000010」となる。
式(97−2−1)、式(97−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しない。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しないことから、図95の第2行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「0」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在することから、図95の第2行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「1」となる。加えて、図94の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図95の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
式(98−1−1)、式(98−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しない。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しないことから、図95の第3行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「0」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在することから、図95の第3行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「1」となる。加えて、図94の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図95の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(98−2−1)、式(98−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在する。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在することから、図95の第4行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「1」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しないことから、図95の第4行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「0」となる。加えて、図94の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図95の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第15×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+8列のベクトルは、時点jのX8に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+9列のベクトルは、時点jのX9に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+10列のベクトルは、時点jのX10に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+11列のベクトルは、時点jのX11に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+12列のベクトルは、時点jのX12に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+13列のベクトルは、時点jのX13に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+14列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+15列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(97−1−1)または式(97−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(98−1−1)または式(98−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
Hcom[2×(2×f−1)−1][15×(u−1)+w]=0
…(100−4)
そして、X7について以下が成立する。ただし、yは3以上r#(2c),7以下の整数とする。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(97−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(97−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(97−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(98−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yは3以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(98−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(98−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態G2)
本実施の形態では、実施の形態G1で述べた符号化率13/15のパリティ検査多項式に基づくLDPC−CCの構成方法を、一般化したときの符号構成方法について説明する。
そして、時点jにおけるベクトルujをuj=(X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,X8,j,X9,j,X10,j,X11,j,X12,j,X13,j,P1,j,P2,j)とあらわす。
まず、パリティP1とP2が存在するため、1×P1(D)に関して2つ、1×P2(D)に関して2つの以下のような0を満たすパリティ検査多項式を与える。
なお、以降で、説明を簡単にするために、式(147−1−1)または式(147−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(147−2−1)または式(147−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(147−1−1)においてi=0とした0を満たすパリティ検査多項式または式(147−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−1−1)においてi=1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−1−1)においてi=2とした0を満たすパリティ検査多項式または式(147−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−1−1)においてi=zとした0を満たすパリティ検査多項式または式(147−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(147−2−1)においてi=0とした0を満たすパリティ検査多項式または式(147−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(147−2−1)においてi=1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(147−2−1)においてi=2とした0を満たすパリティ検査多項式または式(147−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(147−2−1)においてi=zとした0を満たすパリティ検査多項式または式(147−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(147−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(147−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
なお、以降で、説明を簡単にするために、式(148−1−1)または式(148−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(148−2−1)または式(148−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(148−1−1)においてi=0とした0を満たすパリティ検査多項式または式(148−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−1−1)においてi=1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−1−1)においてi=2とした0を満たすパリティ検査多項式または式(148−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−1−1)においてi=zとした0を満たすパリティ検査多項式または式(148−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(148−2−1)においてi=0とした0を満たすパリティ検査多項式または式(148−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(148−2−1)においてi=1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(148−2−1)においてi=2とした0を満たすパリティ検査多項式または式(148−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(148−2−1)においてi=zとした0を満たすパリティ検査多項式または式(148−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(148−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(148−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
すると、u=(u1,u2,u3,・・・uy−1,uy,uy+1,・・・)T=(X1,1,X2,1,X3,1,X4,1,X5,1,X6,1,X7,1,X8,1,X9,1,X10,1,X11,1,X12,1,X13,1,P1,1,P2,1,X1,2,X2,2,X3,2,X4,2,X5,2,X6,2,X7,2,X8,2,X9,2,X10,2,X11,2,X12,2,X13,2,P1,2,P2,2,X1,3,X2,3,X3,3,X4,3,X5,3,X6,3,X7,3,X8,3,X9,3,X10,3,X11,3,X12,3,X13,3,P1,3,P2,3,・・・X1,y−1,X2,y−1,X3,y−1,X4,y−1,X5,y−1,X6,y−1,X7,y−1,X8,y−1,X9,y−1,X10,y−1,X11,y−1,X12,y−1,X13,y−1,P1,y−1,P2,y−1,X1,y,X2,y,X3,y,X4,y,X5,y,X6,y,X7,y,X8,y,X9,y,X10,y,X11,y,X12,y,X13,y,P1,y,P2,y,X1,y+1,X2,y+1,X3,y+1,X4,y+1,X5,y+1,X6,y+1,X7,y+1,X8,y+1,X9,y+1,X10,y+1,X11,y+1,X12,y+1,X13,y+1,P1,y+1,P2,y+1,・・・)Tとする。そして、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列をHとすると、Hu=0を満たす(このとき、「Hu=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)。
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上の整数となる。)
・・・
となる。
図94に示すように、
「パリティ検査行列Hの第1列のベクトルは、時点1のX1に関連するベクトルとなる。」
「パリティ検査行列Hの第2列のベクトルは、時点1のX2に関連するベクトルとなる。」
「パリティ検査行列Hの第3列のベクトルは、時点1のX3に関連するベクトルとなる。」
「パリティ検査行列Hの第4列のベクトルは、時点1のX4に関連するベクトルとなる。」
「パリティ検査行列Hの第5列のベクトルは、時点1のX5に関連するベクトルとなる。」
「パリティ検査行列Hの第6列のベクトルは、時点1のX6に関連するベクトルとなる。」
「パリティ検査行列Hの第7列のベクトルは、時点1のX7に関連するベクトルとなる。」
