JP5914297B2 - Fluid heating device and catalyst evaluation test device - Google Patents

Fluid heating device and catalyst evaluation test device Download PDF

Info

Publication number
JP5914297B2
JP5914297B2 JP2012243172A JP2012243172A JP5914297B2 JP 5914297 B2 JP5914297 B2 JP 5914297B2 JP 2012243172 A JP2012243172 A JP 2012243172A JP 2012243172 A JP2012243172 A JP 2012243172A JP 5914297 B2 JP5914297 B2 JP 5914297B2
Authority
JP
Japan
Prior art keywords
path
flow
fluid
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012243172A
Other languages
Japanese (ja)
Other versions
JP2014092075A (en
Inventor
陽一 岡田
陽一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2012243172A priority Critical patent/JP5914297B2/en
Publication of JP2014092075A publication Critical patent/JP2014092075A/en
Application granted granted Critical
Publication of JP5914297B2 publication Critical patent/JP5914297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

この発明は、流体加熱装置及びこの流体加熱装置を用いて加熱した模擬排ガスを自動車の排気管に設けられる触媒と反応させて該触媒を評価する触媒評価試験装置に関するものである。   The present invention relates to a fluid heating apparatus and a catalyst evaluation test apparatus for evaluating a catalyst by reacting a simulated exhaust gas heated using the fluid heating apparatus with a catalyst provided in an exhaust pipe of an automobile.

エンジンの排気管などに設けられる触媒を評価する場合、実際の排ガスと同様の成分を有する模擬排ガスを生成するとともに、この模擬排ガスを加熱炉に導入して実際の排気管通過温度と同様の所定温度にまで昇温させ、加熱炉の出口側に設けた触媒に吹き付けるようにしている。
そのために従来は、触媒近傍での模擬排ガスの温度を測定しておき、その測定温度が前記所定温度となるように加熱炉の発熱量を制御している。
When evaluating a catalyst provided in an engine exhaust pipe or the like, a simulated exhaust gas having the same components as the actual exhaust gas is generated, and the simulated exhaust gas is introduced into a heating furnace to have a predetermined value similar to the actual exhaust pipe passing temperature. The temperature is raised to a temperature and sprayed to the catalyst provided on the outlet side of the heating furnace.
Therefore, conventionally, the temperature of the simulated exhaust gas in the vicinity of the catalyst is measured, and the heat generation amount of the heating furnace is controlled so that the measured temperature becomes the predetermined temperature.

ところで近時、エンジンの起動時や高負荷時等における触媒の評価が求められており、そのためには、極めて短時間で模擬排ガスの温度を所定温度にまで精度良く上げる必要がある。   Recently, there has been a demand for evaluation of a catalyst at the time of engine start-up, high load, etc. For this purpose, it is necessary to accurately raise the temperature of the simulated exhaust gas to a predetermined temperature in a very short time.

しかしながら、上述した方式では、加熱炉の発熱量をフィードバック制御しながら昇温させるため、昇温速度が極めて遅く(例えば1℃/sec程度)、前記要求に全く応えることができない。   However, in the method described above, the temperature is raised while feedback-controlling the amount of heat generated in the heating furnace, so the rate of temperature rise is extremely slow (for example, about 1 ° C./sec), and the above requirement cannot be met at all.

そこで、特許文献1に示すように、加熱炉の出力を、例えば最大値にして過熱した模擬排ガスを生成し、その過熱模擬排ガスと冷却用模擬排ガスとの混合比率を制御して所望の温度の模擬排ガスを得るようにした装置も考えられている。しかし、このようなものでも、昇温速度は前記方式の数倍程度にまでしか改善することはできない。
そしてかかる問題点は、模擬排ガスのみならず流体を昇温加熱するときに共通する。
Therefore, as shown in Patent Document 1, the output of the heating furnace is set to a maximum value, for example, to generate a simulated exhaust gas that is overheated, and the mixing ratio between the overheated simulated exhaust gas and the cooling simulated exhaust gas is controlled to obtain a desired temperature. An apparatus for obtaining simulated exhaust gas is also considered. However, even with such a configuration, the rate of temperature increase can only be improved to several times that of the above method.
Such a problem is common in heating not only simulated exhaust gas but also fluids.

特開2003−126658号公報JP 2003-126658 A

本発明は前記問題点に鑑みてなされたものであって、模擬排ガス等の流体を所定温度にまで精度良く、かつ、極めて短時間で昇温させることが可能な流体加熱装置等を提供することをその所期課題としたものである。   The present invention has been made in view of the above problems, and provides a fluid heating apparatus and the like that can raise the temperature of a fluid such as simulated exhaust gas to a predetermined temperature with high accuracy and in an extremely short time. Is the intended task.

すなわち本発明に係る流体加熱装置は、以下の構成要件を備えたものであることを特徴とする。
(1)流体を加熱する加熱流路。
(2)前記加熱流路を流れる流体の向きを正方向と逆方向とに切替反転させる切替機構。
(3)前記正方向に流れる流体が当該加熱流路を出て通過する昇温領域及び前記逆方向に流れる流体が当該加熱流路を出て通過する対領域。
(4)前記昇温領域及び対領域を流れる流体の温度を調整する温調機構。
(5)前記切替機構を制御して加熱流路を流体が逆方向に流れる逆流状態にするとともにこの逆流状態において前記対領域を流れる流体の温度を予め設定した目標温度となるように前記温調機構を制御した後、前記切替機構を制御して流体が正方向に流れる正流状態にする制御機構。
That is, the fluid heating apparatus according to the present invention has the following constituent features.
(1) A heating flow path for heating a fluid.
(2) A switching mechanism that switches and reverses the direction of the fluid flowing through the heating flow path between a forward direction and a reverse direction.
(3) A temperature rising region in which the fluid flowing in the forward direction passes through the heating channel and a paired region in which the fluid flowing in the reverse direction passes through the heating channel.
(4) A temperature control mechanism that adjusts the temperature of the fluid flowing through the temperature rising region and the paired region.
(5) The temperature control is performed so that the switching mechanism is controlled to bring the heating flow path into a reverse flow state in which the fluid flows in the reverse direction, and the temperature of the fluid flowing in the counter area in the reverse flow state becomes a preset target temperature. A control mechanism that controls the switching mechanism to control the switching mechanism so that the fluid flows in the positive direction.

本発明の効果が特に顕著となる実施態様としては、前記流体加熱装置を用いた触媒評価試験装置であって、前記流体が模擬排ガスであり、前記昇温領域に排ガスの触媒を設置可能に構成してあるものを挙げることができる。   An embodiment in which the effect of the present invention is particularly remarkable is a catalyst evaluation test apparatus using the fluid heating apparatus, wherein the fluid is simulated exhaust gas, and the exhaust gas catalyst can be installed in the temperature rising region. Can be mentioned.

簡単な構成で本発明を実現するための具体的な実施態様としては、
前記加熱流路と該加熱流路の一端及び他端からそれぞれ延出させた一対の隣接流路とからなり、一方の隣接流路には前記昇温領域が設定されるとともに他方の隣接流路には前記対領域が設定されているセルと、
前記加熱流路に流体を導入するための一対の導入路と、前記加熱流路から流体を導出するための一対の導出路とを具備し、
一方の導入路及び一方の導出路は、前記一方の隣接流路の延出端部に接続されるとともに、他方の導入路及び他方の導出路は前記他方の隣接流路の延出端部に接続され、
前記切替機構は、逆流状態においては、他方の導入路及び一方の導出路をクローズすることで、一方の導入路からの流体がセルに導入されて他方の導出路から排出されるようにする一方、正流状態においては、一方の導入路及び他方の導出路をクローズすることで、他方の導入路からの流体がセルに導入されて一方の導出路から導出されるようにするものを挙げることができる。
As a specific embodiment for realizing the present invention with a simple configuration,
The heating channel and a pair of adjacent channels extended from one end and the other end of the heating channel, respectively, the temperature rising region is set in one adjacent channel and the other adjacent channel Includes a cell in which the paired area is set, and
A pair of introduction paths for introducing fluid into the heating flow path, and a pair of lead-out paths for deriving fluid from the heating flow path,
One introduction path and one lead-out path are connected to the extension end of the one adjacent flow path, and the other lead-in path and the other lead-out path are connected to the extension end of the other adjacent flow path. Connected,
In the reverse flow state, the switching mechanism closes the other introduction path and one outlet path so that fluid from one introduction path is introduced into the cell and discharged from the other outlet path. In the positive flow state, the one introduction path and the other lead-out path are closed so that the fluid from the other lead-in path is introduced into the cell and led out from the one lead-out path. Can do.

流量制御器等を用いることなく、正流状態と逆流状態での加熱流路を流れる流量を等しくするには、前記各導入路が、流体が流入する単一の導入ポートに接続されているものが好ましい。   In order to equalize the flow rate flowing through the heating flow path in the normal flow state and the reverse flow state without using a flow rate controller or the like, each of the introduction paths is connected to a single introduction port into which the fluid flows. Is preferred.

加熱流路を流れる流量を自在に設定することができるようにするとともに、昇温領域の急速な降温も可能とするには、
前記加熱流路と、該加熱流路の一端及び他端からそれぞれ延出させた一対の隣接流路とからなり、一方の隣接流路には前記昇温領域が設定されるとともに他方の隣接流路には前記対領域が設定されているセルと、
前記加熱流路に流体を導入するための一対の導入路と、
前記加熱流路から流体を導出するための一対の導出路とを具備し、
一方の導入路は前記加熱流路の一端と昇温領域との間に接続してあり、
他方の導入路及び他方の導出路は他方の隣接流路の延出端部に接続してあり、
一方の導出路は一方の隣接流路の延出端部に接続してあり、
前記切替機構は、逆流状態においては、他方の導入路をクローズすることで、一方の導入路からの流体が前記加熱流路及び一方の隣接領域への流れに分岐した後、各導出路から導出されるようにする一方、正流状態においては、一方の導入路をクローズすることで、他方の導入路からの流体が、一方の導出路及び加熱流路への流れに分岐した後、各導出路から導出されるようにするものであることが望ましい。
To make it possible to freely set the flow rate through the heating flow path and to allow rapid temperature drop in the temperature rising region,
The heating channel and a pair of adjacent channels respectively extending from one end and the other end of the heating channel, the temperature rising region is set in one adjacent channel and the other adjacent flow A cell in which the above-mentioned paired area is set on the road;
A pair of introduction paths for introducing a fluid into the heating flow path;
A pair of outlet paths for leading the fluid from the heating channel;
One introduction path is connected between one end of the heating channel and the temperature raising region,
The other introduction path and the other lead-out path are connected to the extending end of the other adjacent flow path,
One lead-out path is connected to the extending end of one adjacent flow path,
In the reverse flow state, the switching mechanism closes the other introduction path, so that the fluid from one introduction path branches into the flow to the heating flow path and the one adjacent region, and then is led out from each outlet path. On the other hand, in the positive flow state, by closing one introduction path, the fluid from the other introduction path branches into the flow to one lead-out path and the heating flow path, and then each derivation It is desirable to be derived from the road.

この場合、導出路側の流量も可変とする必要があり、そのためには、前記各導出路を流れる流体の流量比を調整する導出流量比調整機構をさらに具備し、前記制御機構が、前記導出流量比調整機構を制御して加熱流路を流れる流量が正流状態と逆流状態とにおいて等しくなるようにする構成としておくことが好適である。   In this case, it is also necessary to make the flow rate on the derivation channel side variable. To that end, a derivation flow rate adjustment mechanism for adjusting the flow rate ratio of the fluid flowing in each derivation channel is further provided, and the control mechanism includes the derivation flow rate. It is preferable to control the ratio adjusting mechanism so that the flow rate flowing through the heating channel is equal in the normal flow state and the reverse flow state.

降温制御するには、前記制御機構が、前記正流状態において一方の導入路を流量変更可能にオープンするものであることが好ましい。   In order to control the temperature drop, it is preferable that the control mechanism opens one introduction path so that the flow rate can be changed in the positive flow state.

このように構成した本発明によれば、対領域における模擬排ガス温度を所望の目標温度にしておき、その温度制御された加熱模擬排ガスを、流路を切り替えることによって一気に触媒等が設置される昇温領域に流すようにしているので、昇温領域における昇温速度を従来に比べ飛躍的に向上させることができる。   According to the present invention configured as described above, the simulated exhaust gas temperature in the opposite region is set to a desired target temperature, and the temperature-controlled heated simulated exhaust gas is installed at a stretch by switching the flow path. Since it is made to flow to a temperature range, the temperature increase rate in a temperature increase area | region can be improved dramatically compared with the past.

また、最初に逆流状態において目標温度となるように設定される対領域が、昇温領域と熱的に対称又は対称に近いように設計してあるので、逆流状態と正流状態とが対称的な関係となり、流路を切り替えて正流状態としたときに、昇温領域における模擬排ガスの温度を、オーバシュートや非到達なく、精度良く目標温度に到達させることができる。   In addition, since the paired region that is initially set to become the target temperature in the backflow state is designed to be thermally symmetric or symmetric with respect to the temperature rising region, the backflow state and the forward flow state are symmetrical. Thus, when the flow path is switched to a normal flow state, the temperature of the simulated exhaust gas in the temperature rising region can be accurately reached the target temperature without overshoot or non-reaching.

さらに、逆流状態にある昇温領域は、上流から流れてくる昇温前の流体が通過しており、その下流にある加熱流路の温度影響をほとんど受けることがないので、加熱前の昇温領域を確実に所定の低温状態に保つことが出来る。   Furthermore, since the fluid before the temperature rising flowing from the upstream passes through the temperature rising region in the reverse flow state, it is hardly affected by the temperature of the heating flow path downstream from it. The region can be reliably maintained at a predetermined low temperature state.

そして、上述した3点、つまり、昇温を極めて高速に行える点、加熱後の昇温領域の温度を精度良く目標温度にできる点、及び加熱前の昇温領域を所望の定温度(例えば常温)に保てる点が相俟って、この流体加熱装置を例えば触媒評価試験装置に適用した場合に、実際のエンジンの起動時や高負荷時等に極めて近い状況を再現できることとなり、触媒評価試験を従来に比べ精度良く行うことができるようになる。   Then, the above three points, that is, the temperature can be raised very quickly, the temperature of the heated region after heating can be accurately set to the target temperature, and the heated region before heating is set to a desired constant temperature (for example, normal temperature). When this fluid heating device is applied to, for example, a catalyst evaluation test device, it is possible to reproduce a situation very close to the actual engine start-up or high load, etc. It becomes possible to carry out with higher accuracy than in the past.

本発明の第1実施形態における触媒評価試験装置の全体を示すとともに、逆流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in a backflow state while showing the whole catalyst evaluation test apparatus in 1st Embodiment of this invention. 同実施形態での正流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in the normal flow state in the embodiment. 本発明の第2実施形態における触媒評価試験装置の全体を示すとともに、逆流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in a backflow state while showing the whole catalyst evaluation test apparatus in 2nd Embodiment of this invention. 同実施形態での正流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in the normal flow state in the embodiment. 本発明の第3実施形態における触媒評価試験装置の全体を示すとともに、逆流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in a backflow state while showing the whole catalyst evaluation test apparatus in 3rd Embodiment of this invention. 同実施形態での正流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in the normal flow state in the embodiment. 本発明の第4実施形態における触媒評価試験装置の全体を示すとともに、逆流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in a backflow state while showing the whole catalyst evaluation test apparatus in 4th Embodiment of this invention. 同実施形態での正流状態での模擬排ガスの流れを示す模式図。The schematic diagram which shows the flow of the simulation exhaust gas in the normal flow state in the embodiment.

