JP6223217B2 - Desulfurization method - Google Patents

Desulfurization method Download PDF

Info

Publication number
JP6223217B2
JP6223217B2 JP2014025411A JP2014025411A JP6223217B2 JP 6223217 B2 JP6223217 B2 JP 6223217B2 JP 2014025411 A JP2014025411 A JP 2014025411A JP 2014025411 A JP2014025411 A JP 2014025411A JP 6223217 B2 JP6223217 B2 JP 6223217B2
Authority
JP
Japan
Prior art keywords
hot metal
desulfurization
cold iron
iron source
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014025411A
Other languages
Japanese (ja)
Other versions
JP2015151568A (en
Inventor
宏忠 新井
宏忠 新井
大喜 高橋
大喜 高橋
裕基 山本
裕基 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014025411A priority Critical patent/JP6223217B2/en
Publication of JP2015151568A publication Critical patent/JP2015151568A/en
Application granted granted Critical
Publication of JP6223217B2 publication Critical patent/JP6223217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑鍋や混銑車などのような溶銑搬送容器に対して、溶銑と冷鉄源とを装入し、さらに脱硫剤を投入しつつ脱硫を行う脱硫方法に関するものである。   The present invention relates to a desulfurization method in which hot metal and a cold iron source are charged into a hot metal transport container such as a hot metal ladle or a kneading car, and desulfurization is performed while a desulfurizing agent is added.

製鉄プロセスでは、高炉から出銑した溶銑を転炉で脱炭して鋼とするため、混銑車や鍋型(溶銑鍋)などの耐火物容器で溶銑を高炉から転炉がある製鋼工場に搬送するのが一般的である。上記輸送のフローとしては、第1に高炉鋳床で鍋型の容器で溶銑を受銑した後、そのまま製鋼工場まで搬送し、転炉に溶銑を装入する方式、第2に高炉鋳床で混銑車で溶銑を受銑し、製鋼工場まで搬送したのち、転炉に装入するために鍋型の容器に溶銑を移し変え、そこから転炉に溶銑を装入する方法などが一般的である。近年は、コストダウンおよび品質要求の厳格化に対応するために、鍋型や混銑車などの溶銑搬送容器でも、脱硫処理などの溶銑予備処理が行われることが多くなってきている(例えば、特許文献1などを参照)。   In the iron making process, the hot metal discharged from the blast furnace is decarburized in the converter to produce steel, so the hot metal is transported from the blast furnace to the steel plant where the converter is located in a refractory container such as a kneading car or a pan (hot metal ladle). It is common to do. The transport flow is as follows: first, the hot metal is received in a pan-type container in the blast furnace cast floor, then transported to the steelmaking factory as it is, and the hot metal is charged into the converter, and second, in the blast furnace cast floor. A common method is to receive hot metal with a kneading car, transport it to a steelmaking plant, transfer the hot metal to a pot-shaped container to charge the converter, and then charge the hot metal into the converter from there. is there. In recent years, hot metal pretreatment such as desulfurization has been frequently performed even in hot metal transfer containers such as pans and kneading vehicles in order to cope with cost reduction and stricter quality requirements (for example, patents) (See Reference 1, etc.)

ところで、鍋型の容器や混銑車などの溶銑搬送容器で溶銑を受銑する際には、鉄源としてスクラップなどの安価な冷鉄源を投入して、出来るだけ溶銑コストを低減させる操業が行われている。
例えば、特許文献2には、溶銑鍋内の溶銑を受銑容器に払い出し、空となった溶銑鍋に溶銑が装入されるまでの間に該溶銑鍋の鍋底に冷鉄源を入れ置きし、その後、この溶銑鍋に溶銑を装入する冷鉄源投入方法が開示されている。この特許文献2の冷鉄源投入方法では、溶銑鍋に入れ置きする冷鉄源の重量を適正なものとして、冷鉄源による熱ロスを低減し操業への悪影響を防止できるものとされている。
By the way, when receiving hot metal in a hot metal container such as a pan-shaped container or a kneading car, an operation is carried out to reduce the hot metal cost as much as possible by using an inexpensive cold iron source such as scrap as the iron source. It has been broken.
For example, in Patent Document 2, the hot metal in a hot metal ladle is discharged into a receiving container, and a cold iron source is placed in the bottom of the hot metal ladle before the hot metal is charged into an empty hot metal ladle. Then, a cold iron source charging method for charging hot metal into the hot metal ladle is disclosed. In the cold iron source charging method of Patent Document 2, the weight of the cold iron source placed in the hot metal ladle is appropriate, and heat loss due to the cold iron source can be reduced to prevent adverse effects on the operation. .

また、特許文献3にも、冷鉄源の入れ置きされた溶銑保持搬送容器で高炉から出銑される溶銑を受銑し、この溶銑に対して機械攪拌式脱硫装置を用いて脱硫処理を施す技術が開示されている。   Also in Patent Document 3, hot metal discharged from a blast furnace is received in a hot metal holding and conveying container in which a cold iron source is placed, and this hot metal is subjected to desulfurization treatment using a mechanical stirring desulfurization apparatus. Technology is disclosed.

特開2004−300455号公報JP 2004-300455 A 特開2007−113055号公報JP 2007-113055 A 特開2006−219695号公報JP 2006-219695 A

ところで、上述した冷鉄源は、溶銑量を増やして溶銑コストを低減させるために投入されている。そのため、溶銑搬送容器に投入する冷鉄源量は多い方が望ましいが、一方で溶銑搬送容器に投入する冷鉄源量が多くなりすぎると、冷鉄源の投入による熱ロスが大きくなり、溶銑搬送容器に地金が付着することで、溶銑搬送量の減少や地金除去作業に伴う生産性の低下といった悪影響を及ぼす。   By the way, the cold iron source mentioned above is supplied in order to increase the amount of hot metal and reduce the hot metal cost. For this reason, it is desirable that the amount of cold iron source put into the hot metal transfer container is large. On the other hand, if the amount of cold iron source put into the hot metal transfer container becomes too large, the heat loss due to the input of the cold iron source increases, Adhering the bullion to the transport container has adverse effects such as a reduction in the amount of hot metal transport and a decrease in productivity due to the bullion removal work.

さらには、上述した脱硫処理などを溶銑搬送容器で行う際には、冷鉄源の投入により溶銑の温度が低くなりすぎると、脱硫反応の反応効率が悪くなって脱硫能も低下してしまう可能性がある。脱硫反応は、一般に高温であるほど反応が進むため、溶銑搬送容器で脱硫処理を行う際には、脱硫能を大きく下げない範囲で、冷鉄源を可能な限り多く投入することが好ましい。   Furthermore, when the above-described desulfurization treatment or the like is performed in the hot metal transport container, if the temperature of the hot metal becomes too low due to the introduction of the cold iron source, the reaction efficiency of the desulfurization reaction may deteriorate and the desulfurization ability may also decrease. There is sex. Since the desulfurization reaction generally proceeds as the temperature rises, it is preferable to add as much cold iron source as possible within a range in which the desulfurization ability is not greatly reduced when the desulfurization treatment is performed in the hot metal transfer container.

ところが、上述した特許文献1〜特許文献3の技術は、冷鉄源投入による脱硫能の低下を考慮したものではなく、これら文献の技術を採用したとしても、冷鉄源の投入により溶銑量が増加した溶銑搬送容器での脱硫処理において、高い脱硫能を確保することが困難である。
本発明は、上述の問題に鑑みてなされたものであり、溶銑搬送容器で脱硫を行う際に、安価な冷鉄源を活用しつつも良好な脱硫能を確保することが可能となる脱硫方法を提供することを目的とする。
However, the techniques of Patent Document 1 to Patent Document 3 described above do not take into account the decrease in desulfurization ability due to the introduction of a cold iron source. Even if the techniques of these documents are adopted, the amount of hot metal is reduced by the introduction of a cold iron source. It is difficult to ensure high desulfurization ability in the desulfurization treatment in the increased hot metal transfer container.
The present invention has been made in view of the above-described problems, and a desulfurization method capable of ensuring a good desulfurization ability while utilizing an inexpensive cold iron source when desulfurization is performed in a hot metal transfer container. The purpose is to provide.

上記課題を解決するため、本発明の脱硫方法は以下の技術的手段を講じている。
即ち、本発明の脱硫方法は、溶銑と冷鉄源のみが装入された溶銑搬送容器に外部から脱硫剤を投入しつつ脱硫を行うに際しては、前記溶銑搬送容器に投入する脱硫剤の投入量W(kg/t)とし、溶銑搬送容器に投入する冷鉄源の投入量をm’(kg/t)とし、脱硫処理前の溶銑温度をT(℃)とし、脱硫処理前後での硫黄濃度差をΔS(質量%)としたとき、前記脱硫剤の投入量Wを式(1)を満たすように設定することを特徴とするものである。
In order to solve the above problems, the desulfurization method of the present invention takes the following technical means.
That is, in the desulfurization method of the present invention, when desulfurization is performed while introducing a desulfurizing agent from the outside into a hot metal transport container in which only hot metal and a cold iron source are charged, the input amount of the desulfurizing agent to be charged into the hot metal transport container W (kg / t), the amount of cold iron source charged into the hot metal transport container is m '(kg / t), the hot metal temperature before desulfurization treatment is T (° C), and the sulfur concentration before and after the desulfurization treatment When the difference is ΔS (mass%), the desulfurizing agent input amount W is set so as to satisfy the formula (1).

本発明の脱硫方法によれば、溶銑搬送容器で脱硫を行う際に、安価な冷鉄源を活用しつつも良好な脱硫能を確保することが可能となる。   According to the desulfurization method of the present invention, it is possible to ensure good desulfurization ability while utilizing an inexpensive cold iron source when desulfurization is performed in a hot metal transfer container.

高炉の出銑から一次精錬処理までの流れを模した模式図である。It is a mimetic diagram imitating the flow from the blast furnace discharge to the primary refining process. 脱硫剤の投入実績値と式(1)で求めた脱硫剤の投入量(W)との差と、脱硫処理後の溶銑の硫黄濃度との関係をまとめた図である。It is the figure which put together the relationship between the difference between the input value of the desulfurization agent and the input amount (W) of the desulfurization agent obtained by the equation (1), and the sulfur concentration of the hot metal after the desulfurization treatment. 脱硫方法の各工程を示した図である。It is the figure which showed each process of the desulfurization method.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、高炉1から出銑された溶銑の製錬工程を模式的に示した図である。
図1に示すように、高炉1から出銑された溶銑は、混銑車3にて受銑された後、製鋼工場に運搬され、そこで溶銑鍋5に払い出される。この溶銑鍋5はクレーンにより除滓位置に移動し、溶銑直上に存在する高炉スラグを除去した後、クレーンで転炉正面に運ばれ、鍋中の溶銑を転炉に装入する。溶銑装入終了後の空の溶銑鍋5は再びクレーンにより払出位置に戻され、混銑車3より次チャージの溶銑が払い出される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing the smelting process of the hot metal discharged from the blast furnace 1.
As shown in FIG. 1, the hot metal discharged from the blast furnace 1 is received by the kneading vehicle 3 and then transported to the steelmaking factory where it is discharged to the hot metal ladle 5. The hot metal ladle 5 is moved to the removal position by a crane, and after removing the blast furnace slag existing immediately above the hot metal, it is carried to the front of the converter by the crane, and the hot metal in the ladle is charged into the converter. After the hot metal charging is completed, the empty hot metal ladle 5 is returned to the payout position again by the crane, and the hot metal of the next charge is discharged from the kneading vehicle 3.

このような製錬工程において、溶銑搬送容器2(以降、混銑車3及び溶銑鍋5の双方を含めたものを溶銑搬送容器2という)において機械攪拌による脱硫が実施される場合がある。本実施形態では、高炉スラグ除滓後の溶銑鍋5に脱硫剤(脱硫フラックス)を添加し、機械攪拌を行うことで脱硫反応を進行させる。そして、再度除滓位置で脱硫スラグを除去した後、脱硫後の溶銑が転炉に払い出される。   In such a smelting process, desulfurization by mechanical stirring may be carried out in the hot metal transport container 2 (hereinafter, the one including both the kneading car 3 and the hot metal ladle 5 is referred to as the hot metal transport container 2). In this embodiment, a desulfurization agent (desulfurization flux) is added to the hot metal ladle 5 after blast furnace slag removal, and the desulfurization reaction is advanced by mechanical stirring. And after removing desulfurization slag again in a removal position, the hot metal after desulfurization is discharged to a converter.

なお、近年は粗鋼量を増やしたいといった要望や精錬コストを低く抑えたいという要望が高まっており、高炉から出銑される溶銑の替わりに、あるいはこれらの溶銑に加えてスクラップ等の安価な鉄源の使用が検討されている。そのための方法の一つとして、溶銑搬送容器2、すなわち混銑車3や溶銑鍋5に、冷銑、スクラップ等の鉄源(冷鉄源)を投入し、溶銑と一緒にこれらの冷鉄源6を溶解して溶銑量を増やす操業が行われている。   In recent years, there has been an increasing demand for increasing the amount of crude steel and reducing refining costs. Instead of or in addition to hot metal discharged from the blast furnace, inexpensive iron sources such as scrap The use of is being considered. As one of the methods for this purpose, iron sources (cold iron sources) such as cold iron and scrap are put into the hot metal transport container 2, that is, the kneading wheel 3 and the hot metal ladle 5, and these cold iron sources 6 together with the hot metal. Operations to increase the amount of hot metal by melting

すなわち、図3に示す如く、本実施形態の溶銑鍋5(溶銑搬送容器2)における脱硫処理は、4つの工程を有している。
脱硫処理を構成する第1の工程は、「空の溶銑搬送容器に溶銑を装入する」というものである。図3の例では溶銑搬送容器2として溶銑鍋5を用いたものを挙げて、混練車3から溶銑鍋5に溶銑を装入しているが、溶銑搬送容器2として高炉1を用いて、高炉1から混銑車3に溶銑を装入しても良い。溶銑搬送容器2内には、温度がTpig(℃)の溶銑が重量M(t)装入されており、この溶銑中には硫黄がSpig(質量%)の濃度で含まれている。
That is, as shown in FIG. 3, the desulfurization process in the hot metal ladle 5 (hot metal transfer container 2) of this embodiment has four steps.
The first step that constitutes the desulfurization process is “to load the hot metal into an empty hot metal transfer container”. In the example of FIG. 3, a hot metal ladle 5 is used as the hot metal transport container 2, and the hot metal is charged into the hot metal ladle 5 from the kneading wheel 3, but the blast furnace 1 is used as the hot metal transport container 2. The hot metal may be charged from 1 to the chaotic wheel 3. The hot metal transfer container 2 is charged with a weight M (t) of hot metal having a temperature of T pig (° C.), and the hot metal contains sulfur at a concentration of S pig (mass%).

脱硫処理を構成する第2の工程は、「冷鉄源を溶銑搬送容器内の溶銑に投入する」というものである。つまり、この第2の工程では、第1の工程で装入された溶銑搬送容器2内の溶銑に、硫黄がS(質量%)の濃度で含まれた温度がT(℃)の冷鉄源6が重量m(kg)だけ投入される。
脱硫処理を構成する第3の工程では、脱硫剤7をW(kg/t)だけ溶銑搬送容器2内に添加し、溶銑搬送容器2の溶銑内に耐火物のインペラ8を浸漬して、溶銑を強制攪拌しなが
ら脱硫反応を促進させる。このようにすれば、第3の工程で溶銑中の硫黄は脱硫剤へと移行して脱硫スラグが形成され、形成された脱硫スラグを取り除くことで「硫黄分が除かれた溶銑」を得ることができる。なお、この第3工程の溶銑搬送容器2内には、冷鉄源6が溶融することでM+m/1000(t)の重量に増加した溶湯(溶銑)が収容されている。また、このときの溶湯の温度は冷鉄源の昇温・溶解により温度T(℃)まで低下しており、硫黄の濃度はS(質量%)となっている。
The second step constituting the desulfurization process is “to put a cold iron source into the hot metal in the hot metal transport container”. That is, in the second step, the temperature in which the molten iron in the hot metal transfer container 2 charged in the first step is contained at a concentration of S c (mass%) is T c (° C.). The iron source 6 is charged by weight m (kg).
In the third step of the desulfurization process, the desulfurizing agent 7 is added to the hot metal transport container 2 by W (kg / t), and the refractory impeller 8 is immersed in the hot metal of the hot metal transport container 2 to The desulfurization reaction is promoted while forcibly stirring. If it does in this way, the sulfur in hot metal will transfer to a desulfurization agent in the 3rd process, and desulfurization slag will be formed, and it will obtain "hot metal from which sulfur content was removed" by removing the formed desulfurization slag. Can do. The molten iron (hot metal) increased in weight to M + m / 1000 (t) by melting the cold iron source 6 is accommodated in the molten iron transport container 2 in the third step. Moreover, the temperature of the molten metal at this time is lowered to the temperature T (° C.) due to the temperature rise and dissolution of the cold iron source, and the concentration of sulfur is S (mass%).

脱硫処理を構成する第4の工程は、「脱硫処理された溶銑を得る」というものであり。第4の工程では、第3工程の脱硫反応が十分に進み、溶湯中の硫黄分が脱硫スラグとなって取り除かれ、溶湯中の硫黄分の濃度は所望の規制値以下まで低減されている。なお、この第4工程の溶銑搬送容器2内の溶湯は、温度がT(℃)で、硫黄の濃度がS(質量%)となっている。 The fourth step constituting the desulfurization treatment is “to obtain a desulfurized hot metal”. In the fourth step, the desulfurization reaction in the third step is sufficiently advanced, and the sulfur content in the molten metal is removed as desulfurized slag, and the concentration of the sulfur content in the molten metal is reduced to a desired regulation value or less. Note that the molten metal in the hot metal transfer container 2 in the fourth step has a temperature of T f (° C.) and a sulfur concentration of S f (mass%).

上述したような操業においては、冷鉄源6の投入により溶銑搬送容器2内の溶銑の温度が低くなりすぎると、脱硫反応の反応効率が悪くなって脱硫能が低下してしまい、脱硫が不十分になったり、他の工程で脱硫を補足的に行う必要が生じて粗鋼の生産性を損なう可能性がある。そのため、冷鉄源6を投入しても脱硫能が大きく下がらないように、脱硫剤7の投入量には下限値(最低必要量)を設定する必要がある。   In the operation as described above, if the temperature of the hot metal in the hot metal transfer container 2 becomes too low due to the introduction of the cold iron source 6, the reaction efficiency of the desulfurization reaction is deteriorated and the desulfurization ability is lowered, and desulfurization is not performed. It may become sufficient, or it may be necessary to supplementary desulfurization in other processes, which may impair the productivity of crude steel. For this reason, it is necessary to set a lower limit (minimum required amount) for the amount of desulfurization agent 7 so that the desulfurization ability does not greatly decrease even when the cold iron source 6 is charged.

そこで、本発明では次のように脱硫剤7の投入量(投入量の下限値)を決定している。
すなわち、溶銑搬送容器2に投入する脱硫剤7の投入量をW(kg/t)とし、溶銑搬送容器2に投入する冷鉄源6の投入量をm’(kg/t)とする。また、脱硫処理前の溶銑温度をT(℃)とし、脱硫処理前後での硫黄濃度差をΔS(質量%)とする。そのうえで、これらのパラメータ(W、m’、T、ΔS)と、脱硫剤7の投入量Wとが式(1)を満たすように、本発明の脱硫方法では脱硫剤7の投入量Wを設定している。
Therefore, in the present invention, the input amount of the desulfurizing agent 7 (lower limit value of the input amount) is determined as follows.
That is, the amount of desulfurization agent 7 charged into the hot metal transport container 2 is W (kg / t), and the amount of cold iron source 6 charged into the hot metal transport container 2 is m ′ (kg / t). Further, the hot metal temperature before the desulfurization treatment is T (° C.), and the difference in sulfur concentration before and after the desulfurization treatment is ΔS (mass%). In addition, the input amount W of the desulfurizing agent 7 is set in the desulfurization method of the present invention so that these parameters (W, m ′, T, ΔS) and the input amount W of the desulfurizing agent 7 satisfy the formula (1). doing.

この式(1)の右辺が脱硫剤7の投入量の下限値となり、この投入量の下限値以上となるように脱硫剤7を投入することで、脱硫効率を低下させることなく脱硫処理を実施することが可能となる。
なお、式(1)に使用される各パラメータには、次のような値が用いられる。
まず、1つ目のパラメータである冷鉄源6の投入量m’(kg/t)は、冷鉄源6の投入量(全投入量)をm(kg)、冷鉄源6の投入前の溶銑量(溶銑搬送容器2に装入した直後の溶銑量)をM(t)とした場合に、式(2)のような関係で導かれる。
The right side of the formula (1) is the lower limit of the input amount of the desulfurizing agent 7, and the desulfurization treatment is performed without reducing the desulfurization efficiency by introducing the desulfurizing agent 7 so as to be equal to or higher than the lower limit value of the input amount. It becomes possible to do.
In addition, the following values are used for each parameter used in Equation (1).
First, the input m ′ (kg / t) of the cold iron source 6 which is the first parameter is m (kg) of the input amount of the cold iron source 6 (total input amount), and before the cold iron source 6 is supplied. When the amount of hot metal (the amount of hot metal immediately after being charged into the hot metal transfer container 2) is M (t), the relationship is derived as shown in the equation (2).

なお、この冷鉄源6の全投入量m(kg)には、投入後の溶銑温度が低下しすぎないように、上限値が設定されている。この冷鉄源6の全投入量(の上限値)m(kg)は、式(3)に示されるように、冷鉄源6の投入前の溶銑の温度Tc(℃)及び冷鉄源6の温度Tpig(℃)などを用いて示される冷鉄源投入後の溶銑温度T’(℃)が1200℃以上となるような値として規定される。 An upper limit value is set for the total amount m (kg) of the cold iron source 6 so that the hot metal temperature after the charging does not decrease too much. The total input amount (upper limit) m (kg) of the cold iron source 6 is determined by the temperature T c (° C.) of the hot metal before the supply of the cold iron source 6 and the cold iron source as shown in the equation (3). 6 of the temperature T pig (° C.) hot metal temperature T '(° C.) after Hiyatetsu source turned indicated with like is defined as a value such that 1200 ° C. or higher.

また、2つ目のパラメータである脱硫処理前の溶銑温度T(℃)は、溶銑搬送容器2に装入された直後の溶銑の温度として示され、既存の温度センサなどを用いて実測される。この脱硫処理前の溶銑温度T(℃)が1165(℃)以下の場合は溶銑の凝固が起こる可能性があり、溶銑温度Tは1165(℃)より大きくなるように管理されている。
さらに、3つ目のパラメータである脱硫処理前後での硫黄濃度差ΔS(質量%)は、脱硫処理前の溶銑の硫黄濃度から脱硫処理後の溶銑の硫黄濃度を差し引いたものであり、冷
鉄源投入前の溶銑銑の硫黄濃度[S]pig(質量%)、投入される冷鉄源6の硫黄濃度[S]c(質量%)、脱硫処理後の溶銑の硫黄濃度[S]f(質量%)を用いて、式(4)のように示される。
Further, the hot metal temperature T (° C.) before the desulfurization treatment, which is the second parameter, is indicated as the hot metal temperature immediately after being charged into the hot metal transfer container 2 and is measured using an existing temperature sensor or the like. . When the hot metal temperature T (° C.) before the desulfurization treatment is 1165 (° C.) or less, the hot metal may be solidified, and the hot metal temperature T is controlled to be higher than 1165 (° C.).
Further, the sulfur parameter difference ΔS (mass%) before and after the desulfurization treatment, which is the third parameter, is obtained by subtracting the sulfur concentration of the hot metal after desulfurization from the sulfur concentration of the hot metal before desulfurization. Sulfur concentration [S] pig (mass%) of hot metal before supplying the source, sulfur concentration [S] c (mass%) of the cold iron source 6 input, sulfur concentration [S] f ( (Mass%) is expressed as in equation (4).

上述した3つのパラメータと脱硫剤7の投入量W(kg/t)との間には、次のような関係が成立すると考えることができる。
つまり、冷鉄源6を投入しつつ脱硫を行う場合を考えたとき、脱硫処理前の溶銑温度が低いと、脱硫反応が進行しにくくなると考えられ、溶銑温度が高いと、脱硫反応は進行しやすくなると考えられる。また、冷鉄源6の投入量が大きくなると溶銑の温度が下がるので、溶銑温度が低い場合と同様に、脱硫反応は進行しにくくなるはずである。さらに、冷鉄源6の投入量が小さくなると溶銑の温度が上がり、脱硫反応が進行しやすくなるはずである。
It can be considered that the following relationship is established between the three parameters described above and the input amount W (kg / t) of the desulfurizing agent 7.
That is, when considering the case where desulfurization is performed while the cold iron source 6 is introduced, if the hot metal temperature before the desulfurization treatment is low, it is considered that the desulfurization reaction does not proceed easily. If the hot metal temperature is high, the desulfurization reaction proceeds. It will be easier. Further, since the hot metal temperature decreases as the amount of the cold iron source 6 is increased, the desulfurization reaction should be difficult to proceed as in the case where the hot metal temperature is low. Furthermore, when the input amount of the cold iron source 6 is reduced, the temperature of the hot metal should be increased and the desulfurization reaction should proceed easily.

一方、冷鉄源6や溶銑に多量の硫黄が含まれている場合には、脱硫剤7を大量に投入して脱硫能を上げる必要があり、冷鉄源6や溶銑に硫黄があまり含まれていない場合には、脱硫能を上げる必要はなく、脱硫剤7を大量に投入する必要はない。
このような考え方に基づいて、本発明者らは、溶銑搬送容器2に投入する冷鉄源6の投入量m’(kg/t)、脱硫処理前の溶銑温度T(℃)、脱硫処理前後での硫黄濃度差ΔS(質量%)に着目し、様々な実験等によって、これらパラメータ(m’、T、ΔS)と脱硫剤7の投入量W(kg/t)との関係についてまとめた。その結果、混銑車3や溶銑鍋5などの溶銑搬送容器2に脱硫剤7を投入するにあたって、脱硫剤7の投入量Wを、式(1)を満たすようにすれば、脱硫処理後の溶銑中での硫黄濃度を0.0030質量%以下にすることができることを見出した。
On the other hand, if the cold iron source 6 or hot metal contains a large amount of sulfur, it is necessary to increase the desulfurization capacity by adding a large amount of the desulfurizing agent 7, and the cold iron source 6 or hot metal contains too much sulfur. If not, it is not necessary to increase the desulfurization capacity, and it is not necessary to add a large amount of the desulfurizing agent 7.
Based on this concept, the present inventors have introduced the amount m ′ (kg / t) of the cold iron source 6 to be fed into the hot metal transport container 2, the hot metal temperature T (° C.) before the desulfurization treatment, and before and after the desulfurization treatment. The relationship between these parameters (m ′, T, ΔS) and the input amount W (kg / t) of the desulfurizing agent 7 was summarized by various experiments and the like. As a result, when the desulfurization agent 7 is charged into the molten iron transport container 2 such as the kneading wheel 3 or the hot metal ladle 5, the molten iron after the desulfurization treatment can be obtained by satisfying the formula (1). It has been found that the sulfur concentration inside can be made 0.0030% by mass or less.

このように硫黄濃度を0.0030質量%以下にできれば、操業上、鋼中の硫黄濃度が規格内に収まるようになり、高品質の鋼を生産することが可能となる。また、上述した対策を全く施さない場合は、硫黄濃度が規格値である0.0030質量%を超え、硫黄が十分に除去された鋼の精錬が困難になったり、脱硫処理を別工程において追加で実施することが必要となり、鋼の生産性を損なう可能性が生じる。   If the sulfur concentration can be reduced to 0.0030% by mass or less in this way, the sulfur concentration in the steel will be within the standard for operation, and high-quality steel can be produced. If the above measures are not taken at all, the sulfur concentration exceeds the standard value of 0.0030% by mass, making it difficult to refining steel from which sulfur has been sufficiently removed, or adding desulfurization treatment in a separate process. Therefore, there is a possibility of impairing the productivity of steel.

表1は、本発明の脱硫剤7の投入方法で操業を行った実施例と、本発明とは異なる方法で操業を行った比較例とをまとめたものである。   Table 1 summarizes the examples in which the operation was performed by the method of introducing the desulfurizing agent 7 of the present invention and the comparative examples in which the operation was performed by a method different from the present invention.

実施例及び比較例では、溶銑搬送容器2の1つである溶銑鍋5に冷鉄源6を投入することとし、「脱硫処理後硫黄濃度」等について評価を行った。なお、溶銑鍋5ではなく、混銑車3のような溶銑搬送容器2に冷鉄源6を投入しても同様の結果が得られることを本発明者らは確認している。
実施例及び比較例は、まず空の溶銑鍋5に、誘導溶解炉内で溶解された溶解量300kg
の銑鉄を装入し、所定温度となるように加熱・保温することで実施した。その後、この溶銑鍋5の溶銑に冷鉄源6を投入した。
In the examples and comparative examples, the cold iron source 6 was put into the hot metal ladle 5 which is one of the hot metal transport containers 2, and the “sulfur concentration after desulfurization treatment” and the like were evaluated. In addition, the present inventors have confirmed that the same result can be obtained even if the cold iron source 6 is introduced into the hot metal transport container 2 such as the kneading vehicle 3 instead of the hot metal ladle 5.
Examples and comparative examples are as follows. First, an empty hot metal ladle 5 was melted in an induction melting furnace in an amount of 300 kg.
The pig iron was charged and heated and kept at a predetermined temperature. Then, the cold iron source 6 was thrown into the hot metal of this hot metal ladle 5.

溶銑鍋5に投入される冷鉄源6には、「スクラップ」、「冷銑」、「鉄粒」の3種類を使用した。これらの冷鉄源6中には、「スクラップ」については0〜0.003(質量%)、「冷銑」については0.025〜0.03(質量%)、「鉄粒」については0.07(質量%)の濃度で、硫黄が含まれている。
上述した3種類の冷鉄源6がそれぞれ投入された溶銑鍋5に対して、さらに脱硫剤7を添加した。添加した脱硫剤7は、CaOを主成分としてAl分が3〜15質量%含まれたCaO系の脱硫フラックスである。この脱硫剤7をさまざまな投入量で溶銑中に添加し、次に耐火物のインペラ8を溶銑に浸漬して、インペラ8を500rpmで回転させて溶銑を攪拌しながら脱硫処理(機械攪拌式の脱硫処理)を15分間に亘って行った。
Three types of “scrap”, “cold iron”, and “iron grain” were used as the cold iron source 6 put into the hot metal ladle 5. These cold iron sources 6 have a concentration of 0 to 0.003 (mass%) for "scrap", 0.025 to 0.03 (mass%) for "cold iron", and 0.07 (mass%) for "iron grains". And it contains sulfur.
A desulfurizing agent 7 was further added to the hot metal ladle 5 into which the above-described three types of cold iron sources 6 were put. The added desulfurization agent 7 is a CaO-based desulfurization flux containing CaO as a main component and containing 3 to 15% by mass of Al. The desulfurizing agent 7 is added to the hot metal in various amounts, and then the refractory impeller 8 is immersed in the hot metal, and the impeller 8 is rotated at 500 rpm to desulfurize the hot metal (mechanical stirring type). Desulfurization treatment) was performed for 15 minutes.

なお、上述した脱硫剤7の投入量は、式(1)に従って計算される「投入量の下限値」の計算値を基準として、この計算値よりも大きい投入量から、計算値よりも小さな投入量まで、大小の広い範囲に亘っている。このようにして脱硫処理を行った溶銑をサンプリングし、各溶銑に対して硫黄濃度を計測した。
表1の「No.1」〜「No.6」及び「No.15」の実験例は、いずれも冷鉄源6に「スクラップ」を用いたものであり、「冷鉄源投入量m」を3kg〜15kgの範囲で変化させたものである。表1の「実績−下限」を見ると、これらの実験例はいずれも、計算結果が「正」となっており、「脱硫剤量(実績)」の方が「脱硫剤量(下限)」よりも大きくなっていて、いずれも式(1)の関係を満足している。
The amount of the desulfurizing agent 7 described above is calculated based on the calculated value of the “lower limit value of the input amount” calculated according to the equation (1). The amount ranges from large to small. The hot metal thus desulfurized was sampled, and the sulfur concentration was measured for each hot metal.
In the experimental examples of “No. 1” to “No. 6” and “No. 15” in Table 1, “scrap” is used as the cold iron source 6, and “cool iron source input amount m”. Is changed in the range of 3 kg to 15 kg. Looking at “Results—Lower Limit” in Table 1, the calculation results for all of these experimental examples are “Positive”, and “Desulfurizing agent amount (actual)” is “Desulfurizing agent amount (lower limit)”. And both satisfy the relationship of the formula (1).

次に、表1の「処理後硫黄濃度」を見ると、これら「No.1」〜「No.6」及び「No.15」の実験例は、いずれも硫黄濃度の規格値である0.0030質量%より小さくなっている。つまり、「No.1」〜「No.6」及び「No.15」の実験例では、脱硫処理後の硫黄濃度がいずれも規格を満足しており、溶銑から硫黄分が十分に脱硫されていることがわかる。
ところが、表1の「No.7」〜「No.14」の実験例も、冷鉄源6に「スクラップ」を用いたものであるが、「実績−下限」の結果は「負」となっていて、「脱硫剤量(実績)」の方が「脱硫剤量(下限)」よりも小さくなっている。それゆえ、上述した実験例とは異なり、「No.7」〜「No.14」の実験例は、式(1)の関係を満足していない。
Next, looking at the “sulfur concentration after treatment” in Table 1, all of the experimental examples of “No. 1” to “No. 6” and “No. 15” are standard values of sulfur concentration of 0. It is smaller than 0030 mass%. In other words, in the experimental examples “No. 1” to “No. 6” and “No. 15”, the sulfur concentration after the desulfurization treatment all satisfies the standard, and the sulfur content is sufficiently desulfurized from the hot metal. I understand that.
However, the experimental examples “No. 7” to “No. 14” in Table 1 also use “scrap” as the cold iron source 6, but the result of “result-lower limit” is “negative”. Therefore, the “desulfurizing agent amount (result)” is smaller than the “desulfurizing agent amount (lower limit)”. Therefore, unlike the experimental example described above, the experimental examples “No. 7” to “No. 14” do not satisfy the relationship of the formula (1).

次に、表1の「処理後硫黄濃度」を見ると、これら「No.7」〜「No.14」の実験例は、いずれも硫黄濃度の規格値である0.0030質量%より大きくなっている。このことから、「No.7」〜「No.14」の実験例では、脱硫処理後の硫黄濃度がいずれも規格を満足しておらず、溶銑から硫黄分が十分に脱硫されていないことがわかる。
なお、上述した実験例は、冷鉄源6が「スクラップ」の場合であったが、冷鉄源6が「冷銑」である「No.16」〜「No.30」の実験例や、冷鉄源6が「鉄粒」である「No.31」〜「No.45」の実験例においても、同様な傾向が得られている。以上述べた実施例でのデータを回帰分析することで、式(1)を導いている。
Next, looking at the “sulfur concentration after treatment” in Table 1, all of the experimental examples “No. 7” to “No. 14” are larger than the standard value of sulfur concentration of 0.0030% by mass. ing. Therefore, in the experimental examples of “No. 7” to “No. 14”, the sulfur concentration after the desulfurization treatment does not satisfy the standard, and the sulfur content is not sufficiently desulfurized from the hot metal. Recognize.
In addition, although the experiment example mentioned above was a case where the cold iron source 6 was "scrap", the experiment example of "No.16"-"No.30" whose cold iron source 6 is "cold iron", The same tendency is also obtained in the experimental examples “No. 31” to “No. 45” in which the cold iron source 6 is “iron particles”. Equation (1) is derived by regression analysis of the data in the above-described embodiment.

上述したような傾向は、硫黄濃度の「実績−下限」に対する、脱硫処理後の溶銑中の硫黄濃度の関係をグラフ上にまとめて示すことで、より明確に示される。
図2は、上述した実施例及び比較例をまとめたものである。図2に示すように、硫黄濃度の実績値から下限値(式(1)の右辺)を引いた値が0以上である場合、すなわち溶銑搬送容器2に投入する脱硫剤7の投入量W(kg/t)、溶銑搬送容器2に投入する冷鉄源6の投入量m’(kg/t)、脱硫処理前の溶銑温度T(℃)、脱硫処理前後での硫黄濃度差ΔS(質量%)が、式(1)を満たしている場合、脱硫処理後の硫黄濃度を確実に規格値(0.0030質量%)以下にすることができていることがわかる。
The tendency as described above is more clearly shown by collectively showing the relationship of the sulfur concentration in the hot metal after the desulfurization treatment with respect to the “result-lower limit” of the sulfur concentration.
FIG. 2 summarizes the above-described examples and comparative examples. As shown in FIG. 2, when the value obtained by subtracting the lower limit value (the right side of the formula (1)) from the actual value of the sulfur concentration is 0 or more, that is, the input amount W ( kg / t), the amount m ′ (kg / t) of the cold iron source 6 charged into the hot metal transfer container 2, the hot metal temperature T (° C.) before the desulfurization process, and the sulfur concentration difference ΔS (mass%) before and after the desulfurization process. ) Satisfies the formula (1), it can be seen that the sulfur concentration after the desulfurization treatment can surely be reduced to the standard value (0.0030% by mass) or less.

以上述べたように、冷鉄源6が投入された溶銑鍋5で脱硫剤7を投入しつつ脱硫するに際して、式(1)を満たすように脱硫剤7を投入することで、良好な脱硫能を確保しつつも安価な冷鉄源6の活用が可能となる。
なお、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能
な事項を採用している。
As described above, when desulfurizing while introducing the desulfurizing agent 7 in the hot metal ladle 5 in which the cold iron source 6 is charged, the desulfurizing agent 7 is charged so as to satisfy the formula (1). It is possible to make use of an inexpensive cold iron source 6 while securing the above.
It should be noted that matters not explicitly disclosed in the embodiment disclosed this time, such as operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component, deviate from the range normally practiced by those skilled in the art. However, matters that can be easily assumed by those skilled in the art are employed.

1 高炉
2 溶銑搬送容器
3 混銑車
5 溶銑鍋
6 冷鉄源
7 脱硫剤
8 インペラ
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Hot metal conveyance container 3 Chaotic wheel 5 Hot metal ladle 6 Cold iron source 7 Desulfurization agent 8 Impeller

Claims (1)

溶銑と冷鉄源のみが装入された溶銑搬送容器に外部から脱硫剤を投入しつつ脱硫を行うに際しては、
前記溶銑搬送容器に投入する脱硫剤の投入量W(kg/t)とし、溶銑搬送容器に投入する冷鉄源の投入量をm’(kg/t)とし、脱硫処理前の溶銑温度をT(℃)とし、脱硫処理前後での硫黄濃度差をΔS(質量%)としたとき、前記脱硫剤の投入量Wを式(1)を満たすように設定することを特徴とする溶銑の脱硫方法。
When performing desulfurization while introducing a desulfurization agent from the outside into a hot metal transport container in which only hot metal and cold iron source are charged,
The amount of desulfurization agent charged to the hot metal transfer container W (kg / t), the amount of cold iron source input to the hot metal transfer container m ′ (kg / t), and the hot metal temperature before desulfurization treatment T (° C.), and when the difference in sulfur concentration before and after the desulfurization treatment is ΔS (mass%), the desulfurizing agent input amount W is set so as to satisfy the formula (1). .
JP2014025411A 2014-02-13 2014-02-13 Desulfurization method Expired - Fee Related JP6223217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025411A JP6223217B2 (en) 2014-02-13 2014-02-13 Desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025411A JP6223217B2 (en) 2014-02-13 2014-02-13 Desulfurization method

Publications (2)

Publication Number Publication Date
JP2015151568A JP2015151568A (en) 2015-08-24
JP6223217B2 true JP6223217B2 (en) 2017-11-01

Family

ID=53894167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025411A Expired - Fee Related JP6223217B2 (en) 2014-02-13 2014-02-13 Desulfurization method

Country Status (1)

Country Link
JP (1) JP6223217B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293383B2 (en) * 1995-01-18 2002-06-17 日本鋼管株式会社 How to use hot metal slag
JPH1025505A (en) * 1996-07-12 1998-01-27 Nkk Corp Method for dusulfurizing molten iron
JP2006219695A (en) * 2005-02-08 2006-08-24 Jfe Steel Kk Desulfurizing treatment method for molten iron
JP4440202B2 (en) * 2005-10-19 2010-03-24 株式会社神戸製鋼所 How to put cold iron into hot metal ladle
JP5772339B2 (en) * 2011-07-22 2015-09-02 Jfeスチール株式会社 Reuse method of slag in ladle

Also Published As

Publication number Publication date
JP2015151568A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP5772339B2 (en) Reuse method of slag in ladle
JP5605339B2 (en) Recycling method of steelmaking slag
JP4999483B2 (en) Manufacturing method of stainless steel
JP2015178646A (en) Method of forming ingot of low-sulfur steel
JP6223217B2 (en) Desulfurization method
KR101185240B1 (en) Method of desulfuration of return molten steel using slag made in KR desulfuration process
JP6405876B2 (en) Hot metal refining method
JP6223249B2 (en) Desiliconization, dephosphorization, and decarburization methods that reuse desiliconized slag
JP5689024B2 (en) Dephosphorization method of hot metal using dust
JP4609010B2 (en) Steel manufacturing method
JP5602047B2 (en) Dephosphorization method of hot metal in a chaotic car
JP2013204142A (en) Method for recycling chromium-containing dust
JP6237293B2 (en) Hot metal desulfurization treatment method
CN108350515B (en) Iron liquid pretreatment method
JP6930193B2 (en) Desulfurization method of hot metal
JP6061748B2 (en) Method of charging cold iron source
JP6150972B2 (en) Method for melting cold iron source using hot metal in storage furnace equipped with heating device
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JP2012122134A (en) Dephosphorizing treatment method of molten iron using calcium ferrite
JP6414097B2 (en) How to reuse molten steel
JP7115434B2 (en) Melting method of cold iron source in hot metal transport vessel
JP6848429B2 (en) Steelmaking slag reforming method
JP6947374B2 (en) Cast iron refining method
JP2008260997A (en) Desulfurization method of molten steel
JP6468083B2 (en) Converter discharge method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees