JP2009002813A - Catalyst activity evaluating device and catalyst activity evaluation method - Google Patents

Catalyst activity evaluating device and catalyst activity evaluation method Download PDF

Info

Publication number
JP2009002813A
JP2009002813A JP2007164461A JP2007164461A JP2009002813A JP 2009002813 A JP2009002813 A JP 2009002813A JP 2007164461 A JP2007164461 A JP 2007164461A JP 2007164461 A JP2007164461 A JP 2007164461A JP 2009002813 A JP2009002813 A JP 2009002813A
Authority
JP
Japan
Prior art keywords
catalyst
pressure
electrode
channel
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007164461A
Other languages
Japanese (ja)
Inventor
Yukihiro Shintani
幸弘 新谷
Daisuke Yamazaki
大輔 山崎
Nobuhiro Tomosada
伸浩 友定
Atsushi Kimura
篤史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007164461A priority Critical patent/JP2009002813A/en
Publication of JP2009002813A publication Critical patent/JP2009002813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst activity evaluating device and a catalyst activity evaluation method capable of accurately evaluating catalyst activity to gas and with superior reproducibility. <P>SOLUTION: A pressure-adjusting back pressure valve 16 as a pressure control means is provided near the electrolyte solution outlet 11b of a channel 11. The pressure-adjusting back pressure valve 16 has a function for controlling the pressure of electrolyte solution near a working electrode 2 and a counter electrode 3 in the channel 11, to be a higher prescribed pressure than the atmospheric pressure. Since aggregation effect of gas is suppressed and reproducibility with the passage of time of a gas concentration distribution state is improved, the catalyst activity can be evaluated properly accurately, with proper reproducibility. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価装置および触媒活性評価方法に関する。   The present invention relates to a catalyst activity evaluation apparatus and a catalyst activity evaluation method for evaluating the activity of a catalyst with respect to a gas by an electrochemical measurement method.

多くの化学電池では触媒を介した酸化還元反応が利用されている。固体高分子型燃料電池も化学電池の1種であり、触媒電極および電解質を一体形成した膜電極接合体、ガス拡散層、ガス流路、セパレータなどにより構成される。燃料電池の発電性能を決める要因の1つが膜電極接合体の触媒活性である。触媒活性は有効表面積などの物理的物性値と限界電流などの電気化学的物性値で表現され、これら物性値の測定にはリニアスイープボルタンメトリー(linear sweep voltammetry; LSV)、サイクリックボルタンメトリー(cyclic voltammetry; CV)に代表される電気化学計測法が適用される。電気化学計測法で用いられる3電極式電気化学セルでは、作用電極として働かせる触媒電極、対電極、参照電極、電解質溶液などを内包した複数口を具備した開放型ガラス製フラスコが一般に使用される。電気化学セルは通常、大気圧開放系で使用されるため、パージガスや触媒が活性を示す対象ガスはバブリングにより電解質溶液へ導入されても大気中へ揮散する。
特開2004−076084号公報
Many chemical cells use a redox reaction via a catalyst. A polymer electrolyte fuel cell is also a type of chemical cell, and includes a membrane electrode assembly in which a catalyst electrode and an electrolyte are integrally formed, a gas diffusion layer, a gas flow path, a separator, and the like. One factor that determines the power generation performance of the fuel cell is the catalytic activity of the membrane electrode assembly. Catalytic activity is expressed by physical property values such as effective surface area and electrochemical property values such as limiting current. These physical property values can be measured by linear sweep voltammetry (LSV) or cyclic voltammetry (cyclic voltammetry; The electrochemical measurement method represented by CV) is applied. In a three-electrode electrochemical cell used in an electrochemical measurement method, an open glass flask having a plurality of ports containing a catalyst electrode, a counter electrode, a reference electrode, an electrolyte solution, and the like that function as a working electrode is generally used. Since the electrochemical cell is normally used in an atmospheric pressure open system, even if the purge gas or the target gas in which the catalyst is active is introduced into the electrolyte solution by bubbling, it is volatilized into the atmosphere.
JP 2004-076084 A

ところで、固体高分子型燃料電池で使用される白金担持カーボン触媒電極はガス拡散電極と呼ばれる種類の電極である。ガス拡散電極は反応ガスである水素や酸素などのガス相、電子が移動する触媒電極相、イオンが移動する電解質相の3種類の異相より構成され、電気化学反応はこれら異相が接触する三相界面で進行する。したがって触媒活性評価を行う際には、白金担持カーボン触媒自身の化学状態に配慮する必要性に加えて、ガス相と電解質相を加えた三相界面全体の状態にも配慮する必要がある。通常、白金担持カーボン電極を作製するには白金を担持した炭素材料と電解質相としてのナフィオンなどのイオン交換樹脂とを混ぜ合わせる方法が一般的である。しかしながら、このような作製法によって作製されたガス拡散電極を用いて触媒特性を評価した場合、ガス拡散や電解質中のイオン拡散の影響が大きく表れるために、目的とする触媒活性の情報を正確に得ることが困難である。加えて、電気化学セルは開放系で使用されるためにガス濃度が経時的に変動する問題点が指摘されている。   By the way, the platinum-supported carbon catalyst electrode used in the polymer electrolyte fuel cell is a kind of electrode called a gas diffusion electrode. A gas diffusion electrode is composed of three different phases: a gas phase such as hydrogen or oxygen which is a reactive gas, a catalyst electrode phase in which electrons move, and an electrolyte phase in which ions move. Progress at the interface. Therefore, when performing catalytic activity evaluation, in addition to the necessity of considering the chemical state of the platinum-supported carbon catalyst itself, it is necessary to consider the state of the entire three-phase interface including the gas phase and the electrolyte phase. In general, a platinum-supported carbon electrode is generally prepared by mixing a platinum-supported carbon material and an ion exchange resin such as Nafion as an electrolyte phase. However, when the catalyst characteristics are evaluated using a gas diffusion electrode produced by such a production method, the influence of gas diffusion and ion diffusion in the electrolyte is greatly manifested. It is difficult to obtain. In addition, since the electrochemical cell is used in an open system, it has been pointed out that the gas concentration varies with time.

一方、電気化学的計測法でガス拡散電極の触媒活性値を正確に評価することができる方法として回転電極法が知られている。回転電極法では電解質溶液中で触媒電極を回転させて拡散相厚さを制御することができ、回転数無限大の場合の点を外挿することで拡散相厚みが無限に小さくて拡散影響が排除された状態を想定した触媒活性を測定することが可能となる。本法ではいわゆる活性化支配電流を測定することとなる。しかしながら、回転電極法では電極回転用駆動部を構成する構造物の耐久性など構造的制限や電気化学セルが開放系構造であることなどの理由により、該セルの使用温度範囲は室温から50℃程度までに制限される。固体高分子型燃料電池は通常80℃以上で使用されるので、回転電極法では燃料電池の発電時温度環境における触媒活性を評価することはできない。   On the other hand, a rotating electrode method is known as a method capable of accurately evaluating the catalytic activity value of a gas diffusion electrode by an electrochemical measurement method. In the rotating electrode method, the thickness of the diffusion phase can be controlled by rotating the catalyst electrode in the electrolyte solution. By extrapolating the point when the rotational speed is infinite, the diffusion phase thickness is infinitely small and the diffusion effect is affected. It is possible to measure the catalytic activity assuming the excluded state. In this method, the so-called activation dominant current is measured. However, in the rotating electrode method, the operating temperature range of the cell is from room temperature to 50 ° C. due to structural limitations such as the durability of the structure constituting the electrode rotation driving unit and the electrochemical cell having an open structure. Limited to a degree. Since the polymer electrolyte fuel cell is usually used at 80 ° C. or higher, the rotating electrode method cannot evaluate the catalytic activity of the fuel cell in the temperature environment during power generation.

固体高分子型燃料電池の使用温度(〜100℃程度)での触媒活性評価手法としては、チャンネルフロー電極(channel flow double electrode; CFDE)法が知られている。電解質溶液が流動するチャンネルを有した耐温性樹脂ブロックの内部に、チャンネルに接して触媒電極、対電極、参照電極を配置した構造である。電解質溶液を層流でチャンネルに流すことで、電極近傍の反応物濃度や拡散相厚みを制御できる。回転電極法と比較してより安定な拡散相を形成できるために、短時間で定常状態に到達でき再現性が高い。しかし、本法においても触媒活性の被対象物質がガスの場合には電極近傍において対象ガス濃度を安定維持させることは困難である。   A channel flow double electrode (CFDE) method is known as a method for evaluating catalytic activity at a use temperature (about 100 ° C.) of a polymer electrolyte fuel cell. In this structure, a catalyst electrode, a counter electrode, and a reference electrode are disposed in contact with the channel inside a temperature resistant resin block having a channel through which the electrolyte solution flows. By flowing the electrolyte solution through the channel in a laminar flow, it is possible to control the reactant concentration and the diffusion phase thickness in the vicinity of the electrode. Since a more stable diffusion phase can be formed as compared with the rotating electrode method, a steady state can be reached in a short time and reproducibility is high. However, even in this method, when the catalytically active target substance is a gas, it is difficult to stably maintain the target gas concentration in the vicinity of the electrode.

本発明の目的は、ガスに対する触媒の活性を正確且つ再現性良く評価できる触媒活性評価装置および触媒活性評価方法を提供することにある。   An object of the present invention is to provide a catalyst activity evaluation apparatus and a catalyst activity evaluation method capable of accurately and reproducibly evaluating the activity of a catalyst with respect to a gas.

本発明の触媒活性評価装置は、ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価装置において、電解質溶液が触媒電極および対電極に接する状態で前記電解質溶液を収容する収容手段と、前記収容手段に収容された電解質溶液の圧力を大気圧よりも高い所定圧に制御する圧力制御手段と、を備えることを特徴とする。
この触媒活性評価装置によれば、電解質溶液の圧力を大気圧よりも高い所定圧に制御するので、ガスの凝集効果が抑制されるとともに、ガス濃度分布状態の経時的再現性も向上するため、触媒活性を正確且つ再現性良く評価できる。
The catalytic activity evaluation apparatus of the present invention is a catalytic activity evaluation apparatus that evaluates the activity of a catalyst with respect to a gas by an electrochemical measurement method. Pressure control means for controlling the pressure of the electrolyte solution stored in the storage means to a predetermined pressure higher than atmospheric pressure.
According to this catalytic activity evaluation apparatus, the pressure of the electrolyte solution is controlled to a predetermined pressure higher than the atmospheric pressure, so that the gas aggregation effect is suppressed and the reproducibility of the gas concentration distribution state over time is improved. The catalytic activity can be evaluated accurately and with good reproducibility.

前記収容手段は、前記電解質溶液を流動させるチャンネルとして構成されていてもよい。   The housing means may be configured as a channel through which the electrolyte solution flows.

前記圧力制御手段は、前記チャンネルの前記触媒電極および対電極よりも下流に配置されていてもよい。   The pressure control means may be disposed downstream of the catalyst electrode and the counter electrode of the channel.

前記圧力制御手段は、前記チャンネル外部の圧力調整弁により構成されていてもよい。   The pressure control means may be constituted by a pressure regulating valve outside the channel.

前記圧力制御手段は、前記チャンネル内部の充填材により構成されていてもよい。   The pressure control means may be constituted by a filler inside the channel.

前記圧力制御手段は、前記チャンネルの狭窄部として構成されていてもよい。   The pressure control means may be configured as a narrowed portion of the channel.

前記チャンネル内の前記触媒電極および対電極の前後に圧力変動を抑制するための充填物を配置してもよい。   You may arrange | position the filler for suppressing a pressure fluctuation before and behind the said catalyst electrode and counter electrode in the said channel.

固体高分子型燃料電池に使用される触媒の活性を評価するものであってもよい。   You may evaluate the activity of the catalyst used for a polymer electrolyte fuel cell.

本発明の触媒活性評価方法は、ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価方法において、電解質溶液が触媒電極および対電極に接する状態で前記電解質溶液を収容するステップと、収容された前記電解質溶液の圧力を大気圧よりも高い所定圧に制御するステップと、を備えることを特徴とする。
この触媒活性評価方法によれば、電解質溶液の圧力を大気圧よりも高い所定圧に制御するので、ガスの凝集効果が抑制されるとともに、ガス濃度分布状態の経時的再現性も向上するため、触媒活性を正確且つ再現性良く評価できる。
The catalyst activity evaluation method of the present invention is a catalyst activity evaluation method for evaluating the activity of a catalyst with respect to a gas by an electrochemical measurement method. And a step of controlling the pressure of the electrolyte solution thus made to be a predetermined pressure higher than the atmospheric pressure.
According to this catalytic activity evaluation method, the pressure of the electrolyte solution is controlled to a predetermined pressure higher than the atmospheric pressure, so that the gas aggregation effect is suppressed and the reproducibility with time of the gas concentration distribution state is also improved. The catalytic activity can be evaluated accurately and with good reproducibility.

本発明の触媒活性評価装置によれば、電解質溶液の圧力を大気圧よりも高い所定圧に制御するので、ガスの凝集効果が抑制されるとともに、ガス濃度分布状態の経時的再現性も向上するため、触媒活性を正確且つ再現性良く評価できる。   According to the catalytic activity evaluation apparatus of the present invention, since the pressure of the electrolyte solution is controlled to a predetermined pressure higher than the atmospheric pressure, the gas aggregation effect is suppressed and the reproducibility of the gas concentration distribution state with time is improved. Therefore, the catalytic activity can be evaluated accurately and with good reproducibility.

本発明の触媒活性評価方法によれば、電解質溶液の圧力を大気圧よりも高い所定圧に制御するので、ガスの凝集効果が抑制されるとともに、ガス濃度分布状態の経時的再現性も向上するため、触媒活性を正確且つ再現性良く評価できる。   According to the catalytic activity evaluation method of the present invention, the pressure of the electrolyte solution is controlled to a predetermined pressure higher than the atmospheric pressure, so that the gas aggregation effect is suppressed and the reproducibility of the gas concentration distribution state with time is improved. Therefore, the catalytic activity can be evaluated accurately and with good reproducibility.

以下、図1〜図3を参照して、本発明による触媒活性評価装置の実施形態について説明する。   Hereinafter, with reference to FIGS. 1-3, embodiment of the catalyst activity evaluation apparatus by this invention is described.

図1(a)は、本実施形態の触媒活性評価装置に使用されるチャンネルフローセルの構成を示す断面図である。この触媒活性評価装置は、チャンネルフロー電極(channel flow double electrode; CFDE)法により、触媒活性を評価するものである。図1に示すチャンネルフローセルに電解質溶液を流動させつつ電極間の電位及び電流を計測することで、触媒活性が評価される。   Fig.1 (a) is sectional drawing which shows the structure of the channel flow cell used for the catalyst activity evaluation apparatus of this embodiment. This catalytic activity evaluation apparatus evaluates catalytic activity by the channel flow double electrode (CFDE) method. The catalytic activity is evaluated by measuring the potential and current between the electrodes while flowing the electrolyte solution in the channel flow cell shown in FIG.

図1(a)に示すように、チャンネルフローセルは、耐温性ポリマーあるいはガラスやセラミックスなどの無機材料で成形されたセル母体1により構成され、セル母体1の内部には電解質溶液を流動させる収容手段としてのチャンネル11が貫通している。チャンネル11は、電解質溶液の上流から下流に沿って電解質溶液入口11aから電解質溶液出口11bに向けて形成されるとともに、途中で分岐して参照電極(不図示)に電解質溶液を導く液路11cを構成する。   As shown in FIG. 1A, the channel flow cell is composed of a cell matrix 1 formed of a temperature-resistant polymer or an inorganic material such as glass or ceramics, and an electrolytic solution is accommodated inside the cell matrix 1. The channel 11 as a means penetrates. The channel 11 is formed from the electrolyte solution inlet 11a toward the electrolyte solution outlet 11b from the upstream to the downstream of the electrolyte solution, and has a liquid passage 11c that branches in the middle and guides the electrolyte solution to a reference electrode (not shown). Constitute.

チャンネル11の電解質溶液入口11a近傍には、電解質溶液にガスを導入するためのガス導入部15が設けられている。また、チャンネル11の分岐点近傍には、作用電極(触媒電極)2および対電極3が設けられている。作用電極2および対電極3はチャンネル11内に露出されて電解質溶液と直接接触する。   In the vicinity of the electrolyte solution inlet 11a of the channel 11, a gas introduction part 15 for introducing gas into the electrolyte solution is provided. A working electrode (catalyst electrode) 2 and a counter electrode 3 are provided near the branch point of the channel 11. The working electrode 2 and the counter electrode 3 are exposed in the channel 11 and are in direct contact with the electrolyte solution.

図1(a)に示すように、チャンネル11の電解質溶液出口11b近傍には、圧力制御手段としての圧力調整用背圧弁16が設けられている。圧力調整用背圧弁16はチャンネル11内の作用電極2および対電極3近傍における電解質溶液の圧力を大気圧よりも高い所定圧に制御する機能を有する。   As shown in FIG. 1A, a pressure adjusting back pressure valve 16 as a pressure control means is provided in the vicinity of the electrolyte solution outlet 11b of the channel 11. The pressure adjusting back pressure valve 16 has a function of controlling the pressure of the electrolyte solution in the vicinity of the working electrode 2 and the counter electrode 3 in the channel 11 to a predetermined pressure higher than the atmospheric pressure.

次に、本実施形態の触媒活性評価装置の動作について説明する。   Next, the operation of the catalyst activity evaluation apparatus of this embodiment will be described.

チャンネル11には、電解質溶液入口11aを介し、電解質溶液が送液ポンプ(不図示)によって一定流量で送り込まれる。また、送液される電解質溶液には、ガス導入部15において連続的または間欠的バブリングにより所定のガスが添加される。本実施形態の触媒活性評価装置では、圧力調整用背圧弁16によりチャンネル11内で送液される電解質溶液の圧力は、大気圧よりも高い所定圧に制御される。   The electrolyte solution is fed into the channel 11 at a constant flow rate by a liquid feed pump (not shown) through the electrolyte solution inlet 11a. Further, a predetermined gas is added to the electrolyte solution to be fed by continuous or intermittent bubbling in the gas introduction unit 15. In the catalyst activity evaluation apparatus of the present embodiment, the pressure of the electrolyte solution fed in the channel 11 by the pressure adjusting back pressure valve 16 is controlled to a predetermined pressure higher than the atmospheric pressure.

一般に、チャンネルフローセルのような細管内流動では、殆どの場合、チャンネル内を流れる電解質溶液の流れは層流となる。層流条件下であれば、チャンネル内の流動特性は2枚の平行平板で挟まれた流体として、式(1)で表わされるポアズイユ流の流路分布を持つ。このとき、最大流量Umax、流量Q、平均流量Umeanは、それぞれ式(2)、式(3)および式(4)で算出される。   In general, in a flow in a narrow tube such as a channel flow cell, in most cases, the flow of the electrolyte solution flowing in the channel is a laminar flow. Under laminar flow conditions, the flow characteristics in the channel have a Poiseuille flow path distribution represented by Equation (1) as a fluid sandwiched between two parallel flat plates. At this time, the maximum flow rate Umax, the flow rate Q, and the average flow rate Umean are calculated by Expression (2), Expression (3), and Expression (4), respectively.

Figure 2009002813
Figure 2009002813

なお、チャンネルの入口から電極までの距離が下記の式(5)で算出されるle値以上の場合、電解質溶液がチャンネル内に入った後にポアズイユ流の流路分布が十分に成長し、電極近傍で安定な流れが形成される。 Incidentally, when the distance from the entrance channel to the electrode is of the formula (5) or l e value calculated by the following flow path distribution of Poiseuille flow is sufficiently grown after the electrolyte solution is within the channel, the electrode A stable flow is formed in the vicinity.

Figure 2009002813
Figure 2009002813

ガス導入部を通じて電解質溶液に対する溶解度が十分に大きいガスをバブリングにより添加した場合には、電極近傍のチャンネル断面において溶存ガスはポアズイユ流の流路分布に影響されたガス濃度分布を保持する。しかし、酸素、窒素、水素などの溶解度が小さいガスの場合には、気泡の凝集効果が無視できなくなるため、電極近傍のチャンネル断面においてポアズイユ流の流路分布で形成される本来のガス濃度分布よりも更に分布度合いが大きくなる。加えて、経時的な分布再現性も悪くなるために、電極近傍で安定したガス濃度が保持できない。従来のチャンネルフローセルではこのような流体状態を基にして構成されており、ガスに対する触媒電極の活性を正確且つ再現性良く計測することは見込めない。   When a gas having a sufficiently high solubility in the electrolyte solution is added by bubbling through the gas introduction part, the dissolved gas maintains a gas concentration distribution influenced by the channel distribution of the Poiseuille flow in the channel cross section near the electrode. However, in the case of gases with low solubility, such as oxygen, nitrogen, hydrogen, etc., the bubble agglomeration effect is not negligible. Therefore, compared to the original gas concentration distribution formed by the Poiseuille flow path distribution in the channel cross section near the electrode. Further, the degree of distribution becomes larger. In addition, since the reproducibility of distribution over time is deteriorated, a stable gas concentration cannot be maintained in the vicinity of the electrode. The conventional channel flow cell is configured on the basis of such a fluid state, and it cannot be expected to accurately and accurately measure the activity of the catalyst electrode with respect to the gas.

これに対し、本発明による触媒活性評価装置のように、圧力調整用背圧弁16により電解質溶液を加圧下に置いた場合、ガス溶解度は圧力に応じて増大するため、従来法である無加圧に近い状態と比較してガスの凝集効果が抑制される。この結果、同じ線速度で電解質を流した場合、電極(作用電極2および対電極3)近傍流路断面の溶存ガス濃度分布は、従来法である無加圧状態と比較して、よりポアズイユ流の流路分布に相応した分布状態を示すこととなる。更に流体である電解質溶液を加圧下に置くことで、電極近傍流路断面のガス濃度分布状態の経時的再現性も向上する。この結果、作用電極(触媒電極)2のガスに対する触媒活性をより正確且つ再現性良く評価することが可能となる。   On the other hand, when the electrolyte solution is placed under pressure by the pressure regulating back pressure valve 16 as in the catalyst activity evaluation apparatus according to the present invention, the gas solubility increases according to the pressure. Compared with the state close to, the gas aggregation effect is suppressed. As a result, when the electrolyte is flowed at the same linear velocity, the dissolved gas concentration distribution in the cross section of the flow path near the electrodes (working electrode 2 and counter electrode 3) is more Poiseuille flow than in the conventional non-pressurized state. The distribution state corresponding to the flow path distribution is shown. Furthermore, by placing the electrolyte solution, which is a fluid, under pressure, the reproducibility of the gas concentration distribution in the cross-section near the electrode over time is improved. As a result, it is possible to evaluate the catalytic activity of the working electrode (catalytic electrode) 2 with respect to the gas more accurately and with good reproducibility.

図2(a)は、本発明による触媒活性評価装置を使用し、特定ガスに対する特定触媒の触媒活性を評価した場合に得られるサイクリックボルタモグラム例を示している。走査電位幅は触媒電極の電位窓の範囲内で、且つ上記特定ガスの酸化還元電位を内包する範囲としている。図2(a)に示すように、本発明による触媒活性評価装置によれば、電極近傍のガス濃度を十分高く保持できるので、上記特定ガスに起因した酸化ピークおよび還元ピークを再現性良く得ることができる。   FIG. 2A shows an example of a cyclic voltammogram obtained when the catalytic activity evaluation apparatus according to the present invention is used to evaluate the catalytic activity of a specific catalyst with respect to a specific gas. The scanning potential width is set within the range of the potential window of the catalyst electrode and within the range including the oxidation-reduction potential of the specific gas. As shown in FIG. 2 (a), according to the catalytic activity evaluation apparatus of the present invention, the gas concentration in the vicinity of the electrode can be kept sufficiently high, so that the oxidation peak and reduction peak due to the specific gas can be obtained with good reproducibility. Can do.

一方、図2(b)は従来の3電極式電解セルによる回転電極法を用いて、同様の評価を行った場合のサイクリックボルタモグラム例を示している。従来の3電極式計測法では電極近傍のガス濃度が十分に確保できないので、上記特定ガスに起因した酸化還元ピークが得られない。   On the other hand, FIG. 2B shows an example of a cyclic voltammogram when the same evaluation is performed using the rotating electrode method using a conventional three-electrode electrolytic cell. In the conventional three-electrode measurement method, the gas concentration in the vicinity of the electrode cannot be sufficiently ensured, so that the oxidation-reduction peak due to the specific gas cannot be obtained.

以上説明したように、本発明の触媒活性評価装置によれば、電解質溶液の圧力を大気圧よりも高い所定圧に制御するので、ガスの凝集効果が抑制されるとともに、ガス濃度分布状態の経時的再現性も向上するため、触媒活性を正確且つ再現性良く評価できる。   As described above, according to the catalytic activity evaluation apparatus of the present invention, the pressure of the electrolyte solution is controlled to a predetermined pressure higher than the atmospheric pressure, so that the gas aggregation effect is suppressed and the gas concentration distribution state is changed over time. Therefore, the catalytic activity can be evaluated accurately and with good reproducibility.

上記実施形態では、圧力制御手段として圧力調整用背圧弁16を用いているが、図1(b)に示すように、圧力調整用背圧弁に代えて、チャンネル11の狭窄部17を電極(作用電極2および対電極3)より下流側に設けてもよい。これにより、電解質溶液の圧力を大気圧よりも高い所定圧に制御することができる。また、チャンネル11内部に充填物を固定することで、同様の効果を得ることもできる。   In the above embodiment, the pressure adjusting back pressure valve 16 is used as the pressure control means. However, as shown in FIG. 1B, instead of the pressure adjusting back pressure valve, the constricted portion 17 of the channel 11 is provided with an electrode (action). It may be provided downstream of the electrode 2 and the counter electrode 3). Thereby, the pressure of the electrolyte solution can be controlled to a predetermined pressure higher than the atmospheric pressure. Moreover, the same effect can also be acquired by fixing a filler in the inside of the channel 11.

さらに、図3に示すように、電極(作用電極2および対電極3)を挟みこむように上流側および下流側にそれぞれ充填物21および充填物22を固定してもよい。これにより、電極(作用電極2および対電極3)近傍の電解質溶液の圧力を高めることができるとともに、その圧力変動を抑制することができる。   Furthermore, as shown in FIG. 3, the filling material 21 and the filling material 22 may be fixed on the upstream side and the downstream side, respectively, so as to sandwich the electrodes (the working electrode 2 and the counter electrode 3). Thereby, while being able to raise the pressure of the electrolyte solution of the electrode (working electrode 2 and counter electrode 3) vicinity, the pressure fluctuation can be suppressed.

充填物としては、例えば、カーボン、ジルコニア、アルミナ、シリカ、チタニア、ガラス、セラミックスなどの無機材料を、微粒子状、繊維状、または一体型多孔質構造(モノリシック構造)の形態としたもののほか、ポリスチレン、ポリスチレン−ジビニルベンゼン、ポリプロピレン、フッ素樹脂、ポリエーテルケトンなどの有機材料を、微粒子状、繊維状、または一体型多孔質構造の形態としたものを使用できる。   Examples of fillers include those made of inorganic materials such as carbon, zirconia, alumina, silica, titania, glass, and ceramics in the form of fine particles, fibers, or an integral porous structure (monolithic structure), and polystyrene. Organic materials such as polystyrene-divinylbenzene, polypropylene, fluororesin, polyetherketone, etc., in the form of fine particles, fibers, or an integral porous structure can be used.

本発明の触媒活性評価装置は、サイクリックボルタンメトリー、リニアスイープボルタンメトリー、階段波ボルタンメトリー、クロノクーロメトリー、ノーマルパルスボルタンメトリー、微分パルスボルタンメトリー、クロノポテンショメトリー、シングルパルス法、クロノアンぺメトリー、微分パルスアンぺメトリー、その他の電気化学測定法により燃料電池触媒を評価する際に、電極界面近傍の溶存ガス濃度を所望の値に再現性良く保持することができ、触媒活性を正確に解析することができる。本発明による触媒活性評価装置は、燃料電池セル性能の向上にとくに寄与するものである。   The catalytic activity evaluation apparatus of the present invention includes cyclic voltammetry, linear sweep voltammetry, staircase voltammetry, chronocoulometry, normal pulse voltammetry, differential pulse voltammetry, chronopotentiometry, single pulse method, chronoamperometry, differential pulse amperometry, etc. When the fuel cell catalyst is evaluated by this electrochemical measurement method, the dissolved gas concentration in the vicinity of the electrode interface can be maintained at a desired value with good reproducibility, and the catalytic activity can be analyzed accurately. The catalyst activity evaluation apparatus according to the present invention contributes particularly to the improvement of fuel cell performance.

上記実施形態では、チャンネルフロー電極法への適用を例示したが、本発明による触媒活性評価装置はチャンネルフロー電極法以外の方法にも適用可能である。また、本発明による触媒活性評価装置は燃料電池で使用される触媒を評価する場合に限定されることはない。   In the above embodiment, application to the channel flow electrode method has been exemplified. However, the catalyst activity evaluation apparatus according to the present invention can be applied to methods other than the channel flow electrode method. Further, the catalyst activity evaluation apparatus according to the present invention is not limited to the case of evaluating a catalyst used in a fuel cell.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価装置および触媒活性評価方法に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a catalyst activity evaluation apparatus and a catalyst activity evaluation method for evaluating the activity of a catalyst with respect to a gas by an electrochemical measurement method.

触媒活性評価装置に使用されるチャンネルフローセルの構成を示す図であり、(a)はチャンネルフローセルの構成を示す断面図、(b)は別例のチャンネルフローセルの構成を示す断面図。It is a figure which shows the structure of the channel flow cell used for a catalyst activity evaluation apparatus, (a) is sectional drawing which shows the structure of a channel flow cell, (b) is sectional drawing which shows the structure of the channel flow cell of another example. サイクリックボルタモグラム例を示す図であり、(a)は、本発明による触媒活性評価装置を使用した場合の例を、(b)は、従来の回転電極法を用いた場合の例を、それぞれ示す図。It is a figure which shows the example of a cyclic voltammogram, (a) shows the example at the time of using the catalyst activity evaluation apparatus by this invention, (b) shows the example at the time of using the conventional rotating electrode method, respectively. Figure. 電極を挟みこむように上流側および下流側にそれぞれ充填物21および充填物を固定した構成を示す断面図。Sectional drawing which shows the structure which fixed the filling material 21 and the filling material to the upstream and downstream, respectively so that an electrode may be inserted | pinched.

符号の説明Explanation of symbols

11 チャンネル(収容手段)
16 圧力調整用背圧弁(圧力制御手段)
17 狭窄部(圧力制御手段)
21 充填物
22 充填物
11 channels (accommodating means)
16 Back pressure valve for pressure adjustment (pressure control means)
17 Constriction (pressure control means)
21 Filling 22 Filling

Claims (9)

ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価装置において、
電解質溶液が触媒電極および対電極に接する状態で前記電解質溶液を収容する収容手段と、
前記収容手段に収容された電解質溶液の圧力を大気圧よりも高い所定圧に制御する圧力制御手段と、
を備えることを特徴とする触媒活性評価装置。
In a catalyst activity evaluation apparatus that evaluates the activity of a catalyst for gas by an electrochemical measurement method,
Storage means for storing the electrolyte solution in a state where the electrolyte solution is in contact with the catalyst electrode and the counter electrode;
Pressure control means for controlling the pressure of the electrolyte solution stored in the storage means to a predetermined pressure higher than atmospheric pressure;
A catalyst activity evaluation apparatus comprising:
前記収容手段は、前記電解質溶液を流動させるチャンネルとして構成されていることを特徴とする請求項1に記載の触媒活性評価装置。 2. The catalytic activity evaluation apparatus according to claim 1, wherein the accommodating means is configured as a channel through which the electrolyte solution flows. 前記圧力制御手段は、前記チャンネルの前記触媒電極および対電極よりも下流に配置されていることを特徴とする請求項2に記載の触媒活性評価装置。 The catalyst activity evaluation apparatus according to claim 2, wherein the pressure control means is disposed downstream of the catalyst electrode and the counter electrode of the channel. 前記圧力制御手段は、前記チャンネル内部の圧力調整弁により構成されていることを特徴とする請求項3に記載の触媒活性評価装置。 The catalyst activity evaluation apparatus according to claim 3, wherein the pressure control means is configured by a pressure regulating valve inside the channel. 前記圧力制御手段は、前記チャンネル内部の充填材により構成されていることを特徴とする請求項3に記載の触媒活性評価装置。 4. The catalyst activity evaluation apparatus according to claim 3, wherein the pressure control means is constituted by a filler inside the channel. 前記圧力制御手段は、前記チャンネルの狭窄部として構成されていることを特徴とする請求項3に記載の触媒活性評価装置。 4. The catalytic activity evaluation apparatus according to claim 3, wherein the pressure control means is configured as a narrowed portion of the channel. 前記チャンネル内の前記触媒電極および対電極の前後に圧力変動を抑制するための充填物を配置したことを特徴とする請求項2〜6のいずれか1項に記載の触媒活性評価装置。 The catalyst activity evaluation apparatus according to any one of claims 2 to 6, wherein a filler for suppressing pressure fluctuation is disposed before and after the catalyst electrode and the counter electrode in the channel. 固体高分子型燃料電池に使用される触媒の活性を評価するものであることを特徴とする請求項1〜7のいずれか1項に記載の触媒活性評価装置。 The catalyst activity evaluation apparatus according to any one of claims 1 to 7, which evaluates the activity of a catalyst used in a polymer electrolyte fuel cell. ガスに対する触媒の活性を電気化学測定法により評価する触媒活性評価方法において、
電解質溶液が触媒電極および対電極に接する状態で前記電解質溶液を収容するステップと、
収容された前記電解質溶液の圧力を大気圧よりも高い所定圧に制御するステップと、
を備えることを特徴とする触媒活性評価方法。
In a catalytic activity evaluation method for evaluating the activity of a catalyst for gas by an electrochemical measurement method,
Containing the electrolyte solution in a state where the electrolyte solution is in contact with the catalyst electrode and the counter electrode; and
Controlling the pressure of the stored electrolyte solution to a predetermined pressure higher than atmospheric pressure;
A catalyst activity evaluation method comprising:
JP2007164461A 2007-06-22 2007-06-22 Catalyst activity evaluating device and catalyst activity evaluation method Pending JP2009002813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164461A JP2009002813A (en) 2007-06-22 2007-06-22 Catalyst activity evaluating device and catalyst activity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164461A JP2009002813A (en) 2007-06-22 2007-06-22 Catalyst activity evaluating device and catalyst activity evaluation method

Publications (1)

Publication Number Publication Date
JP2009002813A true JP2009002813A (en) 2009-01-08

Family

ID=40319357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164461A Pending JP2009002813A (en) 2007-06-22 2007-06-22 Catalyst activity evaluating device and catalyst activity evaluation method

Country Status (1)

Country Link
JP (1) JP2009002813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206465A1 (en) 2009-01-08 2010-07-14 Omron Co., Ltd. Examination method, examination apparatus and examination program
JP2015127672A (en) * 2013-12-27 2015-07-09 株式会社堀場製作所 Catalyst evaluation apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206465A1 (en) 2009-01-08 2010-07-14 Omron Co., Ltd. Examination method, examination apparatus and examination program
JP2015127672A (en) * 2013-12-27 2015-07-09 株式会社堀場製作所 Catalyst evaluation apparatus

Similar Documents

Publication Publication Date Title
Jayashree et al. On the performance of membraneless laminar flow-based fuel cells
Choban et al. Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media
Cohen et al. Fabrication and preliminary testing of a planar membraneless microchannel fuel cell
Teliska et al. Site-specific vs specific adsorption of anions on Pt and Pt-based alloys
Mitrovski et al. Microfluidic devices for energy conversion: Planar integration and performance of a passive, fully immersed H2− O2 fuel cell
Kjeang et al. High-performance microfluidic vanadium redox fuel cell
JP5468830B2 (en) Gas separation with immobilized buffer
US20090092882A1 (en) Fuel cell with flow-through porous electrodes
Billy et al. Experimental parameters influencing hydrocarbon selectivity during the electrochemical conversion of CO2
Alber et al. Solid‐state amperometric sensors for gas phase analytes: A review of recent advances
WO2006101967A2 (en) Membraneless electrochemical cell and microfluidic device without ph constraint
Balomenou et al. Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions
Tewari et al. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells
US8231773B2 (en) Method of treating nanoparticles using an intermittently processing electrochemical cell
JP2008521209A (en) Micro-channel fuel cell without two-component electrolyte membrane
Arif et al. Influence of hydrophobicity and porosity of the gas diffusion layer on mass transport losses in PEM fuel cells: A simulation study supported by experiments
Xuan et al. Hydrodynamic focusing in microfluidic membraneless fuel cells: Breaking the trade-off between fuel utilization and current density
Ho et al. Microfluidic fuel cell systems
US20120070766A1 (en) Laminar flow fuel cell incorporating concentrated liquid oxidant
Gondosiswanto et al. Redox recycling amplification using an interdigitated microelectrode array for ionic liquid-based oxygen sensors
Alnoush et al. Judicious selection, validation, and use of reference electrodes for in situ and operando electrocatalysis studies
JP2009098027A (en) Multichannel flow double-electrode measuring apparatus
JP2009002813A (en) Catalyst activity evaluating device and catalyst activity evaluation method
Contento et al. Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone
Liu et al. Investigating the composition of iron salts on the performance of microfluidic fuel cells