以下、本発明の一実施形態に係る触媒評価試験装置100につき、図面を参照して説明する。   Hereinafter, a catalyst evaluation test apparatus 100 according to an embodiment of the present invention will be described with reference to the drawings.

この触媒評価試験装置100は、所定温度にまで昇温した模擬排ガスをエンジンの排気管に設けられる触媒Wに接触させ、その反応を評価・試験することができるように構成したものであり、図1に示すように、導入された模擬排ガスを加熱して内部に収容した触媒Wに接触させるセル1、前記セル1に模擬排ガスを導入するための一対の導入路21、22、前記セル1から模擬排ガスを導出するための一対の導出路31、32、セル1内の模擬排ガスの流通方向を正逆に切り替える切替機構4、前記切替機構4等を制御する制御機構5等を具備している。   This catalyst evaluation test apparatus 100 is configured so that a simulated exhaust gas heated to a predetermined temperature is brought into contact with a catalyst W provided in an exhaust pipe of an engine, and its reaction can be evaluated and tested. As shown in FIG. 1, the introduced simulated exhaust gas is heated and brought into contact with the catalyst W accommodated therein, a pair of introduction paths 21 and 22 for introducing the simulated exhaust gas into the cell 1, and the cell 1 A pair of derivation paths 31 and 32 for deriving simulated exhaust gas, a switching mechanism 4 for switching the flow direction of the simulated exhaust gas in the cell 1 to forward and reverse, a control mechanism 5 for controlling the switching mechanism 4 and the like are provided. .

以下に各部を説明する。
セル1は、模擬排ガスを昇温する加熱流路13と、この加熱流路13の側周囲に設けられた温調機構たるヒータ14と、加熱流路13の一端及び他端からそれぞれ延出させた一対の隣接流路11、12とを具備したものである。加熱流路13の一端から延出させた一方の隣接流路11には前記触媒Wを設置するための昇温領域S1が設定されており、加熱流路13の他端からから延出させた他方の隣接流路12には昇温領域S1とは加熱流路13を挟んでほぼ対称的な部位に対領域S2が設定されている。なお、「対称」とは、熱的に対称であってよい。さらにこの実施形態では、昇温領域S1、対領域S2及び加熱流路13の中心部にそれぞれ温度センサT1、T2、T3を設けている。
Each part will be described below.
The cell 1 extends from the heating flow path 13 that raises the temperature of the simulated exhaust gas, the heater 14 that is a temperature adjustment mechanism provided around the heating flow path 13, and one end and the other end of the heating flow path 13. And a pair of adjacent flow paths 11 and 12. One adjacent channel 11 extended from one end of the heating channel 13 is provided with a temperature raising region S1 for installing the catalyst W, and extended from the other end of the heating channel 13. In the other adjacent channel 12, a pair region S2 is set at a portion that is substantially symmetrical with the heating channel 13 across the heating channel S1. Note that “symmetric” may be thermally symmetric. Furthermore, in this embodiment, temperature sensors T1, T2, and T3 are provided at the central portions of the temperature raising region S1, the paired region S2, and the heating channel 13, respectively.

一対の導入路21、22のうち、一方の導入路21はセル1の一端部、すなわち一方の隣接流路11の延出端部に接続してあり、他方の導入路22はセル1の他端部、すなわち他方の隣接流路12の延出端部に接続してある。また、各導入路21、22の基端部はまとめられて単一の導入ポート23に接続されている。   Of the pair of introduction paths 21, 22, one introduction path 21 is connected to one end of the cell 1, that is, the extension end of one adjacent flow path 11, and the other introduction path 22 is the other of the cell 1. It is connected to the end, that is, the extended end of the other adjacent flow path 12. Further, the base ends of the introduction paths 21 and 22 are collectively connected to a single introduction port 23.

一対の導出路31、32のうち、一方の導出路31はセル1の一端部、すなわち一方の隣接流路11の延出端部に接続してあり、他方の導出路32はセル1の他端部、すなわち他方の隣接流路12の延出端部に接続してある。また、各導出路31、32の終端部はまとめられて単一の導出ポート33に接続されている。   Of the pair of lead-out paths 31, 32, one lead-out path 31 is connected to one end of the cell 1, that is, the extension end of one adjacent flow path 11, and the other lead-out path 32 is the other of the cell 1. It is connected to the end, that is, the extended end of the other adjacent flow path 12. Further, the terminal portions of the lead-out paths 31 and 32 are collectively connected to a single lead-out port 33.

切替機構4は、模擬排ガスが、対領域S2を通過して加熱流路13の他端から一端に向かって進み、昇温領域S1を通過する向きに流れる正流状態と、模擬排ガスが昇温領域S1を通過して加熱流路13の一端から他端に向かって流れ、対領域S2を通過する逆流状態とのいずれかに模擬排ガス状態を選択的に切り替えるものである。   The switching mechanism 4 has a positive flow state in which the simulated exhaust gas passes through the pair region S2 and advances from the other end of the heating flow path 13 toward one end and passes through the temperature rising region S1, and the simulated exhaust gas is heated. The simulated exhaust gas state is selectively switched to either a reverse flow state that passes through the region S1 and flows from one end to the other end of the heating flow path 13 and passes through the paired region S2.

具体的にこのものは、各導入路21、22及び各導出路31、32にそれぞれ設けた開閉バルブ4I1、4I2、4O1、4O2を具備しており、図1に示すように、一方の導入路21上及び他方の導出路32上に設けた開閉バルブ4I1、4O2を開、他方の導入路22上及び一方の導出路31上に設けた開閉バルブ4I2、4O1を閉にすることによって前記逆流状態を生成することができる。
また、図2に示すように、一方の導入路21上及び他方の導出路32上に設けた開閉バルブ4I1、4O2を閉、他方の導入路22上及び一方の導出路31上に設けた開閉バルブ4I2、4O1を開にすることによって前記正流状態を生成することができる。
Specifically, this is provided with on-off valves 4I1, 4I2, 4O1, 4O2 provided in the introduction paths 21, 22 and the outlet paths 31, 32, respectively. As shown in FIG. The on-off valves 4I1 and 4O2 provided on 21 and the other lead-out path 32 are opened, and the on-off valves 4I2 and 4O1 provided on the other lead-in path 22 and one lead-out path 31 are closed. Can be generated.
Further, as shown in FIG. 2, the on-off valves 4I1 and 4O2 provided on the one introduction path 21 and the other lead-out path 32 are closed, and the open / close valves provided on the other introduction path 22 and the one lead-out path 31 are closed. The positive flow state can be generated by opening the valves 4I2 and 4O1.

制御機構5は、例えば、図示しないCPU、メモリ、A/Dコンバータ、D/Aコンバータ、それらを接続するバス等を備えたデジタル回路と、デジタル回路周辺に接続されたアナログ回路とを具備したものであり、前記メモリに記憶させたプログラムにしたがってCPUやその周辺機器が協働することにより、所定の機能を発揮する。   The control mechanism 5 includes, for example, a digital circuit including a CPU, a memory, an A / D converter, a D / A converter, a bus for connecting them, and an analog circuit connected to the periphery of the digital circuit (not shown). The CPU and its peripheral devices cooperate with each other in accordance with the program stored in the memory, thereby exhibiting a predetermined function.

次に、この制御機構5の具体的な機能説明を兼ねて、本触媒評価試験装置100の動作について説明する。
まず、オペレータが、セル1内の昇温領域S1に設けられたホルダに触媒Wを設置し、本触媒評価試験装置100を動作させる。
すると、制御機構5が動作して前記切替機構4を制御し、図1に示すような逆流状態を生成する。このとき、導入ポート23から導入された模擬排ガスは全て一方の導入路21を通って加熱流路13から対領域S2を流れる。
Next, the operation of the catalyst evaluation test apparatus 100 will be described together with a specific function description of the control mechanism 5.
First, the operator installs the catalyst W in a holder provided in the temperature rising region S1 in the cell 1 and operates the catalyst evaluation test apparatus 100.
Then, the control mechanism 5 operates to control the switching mechanism 4 to generate a backflow state as shown in FIG. At this time, all of the simulated exhaust gas introduced from the introduction port 23 flows through the one introduction passage 21 and the counter region S2 from the heating passage 13.

次に、制御機構5は、この逆流状態において前記対領域S2を流れる模擬排ガスの温度を温度センサT2から取得し、この温度センサT2による測定温度が予め設定した目標温度範囲となるように前記ヒータ14の出力を制御する。なお、このとき、例えば加熱流路13の中央部に設置された温度センサT3からの測定温度が、所定の定格温度を超えていた場合は、ヒータ14の出力を下げ、何らかの警報を出すようにしてもよい。   Next, the control mechanism 5 acquires the temperature of the simulated exhaust gas flowing in the counter area S2 from the temperature sensor T2 in the reverse flow state, and the heater is adjusted so that the temperature measured by the temperature sensor T2 falls within a preset target temperature range. 14 outputs are controlled. At this time, for example, if the measured temperature from the temperature sensor T3 installed in the center of the heating flow path 13 exceeds a predetermined rated temperature, the output of the heater 14 is lowered to give some alarm. May be.

その後、制御機構5は、対領域S2の測定温度が目標温度範囲に入って安定していることを確認した後、そのときのヒータ14の出力を維持しながら、前記切替機構4を制御して模擬排ガスが正方向に流れる正流状態にする。   Thereafter, the control mechanism 5 confirms that the measured temperature of the paired region S2 is within the target temperature range and is stable, and then controls the switching mechanism 4 while maintaining the output of the heater 14 at that time. Make the simulated exhaust gas flow in the positive direction.

このとき、図2に示すように、導入ポート23から導入された模擬排ガスは全て他方の導入路22を介して加熱流路13から昇温領域S1(触媒W)を流れるところ、導入ポート23から導入される模擬排ガスの流量は、図示しない流量制御器等により一定に保たれているから、加熱流路13及び昇温領域S1には前記逆流状態と等流量の模擬排ガスが流れることとなる。   At this time, as shown in FIG. 2, all the simulated exhaust gas introduced from the introduction port 23 flows through the temperature increase region S1 (catalyst W) from the heating passage 13 via the other introduction passage 22. Since the flow rate of the simulated exhaust gas to be introduced is kept constant by a flow controller or the like (not shown), the simulated exhaust gas having the same flow rate as that in the reverse flow state flows through the heating flow path 13 and the temperature raising region S1.

なお、正流状態に切替後は、昇温領域S1の測定温度上昇率が一定以下となるか、あるいはそれに相当する所定時間経過したと判断した後、例えば昇温領域S1の測定温度が目標温度範囲に入るように、制御機構5は、前記ヒータ14の出力を制御してもよい。   After switching to the positive flow state, it is determined that the measured temperature increase rate in the temperature rising region S1 is equal to or less than a certain value, or a predetermined time corresponding thereto has elapsed, and then the measured temperature in the temperature rising region S1 is the target temperature, for example. The control mechanism 5 may control the output of the heater 14 so as to fall within the range.

このように構成した本実施形態に係る触媒評価試験装置100によれば、対領域S2における模擬排ガス温度を所望の目標温度にしておき、その温度制御された加熱模擬排ガスを、流路を切り替えることによって一気に触媒Wに流すようにしているので、触媒に流れる模擬排ガスの昇温速度を飛躍的に向上させることができる。   According to the catalyst evaluation test apparatus 100 according to the present embodiment configured as described above, the simulated exhaust gas temperature in the opposite region S2 is set to a desired target temperature, and the temperature-controlled heated simulated exhaust gas is switched over. Therefore, the temperature rise rate of the simulated exhaust gas flowing through the catalyst can be dramatically improved.

また、最初に逆流状態において目標温度となるように設定される対領域S2は、触媒Wが設置されている昇温領域S1と熱的に対称又は対称に近いように設計してあるので、逆流状態と正流状態とが対称的な関係となり、流路を切り替えて正流状態としたときに、昇温領域S1における模擬排ガスの温度を、オーバシュートや非到達なく、精度良く目標温度に到達させることができる。   In addition, the pair region S2 that is initially set to be the target temperature in the backflow state is designed to be thermally symmetric or close to symmetry with the temperature rising region S1 in which the catalyst W is installed. When the flow path is switched to the normal flow state, the simulated exhaust gas temperature in the temperature rising region S1 accurately reaches the target temperature without overshoot or non-reaching. Can be made.

さらに、逆流状態にある触媒Wは、上流から流れてくる常温の模擬排ガスに晒されており、その下流にある加熱流路13の温度影響をほとんど受けることがないため、昇温前の触媒Wを所定の低温状態に確実に保つことが出来る。   Further, the catalyst W in the reverse flow state is exposed to the normal temperature simulated exhaust gas flowing from the upstream and is hardly affected by the temperature of the heating flow path 13 downstream from the catalyst W before being heated. Can be reliably maintained at a predetermined low temperature state.

そして、上述した3点、つまり、昇温を極めて高速に行える点と、加熱後の温度を精度良く目標温度にできる点と、加熱前の触媒を所望の定温度(例えば常温)に保てる点とが相俟って、エンジンの起動時や高負荷時等における触媒Wの評価試験を従来に比べ、極めて精度良く行うことができるようになる。   And the above-mentioned three points, that is, that the temperature can be raised very quickly, that the temperature after heating can be accurately set to the target temperature, and that the catalyst before heating can be kept at a desired constant temperature (for example, room temperature). As a result, the evaluation test of the catalyst W at the time of starting the engine or at a high load can be performed with extremely high accuracy as compared with the conventional case.

[第2実施形態]
次に、本発明の第2実施形態を、図3、図4を参照して説明する。なお、前記第1実施形態と対応する部材には同一の符号を付している。
この実施形態では、一方の導入路21が前記加熱流路13の一端と昇温領域S1との間に接続してある。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member corresponding to the said 1st Embodiment.
In this embodiment, one introduction path 21 is connected between one end of the heating flow path 13 and the temperature raising region S1.

また、切替機構4として、前記第1実施形態のような、導出路31、32に設けた開閉バルブの代わりに、他方の導出路32に設けた流量制御器4MOが設けてある。すなわち、各導入路21、22に設けた開閉バルブと他方の導出路32に設けた流量制御器4MOとが切替機構4としての役割を担う。また、この流量制御器4MOは、前記各導出路31、32を流れる模擬排ガスの流量比を調整するための導出流量比調整機構としての役割も担う。したがって、流量制御器4MOを一方の導出路31に設けることも可能である。   Further, as the switching mechanism 4, a flow rate controller 4MO provided in the other lead-out path 32 is provided instead of the opening / closing valve provided in the lead-out paths 31 and 32 as in the first embodiment. That is, the opening / closing valve provided in each of the introduction paths 21 and 22 and the flow rate controller 4MO provided in the other lead-out path 32 play a role as the switching mechanism 4. Further, the flow rate controller 4MO also serves as a derived flow rate ratio adjusting mechanism for adjusting the flow rate ratio of the simulated exhaust gas flowing through the respective outlet passages 31 and 32. Therefore, it is also possible to provide the flow rate controller 4MO in one lead-out path 31.

なお、図中導出路31、32に設けられている開閉バルブ4O1、4O2は、動作中、開のままであるから省略してもよい。また、流量制御器4MOの上流に設けられた符号6は、流量制御器4MOの定格温度以下に模擬排ガスの温度を下げるための冷却器を示しており、流量制御器4MOの下流に設けられた符号7は、流量制御器4MOの動作を担保するためのポンプを示している。   The open / close valves 4O1 and 4O2 provided in the lead-out paths 31 and 32 in the figure may be omitted because they remain open during operation. Reference numeral 6 provided upstream of the flow rate controller 4MO denotes a cooler for lowering the temperature of the simulated exhaust gas below the rated temperature of the flow rate controller 4MO, and is provided downstream of the flow rate controller 4MO. The code | symbol 7 has shown the pump for ensuring operation | movement of the flow controller 4MO.

このような構成の触媒評価試験装置100の動作について以下に説明する。
まず、オペレータが、セル1内の昇温領域S1に設定されたホルダに触媒Wを設置し、本触媒評価試験装置100を動作させる。
すると、制御機構5が動作し、前記切替機構4を制御して、図3に示すような逆流状態を生成する。
The operation of the catalyst evaluation test apparatus 100 having such a configuration will be described below.
First, the operator installs the catalyst W in the holder set in the temperature rising region S1 in the cell 1 and operates the catalyst evaluation test apparatus 100.
Then, the control mechanism 5 operates to control the switching mechanism 4 to generate a backflow state as shown in FIG.

ここで、この逆流状態での模擬排ガスの流れについて説明しておく。導入ポート23から流れ込んだ模擬排ガスは、図3に示すように、その全量が一方の導入路21を通り、セル1で加熱流路13に向かう流れと昇温領域S1(触媒W)に向かう流れとに分岐する。   Here, the flow of the simulated exhaust gas in the reverse flow state will be described. As shown in FIG. 3, the entire amount of the simulated exhaust gas flowing from the introduction port 23 passes through one introduction path 21 and flows toward the heating flow path 13 in the cell 1 and toward the temperature rising region S1 (catalyst W). Branch to.

加熱流路13に向かった模擬排ガスは、対領域S2から他方の導出路32を通って導出ポート33で排出される。また、昇温領域S1に向かった模擬排ガスは、一方の導出路31を通って導出ポート33から同じく排出される。   The simulated exhaust gas toward the heating flow path 13 is discharged from the paired region S2 through the other lead-out path 32 at the lead-out port 33. In addition, the simulated exhaust gas toward the temperature raising region S1 is similarly discharged from the outlet port 33 through one outlet path 31.

このように、加熱流路13から対領域S2を通った模擬排ガスは、その全量が他方の導出路32に導かれるので、制御機構5は、この他方の導出路32上に設けた流量制御器4MOに指令して、他方の導出路32を流れる模擬排ガスの流量、すなわち加熱流路13を流れる模擬排ガスの流量を予め定めた制御流量に制御する。   As described above, since the entire amount of the simulated exhaust gas passing through the counter area S2 from the heating flow path 13 is guided to the other lead-out path 32, the control mechanism 5 is provided with a flow rate controller provided on the other lead-out path 32. 4MO is commanded to control the flow rate of the simulated exhaust gas flowing through the other lead-out path 32, that is, the flow rate of the simulated exhaust gas flowing through the heating flow path 13 to a predetermined control flow rate.

一方、この目標流量は、導入ポート23から流れ込む模擬排ガスの流量よりも小さく設定してあるので、残りの余剰模擬排ガスが昇温領域S1を通って導出ポート33から排出されることとなる。   On the other hand, since this target flow rate is set to be smaller than the flow rate of the simulated exhaust gas flowing from the introduction port 23, the remaining surplus simulated exhaust gas is discharged from the outlet port 33 through the temperature rising region S1.

次に、前記実施形態同様、制御機構5は、この逆流状態において前記対領域S2を流れる模擬排ガスの温度を温度センサT2から取得し、この温度センサT2による測定温度が予め設定した目標温度範囲となるように前記ヒータ14の出力を制御する。   Next, as in the above embodiment, the control mechanism 5 acquires the temperature of the simulated exhaust gas flowing in the counter area S2 in the backflow state from the temperature sensor T2, and the temperature measured by the temperature sensor T2 is a preset target temperature range. Thus, the output of the heater 14 is controlled.

そして、制御機構5は、対領域S2の測定温度が目標温度範囲に入って安定していることを確認した後、そのときのヒータ14の出力を維持しながら、前記切替機構4を制御して模擬排ガスが正方向に流れる正流状態にする。   The control mechanism 5 controls the switching mechanism 4 while maintaining the output of the heater 14 at that time after confirming that the measured temperature of the paired region S2 is stable within the target temperature range. Make the simulated exhaust gas flow in the positive direction.

ここで、この正流状態での模擬排ガスの流れについて説明すると、導入ポート23から流れ込んだ模擬排ガスは、図4に示すように、その全量が他方の導入路22を通り、セル1で加熱流路13に向かう流れと他方の導出路32に向かう流れとに分岐する。加熱流路13に向かった模擬排ガスは、昇温領域S1(触媒W)、一方の導出路31を通って導出ポート33から排出される。他方の導出路32に向かった模擬排ガスは導出ポート33から排出される。   Here, the flow of the simulated exhaust gas in the positive flow state will be described. As shown in FIG. 4, the entire amount of the simulated exhaust gas flowing from the introduction port 23 passes through the other introduction path 22 and is heated in the cell 1. The flow branches to a flow toward the path 13 and a flow toward the other outlet path 32. The simulated exhaust gas toward the heating channel 13 is discharged from the outlet port 33 through the temperature rising region S1 (catalyst W) and one outlet channel 31. The simulated exhaust gas toward the other lead-out path 32 is discharged from the lead-out port 33.

ところで、加熱流路13を通る模擬排ガスの流量QFは、逆流状態での流量QRと等しくする必要があるので、前記制御機構5は、他方の導出路32を流れる模擬排ガスの流量を制御することによって、間接的に加熱流路13を通る模擬排ガスの流量を制御する。   Incidentally, since the flow rate QF of the simulated exhaust gas passing through the heating flow path 13 needs to be equal to the flow rate QR in the reverse flow state, the control mechanism 5 controls the flow rate of the simulated exhaust gas flowing through the other lead-out path 32. Thus, the flow rate of the simulated exhaust gas passing through the heating flow path 13 is indirectly controlled.

具体的には、他方の導入路22から流れ込む模擬排ガスの流量QFI2(既知)から他方の導出路32を流れる模擬排ガスの流量QRO2を差し引いた差分流量QFI2−QRO2が、加熱流路13を流れる流量QF、すなわち一方の導出路31を流れる流量であるため、この差分流量が前記逆流状態での加熱流路13を通る模擬排ガスの流量QRと等しくなるように、前記流量制御器4MOの制御流量QRO2を以下の式(1)のように設定する。
QRO2=QFI2−QF
=QFI2−QR・・・(1)
Specifically, the difference flow rate QF I2 -QR O2 minus the flow rate QF I2 flow QR O2 simulated exhaust gas from (known) through the other outlet passage 32 of the simulated exhaust gas flowing from the other introduction path 22, the heating channel 13, that is, the flow rate flowing through one outlet 31, the flow rate controller 4MO is configured so that the differential flow rate becomes equal to the flow rate QR of the simulated exhaust gas passing through the heating flow path 13 in the reverse flow state. setting the control flow rate QR O2 of the following equation (1).
QR O2 = QF I2 -QF
= QF I2 -QR (1)

このような構成でも、前記実施形態同様の効果を得ることができる。加えて、前記流量制御器4MOの制御流量を変えることによって、正逆状態の両方において加熱流路13を流れる流量を自在に設定することができるので、触媒評価試験の自由度をさらに向上させることができる。   Even with such a configuration, it is possible to obtain the same effects as those of the above-described embodiment. In addition, by changing the control flow rate of the flow rate controller 4MO, it is possible to freely set the flow rate that flows through the heating flow path 13 in both the forward and reverse states, thereby further improving the degree of freedom in the catalyst evaluation test. Can do.

[第3実施形態]
次に、本発明の第3実施形態について、図5、図6を参照して説明する。なお、前記実施形態と対応する部材には同一の符号を付している。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member corresponding to the said embodiment.

この第3実施形態は、流路構成は第2実施形態と同様であるが、切替機構4として、導入路21、22に設けた開閉バルブの代わりに、それぞれ流量制御器4MI1、4MI2が設けてある。すなわち、これら流量制御器4MI1、4MI2と、他方の導出路32に設けた流量制御器4MOとが切替機構4としての役割を担う。   In the third embodiment, the flow path configuration is the same as that of the second embodiment, but the switching mechanisms 4 are provided with flow rate controllers 4MI1 and 4MI2 instead of the on-off valves provided in the introduction paths 21 and 22, respectively. is there. That is, these flow rate controllers 4MI1, 4MI2 and the flow rate controller 4MO provided in the other lead-out path 32 play a role as the switching mechanism 4.

次に、このような構成の触媒評価試験装置100の動作について以下に説明する。
まず、オペレータが、セル1内の昇温領域S1に設定されたホルダに触媒Wを設置し、本触媒評価試験装置100を動作させる。
Next, operation | movement of the catalyst evaluation test apparatus 100 of such a structure is demonstrated below.
First, the operator installs the catalyst W in the holder set in the temperature rising region S1 in the cell 1 and operates the catalyst evaluation test apparatus 100.

すると、制御機構5が動作し、前記切替機構4を制御して(言い換えれば各流量制御器4MI1、4MI2、4MOを制御して)、図5に示すような逆流状態を生成する。この逆流状態での加熱流路13を流れる流量QRは以下の式(2)から求められる。
QR=QRO2−QRI2・・・(2)
ここで、QRO2は導出流量制御器4MOの制御流量(他方の導出路32を流れる流量)、QRI2は他方の導入流量制御器4MI2の制御流量(他方の導入路22を流れる流量)を表している。
Then, the control mechanism 5 operates and controls the switching mechanism 4 (in other words, controls the flow rate controllers 4MI1, 4MI2, 4MO) to generate a backflow state as shown in FIG. The flow rate QR flowing through the heating flow path 13 in the reverse flow state is obtained from the following equation (2).
QR = QR O2 −QR I2 (2)
Here, QR O2 represents the control flow rate of the derivation flow rate controller 4MO (flow rate flowing through the other derivation path 32), and QR I2 represents the control flow rate of the other introduction flow rate controller 4MI2 (flow rate flowing through the other introduction path 22). ing.

そこで、制御機構5は、加熱流路13を流れる流量QRが予め定めた値となるように、導入流量制御器4MI2及び導出流量制御器4MOの制御流量を設定する。   Therefore, the control mechanism 5 sets the control flow rates of the introduction flow rate controller 4MI2 and the derived flow rate controller 4MO so that the flow rate QR flowing through the heating flow path 13 becomes a predetermined value.

例えば、式(2)から明らかなように、他方の導入流量制御器4MI2の制御流量QRI2を定めれば、導出流量制御器4MOの制御流量QRO2は一意的に定まり以下の式(3)のようになる。
QRO2=QRI2−QR・・・(3)
For example, as is apparent from equation (2), be determined to control the flow rate QR I2 of the other introduction flow controller 4MI2, the control flow rate QR O2 derivation flow controller 4MO unique to Sadamari following formula (3) become that way.
QR O2 = QR I2 -QR (3)

なお、一方の導入路21の流量QRI1は、QRを上回ればよく、制御機構5は、一方の導入流量制御器4MI1を制御して、昇温領域S1(触媒W)を通り一方の導出路31から排出されるその余剰流量QR−QRI1が、昇温領域S1(触媒W)を常温に保てる程度に前記流量QRI1を設定する。 The flow rate QR I1 of one introduction path 21 only needs to exceed QR, and the control mechanism 5 controls one introduction flow rate controller 4MI1 to pass through the temperature rising region S1 (catalyst W) and one lead-out path. The surplus flow rate QR-QR I1 discharged from 31 sets the flow rate QR I1 to such an extent that the temperature increase region S1 (catalyst W) can be kept at room temperature.

次に、前記実施形態同様、制御機構5は、逆流状態において前記対領域S2を流れる模擬排ガスの温度を温度センサT2から取得し、この温度センサT2による測定温度が予め設定した目標温度範囲となるように前記ヒータ14の出力を制御する。   Next, as in the above embodiment, the control mechanism 5 acquires the temperature of the simulated exhaust gas flowing in the counter area S2 from the temperature sensor T2 in the backflow state, and the temperature measured by the temperature sensor T2 becomes a preset target temperature range. Thus, the output of the heater 14 is controlled.

その後、制御機構5は、対領域S2の測定温度が目標温度範囲に入って安定していることを確認した後、そのときのヒータ14の出力を維持しながら、前記切替機構4を制御して、図6に示すように、模擬排ガスが正方向に流れる正流状態にする。なお、このとき、一方の導入路21は一方の導入流量制御器4MI1によってクローズ状態とし、昇温領域S1に常温の模擬排ガスが混入しないようにする。   Thereafter, the control mechanism 5 confirms that the measured temperature of the paired region S2 is within the target temperature range and is stable, and then controls the switching mechanism 4 while maintaining the output of the heater 14 at that time. As shown in FIG. 6, a positive flow state in which the simulated exhaust gas flows in the positive direction is set. At this time, one introduction path 21 is closed by one introduction flow rate controller 4MI1, so that the normal temperature simulated exhaust gas is not mixed in the temperature rising region S1.

この正流状態での加熱流路13を流れる流量QFは、以下の式(4)で表される。
QF=QFI2−QFO2・・・(4)
ここで、QFI2は、他方の導入流量制御器4MI2の制御流量(他方の導入路22を流れる流量)、QFO2は導出流量制御器4MOの制御流量(他方の導出路32を流れる流量)を表している。
The flow rate QF flowing through the heating flow path 13 in the positive flow state is expressed by the following equation (4).
QF = QF I2 -QF O2 (4)
Here, QF I2 is controlled flow rate of the other introduction flow controller 4MI2 (flow through the other inlet channel 22), QF O2 control flow derived flow controller 4MO a (flow rate through the other outlet passage 32) Represents.

ところで、正流状態での加熱流路13を流れる流量QFは、逆流状態での流量QRと等しくする必要があるので、前記流量QFが流量QRと等しくなるように、制御機構5は、流量制御器4MI2、4MOの制御流量QFI2、QFO2を、切替と同時に定める。 Incidentally, since the flow rate QF flowing through the heating flow path 13 in the normal flow state needs to be equal to the flow rate QR in the reverse flow state, the control mechanism 5 controls the flow rate so that the flow rate QF becomes equal to the flow rate QR. The control flow rates QF I2 and QF O2 of the devices 4MI2 and 4MO are determined simultaneously with switching.

具体的には例えば、式(4)から明らかなように、他方の導入流量制御器4MI2の制御流量QFI2を定めれば、導出流量制御器4MOの制御流量QFO2は一意的に定まり、以下の式(5)のようになる。
QFO2=QFI2−QF=QFI2−QR・・・(5)
このような構成でも、前記第2実施形態同様の効果を得ることができる。
Specifically, for example, as is clear from the equation (4), if the control flow rate QF I2 of the other introduction flow rate controller 4MI2 is determined, the control flow rate QF O2 of the derived flow rate controller 4MO is uniquely determined. Equation (5) is obtained.
QF O2 = QF I2 −QF = QF I2 −QR (5)
Even with such a configuration, the same effects as those of the second embodiment can be obtained.

さらにこの実施形態では、触媒Wの急速降温も可能となる。すなわち、正流状態において、一方の導入路21に設けた流量制御器4MI1を開いて、所定の流量を流せば、常温の模擬排ガスが昇温された模擬排ガスと混合するので、昇温領域S1の温度が急速に下がって前述した触媒Wの急速降温が可能となる。このとき、他方の導入路22を流れる模擬排ガスの流量を減少させれば、昇温された模擬排ガスの流量が小さくなるので、より急速な降温が可能となる。   Further, in this embodiment, the temperature of the catalyst W can be rapidly lowered. That is, in the normal flow state, if the flow rate controller 4MI1 provided in one introduction path 21 is opened and a predetermined flow rate is flowed, the simulated exhaust gas at normal temperature is mixed with the simulated exhaust gas whose temperature has been increased. Thus, the temperature of the catalyst W can be rapidly lowered. At this time, if the flow rate of the simulated exhaust gas flowing through the other introduction path 22 is decreased, the flow rate of the simulated exhaust gas that has been heated is reduced, so that the temperature can be lowered more rapidly.

[第4実施形態]
次に、本発明の第4実施形態について図7、図8を参照して説明する。なお、前記実施形態と対応する部材には同一の符号を付している。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the member corresponding to the said embodiment.

この第4実施形態では、図7に示すように、第3実施形態と比べ、他方の導入路22が前記加熱流路13の他端と対領域S2との間に接続してある点で、流路構成が異なる。また、温調機構として、ヒータ14は定格出力で一定としておき、加熱された模擬排ガスに導入路21、22からの低温模擬排ガスを混合させることによって、対領域S2又は昇温領域S1の温度を調整できる構成としている。
具体的に動作の一例を説明する。
In the fourth embodiment, as shown in FIG. 7, compared to the third embodiment, the other introduction path 22 is connected between the other end of the heating flow path 13 and the pair region S2. The channel configuration is different. Further, as the temperature control mechanism, the heater 14 is kept constant at the rated output, and the temperature of the counter region S2 or the temperature rising region S1 is set by mixing the simulated low temperature exhaust gas from the introduction paths 21 and 22 with the heated simulated exhaust gas. The configuration is adjustable.
A specific example of the operation will be described.

まず、逆流状態おいて、制御機構5は、図7に示すように、導入流量制御器4MI1を制御して、一方の導入路21を流れる模擬排ガスの流量をQRI1とする。 First, in the reverse flow state, as shown in FIG. 7, the control mechanism 5 controls the introduction flow rate controller 4MI1 to set the flow rate of the simulated exhaust gas flowing through the one introduction path 21 to QR I1 .

次に、対領域S2の測定温度が、所定の目標温度となるように、他方の導入路22を流れる模擬排ガスの流量を、導入流量制御器4MI2に指令を出して制御する。その結果、他方の導入路22を流れる模擬排ガスの流量がQRI2になったとする。 Next, the flow rate of the simulated exhaust gas flowing through the other introduction path 22 is controlled by giving a command to the introduction flow rate controller 4MI2 so that the measured temperature of the pair region S2 becomes a predetermined target temperature. As a result, it is assumed that the flow rate of the simulated exhaust gas flowing through the other introduction path 22 becomes QR I2 .

一方、制御機構5は、逆流状態での加熱流路13を流れる模擬排ガスの流量が予め定めたQRとなるように、導出流量制御器4MOに指令を出して制御する。そのときの制御流量QRO2は、以下の式(6)の通りである。
QRO2=QR+QRI2・・・(6)
On the other hand, the control mechanism 5 controls the derivation flow rate controller 4MO by giving a command so that the flow rate of the simulated exhaust gas flowing through the heating flow path 13 in the backflow state becomes a predetermined QR. Control flow QR O2 at that time is shown in the following equation (6).
QR O2 = QR + QR I2 (6)

次に制御機構5は、図8に示す正流状態を生成する。
具体的には、各導入流量制御器4MI1、4MI2による制御流量を反転させる。すなわち、一方の導入路21を流れる模擬排ガスの流量QFI1をQRI2とし、他方の導入路22を流れる模擬排ガスの流量QFI2をQRI1とする。
Next, the control mechanism 5 generates a positive flow state shown in FIG.
Specifically, the control flow rate by each introduction flow rate controller 4MI1, 4MI2 is reversed. That is, the flow rate QF I1 of the simulated exhaust gas flowing through one introduction path 21 is QR I2, and the flow rate QF I2 of the simulated exhaust gas flowing through the other introduction path 22 is QR I1 .

同時に制御機構5は、正流状態での加熱流路13を流れる模擬排ガスの流量QFが前記逆流状態での流量QRとなるように、導出流量制御器4MOに指令を出して制御する。そのときの制御流量QFO2は、以下の式(7)の通りである。
QFO2=QFI2−QF
=QRI1−QR・・・(7)
At the same time, the control mechanism 5 controls the derived flow rate controller 4MO by giving a command so that the flow rate QF of the simulated exhaust gas flowing through the heating flow path 13 in the normal flow state becomes the flow rate QR in the reverse flow state. Control flow QF O2 at that time is shown in the following equation (7).
QF O2 = QF I2 -QF
= QR I1 -QR (7)

このような構成であれば、ヒータ出力を制御することなく前記第3実施形態同様の効果を得ることができる。また、第3実施形態同様、触媒Wの急速降温も可能である。   With such a configuration, the same effect as in the third embodiment can be obtained without controlling the heater output. Further, as in the third embodiment, the temperature of the catalyst W can be rapidly lowered.

なお、本発明は前記実施形態に限られない。例えば、流量制御器を設ける部位を変更することも可能であるし、触媒評価試験装置のみならず、流体を一挙に所定温度にまで加熱する目的であれば、種々の用途に本発明を適用可能である。
その他、本発明は、前記実施形態に限られることなく、種々の変形が可能である。
The present invention is not limited to the above embodiment. For example, it is possible to change the part where the flow rate controller is provided, and the present invention can be applied not only to the catalyst evaluation test apparatus but also to various applications as long as the purpose is to heat the fluid to a predetermined temperature all at once. It is.
In addition, the present invention is not limited to the above embodiment, and various modifications can be made.

100・・・触媒評価試験装置
1・・・セル
11、12・・・隣接流路
13・・・加熱流路
14・・・温調機構(ヒータ)
21、22・・・導入路
31、32・・・導出路
4・・・切替機構
5・・・制御機構
S1・・昇温領域
S2・・・対領域
DESCRIPTION OF SYMBOLS 100 ... Catalyst evaluation test apparatus 1 ... Cell 11, 12 ... Adjacent channel 13 ... Heating channel 14 ... Temperature control mechanism (heater)
21, 22 ... Introducing paths 31, 32 ... Deriving paths 4 ... Switching mechanism 5 ... Control mechanism S1.

Claims (7)

流体を加熱する加熱流路と、
前記加熱流路を流れる流体の向きを正方向と逆方向とに切替反転させる切替機構と、
前記正方向に流れる流体が当該加熱流路を出て通過する昇温領域及び前記逆方向に流れる流体が当該加熱流路を出て通過する対領域と、
前記昇温領域及び対領域を流れる流体の温度を調整する温調機構と、
前記切替機構を制御して加熱流路を流体が逆方向に流れる逆流状態にするとともにこの逆流状態において前記対領域を流れる流体の温度を予め設定した目標温度となるように前記温調機構を制御した後、前記切替機構を制御して流体が正方向に流れる正流状態にする制御機構とを具備していることを特徴とする流体加熱装置。
A heating channel for heating the fluid;
A switching mechanism for switching and reversing the direction of the fluid flowing through the heating flow path between the forward direction and the reverse direction;
A temperature rising region through which the fluid flowing in the forward direction passes through the heating channel, and a paired region through which the fluid flowing in the reverse direction passes through the heating channel;
A temperature adjustment mechanism for adjusting the temperature of the fluid flowing through the temperature rising region and the paired region;
The temperature control mechanism is controlled so that the temperature of the fluid flowing in the counter area in the reverse flow state becomes a preset target temperature in a reverse flow state in which the fluid flows in the reverse direction by controlling the switching mechanism. And a control mechanism for controlling the switching mechanism so as to allow the fluid to flow in the positive direction.
前記加熱流路と、該加熱流路の一端及び他端からそれぞれ延出させた一対の隣接流路とからなり、一方の隣接流路には前記昇温領域が設定されるとともに他方の隣接流路には前記対領域が設定されているセルと、
前記加熱流路に流体を導入するための一対の導入路と、
前記加熱流路から流体を導出するための一対の導出路とを具備し、
一方の導入路及び一方の導出路は、前記一方の隣接流路の延出端部に接続されるとともに、他方の導入路及び他方の導出路は前記他方の隣接流路の延出端部に接続され、
前記切替機構は、逆流状態においては、他方の導入路及び一方の導出路をクローズすることで、一方の導入路からの流体がセルに導入されて他方の導出路から排出されるようにする一方、正流状態においては、一方の導入路及び他方の導出路をクローズすることで、他方の導入路からの流体がセルに導入されて一方の導出路から導出されるようにするものである請求項1記載の流体加熱装置。
The heating channel and a pair of adjacent channels respectively extending from one end and the other end of the heating channel, the temperature rising region is set in one adjacent channel and the other adjacent flow A cell in which the above-mentioned paired area is set on the road;
A pair of introduction paths for introducing a fluid into the heating flow path;
A pair of outlet paths for leading the fluid from the heating channel;
One introduction path and one lead-out path are connected to the extension end of the one adjacent flow path, and the other lead-in path and the other lead-out path are connected to the extension end of the other adjacent flow path. Connected,
In the reverse flow state, the switching mechanism closes the other introduction path and one outlet path so that fluid from one introduction path is introduced into the cell and discharged from the other outlet path. In the positive flow state, by closing one introduction path and the other lead-out path, the fluid from the other introduction path is introduced into the cell and led out from the one lead-out path. Item 2. The fluid heating apparatus according to Item 1.
前記各導入路が、流体が流入する単一の導入ポートに接続されている請求項記載の流体加熱装置。 The fluid heating device according to claim 2 , wherein each of the introduction paths is connected to a single introduction port through which fluid flows. 前記加熱流路と、該加熱流路の一端及び他端からそれぞれ延出させた一対の隣接流路とからなり、一方の隣接流路には前記昇温領域が設定されるとともに他方の隣接流路には前記対領域が設定されているセルと、
前記加熱流路に流体を導入するための一対の導入路と、
前記加熱流路から流体を導出するための一対の導出路とを具備し、
一方の導入路は前記加熱流路の一端と昇温領域との間に接続してあり、
他方の導入路及び他方の導出路は他方の隣接流路の延出端部に接続してあり、
一方の導出路は一方の隣接流路の延出端部に接続してあり、
前記切替機構は、逆流状態においては、他方の導入路をクローズすることで、一方の導入路からの流体が前記加熱流路及び一方の隣接領域への流れに分岐した後、各導出路から導出されるようにする一方、正流状態においては、一方の導入路をクローズすることで、他方の導入路からの流体が、一方の導出路及び加熱流路への流れに分岐した後、各導出路から導出されるようにするものである請求項1記載の流体加熱装置。
The heating channel and a pair of adjacent channels respectively extending from one end and the other end of the heating channel, the temperature rising region is set in one adjacent channel and the other adjacent flow A cell in which the above-mentioned paired area is set on the road;
A pair of introduction paths for introducing a fluid into the heating flow path;
A pair of outlet paths for leading the fluid from the heating channel;
One introduction path is connected between one end of the heating channel and the temperature raising region,
The other introduction path and the other lead-out path are connected to the extending end of the other adjacent flow path,
One lead-out path is connected to the extending end of one adjacent flow path,
In the reverse flow state, the switching mechanism closes the other introduction path, so that the fluid from one introduction path branches into the flow to the heating flow path and the one adjacent region, and then is led out from each outlet path. On the other hand, in the positive flow state, by closing one introduction path, the fluid from the other introduction path branches into the flow to one lead-out path and the heating flow path, and then each derivation The fluid heating device according to claim 1, wherein the fluid heating device is derived from a path.
前記各導出路を流れる流体の流量比を調整する導出流量比調整機構をさらに具備し、
前記制御機構が、前記導出流量比調整機構を制御して加熱流路を流れる流量が正流状態と逆流状態とにおいて等しくなるようにするものである請求項記載の流体加熱装置。
Further comprising a derivation flow ratio adjustment mechanism for adjusting a flow ratio of the fluid flowing through each of the derivation paths;
The fluid heating device according to claim 4 , wherein the control mechanism controls the derived flow rate ratio adjusting mechanism so that the flow rate flowing through the heating flow path is equal in the normal flow state and the reverse flow state.
前記制御機構が、前記正流状態において一方の導入路を流量変更可能にオープンする請求項記載の流体加熱装置。 The fluid heating device according to claim 4 , wherein the control mechanism opens one introduction path so that the flow rate can be changed in the positive flow state. 請求項1乃至6のうち何れか一項に記載の流体加熱装置を用いた触媒評価試験装置であって、前記流体が模擬排ガスであり、前記昇温領域に排ガスの触媒を設置可能に構成してあることを特徴とする触媒評価試験装置。
A catalyst evaluation test apparatus using the fluid heating apparatus according to any one of claims 1 to 6 , wherein the fluid is simulated exhaust gas, and an exhaust gas catalyst can be installed in the temperature rising region. The catalyst evaluation test apparatus characterized by the above-mentioned.
JP2012243172A 2012-11-02 2012-11-02 Fluid heating device and catalyst evaluation test device Active JP5914297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243172A JP5914297B2 (en) 2012-11-02 2012-11-02 Fluid heating device and catalyst evaluation test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243172A JP5914297B2 (en) 2012-11-02 2012-11-02 Fluid heating device and catalyst evaluation test device

Publications (2)

Publication Number Publication Date
JP2014092075A JP2014092075A (en) 2014-05-19
JP5914297B2 true JP5914297B2 (en) 2016-05-11

Family

ID=50936358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243172A Active JP5914297B2 (en) 2012-11-02 2012-11-02 Fluid heating device and catalyst evaluation test device

Country Status (1)

Country Link
JP (1) JP5914297B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6556588B2 (en) * 2015-10-23 2019-08-07 株式会社ベスト測器 Exhaust gas purification catalyst and exhaust gas sensor performance evaluation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927399B2 (en) * 2001-10-26 2007-06-06 株式会社堀場製作所 Catalyst evaluation test equipment

Also Published As

Publication number Publication date
JP2014092075A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
KR20140056039A (en) Fluid control system
JP6304623B2 (en) Hot water mixing device
KR20070037319A (en) Constant temperature liquid circulating device and method of controlling temperature in the device
JP2008528886A (en) Temperature controlled variable fluid resistance device
JP2022003275A (en) Flow controller and hot water appliance provided therewith
JP5914297B2 (en) Fluid heating device and catalyst evaluation test device
WO2016046978A1 (en) Hot-water supply and heating system
JP6160772B2 (en) Hot water storage water heater
JP2015511739A (en) Compressor device and method for controlling such a compressor device
EP2592416A2 (en) Device for supplying simulated gas
JP5476364B2 (en) Simulated gas supply device
JP3927399B2 (en) Catalyst evaluation test equipment
US20060199121A1 (en) Limited modulation furnace and method for controlling the same
US20140178274A1 (en) Method For Adjusting Temperature By Increasing Gas Molecular Density
JP2006227853A (en) Micro flow rate distribution controller
US9416961B2 (en) Boiler connection system
JPH04126951A (en) Hot water temperature control device for hot water feeder
JP6303469B2 (en) Heat exchanger
US20150075641A1 (en) System for regulating pressure differentials on a fluid
KR102584756B1 (en) Method and device for controlling valves
JP7142963B2 (en) Valve unit and temperature controller
RU2674805C1 (en) Discharge unit with single connection
JP6215050B2 (en) Catalyst evaluation system
JP2014202424A (en) Water heater
JP4655762B2 (en) Gas water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250