「パリティ検査行列Hの第8列のベクトルは、時点1のX8に関連するベクトルとなる。」
「パリティ検査行列Hの第9列のベクトルは、時点1のX9に関連するベクトルとなる。」
「パリティ検査行列Hの第10列のベクトルは、時点1のX10に関連するベクトルとなる。」
「パリティ検査行列Hの第11列のベクトルは、時点1のX11に関連するベクトルとなる。」
「パリティ検査行列Hの第12列のベクトルは、時点1のX12に関連するベクトルとなる。」
「パリティ検査行列Hの第13列のベクトルは、時点1のX13に関連するベクトルとなる。」
「パリティ検査行列Hの第14列のベクトルは、時点1のP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15列のベクトルは、時点1のP2に関連するベクトルとなる。」
・・・
「パリティ検査行列Hの第15×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+8列のベクトルは、時点jのX8に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+9列のベクトルは、時点jのX9に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+10列のベクトルは、時点jのX10に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+11列のベクトルは、時点jのX11に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+12列のベクトルは、時点jのX12に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+13列のベクトルは、時点jのX13に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+14列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+15列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
・・・
となる。
式(147−1−1)、式(147−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在する。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しない。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在することから、図95の第1行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「1」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しないことから、図95の第1行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「0」となる。加えて、図94の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図95の第1行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
したがって、図95の3900−1のように、「111111000000010」となる。
式(147−2−1)、式(147−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しない。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在する。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しないことから、図95の第2行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「0」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在することから、図95の第2行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「1」となる。加えて、図94の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図95の第2行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。ただし、Yは、0または1となる。
式(148−1−1)、式(148−1−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しない。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在する。
・1×P1(D)の項は存在し、1×P2(D)の項は存在しない。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在しないことから、図95の第3行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「0」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在することから、図95の第3行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「1」となる。加えて、図94の関係、および、1×P1(D)の項は存在し、1×P2(D)の項は存在しないことから、図95の第3行のベクトルにおけるにP1に関連する列は「1」、P2に関連する列は「0」となる。
式(148−2−1)、式(148−2−2)において、
・1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在する。
・1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しない。
・1×P1(D)の項は存在することもあるし、存在しないこともある。1×P2(D)の項は存在する。
となる。そして、列番号とX1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,P1,P2の関係は、図94のようになる。図94の関係、および、1×X1(D)の項、1×X2(D)の項、1×X3(D)の項、1×X4(D)の項、1×X5(D)の項、1×X6(D)の項が存在することから、図95の第4行のベクトルにおけるX1,X2,X3,X4,X5,X6に関連する列は「1」となる。また、図94の関係、および、1×X7(D)の項、1×X8(D)の項、1×X9(D)の項、1×X10(D)の項、1×X11(D)の項、1×X12(D)の項、1×X13(D)の項が存在しないことから、図95の第4行のベクトルにおけるX7,X8,X9,X10,X11,X12,X13に関連する列は「0」となる。加えて、図94の関係、および、1×P1(D)の項は存在することもあるし、存在しないこともある、1×P2(D)の項は存在することから、図95の第4行のベクトルにおけるにP1に関連する列は「Y」、P2に関連する列は「1」となる。
「パリティ検査行列Hの第2×g−1行のベクトルは、「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×g行のベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、gは1以上の整数となる。)
となる。
「パリティ検査行列Hの第15×(j−1)+1列のベクトルは、時点jのX1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+2列のベクトルは、時点jのX2に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+3列のベクトルは、時点jのX3に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+4列のベクトルは、時点jのX4に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+5列のベクトルは、時点jのX5に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+6列のベクトルは、時点jのX6に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+7列のベクトルは、時点jのX7に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+8列のベクトルは、時点jのX8に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+9列のベクトルは、時点jのX9に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+10列のベクトルは、時点jのX10に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+11列のベクトルは、時点jのX11に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+12列のベクトルは、時点jのX12に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+13列のベクトルは、時点jのX13に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+14列のベクトルは、時点jのP1に関連するベクトルとなる。」
「パリティ検査行列Hの第15×(j−1)+15列のベクトルは、時点jのP2に関連するベクトルとなる。」
(ただし、jは1以上の整数となる。)
となる。
したがって、
g=2×f−1とあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(147−1−1)または式(147−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上の整数。)、
「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(148−1−1)または式(148−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
(1)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
(2)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)−1行のベクトルが、式(147−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f−1)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。
(3)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(4)g=2×f−1とあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f−1)行のベクトルが、式(147−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(147−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f−1)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f−1)][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)−1行のベクトルが、式(148−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g−1行、つまり、第2×(2×f)−1行の構成要素Hcom[2×g−1][v]=Hcom[2×(2×f)−1][v]は、以下のようにあらわされる。
X1について以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上の整数。)、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×(2×f)行のベクトルが、式(148−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(148−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、「#(2i)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i)―第2式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第1式」としてm個の0を満たすパリティ検査多項式、「#(2i+1)―第2式」として0を満たすパリティ検査多項式の計4×m個の0を満たすパリティ検査多項式により、定義することができる時変周期2×mの符号化率13/15のパリティ検査多項式に基づくLDPC−CCのパリティ検査行列Hの第2×g行、つまり、第2×(2×f)行の構成要素Hcom[2×g][v]=Hcom[2×(2×f)][v]は、以下のようにあらわされる。
X1について以下が成立する。
(実施の形態G3)
本実施の形態では、実施の形態G1、実施の形態G2で説明した符号化率13/15のパリティ検査多項式に基づくLDPC−CCを用いた機器について説明する。
排他的論理和(演算部)4005−1は、X1用演算後のビット4002−1−1からX13用演算後のビット4002−13−1、および、P1用演算後のビット4005−1−1、および、P2用演算後のビット4005−2−1を入力とし、排他的論理和の演算を行い、時点jのパリティP1のビットP1,jを出力する。
なお、図96における、Xz用演算部4001−z、および、P1用演算部4004−1、P2用演算部4004−2それぞれが具備するシフトレジスタの初期値は0(ゼロ)であるとよい。これにより、初期値設定以前のパリティP1、P2を受信装置に送信する必要がなくなる。
次に、ゼロターミネーション方法について説明する。
そして、時点s+1から時点s+gの情報X1からX13を0とする(gは1以上の整数とする)、つまり、時点tの情報X1からX13をそれぞれ、X1,t,X2,t,X3,t,X4,t,X5,t,X6,t,X7,t,X8,t,X9,t,X10,t,X11,t,X12,t,X13,tとあらわしたとき、tがs+1以上s+g以下の整数のときのX1,t=0,X2,t=0,X3,t=0,X4,t=0,X5,t=0,X6,t=0,X7,t=0,X8,t=0,X9,t=0,X10,t=0,X11,t=0,X12,t=0,X13,t=0が成立するものとする。そして、符号化を行うことで、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを得ることになる。送信装置は、上記の情報とパリティに加え、tがs+1以上s+g以下の整数のときのパリティP1,t,P2,tを送信するものとする。
図97とは、別の例を図98に示す。時点0から情報X1からX13が存在し、時点s(sは0以上の整数)の情報Xfが最後の情報ビットであったとする。なお、fは1以上12以下の整数とする。なお、図97では、一例として、f=10としている。つまり、時点jの情報X1からX13をそれぞれ、X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,X8,j,X9,j,X10,j,X11,j,X12,j,X13,jとあらわしたとき、jが0以上s−1以下の整数のときの情報X1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,X8,j,X9,j,X10,j,X11,j,X12,j,X13,j、および、iを1以上f以下の整数とたときのXi,sが、送信装置が受信装置に伝送したい情報であるものとする。
このとき、情報X1からX13およびパリティP1およびP2において、時点0から時点s−1までの情報X1からX13およびパリティP1およびP2、つまり、jが0以上s−1以下の整数のX1,j,X2,j,X3,j,X4,j,X5,j,X6,j,X7,j,X8,j,X9,j,X10,j,X11,j,X12,j,X13,j,P1,j,P2,jを、送信装置は、送信することになる。(ただし、時点jのパリティP1およびP2をP1,j,P2,jとする。)
また、時点sにおいて、iを1以上f以下の整数としたときのXi,sは、送信装置が送信したい情報であり、kをf+1以上13以下の整数としたときXk,sは0(ゼロ)とする。
なお、上述では、通信装置を例に説明しているが、これに限ったものではなく、記録メディア(ストレージ)において、誤り訂正符号を導入してもよい。このとき、記録メディア(ストレージ)に記録しておきたい情報に対し、実施の形態G1、実施の形態G2で説明した符号化率13/15のパリティ検査多項式に基づくLDPC−CCで符号化を行い、情報とパリティを記録メディア(ストレージ)に記録しておくことになる。このとき、上述で説明したように、ゼロターミネーションを導入し、上述で説明した、ゼロターミネーションを適用したときに送信装置が送信するデータ系列(情報とパリティ)に相当するデータ系列を記録メディア(ストレージ)に記録しておくとよい。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、実施の形態G1、実施の形態G2で説明した符号化率13/15のパリティ検査多項式に基づくLDPC−CCを用いることができる。
(実施の形態G4)
本実施の形態では、実施の形態G1、実施の形態G2で説明した符号化率13/15のパリティ検査多項式に基づくLDPC−CCの構成方法に基づいた「符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)」の構成方法について説明する。
[符号化率13/15の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CC]
符号化率13/15の改良したテイルバイティングを用いた、パリティ検査多項式の基づく、周期的時変LDPC−CCでは、ベースとして(基礎的な構造として)、実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する。
なお、以降で、説明を簡単にするために、式(197−1−1)または式(197−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第1式」と呼び、式(197−2−1)または式(197−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i)―第2式」と呼ぶ。
「i=0のときとして、式(197−1−1)においてi=0とした0を満たすパリティ検査多項式または式(197−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−1−1)においてi=1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−1−1)においてi=2とした0を満たすパリティ検査多項式または式(197−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−1−1)においてi=zとした0を満たすパリティ検査多項式または式(197−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(197−2−1)においてi=0とした0を満たすパリティ検査多項式または式(197−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(197−2−1)においてi=1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(197−2−1)においてi=2とした0を満たすパリティ検査多項式または式(197−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(197−2−1)においてi=zとした0を満たすパリティ検査多項式または式(197−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(197−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(197−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
式(198−1−1)、式(198−1−2)、式(198−2−1)、式(198−2−2)において、α#(2i+1),p,q(pは1以上13以下の整数、qは1以上r#(2i+1),p以下の整数。(ただし、r#(2i+1),pは自然数))及びβ#(2i+1),0は自然数、β#(2i+1),1は自然数、β#(2i+1),2は0以上の整数、β#(2i+1),3は自然数とする。
なお、以降で、説明を簡単にするために、式(198−1−1)または式(198−1−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第1式」と呼び、式(198−2−1)または式(198−2−2)であらわされる0を満たすパリティ検査多項式を時変周期2mを実現するための「#(2i+1)―第2式」と呼ぶ。
「i=0のときとして、式(198−1−1)においてi=0とした0を満たすパリティ検査多項式または式(198−1−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−1−1)においてi=1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−1−1)においてi=2とした0を満たすパリティ検査多項式または式(198−1−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−1−1)においてi=zとした0を満たすパリティ検査多項式または式(198−1−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−1−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−1−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
「i=0のときとして、式(198−2−1)においてi=0とした0を満たすパリティ検査多項式または式(198−2−2)においてi=0とした0を満たすパリティ検査多項式のいずれかを用意する。」
同様に、
「i=1のときとして、式(198−2−1)においてi=1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=1とした0を満たすパリティ検査多項式のいずれかを用意する。」
「i=2のときとして、式(198−2−1)においてi=2とした0を満たすパリティ検査多項式または式(198−2−2)においてi=2とした0を満たすパリティ検査多項式のいずれかを用意する。」
・・・
「i=zのときとして、式(198−2−1)においてi=zとした0を満たすパリティ検査多項式または式(198−2−2)においてi=zとした0を満たすパリティ検査多項式のいずれかを用意する。」
(zは0以上m−1以下の整数)
・・・
「i=m−1のときとして、式(198−2−1)においてi=m−1とした0を満たすパリティ検査多項式または式(198−2−2)においてi=m−1とした0を満たすパリティ検査多項式のいずれかを用意する。」
となる。
例えば、4×m個の異なる0を満たすパリティ検査多項式を用意することで、時変周期2×mを形成することができる。
一方で、4×m個の異なる0を満たすパリティ検査多項式の中に、同一のパリティ検査多項式を含んでいても、パリティ検査多項式の並び方を工夫することで、時変周期2×mを形成することもできる。
そして、2k=j%2mが成立するものとする。なお、「%」はmoduloを意味し、例えば、「α%6」は、αを6で除算したときの余りを示す。(したがって、kは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i)―第1式」において、i=kとした「#(2k)―第1式」、および、「#(2i)―第2式」において、i=kとした「#(2k)―第2式」が成立する。
また、2h+1=j%2mが成立した場合、(したがって、hは0以上m−1以下の整数となる。)
すると、時点jにおいて、「#(2i+1)―第1式」において、i=hとした「#(2h+1)―第1式」、および、「#(2i+1)―第2式」において、i=hとした「#(2h+1)―第2式」が成立する。
なお、式(197−1−1)、式(197−1−2)、式(197−2−1)、式(197−2−2)、式(198−1−1)、式(198−1−2)、式(198−2−1)、式(198−2−2)の0を満たすパリティ検査多項式において、P1(D)の項の数とP2(D)の項の数の和が2となる。これにより、パリティP1およびP2を、改良したテイルバイティングを適用した際、逐次的に求めることができ、演算(回路)規模を削減することができる一つの重要な要件となる。
次に、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の、ベース(基礎的な構造)となる、実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式の時変周期と提案する符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のブロックサイズの関係について説明する。
<条件#N1>
・符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列の行数は、4×mの倍数である。
なお、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)とベース(基礎的な構造)となる、実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCの関係については、あとで詳しく述べる。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)では、「ベースとして(基礎的な構造として)、実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCを利用する」と記載したが、この点について説明する。
まず、実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式のみで、テイルバイティングを行ったときの周期的時変LDPC−CCを形成したときのパリティ検査行列について考える。
図99に示すように、
「パリティ検査行列Hの第1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第3行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第4行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×(2m−1)−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)−1行のベクトルは、「#0−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+1)行のベクトルは、「#0−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)−1行のベクトルは、「#1−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m+2)行のベクトルは、「#1−第2式」の0を満たすパリティ検査多項式から生成することができる。」
・・・
「パリティ検査行列Hの第2×i−1行のベクトルは、「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×i行のベクトルは、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
(ただし、iは1以上2×m×z以下の整数となる。)
・・・
「パリティ検査行列Hの第2×(2m−1)×z−1行のベクトルは、「#(2m−2)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m−1)×z行のベクトルは、「#(2m−2)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z−1行のベクトルは、「#(2m−1)−第1式」の0を満たすパリティ検査多項式から生成することができる。」
「パリティ検査行列Hの第2×(2m)×z行のベクトルは、「#(2m−1)−第2式」の0を満たすパリティ検査多項式から生成することができる。」
となる。
以下の説明の準備のため、図99の実施の形態G1、実施の形態G2で説明した符号化率R=13/15、時変周期2mのパリティ検査多項式に基づくLDPC−CCの0を満たすパリティ検査多項式のみで、テイルバイティングを行ったときの周期的時変LDPC−CCを形成したときのパリティ検査行列Hの数式表現を行う。図99のパリティ検査行列Hの第k行目の1行、15×2×m×z列のベクトルをhkとすると、図99のパリティ検査行列Hは次式であらわされる。
パリティが逐次的に求めることができ、かつ、良好な誤り訂正能力を得るための、式(203)のg1の構成方法の一つの例は、ベースとなる(基礎的な構造となる)、
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の「#0−第1式」の0を満たすパリティ検査多項式を利用して作成することができる。
よって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproの第1行は、式(205)の#「0’」―第1式を変換することで得られる(つまり、1行、15×2×m×z列のg1が得られる。)
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,13,1、Ppro s,1,1、Ppro s,2,1、Xs,1,2、Xs,2,2、・・・、Xs,13,2、Ppro s,1,2、Ppro s,2,2、・・・、Xs,1,k、Xs,2,k、・・・、Xs,13,k、Ppro s,1,k、Ppro s,2,k、・・・、Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,13,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tであり、この送信系列を得るために、2×(2×m)×z個の0を満たすパリティ検査多項式が必要となる。
このとき、2×(2×m)×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上2×(2×m)×z−1以下の整数)。
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))vsを得ることになる。(なお、上述からわかるように、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hproを式(200)のようにあらわした場合、パリティ検査行列Hproのe+1行で構成されるベクトルが、「第e番目の0を満たすパリティ検査多項式」に相当する。)
すると、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
つまり、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
上述の例の場合、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の
第0番目の0を満たすパリティ検査多項式、つまり、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」から、情報X1からX13のビットはもともと得られている値であることから、Ppro s,1,1を求めることができる。
また、別の0を満たすパリティ検査多項式から、情報X1からX13のビットおよびPc=1から、別のパリティ(これをPc=2)を求めることができる。
次に、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の符号化器、復号化器の構成、および、動作について説明する。
上記では、通信システムを例に、符号化器、復号化器の動作を説明したが、これに限ったものではなく、ストレージ、メモリ等の分野でも符号化器、復号化器を活用することができる。
よって、上述のように、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの15×2×m×zのビット数で構成される送信系列(符号化系列(符号語))vsはvs=(Xs,1,1、Xs,2,1、・・・、Xs,13,1、Ppro s,1,1、Ppro s,2,1、Xs,1,2、Xs,2,2、・・・、Xs,13,2、Ppro s,1,2、Ppro s,2,2、・・・、Xs,1,k、Xs,2,k、・・・、Xs,13,k、Ppro s,1,k、Ppro s,2,k、・・・、Xs,1,2×m×z、Xs,2,2×m×z、・・・、Xs,13,2×m×z、Ppro s,1,2×m×z、Ppro s,2,2×m×z)T=(λpro,s,1、λpro,s,2、・・・、λpro,s,2×m×z−1、λpro,s,2×m×z)Tとあらわすことができ(k=1、2、・・・、2×m×z−1、2×m×z(kは1以上2×m×z以下の整数))、Hprovs=0が成立する(このとき、「Hprovs=0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する)。なお、Xs,j,kは情報Xjのビットであり(jは1以上13以下の整数)、Ppro s,1,kは符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティP1のビット、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のPpro s,2,kはパリティP2のビットである。
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、
Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、
Xs,8,1、Xs,8,2、・・・Xs,8,2×m×z−1、Xs,8,2×m×z、
Xs,9,1、Xs,9,2、・・・Xs,9,2×m×z−1、Xs,9,2×m×z、
Xs,10,1、Xs,10,2、・・・Xs,10,2×m×z−1、Xs,10,2×m×z、
Xs,11,1、Xs,11,2、・・・Xs,11,2×m×z−1、Xs,11,2×m×z、
Xs,12,1、Xs,12,2、・・・Xs,12,2×m×z−1、Xs,12,2×m×z、
Xs,13,1、Xs,13,2、・・・Xs,13,2×m×z−1、Xs,13,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、ΛX8,s、ΛX9,s、ΛX10,s、ΛX11,s、ΛX12,s、ΛX13,s、Λpro1,s、Λpro2,s)Tとあらわされたとき、Hpro_mus=0(なお、「Hpro_mus=0(ゼロ)の「0(ゼロ)」は、全ての要素が0(ゼロ)のベクトルであることを意味する。)が成立する符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成について説明する。
なお、ΛXf,s=(Xs,f,1、Xs,f,2、Xs,f,3、・・・、Xs,f,2×m×z−2、Xs,f,2×m×z−1、Xs,f,2×m×z)(ただし、fは1以上13以下の整数)(なお、ΛXf,sは1行2×m×z列のベクトルである。)、および、Λpro1,s=(Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z)および、Λpro2,s=(Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)とあらわされる(なお、Λpro1,sは1行2×m×z列のベクトルであり、Λpro2,sも1行2×m×z列のベクトルである)。
このとき、1ブロックに含まれる情報X1のビットは2×m×zビット、1ブロックに含まれる情報X2のビットは2×m×zビット、1ブロックに含まれる情報X3のビットは2×m×zビット、1ブロックに含まれる情報X4のビットは2×m×zビット、1ブロックに含まれる情報X5のビットは2×m×zビット、1ブロックに含まれる情報X6のビットは2×m×zビット、1ブロックに含まれる情報X7のビットは2×m×zビット、
1ブロックに含まれる情報X8のビットは2×m×zビット、1ブロックに含まれる情報X9のビットは2×m×zビット、1ブロックに含まれる情報X10のビットは2×m×zビット、1ブロックに含まれる情報X11のビットは2×m×zビット、1ブロックに含まれる情報X12のビットは2×m×zビット、1ブロックに含まれる情報X13のビットは2×m×zビット、1ブロックに含まれるパリティビットP1のビットは2×m×zビット、1ブロックに含まれるパリティビットP2のビットは2×m×zビットであるので、
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、図101のように、Hpro_m=[Hx,1、Hx,2、Hx,3、Hx,4、Hx,5、Hx,6、Hx,7、Hx,8、Hx,9、Hx,10、Hx,11、Hx,12、Hx,13、Hp1、Hp2]とあらわすことができる。そして、第s番目のブロックの送信系列(符号化系列(符号語))usはus=(
Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、
Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、
Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、
Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、
Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、
Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、
Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、
Xs,8,1、Xs,8,2、・・・Xs,8,2×m×z−1、Xs,8,2×m×z、
Xs,9,1、Xs,9,2、・・・Xs,9,2×m×z−1、Xs,9,2×m×z、
Xs,10,1、Xs,10,2、・・・Xs,10,2×m×z−1、Xs,10,2×m×z、
Xs,11,1、Xs,11,2、・・・Xs,11,2×m×z−1、Xs,11,2×m×z、
Xs,12,1、Xs,12,2、・・・Xs,12,2×m×z−1、Xs,12,2×m×z、
Xs,13,1、Xs,13,2、・・・Xs,13,2×m×z−1、Xs,13,2×m×z、
Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、
Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、ΛX8,s、ΛX9,s、ΛX10,s、ΛX11,s、ΛX12,s、ΛX13,s、Λpro1,s、Λpro2,s)Tとしているので、
Hx,1は情報X1に関連する部分行列、Hx,2は情報X2に関連する部分行列、Hx,3は情報X3に関連する部分行列、Hx,4は情報X4に関連する部分行列、Hx,5は情報X5に関連する部分行列、Hx,6は情報X6に関連する部分行列、Hx,7は情報X7に関連する部分行列、Hx,8は情報X8に関連する部分行列、Hx,9は情報X9に関連する部分行列、Hx,10は情報X10に関連する部分行列、Hx,11は情報X11に関連する部分行列、Hx,12は情報X12に関連する部分行列、Hx,13は情報X13に関連する部分行列、Hp1はパリティP1に関連する部分行列、Hp2はパリティP2に関連する部分行列となり、図101に示すように、パリティ検査行列Hpro_mは、4×m×z行、15×2×m×z列の行列となり、情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列、情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列、情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列、情報X4に関連する部分行列Hx,4は、4×m×z行、2×m×z列の行列、情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列、情報X6に関連する部分行列Hx,6は、4×m×z行、2×m×z列の行列、情報X7に関連する部分行列Hx,7は、4×m×z行、2×m×z列の行列、情報X8に関連する部分行列Hx,8は、4×m×z行、2×m×z列の行列、情報X9に関連する部分行列Hx,9は、4×m×z行、2×m×z列の行列、情報X10に関連する部分行列Hx,10は、4×m×z行、2×m×z列の行列、情報X11に関連する部分行列Hx,11は、4×m×z行、2×m×z列の行列、情報X12に関連する部分行列Hx,12は、4×m×z行、2×m×z列の行列、情報X13に関連する部分行列Hx,13は、4×m×z行、2×m×z列の行列、パリティP1に関連する部分行列Hp1は、4×m×z行、2×m×z列の行列、パリティP2に関連する部分行列Hp2は、4×m×z行、2×m×z列の行列となる。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの15×2×m×zのビット数で構成される送信系列(符号化系列(符号語))usはus=(Xs,1,1、Xs,1,2、・・・Xs,1,2×m×z−1、Xs,1,2×m×z、Xs,2,1、Xs,2,2、・・・Xs,2,2×m×z−1、Xs,2,2×m×z、Xs,3,1、Xs,3,2、・・・Xs,3,2×m×z−1、Xs,3,2×m×z、Xs,4,1、Xs,4,2、・・・Xs,4,2×m×z−1、Xs,4,2×m×z、Xs,5,1、Xs,5,2、・・・Xs,5,2×m×z−1、Xs,5,2×m×z、Xs,6,1、Xs,6,2、・・・Xs,6,2×m×z−1、Xs,6,2×m×z、Xs,7,1、Xs,7,2、・・・Xs,7,2×m×z−1、Xs,7,2×m×z、Xs,8,1、Xs,8,2、・・・Xs,8,2×m×z−1、Xs,8,2×m×z、Xs,9,1、Xs,9,2、・・・Xs,9,2×m×z−1、Xs,9,2×m×z、Xs,10,1、Xs,10,2、・・・Xs,10,2×m×z−1、Xs,10,2×m×z、Xs,11,1、Xs,11,2、・・・Xs,11,2×m×z−1、Xs,11,2×m×z、Xs,12,1、Xs,12,2、・・・Xs,12,2×m×z−1、Xs,12,2×m×z、Xs,13,1、Xs,13,2、・・・Xs,13,2×m×z−1、Xs,13,2×m×z、Ppro s,1,1、Ppro s,1,2、・・・、Ppro s,1,2×m×z−1、Ppro s,1,2×m×z、Ppro s,2,1、Ppro s,2,2、・・・、Ppro s,2,2×m×z−1、Ppro s,2,2×m×z)T=(ΛX1,s、ΛX2,s、ΛX3,s、ΛX4,s、ΛX5,s、ΛX6,s、ΛX7,s、ΛX8,s、ΛX9,s、ΛX10,s、ΛX11,s、ΛX12,s、ΛX13,s、Λpro1,s、Λpro2,s)Tであり、この送信系列を得るために、4×m×z個の0を満たすパリティ検査多項式が必要となる。
このとき、2×(2×m)×z個の0を満たすパリティ検査多項式を順番に並べたとき、e番目の0を満たすパリティ検査多項式を「第e番目の0を満たすパリティ検査多項式」と名付ける(eは0以上2×(2×m)×z−1以下の整数)。
したがって、0を満たすパリティ検査多項式は、
0番目:「第0番目の0を満たすパリティ検査多項式」
1番目:「第1番目の0を満たすパリティ検査多項式」
2番目:「第2番目の0を満たすパリティ検査多項式」
・
・
・
e番目:「第e番目の0を満たすパリティ検査多項式」
・
・
・
2×(2×m)×z−2番目:「第2×(2×m)×z−2番目の0を満たすパリティ検査多項式」
2×(2×m)×z−1番目:「第2×(2×m)×z−1番目の0を満たすパリティ検査多項式」
の順に並べられていることになり、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の第sブロックの送信系列(符号化系列(符号語))usを得ることになる。
よって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
ただし、本実施の形態において(本明細書の中で共通である)、「%」はmoduloを意味し、例えば、「α%q」は、αをqで除算したときの余りである。(αは0以上の整数、qは自然数である。)
以上に基づき、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成の詳細について説明する。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mは、4×m×z行、15×2×m×z列の行列となる。
そして、
パリティ検査行列Hpro_mにおける情報X1に関連する部分行列Hx,1は、4×m×z行、2×m×z列の行列であり、情報X1に関連する部分行列Hx,1のu行v列の要素をHx,1,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
同様に、パリティ検査行列Hpro_mにおける情報X2に関連する部分行列Hx,2は、4×m×z行、2×m×z列の行列であり、情報X2に関連する部分行列Hx,2のu行v列の要素をHx,2,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X3に関連する部分行列Hx,3は、4×m×z行、2×m×z列の行列であり、情報X3に関連する部分行列Hx,3のu行v列の要素をHx,3,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X5に関連する部分行列Hx,5は、4×m×z行、2×m×z列の行列であり、情報X5に関連する部分行列Hx,5のu行v列の要素をHx,5,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X6に関連する部分行列Hx,6は、4×m×z行、2×m×z列の行列であり、情報X6に関連する部分行列Hx,6のu行v列の要素をHx,6,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X7に関連する部分行列Hx,7は、4×m×z行、2×m×z列の行列であり、情報X7に関連する部分行列Hx,7のu行v列の要素をHx,7,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X8に関連する部分行列Hx,8は、4×m×z行、2×m×z列の行列であり、情報X8に関連する部分行列Hx,8のu行v列の要素をHx,8,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X9に関連する部分行列Hx,9は、4×m×z行、2×m×z列の行列であり、情報X9に関連する部分行列Hx,9のu行v列の要素をHx,9,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X10に関連する部分行列Hx,10は、4×m×z行、2×m×z列の行列であり、情報X10に関連する部分行列Hx,10のu行v列の要素をHx,10,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
そして、パリティ検査行列Hpro_mにおける情報X12に関連する部分行列Hx,12は、4×m×z行、2×m×z列の行列であり、情報X12に関連する部分行列Hx,12のu行v列の要素をHx,12,comp[u][v](uは1以上4×m×z以下の整数であり、vは1以上2×m×z以下の整数である。)とあらわすものとする。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)において、
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第3番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−2番目の0を満たすパリティ検査多項式は、「「#0−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+1)−1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−2番目の0を満たすパリティ検査多項式は、「「#1−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m+2)−1番目の0を満たすパリティ検査多項式は、「「#1−第2式」の0を満たすパリティ検査多項式」であり、
・・・
第2×(2m−1)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m−1)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−2)−第2式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−2番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第1式」の0を満たすパリティ検査多項式」であり、
第2×(2m)×z−1番目の0を満たすパリティ検査多項式は、「「#(2m−1)−第2式」の0を満たすパリティ検査多項式」である。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
上述の関係から、Hx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hx,4,comp[u][v]、Hx,5,comp[u][v]、Hx,6,comp[u][v]、Hx,7,comp[u][v]、Hx,8,comp[u][v]、Hx,9,comp[u][v]、Hx,10,comp[u][v]、Hx,11,comp[u][v]、Hx,12,comp[u][v]、Hx,13,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]をあらわすことができる。
まず、パリティ検査行列Hpro_mの第1行目、つまり、u=1のときのHx,1,comp[u][v]、Hx,2,comp[u][v]、Hx,3,comp[u][v]、Hx,4,comp[u][v]、Hx,5,comp[u][v]、Hx,6,comp[u][v]、Hx,7,comp[u][v]、Hx,8,comp[u][v]、Hx,9,comp[u][v]、Hx,10,comp[u][v]、Hx,11,comp[u][v]、Hx,12,comp[u][v]、Hx,13,comp[u][v]、Hp1,comp[u][v]、Hp2,comp[u][v]の構成について説明する。
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになる。したがって、Hx,1,comp[1][v]、は、以下のようにあらわされる。
したがって、Hx,1,comp[2][v]、は、以下のようにあらわされる。
<1>「「#0−第2式」の0を満たすパリティ検査多項式」が式(197−2−1)のようにあらわされた場合:
Hx,1,comp[2][v]は以下のようにあらわされる。
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
したがって、
g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルは、「#(((2×f−1)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(197−1−1)または式(197−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルは、「#(((2×f−1)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(197−2−1)または式(197−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
また、
g=2×fとあらわされたとき(fは1以上のm×z以下の整数。)、
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルは、「#(((2×f)−1)%2m)−第1式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−1−1)または式(198−1−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
そして、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルは、「#(((2×f)−1)%2m)−第2式」の0を満たすパリティ検査多項式から生成することができる、つまり、式(198−2−1)または式(198−2−2)のいずれかの0を満たすパリティ検査多項式から生成することができる。
よって、
(1)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f−1)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f−1)−1][v]、
Hx,8,comp[2×g−1][v]=Hx,8,comp[2×(2×f−1)−1][v]、
Hx,9,comp[2×g−1][v]=Hx,9,comp[2×(2×f−1)−1][v]、
Hx,10,comp[2×g−1][v]=Hx,10,comp[2×(2×f−1)−1][v]、
Hx,11,comp[2×g−1][v]=Hx,11,comp[2×(2×f−1)−1][v]、
Hx,12,comp[2×g−1][v]=Hx,12,comp[2×(2×f−1)−1][v]、
Hx,13,comp[2×g−1][v]=Hx,13,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
(2)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)−1行のベクトルが、式(197−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−1−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f−1)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f−1)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f−1)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f−1)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f−1)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f−1)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f−1)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f−1)−1][v]、
Hx,8,comp[2×g−1][v]=Hx,8,comp[2×(2×f−1)−1][v]、
Hx,9,comp[2×g−1][v]=Hx,9,comp[2×(2×f−1)−1][v]、
Hx,10,comp[2×g−1][v]=Hx,10,comp[2×(2×f−1)−1][v]、
Hx,11,comp[2×g−1][v]=Hx,11,comp[2×(2×f−1)−1][v]、
Hx,12,comp[2×g−1][v]=Hx,12,comp[2×(2×f−1)−1][v]、
Hx,13,comp[2×g−1][v]=Hx,13,comp[2×(2×f−1)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f−1)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f−1)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)−1][v]について、以下が成立する。
(3)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−1)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f−1)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f−1)][v]、
Hx,8,comp[2×g][v]=Hx,8,comp[2×(2×f−1)][v]、
Hx,9,comp[2×g][v]=Hx,9,comp[2×(2×f−1)][v]、
Hx,10,comp[2×g][v]=Hx,10,comp[2×(2×f−1)][v]、
Hx,11,comp[2×g][v]=Hx,11,comp[2×(2×f−1)][v]、
Hx,12,comp[2×g][v]=Hx,12,comp[2×(2×f−1)][v]、
Hx,13,comp[2×g][v]=Hx,13,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
また、
(4)g=2×f−1とあらわされたとき(fは2以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f−1)行のベクトルが、式(197−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f−1)−1)%2m=2cとあらわすことができるので、式(197−2−2)において、2i=2cとする0を満たすパリティ検査多項式が成立する。(cは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f−1)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f−1)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f−1)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f−1)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f−1)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f−1)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f−1)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f−1)][v]、
Hx,8,comp[2×g][v]=Hx,8,comp[2×(2×f−1)][v]、
Hx,9,comp[2×g][v]=Hx,9,comp[2×(2×f−1)][v]、
Hx,10,comp[2×g][v]=Hx,10,comp[2×(2×f−1)][v]、
Hx,11,comp[2×g][v]=Hx,11,comp[2×(2×f−1)][v]、
Hx,12,comp[2×g][v]=Hx,12,comp[2×(2×f−1)][v]、
Hx,13,comp[2×g][v]=Hx,13,comp[2×(2×f−1)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f−1)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f−1)][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f−1)][v]について、以下が成立する。ただし、yはR#(2c),1+1以上r#(2c),1以下の整数とする。
(5)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f)−1][v]、
Hx,8,comp[2×g−1][v]=Hx,8,comp[2×(2×f)−1][v]、
Hx,9,comp[2×g−1][v]=Hx,9,comp[2×(2×f)−1][v]、
Hx,10,comp[2×g−1][v]=Hx,10,comp[2×(2×f)−1][v]、
Hx,11,comp[2×g−1][v]=Hx,11,comp[2×(2×f)−1][v]、
Hx,12,comp[2×g−1][v]=Hx,12,comp[2×(2×f)−1][v]、
Hx,13,comp[2×g−1][v]=Hx,13,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(6)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)−1行のベクトルが、式(198−1−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−1−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g−1行、つまり、第2×(2×f)−1行の構成要素
Hx,1,comp[2×g−1][v]=Hx,1,comp[2×(2×f)−1][v]、
Hx,2,comp[2×g−1][v]=Hx,2,comp[2×(2×f)−1][v]、
Hx,3,comp[2×g−1][v]=Hx,3,comp[2×(2×f)−1][v]、
Hx,4,comp[2×g−1][v]=Hx,4,comp[2×(2×f)−1][v]、
Hx,5,comp[2×g−1][v]=Hx,5,comp[2×(2×f)−1][v]、
Hx,6,comp[2×g−1][v]=Hx,6,comp[2×(2×f)−1][v]、
Hx,7,comp[2×g−1][v]=Hx,7,comp[2×(2×f)−1][v]、
Hx,8,comp[2×g−1][v]=Hx,8,comp[2×(2×f)−1][v]、
Hx,9,comp[2×g−1][v]=Hx,9,comp[2×(2×f)−1][v]、
Hx,10,comp[2×g−1][v]=Hx,10,comp[2×(2×f)−1][v]、
Hx,11,comp[2×g−1][v]=Hx,11,comp[2×(2×f)−1][v]、
Hx,12,comp[2×g−1][v]=Hx,12,comp[2×(2×f)−1][v]、
Hx,13,comp[2×g−1][v]=Hx,13,comp[2×(2×f)−1][v]、
Hp1,comp[2×g−1][v]=Hp1,comp[2×(2×f)−1][v]、
Hp2,comp[2×g−1][v]=Hp2,comp[2×(2×f)−1][v]
は、以下のようにあらわされる。
まず、Hx,1,comp[2×(2×f)−1][v]について、以下が成立する。ただし、yはR#(2d+1),1+1以上r#(2d+1),1以下の整数とする。
(7)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−1)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−1)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f)][v]、
Hx,8,comp[2×g][v]=Hx,8,comp[2×(2×f)][v]、
Hx,9,comp[2×g][v]=Hx,9,comp[2×(2×f)][v]、
Hx,10,comp[2×g][v]=Hx,10,comp[2×(2×f)][v]、
Hx,11,comp[2×g][v]=Hx,11,comp[2×(2×f)][v]、
Hx,12,comp[2×g][v]=Hx,12,comp[2×(2×f)][v]、
Hx,13,comp[2×g][v]=Hx,13,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
(8)g=2×fとあらわされたとき(fは1以上m×z以下の整数。)、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×(2×f)行のベクトルが、式(198−2−2)であらわされた0を満たすパリティ検査多項式で生成することができる場合、((2×f)−1)%2m=2d+1とあらわすことができるので、式(198−2−2)において、2i+1=2d+1とする0を満たすパリティ検査多項式が成立する。(dは0以上m−1以下の整数となる。)
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの第2×g行、つまり、第2×(2×f)行の構成要素
Hx,1,comp[2×g][v]=Hx,1,comp[2×(2×f)][v]、
Hx,2,comp[2×g][v]=Hx,2,comp[2×(2×f)][v]、
Hx,3,comp[2×g][v]=Hx,3,comp[2×(2×f)][v]、
Hx,4,comp[2×g][v]=Hx,4,comp[2×(2×f)][v]、
Hx,5,comp[2×g][v]=Hx,5,comp[2×(2×f)][v]、
Hx,6,comp[2×g][v]=Hx,6,comp[2×(2×f)][v]、
Hx,7,comp[2×g][v]=Hx,7,comp[2×(2×f)][v]、
Hx,8,comp[2×g][v]=Hx,8,comp[2×(2×f)][v]、
Hx,9,comp[2×g][v]=Hx,9,comp[2×(2×f)][v]、
Hx,10,comp[2×g][v]=Hx,10,comp[2×(2×f)][v]、
Hx,11,comp[2×g][v]=Hx,11,comp[2×(2×f)][v]、
Hx,12,comp[2×g][v]=Hx,12,comp[2×(2×f)][v]、
Hx,13,comp[2×g][v]=Hx,13,comp[2×(2×f)][v]、
Hp1,comp[2×g][v]=Hp1,comp[2×(2×f)][v]、
Hp2,comp[2×g][v]=Hp2,comp[2×(2×f)][v]
は、以下のようにあらわされる。
Hx,1,comp[2×(2×f)][v]について以下が成立する。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
このとき、0を満たすパリティ検査多項式の利用方法を限定した構成として、以下のような方法も考えられる。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)の0を満たすパリティ検査多項式を以下のように設定する。
第0番目の0を満たすパリティ検査多項式は、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」であり、
第1番目の0を満たすパリティ検査多項式は、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」であり、
第2×i−2番目の0を満たすパリティ検査多項式は、「式(197−1−1)または式(198−1−1)の「#((i−1)%2m)−第1式」の0を満たすパリティ検査多項式」であり、
第2×i−1番目の0を満たすパリティ検査多項式は、「式(197−2−1)または式(198−2−1)の#((i−1)%2m)−第2式」の0を満たすパリティ検査多項式」である、
(ただし、iは2以上2×m×z以下の整数となる。)
となる。
したがって、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mにおいて、
パリティ検査行列Hpro_mの1行目によって構成されるベクトルは、「式(205)の「#「0’」―第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの2行目によって構成されるベクトルは、「式(197−2−1)の「#0−第2式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g−1行目によって構成されるベクトルは、「式(197−1−1)または式(198−1−1)の「#((g−1)%2m)−第1式」の0を満たすパリティ検査多項式」により生成することになり、
パリティ検査行列Hpro_mの第2×g行目によって構成されるベクトルは、「式(197−2−1)または式(198−2−1)の#((g−1)%2m)−第2式」の0を満たすパリティ検査多項式」により生成することになる。(ただし、gは2以上2×m×z以下の整数となる。)
なお、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列Hpro_mの構成方法については、上述で説明したとおりとなる。
このようにしても、高い誤り訂正能力を与える符号を生成することができる。
(実施の形態G5)
実施の形態G4では、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)、および、この符号のパリティ検査行列の構成方法について説明した。
図31は、符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号のパリティ検査行列Hの構成を示しており、例えば、図31のパリティ検査行列は、M行N列の行列となる。なお、ここでは、一般的に説明するために、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」を定義するためのパリティ検査行列Hを図31で示したものとする。
このとき、Hvj=0が成立する。(なお、ここでの「Hvj=0の0(ゼロ)」は、全ての要素が0のベクトルであることを意味する。つまり、すべてのk(kは1以上M以下の整数)において、第k行の値は0である。)
そして、第j番目のブロックの送信系列vjの第k行目(ただし、kは、1以上N以下の整数)の要素(図31において、送信系列vjの転置行列vj Tの場合、第k列目の要素)は、Yj,kであるとともに、「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k列目を抽出したベクトルを図31のようにckとあらわす。このとき、パリティ検査行列Hは、以下のようにあらわされる。
図33に、送信系列(符号語)v’j=(Yj,32、Yj,99、Yj,23、・・・、Yj,234、Yj,3、Yj,43)Tとした場合の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hと等価のパリティ検査行列H’の構成を示す。このとき、第j番目のブロックの送信系列v’jの第1行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第1列目の要素)は、Yj,32である。したがって、パリティ検査行列H’の第1列目を抽出したベクトルは、上述で説明したベクトルck(k=1、2、3、・・・、N−2、N−1、N)を用いると、c32となる。同様に、第j番目のブロックの送信系列v’jの第2行目の要素(図33において、送信系列v’jの転置行列v’j Tの場合、第2列目の要素)は、Yj,99である。したがって、パリティ検査行列H’の第2列目を抽出したベクトルは、c99となる。また、図33から、パリティ検査行列H’の第3列目を抽出したベクトルは、c23となり、パリティ検査行列H’の第N−2列目を抽出したベクトルは、c234となり、パリティ検査行列H’の第N−1列目を抽出したベクトルは、c3となり、パリティ検査行列H’の第N列目を抽出したベクトルは、c43となる。
上述では、送信系列のインタリーブとパリティ検査行列の関係について説明したが、以降では、パリティ検査行列における行並び替え(行置換)について説明する。
そして、図35の「#A」の「符号化率(N−M)/N(N>M>0)のLDPC(ブロック)符号」のパリティ検査行列Hの第k行目(kは1以上M以下の整数)を抽出したベクトルをzkとあらわす。このとき、LDPC(ブロック)符号のパリティ検査行列Hは、以下のようにあらわされる。
つまり、第j番目のブロックの送信系列vj Tのとき、図36のパリティ検査行列H’の第i行目を抽出したベクトルは、ベクトルck(kは1以上M以下の整数)のいずれかであらわされ、図36のパリティ検査行列H’の第k行目(kは1以上M以下の整数)を抽出したM個の行ベクトルには、z1、z2、z3、・・・zM−2、zM−1、zM、がそれぞれ一つ存在することになる。
そして、送信装置、および、受信装置は、パリティ検査行列H6,sを用いて、符号化、復号化を行ってもよい。
そして、送信装置、および、受信装置は、パリティ検査行列H8,sを用いて、符号化、復号化を行ってもよい。
(実施の形態G6)
本実施の形態では、実施の形態G4で説明した符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いた機器について説明する。
復号化器2213は、各ビットの対数尤度比を入力とし、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)のパリティ検査行列に基づき、信頼度伝播復号(例えば、sum-product復号、スケジューリングされたsum-product復号(Layered BP(Belief propagation)復号)、min-sum復号、Normalized BP復号、offset BP復号等)が行われ、推定系列を出力する。
また、上記に限らず、誤り訂正符号を必要とする装置(例えば、メモリ、ハードディスク等)であれば、符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)を用いることができる。
符号化率13/15の改良したテイルバイティング方法を用いたLDPC−CC(LDPC−CCを利用したブロック化したLDPC符号)等のブロック符号を装置で用いた際、特別な処理が必要となるときがある。
(その他)
当然であるが、本明細書において説明した実施の形態を複数組み合わせて実施してもよい。
Claims (2)
- 符号化方法であって、
行数がm×z、列数が2×m×z行の所定のパリティ検査行列、mは2以上の偶数、zは自然数である、に基づいて、5個の情報系列X1、X2、X3、X4及びX5に対して、符号化率が5/7の符号化を行うことにより、前記5個の情報系列X1、X2、X3、X4及びX5並びに2個のパリティ系列P1及びP2で構成される符号化系列を生成し、
前記所定のパリティ検査行列は、複数のパリティ検査多項式を利用したLDPC(Low−Density Parity−Check)畳み込み符号に対応する第1のパリティ検査行列、または、前記第1のパリティ検査行列に行置換及び/または列置換を施して生成される第2のパリティ検査行列であり、
前記LDPC畳み込み符号に応じた1×P1(D)、1×P2(D)に関するそれぞれ2つの0を満たすパリティ検査多項式は、下記式(147−1−1)、(147−1−2)、(147−2−1)、(147−2−2)で表され、
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たし、
また、前記LDPC畳み込み符号に応じた1×P1(D)、1×P2(D)に関するそれぞれ2つの0を満たすパリティ検査多項式は、下記式(148−1−1)、(148−1−2)、(148−2−1)、(148−2−2)によっても表され、
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たす、
符号化方法。 - 所定の符号化方法で符号化された符号化系列を復号する復号方法であって、
前記所定の符号化方法は、行数がm×z、列数が2×m×z行の所定のパリティ検査行列、mは2以上の偶数、zは自然数である、に基づいて、5個の情報系列X1、X2、X3、X4及びX5に対して、符号化率が5/7の符号化を行うことにより、前記5個の情報系列X1、X2、X3、X4及びX5並びにパリティ系列P1及びP2で構成される符号化系列を生成し、
前記所定のパリティ検査行列は、複数のパリティ検査多項式を利用したLDPC(Low−Density Parity−Check)畳み込み符号に対応する第1のパリティ検査行列、または、前記第1のパリティ検査行列に行置換及び/または列置換を施して生成される第2のパリティ検査行列であり、
前記LDPC畳み込み符号に応じた1×P1(D)、1×P2(D)に関するそれぞれ2つの0を満たすパリティ検査多項式は、下記式(147−1−1)、(147−1−2)、(147−2−1)、(147−2−2)で表され、
そして、yは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zの∀(y,z)に対して、α#(2i),p,y≠α#(2i),p,zを満たし、
このyは1以上r#(2i),p以下の整数、zは1以上r#2i,p以下の整数で、y≠zが成立するすべてのy、すべてのzにおいて、α#(2i),p,y≠α#(2i),p,zを満たし、
前記LDPC畳み込み符号に応じた1×P1(D)、1×P2(D)に関するそれぞれ2つの0を満たすパリティ検査多項式は、下記式(148−1−1)、(148−1−2)、(148−2−1)、(148−2−2)によっても表され、
そして、yは1以上r#(2i+1),p以下の整数、zは1以上r#(2i+1),p以下の整数で、y≠zの∀(y,z)に対して、α#(2i+1),p,y≠α#(2i+1),p,zを満たし、
前記所定のパリティ検査行列に基づいて、信頼度伝播(BP:Belief Propagation)を利用して、前記符号化系列を復号する、
復号方法。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012223570 | 2012-10-05 | ||
JP2012223570 | 2012-10-05 | ||
JP2012223571 | 2012-10-05 | ||
JP2012223572 | 2012-10-05 | ||
JP2012223573 | 2012-10-05 | ||
JP2012223573 | 2012-10-05 | ||
JP2012223572 | 2012-10-05 | ||
JP2012223571 | 2012-10-05 | ||
JP2012223569 | 2012-10-05 | ||
JP2012223569 | 2012-10-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015254096A Division JP6048857B2 (ja) | 2012-10-05 | 2015-12-25 | 符号化方法、復号方法、符号化器、及び、復号器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017189167A Division JP6369772B2 (ja) | 2012-10-05 | 2017-09-28 | 符号化方法、復号方法、符号化器、及び、復号器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017063466A JP2017063466A (ja) | 2017-03-30 |
JP6226253B2 true JP6226253B2 (ja) | 2017-11-08 |
Family
ID=50434627
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014539615A Active JP5865503B2 (ja) | 2012-10-05 | 2013-10-02 | 符号化方法、復号方法、符号化器、及び、復号器 |
JP2015254096A Active JP6048857B2 (ja) | 2012-10-05 | 2015-12-25 | 符号化方法、復号方法、符号化器、及び、復号器 |
JP2016220068A Active JP6226253B2 (ja) | 2012-10-05 | 2016-11-10 | 符号化方法、復号方法、符号化器、及び、復号器 |
JP2017189167A Active JP6369772B2 (ja) | 2012-10-05 | 2017-09-28 | 符号化方法、復号方法、符号化器、及び、復号器 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014539615A Active JP5865503B2 (ja) | 2012-10-05 | 2013-10-02 | 符号化方法、復号方法、符号化器、及び、復号器 |
JP2015254096A Active JP6048857B2 (ja) | 2012-10-05 | 2015-12-25 | 符号化方法、復号方法、符号化器、及び、復号器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017189167A Active JP6369772B2 (ja) | 2012-10-05 | 2017-09-28 | 符号化方法、復号方法、符号化器、及び、復号器 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9584157B2 (ja) |
EP (1) | EP2905904B1 (ja) |
JP (4) | JP5865503B2 (ja) |
WO (1) | WO2014054283A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI700252B (zh) | 2016-02-18 | 2020-08-01 | 日商奧璐佳瑙股份有限公司 | 利用逆滲透膜之水處理系統及水處理方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019134294A (ja) * | 2018-01-31 | 2019-08-08 | 東芝映像ソリューション株式会社 | 受信機 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU9692798A (en) * | 1997-10-09 | 1999-05-03 | Hughes Electronics Corporation | Adaptable overlays for forward error correction schemes based on trellis codes |
US6134696A (en) * | 1998-05-28 | 2000-10-17 | Lsi Logic Corporation | Encoding and decoding rate-1/n convolutional codes and their punctured versions |
KR100295760B1 (ko) * | 1998-12-31 | 2001-09-06 | 윤종용 | 디지털시스템의길쌈부호처리장치및방법 |
CA2277239C (en) * | 1999-07-08 | 2007-09-04 | Wen Tong | Puncturing of convolutional codes |
US7225392B2 (en) * | 2002-03-04 | 2007-05-29 | Lucent Technologies Inc. | Error correction trellis coding with periodically inserted known symbols |
EP1511178A1 (en) * | 2003-09-01 | 2005-03-02 | Alcatel | A method of decoding a data word |
US7853859B2 (en) * | 2004-01-23 | 2010-12-14 | Broadcom Corporation | Convolutional coding method for multi-band communications |
US7865812B2 (en) * | 2007-02-16 | 2011-01-04 | Mediatek Inc. | Apparatus and method for determining a detected punctured position in punctured convolutional codes |
US8205142B2 (en) * | 2006-05-12 | 2012-06-19 | Nec Corporation | Error correction coding method and device |
US8464120B2 (en) | 2006-10-18 | 2013-06-11 | Panasonic Corporation | Method and system for data transmission in a multiple input multiple output (MIMO) system including unbalanced lifting of a parity check matrix prior to encoding input data streams |
WO2008151061A1 (en) * | 2007-05-31 | 2008-12-11 | Interdigital Technology Corporation | Channel coding and rate matching for lte control channels |
JP4823176B2 (ja) * | 2007-08-31 | 2011-11-24 | パナソニック株式会社 | 復号方法及び復号装置 |
CN103281091B (zh) * | 2007-09-28 | 2017-10-27 | 松下电器产业株式会社 | 编码方法、编码器、解码器、发送装置和接收装置 |
JP4564080B2 (ja) * | 2008-01-07 | 2010-10-20 | パナソニック株式会社 | 符号化方法、符号化器、復号器 |
CN102577135B (zh) | 2009-11-13 | 2014-12-03 | 松下电器(美国)知识产权公司 | 编码方法、解码方法、编码器以及解码器 |
US8537919B2 (en) * | 2010-09-10 | 2013-09-17 | Trellis Phase Communications, Lp | Encoding and decoding using constrained interleaving |
WO2012098898A1 (ja) * | 2011-01-21 | 2012-07-26 | パナソニック株式会社 | 符号化方法、復号方法 |
US20120270681A1 (en) | 2011-04-20 | 2012-10-25 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
US20120270680A1 (en) | 2011-04-20 | 2012-10-25 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
US20120270678A1 (en) | 2011-04-20 | 2012-10-25 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
US20120270679A1 (en) | 2011-04-20 | 2012-10-25 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
JP2012223573A (ja) | 2012-04-11 | 2012-11-15 | Daito Giken:Kk | 遊技台 |
US9281841B2 (en) * | 2012-10-31 | 2016-03-08 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Load balanced decoding of low-density parity-check codes |
-
2013
- 2013-10-02 EP EP13843816.3A patent/EP2905904B1/en active Active
- 2013-10-02 US US14/432,859 patent/US9584157B2/en active Active
- 2013-10-02 JP JP2014539615A patent/JP5865503B2/ja active Active
- 2013-10-02 WO PCT/JP2013/005886 patent/WO2014054283A1/ja active Application Filing
-
2015
- 2015-12-25 JP JP2015254096A patent/JP6048857B2/ja active Active
-
2016
- 2016-11-10 JP JP2016220068A patent/JP6226253B2/ja active Active
-
2017
- 2017-01-13 US US15/405,554 patent/US10243586B2/en active Active
- 2017-09-28 JP JP2017189167A patent/JP6369772B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI700252B (zh) | 2016-02-18 | 2020-08-01 | 日商奧璐佳瑙股份有限公司 | 利用逆滲透膜之水處理系統及水處理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6048857B2 (ja) | 2016-12-21 |
EP2905904A4 (en) | 2016-01-13 |
JP2016067052A (ja) | 2016-04-28 |
US9584157B2 (en) | 2017-02-28 |
US20150341051A1 (en) | 2015-11-26 |
JPWO2014054283A1 (ja) | 2016-08-25 |
EP2905904B1 (en) | 2018-12-05 |
US10243586B2 (en) | 2019-03-26 |
EP2905904A1 (en) | 2015-08-12 |
JP6369772B2 (ja) | 2018-08-08 |
WO2014054283A1 (ja) | 2014-04-10 |
JP5865503B2 (ja) | 2016-02-17 |
JP2017063466A (ja) | 2017-03-30 |
US20170134047A1 (en) | 2017-05-11 |
JP2018014760A (ja) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6347434B2 (ja) | 符号化方法、復号方法 | |
JP6481914B2 (ja) | 符号化方法、復号方法 | |
JP5829627B2 (ja) | 符号化方法、復号方法、符号化器、及び、復号器 | |
JP5971576B2 (ja) | 符号化方法、復号方法 | |
JP5864749B2 (ja) | 符号化方法、復号方法 | |
JP6226253B2 (ja) | 符号化方法、復号方法、符号化器、及び、復号器 | |
JP6152996B6 (ja) | 符号化方法、復号方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6226253 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6226253 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |