JP6215050B2 - Catalyst evaluation system - Google Patents

Catalyst evaluation system Download PDF

Info

Publication number
JP6215050B2
JP6215050B2 JP2013273215A JP2013273215A JP6215050B2 JP 6215050 B2 JP6215050 B2 JP 6215050B2 JP 2013273215 A JP2013273215 A JP 2013273215A JP 2013273215 A JP2013273215 A JP 2013273215A JP 6215050 B2 JP6215050 B2 JP 6215050B2
Authority
JP
Japan
Prior art keywords
catalyst
resistance
path
branch
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013273215A
Other languages
Japanese (ja)
Other versions
JP2015127672A (en
Inventor
陽一 岡田
陽一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2013273215A priority Critical patent/JP6215050B2/en
Publication of JP2015127672A publication Critical patent/JP2015127672A/en
Application granted granted Critical
Publication of JP6215050B2 publication Critical patent/JP6215050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

この発明は、排ガスの浄化等に用いられる触媒評価装置に関する。   The present invention relates to a catalyst evaluation apparatus used for exhaust gas purification and the like.

従来、この種の触媒を評価する場合、内燃機関から排出される排ガスを模した試験ガスが用いられている。試験ガスとは、排ガスを構成する成分、例えばN、CO、NO、SO等が含まれるものである。 Conventionally, when evaluating this type of catalyst, a test gas simulating exhaust gas discharged from an internal combustion engine has been used. The test gas includes components that constitute the exhaust gas, such as N 2 , CO 2 , NO x , SO x and the like.

この試験ガスを用いて触媒を評価したものとして、例えば特許文献1に記載された装置がある。この触媒評価装置は、試験ガスが流れる流路と、流路を流れる試験ガスを加熱する加熱部と、加熱部を経た試験ガスに含まれる特定成分を除去する触媒と、流路に接続されて触媒を経た試験ガスを排出する排出路とを備えるものである。   As an example of evaluating a catalyst using this test gas, there is an apparatus described in Patent Document 1, for example. This catalyst evaluation apparatus is connected to a flow path through which a test gas flows, a heating section for heating the test gas flowing through the flow path, a catalyst for removing a specific component contained in the test gas that has passed through the heating section, and the flow path. And a discharge path for discharging the test gas that has passed through the catalyst.

特開2007−3382号公報JP 2007-3382 A

しかしながら、上述したような従来の触媒評価装置では、エンジンの脈動等によって触媒に作用する圧力の変動を再現することができず、実際の内燃機関に則した触媒評価を行うことができないという問題が生じる。   However, the conventional catalyst evaluation apparatus as described above cannot reproduce pressure fluctuations acting on the catalyst due to engine pulsation or the like, and cannot perform catalyst evaluation in accordance with an actual internal combustion engine. Arise.

本発明は、上記課題に鑑みて成されたものであり、触媒に作用する圧力を変動させることができ、実際の内燃機関に則した触媒評価ができる触媒評価装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst evaluation apparatus that can vary the pressure acting on the catalyst and can perform catalyst evaluation in accordance with an actual internal combustion engine. .

本発明にかかる触媒評価装置は、試験ガスが流れるとともに、触媒を配置する触媒配置領域が設けられたメイン流路と、前記触媒配置領域の上流に設けられ、前記メイン流路を流れる前記試験ガスを加熱する加熱部と、前記触媒配置領域の上流又は下流に接続されるとともに、前記メイン流路を流れる前記試験ガスを排出する排出路と、前記排出路の抵抗を変化させる抵抗変化機構と、前記抵抗変化機構を制御して、前記触媒配置領域の圧力を変動させる制御部とを備える。   The catalyst evaluation apparatus according to the present invention includes a main flow path provided with a catalyst placement area in which a test gas flows and a catalyst placement area, and the test gas provided upstream of the catalyst placement area and flowing through the main flow path. A heating unit that heats the catalyst, a discharge path that discharges the test gas flowing through the main flow path, and a resistance change mechanism that changes the resistance of the discharge path. A control unit that controls the resistance change mechanism to vary the pressure in the catalyst arrangement region.

上述の構成によれば、制御部が抵抗変化機構を制御して排出路の抵抗を変化させるので、触媒配置領域の圧力を変動させることができ、触媒配置領域に配置される触媒に作用する圧力を変動させて実際の内燃機関に則した触媒評価を行うことができる。   According to the above configuration, since the control unit controls the resistance change mechanism to change the resistance of the discharge path, the pressure in the catalyst arrangement region can be changed, and the pressure acting on the catalyst arranged in the catalyst arrangement region The catalyst can be evaluated in accordance with an actual internal combustion engine.

具体的な一態様としては、前記排出路が、並列に設けられ、それぞれ所定の抵抗を有した複数の分岐排出路を具備したものであり、前記抵抗変化機構が、前記各分岐排出路の路内を開閉する開閉弁を備えたものであり、前記制御部が、前記各開閉弁の開閉を制御して、前記触媒配置領域の圧力を変動させるものを挙げることができる。   As a specific aspect, the discharge passages are provided in parallel, each having a plurality of branch discharge passages each having a predetermined resistance, and the resistance change mechanism is provided for each branch discharge passage. An opening / closing valve for opening and closing the inside is provided, and the control unit controls opening / closing of each opening / closing valve to vary the pressure in the catalyst arrangement region.

このように構成すれば、制御部が高速に開閉する開閉弁を制御して排出路の抵抗を変化させるので、触媒配置領域の圧力を高速で変動させることができる。   If comprised in this way, since the control part controls the on-off valve which opens and closes at high speed, and changes the resistance of a discharge path, the pressure of a catalyst arrangement | positioning area | region can be fluctuated at high speed.

別の具体的な一体様としては、前記抵抗変化機構が、前記排出路の開度を調整して抵抗を変化させる抵抗調整弁を備えるものであり、前記制御部が、前記抵抗調整弁の開度を制御して、前記触媒配置領域の圧力を変動させるものを挙げることができる。   As another specific integration, the resistance change mechanism includes a resistance adjustment valve that changes the resistance by adjusting the opening of the discharge passage, and the control unit opens the resistance adjustment valve. For example, the pressure of the catalyst arrangement region may be changed by controlling the degree.

このように構成すれば、制御部が無段階に開度が変わる抵抗調整弁を制御して排出路の抵抗を変化させるので、触媒配置領域の圧力を無段階に変動させることができる。   If comprised in this way, since the control part will control the resistance control valve in which an opening degree will change steplessly and will change the resistance of a discharge path, the pressure of a catalyst arrangement | positioning area | region can be fluctuated steplessly.

さらに別の具体的な一態様として、前記排出路が、並列に設けられ、それぞれ所定の抵抗を有した複数の分岐排出路と、前記複数の分岐排出路が合流した合流排出路とを具備したものであり、前記抵抗変化機構が、前記各分岐排出路の路内を開閉する開閉弁と、前記合流排出路の開度を調整して抵抗を変化させる抵抗調整弁とを備えたものであり、前記制御部が、前記各開閉弁の開閉を制御するとともに、前記抵抗調整弁の開度を制御して、前記触媒配置領域の圧力を変動させるものを挙げることができる。   As yet another specific embodiment, the discharge passages are provided in parallel, each having a plurality of branch discharge passages each having a predetermined resistance, and a merged discharge passage where the plurality of branch discharge passages merge. The resistance change mechanism includes an on-off valve that opens and closes the inside of each branch discharge path, and a resistance adjustment valve that changes the resistance by adjusting the opening of the confluence discharge path. The controller may control the opening / closing of the on-off valves and control the opening of the resistance adjusting valve to vary the pressure in the catalyst arrangement region.

このように構成すれば、抵抗調整弁による無段階に変化する圧力の上に、開閉弁による高速な圧力変化を重畳させることができるので、触媒に作用する圧力変化のバリエーションを増やすことができ、より実際の内燃機関の状態に近づけて触媒評価を行うことができる。   If comprised in this way, since the high-speed pressure change by an on-off valve can be superimposed on the stepless change pressure by a resistance control valve, the variation of the pressure change which acts on a catalyst can be increased, The catalyst evaluation can be performed closer to the actual state of the internal combustion engine.

加えて別の具体的な一態様として、前記触媒配置領域の上流と前記加熱部の下流との間に設けられて、前記メイン流路から分岐する分岐路と、前記分岐路を流れる前記試験ガスの流量を変化させる流量変化機構とをさらに備えるものであり、
前記制御部が、前記流量変化機構も制御するものを挙げることができる。
In addition, as another specific embodiment, a branch path that is provided between the upstream side of the catalyst arrangement region and the downstream side of the heating unit and branches from the main flow path, and the test gas that flows through the branch path And a flow rate change mechanism for changing the flow rate of
An example is one in which the control unit also controls the flow rate change mechanism.

このように構成すれば、触媒配置領域の圧力に加えて、触媒配置領域を流れる試験ガスの流量を変化させることができる。   If comprised in this way, in addition to the pressure of a catalyst arrangement | positioning area | region, the flow volume of the test gas which flows through a catalyst arrangement | positioning area | region can be changed.

本発明によれば、触媒に作用する圧力を変動させることができ、実際の内燃機関に則した触媒評価ができる触媒評価装置を提供することを目的とする。   An object of the present invention is to provide a catalyst evaluation apparatus that can vary the pressure acting on the catalyst and can perform catalyst evaluation in accordance with an actual internal combustion engine.

本発明の第1実施形態にかかる触媒評価装置の概略図。1 is a schematic view of a catalyst evaluation apparatus according to a first embodiment of the present invention. 本発明の第2実施形態にかかる触媒評価装置の概略図。Schematic of the catalyst evaluation apparatus concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる触媒評価装置の概略図。Schematic of the catalyst evaluation apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる触媒評価装置の概略図。Schematic of the catalyst evaluation apparatus concerning 4th Embodiment of this invention.

本発明の触媒評価装置は、自動車等の内燃機関に搭載され、内燃機関から排出される排ガスに含まれる特性成分を除去する触媒の性能を評価するためのものである。   The catalyst evaluation apparatus of the present invention is mounted on an internal combustion engine such as an automobile and is for evaluating the performance of a catalyst that removes characteristic components contained in exhaust gas discharged from the internal combustion engine.

そして、本発明の第1実施形態にかかる触媒評価装置1は、図1に示すように、試験ガスが流れるとともに、触媒4を配置する触媒配置領域Xが設けられたメイン流路2と、触媒配置領域Xの上流に設けられ、メイン流路2を流れる試験ガスを加熱する加熱部3と、触媒配置領域Xの下流に接続されるとともに、メイン流路2を流れる試験ガスを排出する排出路5と、排出路5の抵抗を変化させる抵抗変化機構6と、抵抗変化機構6を制御して、触媒配置領域Xの圧力を変動させる制御部7とを備える。   As shown in FIG. 1, the catalyst evaluation apparatus 1 according to the first embodiment of the present invention includes a main flow path 2 provided with a catalyst arrangement region X in which a test gas flows and a catalyst 4 is arranged, and a catalyst. A heating unit 3 that is provided upstream of the arrangement region X and that heats the test gas flowing through the main flow path 2, and a discharge path that is connected to the downstream of the catalyst arrangement area X and discharges the test gas flowing through the main flow path 2. 5, a resistance change mechanism 6 that changes the resistance of the discharge path 5, and a control unit 7 that controls the resistance change mechanism 6 to change the pressure in the catalyst arrangement region X.

メイン流路2は試験ガスが流れるものであって、上流に図示しない試験ガス供給管が接続され、該試験ガス供給管から試験ガスをメイン流路に供給する試験ガス供給口2aが設けられるとともに、下流に排出路5が接続されて、試験ガスをメイン流路2から排出する試験ガス排出口2bが設けられている。この試験ガス供給管からメイン流路に供給される試験ガスの流量は一定となるように構成されている。また、触媒配置領域の下流に排出路5が設けられているので、触媒配置領域Xを流れる試験ガスの流量は一定となる。   The main flow path 2 is where the test gas flows. A test gas supply pipe (not shown) is connected upstream, and a test gas supply port 2a for supplying the test gas from the test gas supply pipe to the main flow path is provided. A discharge path 5 is connected downstream, and a test gas discharge port 2 b for discharging the test gas from the main flow path 2 is provided. The flow rate of the test gas supplied from the test gas supply pipe to the main channel is configured to be constant. Further, since the discharge path 5 is provided downstream of the catalyst arrangement region, the flow rate of the test gas flowing through the catalyst arrangement region X is constant.

加熱部3は、メイン流路2を囲むように設けられたヒータ等から構成されるものであって、メイン流路2を加熱することにより、メイン流路2を流れる試験ガスを加熱するものである。   The heating unit 3 is composed of a heater or the like provided so as to surround the main flow path 2, and heats the test gas flowing through the main flow path 2 by heating the main flow path 2. is there.

また、メイン流路2の加熱部3が配置する下流には触媒配置領域Xが設けられ、触媒配置領域Xには本装置の評価対象となる触媒4が充填されている。この触媒4は、試験ガスに含まれる特定成分を除去するものである。また触媒配置領域Xの上流の圧力を測定するための圧力センサ8aが設けられている。   Further, a catalyst arrangement region X is provided downstream of the main flow path 2 where the heating unit 3 is arranged, and the catalyst arrangement region X is filled with a catalyst 4 to be evaluated by this apparatus. The catalyst 4 removes a specific component contained in the test gas. Further, a pressure sensor 8a for measuring the pressure upstream of the catalyst arrangement region X is provided.

排出路5は、触媒配置領域Xの下流に設けられるとともに、メイン流路2の試験ガス排出口2bに接続されるものである。また、本実施形態では、排出路5は途中から並列に設けられ、それぞれ所定の抵抗を有した複数の分岐排出路(第1分岐排出路5a、第2分岐排出路5b、第3分岐排出路5c)に分岐する。   The discharge path 5 is provided downstream of the catalyst arrangement region X and is connected to the test gas discharge port 2 b of the main flow path 2. Moreover, in this embodiment, the discharge path 5 is provided in parallel from the middle, and each has a plurality of branch discharge paths (first branch discharge path 5a, second branch discharge path 5b, and third branch discharge path) having a predetermined resistance. Branch to 5c).

この分岐排出路(第1分岐排出路5a、第2分岐排出路5b、第3分岐排出路5c)は、抵抗が互いに異なるものであって、管径や長さが異なるキャピラリー管等で構成されている。   This branch discharge path (the first branch discharge path 5a, the second branch discharge path 5b, and the third branch discharge path 5c) is composed of capillary tubes having different resistances and different tube diameters and lengths. ing.

しかして、第1分岐排出路5a、第2分岐排出路5b及び第3分岐排出路5cには、それぞれ抵抗変化機構6が設けられている。   Accordingly, the first branch discharge path 5a, the second branch discharge path 5b, and the third branch discharge path 5c are provided with resistance change mechanisms 6, respectively.

この抵抗変化機構6は、第1分岐排出路5a、第2分岐排出路5b及び第3分岐排出路5cの路内を開閉する第1開閉弁6a、第2開閉弁6b、第3開閉弁6cを備える。この開閉弁は例えばパルス間隔で開閉が切り替わる電磁弁等であって、図示しないが、分岐排出路内を塞ぐように配置される弁体と、分岐排出路に接続され、弁体を収容する弁座と、弁体を駆動させる駆動部とを備える。   The resistance change mechanism 6 includes a first on-off valve 6a, a second on-off valve 6b, and a third on-off valve 6c that open and close the first branch discharge path 5a, the second branch discharge path 5b, and the third branch discharge path 5c. Is provided. This on-off valve is, for example, an electromagnetic valve that opens and closes at intervals of a pulse. Although not shown, a valve body that is arranged so as to close the inside of the branch discharge path and a valve that is connected to the branch discharge path and houses the valve body A seat and a drive unit for driving the valve body are provided.

制御部7は、第1開閉弁6a、第2開閉弁6b、第3開閉弁6cの開閉を制御して、メイン流路2を流れる試験ガスの圧力を変動させるものであって、構造的には、CPU、内部メモリ、I/Oバッファ回路、ADコンバータ等を有した所謂コンピュータ回路である。そして、内部メモリの所定領域に格納した制御プログラムに従って動作することでCPU及び周辺機器が協働動作して、制御部7としての機能を発揮する。   The control unit 7 controls the opening and closing of the first on-off valve 6a, the second on-off valve 6b, and the third on-off valve 6c to vary the pressure of the test gas flowing through the main flow path 2, and is structurally Is a so-called computer circuit having a CPU, an internal memory, an I / O buffer circuit, an AD converter, and the like. Then, by operating according to a control program stored in a predetermined area of the internal memory, the CPU and peripheral devices operate cooperatively, thereby exhibiting the function as the control unit 7.

触媒配置領域Xの圧力を変動させる方法について詳述する。   A method for changing the pressure in the catalyst arrangement region X will be described in detail.

制御部7が、例えば、第1開閉弁6a、第2開閉弁6b及び第3開閉弁6cを予め開けた状態で、第1開閉弁6aを閉める。第1開閉弁6aが閉まると、第2分岐排出路5b及び第3分岐排出路5cに試験ガスが流れることになり、排出路5の抵抗は増大する。その後、第1開閉弁6aを開けると、第1分岐排出路5a、第2分岐排出路5b及び第3分岐排出路5cを試験ガスが流れることとなり、排出路5の抵抗は減少する。   For example, the controller 7 closes the first on-off valve 6a with the first on-off valve 6a, the second on-off valve 6b, and the third on-off valve 6c opened in advance. When the first on-off valve 6a is closed, the test gas flows through the second branch discharge path 5b and the third branch discharge path 5c, and the resistance of the discharge path 5 increases. Thereafter, when the first on-off valve 6a is opened, the test gas flows through the first branch discharge path 5a, the second branch discharge path 5b, and the third branch discharge path 5c, and the resistance of the discharge path 5 decreases.

ここで、試験ガス供給管からメイン流路2に供給される試験ガスの流量が一定の場合、排出路5の抵抗が増大すると、排出路5の上流に接続された触媒配置領域Xの圧力も増大する。また、排出路5の抵抗が減少すると、排出路の上流に接続された触媒配置領域Xの圧力も減少する。   Here, when the flow rate of the test gas supplied from the test gas supply pipe to the main flow path 2 is constant, when the resistance of the discharge path 5 increases, the pressure in the catalyst arrangement region X connected upstream of the discharge path 5 also increases. Increase. Further, when the resistance of the discharge path 5 decreases, the pressure in the catalyst arrangement region X connected upstream of the discharge path also decreases.

また、第1開閉弁6a、第2開閉弁6b及び第3開閉弁6cの開閉はパルス間隔で切り替わるので、排出路5の抵抗が高速で変動することになり、触媒配置領域Xの圧力も高速で変動することになる。このとき、制御部7は、圧力センサ8aで測定した触媒配置領域Xの圧力を受信しながら、第1開閉弁6a、第2開閉弁6b及び第3開閉弁6cを制御する。   Further, since the opening / closing of the first opening / closing valve 6a, the second opening / closing valve 6b, and the third opening / closing valve 6c is switched at pulse intervals, the resistance of the discharge passage 5 fluctuates at a high speed, and the pressure in the catalyst arrangement region X also increases at a high speed. Will fluctuate. At this time, the control unit 7 controls the first on-off valve 6a, the second on-off valve 6b, and the third on-off valve 6c while receiving the pressure in the catalyst arrangement region X measured by the pressure sensor 8a.

上述したように構成した第1実施形態の触媒評価装置1によれば、制御部7が抵抗変化機構6を制御して排出路5の抵抗を変動させるので、触媒配置領域Xの圧力を変動させることができ、触媒配置領域Xに配置される触媒4に作用する圧力を変動させて実際の内燃機関に則した触媒評価を行うことができる。   According to the catalyst evaluation apparatus 1 of the first embodiment configured as described above, the control unit 7 controls the resistance change mechanism 6 to change the resistance of the discharge path 5, so that the pressure in the catalyst arrangement region X is changed. Therefore, it is possible to perform the catalyst evaluation according to the actual internal combustion engine by changing the pressure acting on the catalyst 4 arranged in the catalyst arrangement region X.

また、制御部7が高速に開閉する開閉弁を制御して排出路5の抵抗を変化させるので、触媒配置領域Xの圧力を高速で変動させることができる。   Moreover, since the control part 7 controls the on-off valve that opens and closes at high speed to change the resistance of the discharge path 5, the pressure in the catalyst arrangement region X can be varied at high speed.

次に、本発明の第2実施形態における触媒評価装置1について説明する。
なお、第1実施形態と同様の部分には同一の符号を付し、説明を省略する。
Next, the catalyst evaluation apparatus 1 in 2nd Embodiment of this invention is demonstrated.
In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment, and description is abbreviate | omitted.

第2実施形態における触媒評価装置1は、メイン流路2を流れる試験ガスの圧力を変動させる構成がさらに追加されたものであって、図2に示すように、第1分岐排出路5a、第2分岐排出路5b及び第3分岐排出路5cが合流した合流排出路12に抵抗変化機構10を設けるとともに、抵抗変化機構10よりも上流に水分除去部11を設ける。   The catalyst evaluation apparatus 1 in the second embodiment is further added with a configuration for changing the pressure of the test gas flowing through the main flow path 2, and as shown in FIG. 2, the first branch discharge path 5a, the first The resistance change mechanism 10 is provided in the merged discharge path 12 where the two-branch discharge path 5b and the third branch discharge path 5c merge, and the moisture removing unit 11 is provided upstream of the resistance change mechanism 10.

水分除去部11は、試験ガスに含まれる水分を分離・除去するものであって、試験ガスに含まれる水分を分離するドレインセパレータ11aと、ドレインセパレータ11aが分離した水分を貯蔵するドレインポット11bとを備える。水分除去部11を通過した試験ガスは、水分が除去された状態となる。   The moisture removing unit 11 separates and removes moisture contained in the test gas, and includes a drain separator 11a that separates moisture contained in the test gas, and a drain pot 11b that stores moisture separated by the drain separator 11a. Is provided. The test gas that has passed through the moisture removing unit 11 is in a state where moisture has been removed.

抵抗変化機構10は、合流排出路12に設けられ、開度を調整して排出路5の抵抗を変化させる抵抗調整弁10aを備える。なお、この抵抗調整弁10aは、例えば排出路5を塞ぐように配置される調整弁本体(図示しない)と、排出路5に外付けされて、制御部7からの制御信号に応じて調整弁本体を移動させて路内の開度を調整させる調整弁駆動部(図示しない)とを備える。なお、水分除去部11を設けたことで、抵抗調整弁10aを流れる試験ガスは水分が除去された状態となっている。   The resistance change mechanism 10 includes a resistance adjustment valve 10 a that is provided in the merging discharge path 12 and adjusts the opening degree to change the resistance of the discharge path 5. The resistance adjustment valve 10a is, for example, an adjustment valve main body (not shown) arranged so as to close the discharge path 5, and an external adjustment valve attached to the discharge path 5 in accordance with a control signal from the control unit 7. And an adjustment valve driving unit (not shown) that moves the main body to adjust the opening in the road. Since the moisture removing unit 11 is provided, the test gas flowing through the resistance adjusting valve 10a is in a state where moisture has been removed.

制御部7は、第1実施形態で述べたように第1開閉弁6a、第2開閉弁6b、第3開閉弁6cを制御するとともに、抵抗調整弁10aの開度を制御する。   As described in the first embodiment, the control unit 7 controls the first on-off valve 6a, the second on-off valve 6b, and the third on-off valve 6c, and controls the opening of the resistance adjustment valve 10a.

つまり、制御部7が、抵抗調整部10aの開度を大きくすると、排出路5の抵抗は減少して触媒配置領域Xの圧力も減少する。一方、抵抗調整弁10aの開度を小さくすると、排出路5の抵抗は増大して触媒配置領域Xの圧力も増大する。   That is, when the control unit 7 increases the opening degree of the resistance adjusting unit 10a, the resistance of the discharge path 5 decreases and the pressure in the catalyst arrangement region X also decreases. On the other hand, when the opening degree of the resistance adjusting valve 10a is decreased, the resistance of the discharge path 5 is increased and the pressure in the catalyst arrangement region X is also increased.

ここで、抵抗調整弁10aの開度は開閉弁のように瞬時に開閉できるものではなく、開閉弁と比べると低速で開閉するものであるので、制御部7が、抵抗調整弁10aを制御してメイン流路2を流れる試験ガスの圧力を変動させた場合、開閉弁に比べてメイン流路2を流れる試験ガスの圧力がゆっくりと変動する。   Here, the opening degree of the resistance adjustment valve 10a is not instantaneously opened and closed like the on-off valve, and is opened and closed at a lower speed than the on-off valve. Therefore, the control unit 7 controls the resistance adjustment valve 10a. Thus, when the pressure of the test gas flowing through the main flow path 2 is varied, the pressure of the test gas flowing through the main flow path 2 varies more slowly than the open / close valve.

第2実施形態における触媒評価装置1では、抵抗調整弁10aによる無段階に変化する圧力の上に、開閉弁による高速な圧力変化を重畳させることができるので、触媒4に作用する圧力変化のバリエーションを増やすことができ、より実際の内燃機関の状態に近づけて触媒評価を行うことができる。   In the catalyst evaluation apparatus 1 according to the second embodiment, since a high-speed pressure change by the on-off valve can be superimposed on the steplessly changing pressure by the resistance adjustment valve 10a, variations in pressure change acting on the catalyst 4 can be achieved. The catalyst evaluation can be performed closer to the actual state of the internal combustion engine.

本発明の第3実施形態における触媒評価装置1について説明する。
なお、第1実施形態又は第2実施形態と同様の部分には同一の符号を付し、説明を省略する。
The catalyst evaluation apparatus 1 in 3rd Embodiment of this invention is demonstrated.
In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment or 2nd Embodiment, and description is abbreviate | omitted.

第3実施形態における触媒評価装置1は、触媒配置領域Xの下流の圧力に加えて、触媒配置領域Xの上流の圧力を変動させるものであって、図3に示すように、触媒配置領域Xの上流と加熱部3の下流との間に設けられて、メイン流路2から分岐する分岐路20と、分岐路20を流れる試験ガスの流量を変化させる流量変化機構21とを備える。   The catalyst evaluation apparatus 1 according to the third embodiment varies the pressure upstream of the catalyst placement region X in addition to the pressure downstream of the catalyst placement region X. As shown in FIG. And a downstream of the heating unit 3 and a branch 20 that branches from the main channel 2 and a flow rate change mechanism 21 that changes the flow rate of the test gas flowing through the branch 20.

分岐路20は、複数のサブ分岐路(第1サブ分岐路20a、第2サブ分岐路20b、第3サブ分岐路20c)を具備する。第1サブ分岐路20a、第2サブ分岐路20b、第3サブ分岐路20cが合流した合流分岐路22は、合流排出路12に接続されており、分岐路20から分岐した試験ガスは合流分岐路22から排出される。   The branch path 20 includes a plurality of sub branch paths (first sub branch path 20a, second sub branch path 20b, and third sub branch path 20c). The merge branch path 22 where the first sub branch path 20a, the second sub branch path 20b, and the third sub branch path 20c merge is connected to the merge discharge path 12, and the test gas branched from the branch path 20 is merged and branched. It is discharged from the path 22.

第1サブ分岐路20a、第2サブ分岐路20b、第3サブ分岐路20cは、路内を流れる試験ガスの抵抗が互いに異なるものであって、例えば、互いに管径や長さが異なるキャピラリー管等で構成されている。   The first sub-branch path 20a, the second sub-branch path 20b, and the third sub-branch path 20c have different resistances of the test gas flowing in the path, and for example, capillary tubes having different pipe diameters and lengths. Etc.

流量変化機構21は、第1サブ分岐路20a、第2サブ分岐路20b、第3サブ分岐路20cにそれぞれ設けられて、路内を開閉する第1分岐路用開閉弁21a、第2分岐路用開閉弁21b、第3分岐路用開閉弁21cを備える。分岐路用開閉弁21は電磁弁等で構成されており、図示しないが、サブ分岐路内を塞ぐように配置される弁体と、サブ分岐路に接続され、弁体を収容する弁座と、弁体を駆動させる駆動部とを備える。   The flow rate changing mechanism 21 is provided in each of the first sub-branch path 20a, the second sub-branch path 20b, and the third sub-branch path 20c, and opens and closes the first branch path on-off valve 21a and the second branch path. Open / close valve 21b and third branch open / close valve 21c. The branch path on-off valve 21 is composed of a solenoid valve or the like, and although not shown, a valve body disposed so as to close the sub branch path, and a valve seat connected to the sub branch path and accommodating the valve body, And a drive unit for driving the valve body.

また、第3実施形態においては、加熱部3の下流であって触媒配置領域Xの上流に、触媒配置領域Xの上流の圧力を測定する圧力センサ8aが設けられるとともに、触媒配置領域Xの下流の圧力を測定する圧力センサ8bが設けられている。   In the third embodiment, a pressure sensor 8a that measures the pressure upstream of the catalyst placement region X is provided downstream of the heating unit 3 and upstream of the catalyst placement region X, and downstream of the catalyst placement region X. There is provided a pressure sensor 8b for measuring the pressure.

制御部7は、触媒配置領域Xの下流の圧力に加えて、触媒配置領域Xの上流の圧力をも変動させるものである。   In addition to the pressure downstream of the catalyst placement region X, the control unit 7 also varies the pressure upstream of the catalyst placement region X.

制御部7は、触媒配置領域Xを流れる試験ガスの流量を変動させる場合、予め第1サブ分岐路20a、第2サブ分岐路20b及び第3サブ分岐路20cを閉めた状態で、いずれか一つを選択して、そのサブ分岐路に設けられた分岐路用開閉弁21を開くように電気信号を送る。駆動部は制御部7からの電気信号を受けて弁体を駆動させてサブ分岐路を開く。   When changing the flow rate of the test gas flowing through the catalyst arrangement region X, the control unit 7 closes the first sub-branch path 20a, the second sub-branch path 20b, and the third sub-branch path 20c in advance. One is selected, and an electrical signal is sent so as to open the branch path opening / closing valve 21 provided in the sub branch path. The drive unit receives the electrical signal from the control unit 7 and drives the valve body to open the sub branch path.

すると、メイン流路2を流れる試験ガスの一部が分岐路20に流れ込むので、メイン流路2を流れる試験ガスの流量が減り、触媒配置領域Xを流れる試験ガスの流量を減るのでメイン流路2の圧力を低下させることができる。   Then, since a part of the test gas flowing through the main flow path 2 flows into the branch path 20, the flow rate of the test gas flowing through the main flow path 2 decreases, and the flow rate of the test gas flowing through the catalyst arrangement region X decreases. 2 pressure can be reduced.

このように、分岐路用開閉弁21を制御部7で制御してサブ分岐路の開閉を行うと、メイン流路2を流れる試験ガスの一部が分岐路20に流れ込み、メイン流路2を流れる試験ガスの流量が変わるので、触媒配置領域Xの上流を流れる試験ガスの圧力を変動させることができる。このとき、制御部は、圧力センサ8aが測定した圧力を受信しながら分岐路用開閉弁21の制御を行うとともに、圧力センサ8bが測定した圧力を受信しながら第1開閉弁6a、第2開閉弁6b、第3開閉弁6cの制御を行う。   As described above, when the branch path opening / closing valve 21 is controlled by the control unit 7 to open / close the sub branch path, a part of the test gas flowing through the main flow path 2 flows into the branch path 20, Since the flow rate of the flowing test gas changes, the pressure of the test gas flowing upstream of the catalyst arrangement region X can be changed. At this time, the control unit controls the branch path opening / closing valve 21 while receiving the pressure measured by the pressure sensor 8a, and also controls the first opening / closing valve 6a and the second opening / closing valve while receiving the pressure measured by the pressure sensor 8b. Control of the valve 6b and the third on-off valve 6c is performed.

第3実施形態における触媒評価装置1においては、触媒配置領域Xの上流及び下流の圧力を制御することができるので、触媒配置領域の圧力に勾配を設けることができ、より実際の内燃機関に則して圧力制御を行うことができる。   In the catalyst evaluation apparatus 1 according to the third embodiment, the pressure upstream and downstream of the catalyst arrangement region X can be controlled, so that a gradient can be provided in the pressure of the catalyst arrangement region, which is more in line with the actual internal combustion engine. Thus, pressure control can be performed.

加えて、メイン流路を流れる試験ガスの流の一部が分岐路に流れるので、触媒配置領域Xを流れる試験ガスの流量も変動させることができ、流量変化機構21を制御することで、触媒配置領域Xを流れる試験ガスの流量を制御することができる。   In addition, since a part of the flow of the test gas flowing in the main flow path flows in the branch path, the flow rate of the test gas flowing in the catalyst arrangement region X can also be changed, and the flow rate changing mechanism 21 is controlled to control the catalyst. The flow rate of the test gas flowing through the arrangement region X can be controlled.

本発明の第4実施形態における触媒評価装置1について説明する。
なお、第1実施形態、第2実施形態又は第3実施形態と同様の部分には同一の符号を付し、説明を省略する。
A catalyst evaluation apparatus 1 according to a fourth embodiment of the present invention will be described.
In addition, the same code | symbol is attached | subjected to the part similar to 1st Embodiment, 2nd Embodiment, or 3rd Embodiment, and description is abbreviate | omitted.

第4実施形態の触媒評価装置1は、触媒配置領域Xの上流の圧力を制御するとともに、触媒配置領域Xの下流の圧力を制御する別の構成であって、図4に示すように、第3実施形態の触媒配置領域Xの上流と加熱部3の下流との間に設けられて、メイン流路2から分岐する分岐路20と、分岐路20を流れる試験ガスの流量を変化させる流量変化機構21に加えて、分岐路20に水分除去部11と、水分除去部11よりも下流に設けられた流量変化機構31とを備える。   The catalyst evaluation device 1 according to the fourth embodiment is another configuration for controlling the pressure upstream of the catalyst arrangement region X and the pressure downstream of the catalyst arrangement region X. As shown in FIG. A flow rate change that is provided between the upstream side of the catalyst arrangement region X and the downstream side of the heating unit 3 in the third embodiment and changes the flow rate of the test gas that flows from the main flow path 2 and the branch path 20. In addition to the mechanism 21, the branch path 20 includes a moisture removing unit 11 and a flow rate changing mechanism 31 provided downstream of the moisture removing unit 11.

流量変化機構31は、流量調整弁31を具備する。この流量調整弁31は、例えば分岐路20を塞ぐように配置される調整弁本体(図示しない)と、分岐路20に外付けされて、制御部7からの制御信号に応じて調整弁本体を移動させて路内の開度を調整させる調整弁駆動部(図示しない)とを備える。   The flow rate change mechanism 31 includes a flow rate adjustment valve 31. The flow rate adjustment valve 31 is, for example, an adjustment valve main body (not shown) arranged so as to close the branch path 20, and is externally attached to the branch path 20, and the adjustment valve main body is installed in accordance with a control signal from the control unit 7. And an adjustment valve drive unit (not shown) that moves and adjusts the opening in the road.

制御部7が、流量調整弁31の抵抗調整部10aの開度を大きくすると、排出路5の抵抗は減少して触媒配置領域Xの圧力も減少する。一方、流量調整弁31の開度を小さくすると、排出路5の抵抗は増大して触媒配置領域Xの圧力も増大する。   When the control unit 7 increases the opening degree of the resistance adjusting unit 10a of the flow rate adjusting valve 31, the resistance of the discharge path 5 decreases and the pressure in the catalyst arrangement region X also decreases. On the other hand, when the opening degree of the flow rate adjustment valve 31 is reduced, the resistance of the discharge path 5 increases and the pressure in the catalyst arrangement region X also increases.

ここで、流量調整弁31の開度は流量変化機構21のように瞬時に開閉できるものではなく、流量変化機構21と比べると低速で開閉するものであるので、制御部7が、流量調整弁31を制御してメイン流路2を流れる試験ガスの圧力を変動させた場合、流量変化機構21に比べてメイン流路2を流れる試験ガスの圧力がゆっくりと変動する。   Here, the opening degree of the flow rate adjusting valve 31 is not instantaneously opened and closed like the flow rate changing mechanism 21, and is opened and closed at a lower speed than the flow rate changing mechanism 21. When the pressure of the test gas flowing through the main flow path 2 is changed by controlling 31, the pressure of the test gas flowing through the main flow path 2 changes more slowly than the flow rate change mechanism 21.

第4実施形態における触媒評価装置1では、触媒配置領域Xの上流においても、流量調整弁31による無段階に変化する圧力の上に、流量変化機構21による高速な圧力変化を重畳させることができるとともに、触媒配置領域Xの圧力に勾配を設けることができるので、触媒4に作用する圧力変化のバリエーションをさらに増やすことができ、より実際の内燃機関の状態に近づけて触媒評価を行うことができる。   In the catalyst evaluation device 1 in the fourth embodiment, a high-speed pressure change by the flow rate change mechanism 21 can be superimposed on the stepless change pressure by the flow rate adjustment valve 31 even upstream of the catalyst arrangement region X. At the same time, since the pressure in the catalyst arrangement region X can be provided with a gradient, variations in the pressure change acting on the catalyst 4 can be further increased, and the catalyst evaluation can be performed closer to the actual state of the internal combustion engine. .

加えて、メイン流路を流れる試験ガスの流の一部が分岐路に流れるので、触媒配置領域Xを流れる試験ガスの流量も変動させることができ、流量変化機構21を制御することで、触媒配置領域Xを流れる試験ガスの流量を制御することができる。   In addition, since a part of the flow of the test gas flowing in the main flow path flows in the branch path, the flow rate of the test gas flowing in the catalyst arrangement region X can also be changed, and the flow rate changing mechanism 21 is controlled to control the catalyst. The flow rate of the test gas flowing through the arrangement region X can be controlled.

なお、本発明は上記実施形態に限られたものではない。   The present invention is not limited to the above embodiment.

例えば、第2実施形態では、排出路に、水分除去部、流量調整弁及び流量調整部のみを設けておき、複数の排出路や開閉弁を設けていなくてもよい。この構成であれば、制御部が無段階に開度が変わる抵抗調整弁を制御して排出路の抵抗を変化させるので、触媒配置領域の圧力を無段階に変動させることができる。   For example, in the second embodiment, only the water removal unit, the flow rate adjustment valve, and the flow rate adjustment unit are provided in the discharge path, and a plurality of discharge paths and on-off valves may not be provided. With this configuration, the control unit controls the resistance adjusting valve whose opening degree changes steplessly to change the resistance of the discharge path, so that the pressure in the catalyst arrangement region can be changed steplessly.

また、流量測定部には、例えば差圧式のものを用いても構わない。   Further, for example, a differential pressure type may be used as the flow rate measuring unit.

本発明は、その趣旨に反しない範囲で様々な変形が可能である。   The present invention can be variously modified without departing from the spirit of the present invention.

1・・・触媒評価装置
2・・・メイン流路
3・・・加熱部
5・・・排出路
5a、5b、5c・・・分岐排出路
6、10・・・抵抗変化機構
7・・・制御部
X・・・触媒配置領域
DESCRIPTION OF SYMBOLS 1 ... Catalyst evaluation apparatus 2 ... Main flow path 3 ... Heating part 5 ... Discharge path 5a, 5b, 5c ... Branch discharge path 6, 10 ... Resistance change mechanism 7 ... Control part X ... catalyst placement area

Claims (5)

試験ガスが流れるとともに、触媒を配置する触媒配置領域が設けられたメイン流路と、
前記触媒配置領域の上流に設けられ、前記メイン流路を流れる前記試験ガスを加熱する加熱部と、
前記触媒配置領域の下流に接続されるとともに、前記メイン流路を流れる前記試験ガスを排出する排出路と、
前記排出路の抵抗を変化させる抵抗変化機構と、
前記抵抗変化機構を制御して、前記触媒配置領域の圧力を変動させる制御部とを備えることを特徴とする触媒評価装置。
As the test gas flows, a main flow path provided with a catalyst arrangement region for arranging the catalyst,
A heating unit that is provided upstream of the catalyst arrangement region and that heats the test gas flowing through the main flow path;
Is connected to the lower stream of the catalyst arrangement region, a discharge passage for discharging the test gas flowing through the main flow path,
A resistance change mechanism that changes the resistance of the discharge path;
A catalyst evaluation apparatus comprising: a control unit that controls the resistance change mechanism to vary the pressure in the catalyst arrangement region.
前記排出路が、並列に設けられ、それぞれ所定の抵抗を有した複数の分岐排出路を具備したものであり、
前記抵抗変化機構が、前記各分岐排出路の路内を開閉する開閉弁を備え、
前記制御部が、前記各開閉弁の開閉を制御して、前記触媒配置領域の圧力を変動させることを特徴とする請求項1記載の触媒評価装置。
The discharge path is provided in parallel, each having a plurality of branch discharge paths having a predetermined resistance,
The resistance change mechanism includes an on-off valve that opens and closes the inside of each branch discharge path,
The catalyst evaluation apparatus according to claim 1, wherein the control unit controls opening / closing of the on-off valves to vary the pressure in the catalyst arrangement region.
前記抵抗変化機構が、前記排出路の開度を調整して抵抗を変化させる抵抗調整弁を備え、
前記制御部が、前記抵抗調整弁の開度を制御して、前記触媒配置領域の圧力を変動させることを特徴とする請求項1記載の触媒評価装置。
The resistance change mechanism includes a resistance adjustment valve that changes the resistance by adjusting the opening of the discharge path,
The catalyst evaluation apparatus according to claim 1, wherein the control unit controls the opening degree of the resistance adjustment valve to vary the pressure in the catalyst arrangement region.
前記排出路が、並列に設けられ、それぞれ所定の抵抗を有した複数の分岐排出路と、前記複数の分岐排出路が合流した合流排出路とを具備したものであり、
前記抵抗変化機構が、前記各分岐排出路の路内を開閉する開閉弁と、前記合流排出路の開度を調整して抵抗を変化させる抵抗調整弁とを備え、
前記制御部が、前記各開閉弁の開閉を制御するとともに、前記抵抗調整弁の開度を制御して、前記触媒配置領域の圧力を変動させることを特徴とする請求項1記載の触媒評価装置。
The discharge paths are provided in parallel, each having a plurality of branch discharge paths each having a predetermined resistance, and a merged discharge path where the plurality of branch discharge paths merge,
The resistance change mechanism includes an on-off valve that opens and closes the inside of each branch discharge passage, and a resistance adjustment valve that changes the resistance by adjusting the opening of the merge discharge passage,
2. The catalyst evaluation apparatus according to claim 1, wherein the control unit controls the opening and closing of the on-off valves and controls the opening of the resistance adjusting valve to vary the pressure in the catalyst arrangement region. .
前記触媒配置領域の上流と前記加熱部の下流との間に設けられて、前記メイン流路から分岐する分岐路と、
前記分岐路を流れる前記試験ガスの流量を変化させる流量変化機構とをさらに備えるものであり、
前記制御部が、前記流量変化機構も制御するものであることを特徴とする請求項1、2、3又は4記載の触媒評価装置。
A branch path provided between the upstream side of the catalyst arrangement region and the downstream side of the heating unit, and branches from the main flow path;
A flow rate change mechanism for changing the flow rate of the test gas flowing through the branch path;
The catalyst evaluation apparatus according to claim 1, wherein the control unit also controls the flow rate change mechanism.
JP2013273215A 2013-12-27 2013-12-27 Catalyst evaluation system Expired - Fee Related JP6215050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273215A JP6215050B2 (en) 2013-12-27 2013-12-27 Catalyst evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273215A JP6215050B2 (en) 2013-12-27 2013-12-27 Catalyst evaluation system

Publications (2)

Publication Number Publication Date
JP2015127672A JP2015127672A (en) 2015-07-09
JP6215050B2 true JP6215050B2 (en) 2017-10-18

Family

ID=53837720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273215A Expired - Fee Related JP6215050B2 (en) 2013-12-27 2013-12-27 Catalyst evaluation system

Country Status (1)

Country Link
JP (1) JP6215050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089936A (en) * 2019-12-25 2020-05-01 北京化工大学 High-throughput catalyst performance analysis device and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318572A (en) * 1996-05-27 1997-12-12 Hitachi Ltd Method and equipment for measuring component of exhaust gas
FI106409B (en) * 1998-05-15 2001-01-31 Fortum Oil & Gas Oy Arrangement and Method for Testing Heterogeneous Catalysts for Short Contact Reactions
JP4056657B2 (en) * 1999-07-09 2008-03-05 株式会社堀場製作所 Flow rate setting device
JP3390916B2 (en) * 2000-06-23 2003-03-31 東北大学長 Catalyst activity evaluation device
JP4504552B2 (en) * 2000-12-01 2010-07-14 旭化成ケミカルズ株式会社 Catalyst performance evaluation system
DE10336086A1 (en) * 2003-08-06 2005-03-03 Hte Ag The High Throughput Experimentation Company Device for carrying out catalytic tests
PL1762844T3 (en) * 2004-06-28 2015-03-31 Chugoku Electric Power Method of testing denitration catalyst
WO2007044818A1 (en) * 2005-10-11 2007-04-19 Univar Usa Inc. Catalyst test unit
JP2009002813A (en) * 2007-06-22 2009-01-08 Yokogawa Electric Corp Catalyst activity evaluating device and catalyst activity evaluation method
JP5476355B2 (en) * 2011-11-10 2014-04-23 株式会社堀場製作所 Simulated gas supply device
JP5476364B2 (en) * 2011-12-27 2014-04-23 株式会社堀場製作所 Simulated gas supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089936A (en) * 2019-12-25 2020-05-01 北京化工大学 High-throughput catalyst performance analysis device and method
CN111089936B (en) * 2019-12-25 2021-03-26 北京化工大学 High-throughput catalyst performance analysis device and method

Also Published As

Publication number Publication date
JP2015127672A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
TWI745507B (en) Flow rate control apparatus and program recording medium
KR101428826B1 (en) Flow rate ratio control device
JP6646476B2 (en) Exhaust gas measuring device and exhaust gas measuring method
TWI534577B (en) Pressure flow control device
RU2014106963A (en) A BOREHOLE FLUID CONTROL SYSTEM CONTAINING A FLUID MODULE WITH A BRIDGE NETWORK FOR A FLUID AND A METHOD FOR APPLYING SUCH A SYSTEM
MY155208A (en) Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well
JP6661518B2 (en) Exhaust gas measuring device, program installed in exhaust gas measuring device, and control method for exhaust gas measuring device
TW200600990A (en) System and method for flow monitoring and control
WO2018070464A1 (en) Fluid control device
KR20140098840A (en) Gas split-flow supply device for semiconductor production device
JP6472706B2 (en) Exhaust gas analyzer
WO2010022021A3 (en) Mass-flow sensor with a molded flow restrictor
CN105004820A (en) Flow adjusting device and gas chromatograph comprising same
JP5476355B2 (en) Simulated gas supply device
JP6215050B2 (en) Catalyst evaluation system
JP2013242273A (en) Exhaust gas analyzer
JP6079681B2 (en) Gas sampler
JP5476364B2 (en) Simulated gas supply device
US20130118605A1 (en) Simulated gas supply device
JP6257032B2 (en) Catalyst evaluation system
JP5124410B2 (en) Gas supply system
JP5422015B2 (en) Flowmeter
JP4992579B2 (en) Analyzer
JP5914297B2 (en) Fluid heating device and catalyst evaluation test device
KR101224764B1 (en) Large capacity air pressure regulating system with on/off valve array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees