JP6214855B2 - Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same - Google Patents

Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same Download PDF

Info

Publication number
JP6214855B2
JP6214855B2 JP2012114940A JP2012114940A JP6214855B2 JP 6214855 B2 JP6214855 B2 JP 6214855B2 JP 2012114940 A JP2012114940 A JP 2012114940A JP 2012114940 A JP2012114940 A JP 2012114940A JP 6214855 B2 JP6214855 B2 JP 6214855B2
Authority
JP
Japan
Prior art keywords
hypochlorous acid
slightly acidic
acid water
water
chlorine concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012114940A
Other languages
Japanese (ja)
Other versions
JP2013240742A (en
Inventor
古米 保
保 古米
葭田 隆治
隆治 葭田
俊昭 大木
俊昭 大木
石橋 隆二
隆二 石橋
吉章 松村
吉章 松村
良一 渋谷
良一 渋谷
Original Assignee
石橋 隆二
隆二 石橋
松村 光祥
松村 光祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石橋 隆二, 隆二 石橋, 松村 光祥, 松村 光祥 filed Critical 石橋 隆二
Priority to JP2012114940A priority Critical patent/JP6214855B2/en
Publication of JP2013240742A publication Critical patent/JP2013240742A/en
Application granted granted Critical
Publication of JP6214855B2 publication Critical patent/JP6214855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、炭酸ガスを溶解させた微細気泡含有の微酸性次亜塩素酸水製造方法及び使用方法に関するものである。 The present invention relates to a method for producing and using a slightly acidic hypochlorous acid water containing fine bubbles in which carbon dioxide gas is dissolved.

次亜塩素酸水は次亜塩素酸(HOCl)を殺菌基盤とするいわゆる電解水であり、電解次亜水の水溶液である。電解次亜水は食塩水を無隔膜電解槽で電気分解して生成される次亜塩素酸ナトリウム水溶液で、電解次亜水の殺菌成分は次亜塩素酸イオン(ClO)である。次亜塩素酸ナトリウム(NaOCl)は食品添加物に指定されており、果実・野菜など各種食材の殺菌処理、各種食品の製造加工用の装置、器具ないしは環境の衛生管理、あるいは飲料水、プール用水、浴場用水や下水の殺菌処理などに幅広く利用されている。次亜塩素酸ナトリウム水溶液の塩素成分は水溶液のpHにより変化し、pH3.0以上の酸性水領域では次亜塩素酸として、アルカリ側では次亜塩素酸イオンとして存在する。特に、pH5.0付近の微酸性領域では揮発性塩素ガスを殆どあるいは全く含まないで、次亜塩素酸イオンより殺菌力が強い次亜塩素酸のみとなることが知られている(堀田国元、有害微生物管理技術、第1巻、p751〜757、フジテクノシステム2000)。 Hypochlorous acid water is so-called electrolytic water based on hypochlorous acid (HOCl) as a sterilization base, and is an aqueous solution of electrolytic hypochlorous acid. Electrolytic hypochlorite is an aqueous sodium hypochlorite solution produced by electrolyzing saline in a non-diaphragm electrolytic cell, and the sterilizing component of electrolytic hypochlorite is hypochlorite ions (ClO ). Sodium hypochlorite (NaOCl) is designated as a food additive, sterilizing various foods such as fruits and vegetables, equipment for manufacturing and processing various foods, equipment or environmental hygiene management, drinking water, pool water It is widely used for sterilization of bath water and sewage. The chlorine component of the aqueous sodium hypochlorite solution varies depending on the pH of the aqueous solution, and exists as hypochlorous acid in the acidic water region at pH 3.0 or higher and as hypochlorite ion on the alkali side. In particular, it is known that in the slightly acidic region around pH 5.0, there is little or no volatile chlorine gas, and only hypochlorous acid having stronger bactericidal power than hypochlorite ions (Kunimoto Hotta). Harmful microorganism management technology, Volume 1, p751-757, Fuji Techno System 2000).

従って、次亜塩素酸ナトリウム水溶液を殺菌水として使うには、pH5.0付近の微酸性領域にpH調整することが重要であり、pH調整されたものを本発明では「微酸性次亜塩素酸水」と称するものとする。この目的には、有機酸、無機酸あるいは炭酸ガスが使われる。この内、塩酸などの無機酸を次亜塩素酸ナトリウム水溶液と混合すると有毒な塩素ガスを発生させる危険性がある。食添用の酢酸や乳酸でpH調整する場合には、密封系中で点滴ポンプを使用することにより安全性を確保することができ、この技術は実用化もされている((有)ヘルス社製、アクアライザーT−30)。炭酸ガスでpH調整する方法としては、次亜塩素酸ナトリウム水溶液に炭酸ガスをバブリングする方法(特開平10‐24294)、膜モジュールからなる炭酸ガス溶解器でpH調整する方法も開示されている(特開2004‐307405)。炭酸ガスは、無味無臭の不活性ガスで、素早く水に溶け、誤って過注入となっても急激なpH低下を呈することが無いなど、取扱い性に優れている。   Therefore, in order to use a sodium hypochlorite aqueous solution as sterilizing water, it is important to adjust the pH to a slightly acidic region around pH 5.0. It shall be called “water”. For this purpose, organic acids, inorganic acids or carbon dioxide are used. Among these, when an inorganic acid such as hydrochloric acid is mixed with an aqueous sodium hypochlorite solution, there is a risk of generating toxic chlorine gas. When adjusting pH with acetic acid or lactic acid for food addition, safety can be ensured by using an infusion pump in a sealed system, and this technology has been put to practical use (Health) Manufactured by Aqualizer T-30). As a method of adjusting pH with carbon dioxide gas, a method of bubbling carbon dioxide gas into an aqueous sodium hypochlorite solution (JP-A-10-24294) and a method of adjusting pH with a carbon dioxide gas dissolver comprising a membrane module are also disclosed ( JP 2004-307405). Carbon dioxide gas is a tasteless and odorless inert gas that dissolves quickly in water and has excellent handling properties, such as no sudden pH drop even if accidentally over-injected.

しかし、微酸性次亜塩素酸水は殺菌水として優れた特性を持つ半面、熱には不安定で、冷暗所に密封容器で保存しても、長期間有効塩素濃度を保持するのは難しい欠点を持っていることから、次亜塩素酸水生成装置を設置して必要時に調製するのが現状である。希薄食塩水や希塩酸を電気分解して調製する電解水は、次亜塩素酸イオンを殺菌基盤とする電解次亜水と、次亜塩素酸を殺菌基盤とする次亜塩素酸水に大別される。この内の次亜塩素酸水の安定性については、pHと保存温度の影響が大きく、pH3以上で冷蔵保存することで、使用期間の延長の可能性が考えられると報告されている(西本右子、井上啓、電解水の安定性に対するpH及び温度の影響、機能水研究 2:71‐74、2000)。   However, although slightly acidic hypochlorous acid water has excellent properties as sterilizing water, it is unstable to heat, and even when stored in a sealed container in a cool and dark place, it is difficult to maintain an effective chlorine concentration for a long time. Since it has, the present condition is to install a hypochlorous acid water generator and prepare it when necessary. Electrolyzed water prepared by electrolyzing dilute saline and dilute hydrochloric acid is roughly divided into electrolytic hypochlorous acid based on hypochlorite ion and hypochlorous acid based on hypochlorous acid. The Of these, the stability of hypochlorous acid water is greatly affected by pH and storage temperature, and it has been reported that refrigerated storage at pH 3 or higher may extend the usage period (right Nishimoto). Child, Kei Inoue, Effect of pH and temperature on the stability of electrolyzed water, Functional Water Study 2: 71-74, 2000).

次亜塩素酸水の安定性については、森永エンジニアリング(株)のホームページ(http://www.morieng.co.jp/fwgroup/purester.html)にもカタログダウンロード(PDF)として公開されている。その中では、ピュアスター水(有効塩素濃度17ppm、pH6.52)と強酸性電解水(有効塩素濃度15ppm、pH3.95)を室温(25℃)下、開放系で放置すると、24時間後の残存率はピュアスター水が58%、強酸性電解水では0.3%で、遮光・密封系・室温下では、40日後の残存率はピュアスター水で78%、強酸性電解水で58%であることが示されている。一方、次亜塩素酸を殺菌基盤とする次亜塩素酸水は、保存性に欠けるため、必要時に電気分解などにより調製して使用しているのが現状である。この解決策として、一回の使用量を密封容器に充填し保存性を高める方法も開示されているが(特開平5‐7876、特開平9‐28761)、未だ長期間に渡り充分な安定性を呈するには至っていない。   The stability of hypochlorous acid water is also available as a catalog download (PDF) on the website of Morinaga Engineering Co., Ltd. (http://www.morieng.co.jp/fwgroup/purester.html). Among them, if pure star water (effective chlorine concentration 17 ppm, pH 6.52) and strongly acidic electrolyzed water (effective chlorine concentration 15 ppm, pH 3.95) are left in an open system at room temperature (25 ° C.), 24 hours later The residual rate is 58% for pure star water and 0.3% for strongly acidic electrolyzed water. Under light-shielding / sealed system / room temperature, the remaining rate after 40 days is 78% for pure star water and 58% for strongly acidic electrolyzed water. It is shown that. On the other hand, hypochlorous acid water based on hypochlorous acid is based on sterilization and lacks storage stability. Therefore, it is currently prepared and used by electrolysis or the like when necessary. As a solution to this problem, a method for filling a sealed container into a sealed container to improve storage stability is disclosed (Japanese Patent Laid-Open Nos. 5-78776 and 9-28761), but still has sufficient stability over a long period of time. It has not reached.

微酸性次亜塩素酸水は、殺菌水として優れた特性を持つことが知られているにも拘らず熱的不安定の問題が解決されていないため、使用の都度、必要量を調製するという不便を強いられている。このような状況において、本発明者等は次亜塩素酸水の長期保存に関する研究を行い、その結果、ある条件の下において長期保存が実現されるという知見を得るに至った。その機序については未だ明らかにすることができていない。しかしながら、粒径50μm以下の微細気泡を含有している微酸性次亜塩素酸水は、以下に詳述するとおり長期保存に耐えるものである。   Although slightly acidic hypochlorous acid water is known to have excellent properties as sterilizing water, the problem of thermal instability has not been solved. Inconvenienced. Under such circumstances, the present inventors have conducted research on long-term storage of hypochlorous acid water, and as a result, have come to obtain the knowledge that long-term storage can be realized under certain conditions. The mechanism has not been clarified yet. However, slightly acidic hypochlorous acid water containing fine bubbles having a particle size of 50 μm or less can withstand long-term storage as described in detail below.

特開平10‐24294JP 10-24294 A 特開2004‐307405JP2004-307405 特開平5‐7876JP-A-5-7876 特開平9‐28761JP-A-9-28761 堀田国元、有害微生物管理技術、第1巻、p751〜757、フジテクノシステム 2000Kunimoto Hotta, Harmful Microorganism Management Technology, Volume 1, p751-757, Fuji Techno System 2000 西本右子、井上啓、電解水の安定性に対するpH及び温度の影響、機能水研究 2:71‐74、2000Nishimoto Yoko, Inoue Kei, Effect of pH and temperature on the stability of electrolyzed water, Functional Water Research 2: 71-74, 2000

本発明は前記の実情に鑑みてなされたもので、上記微酸性次亜塩素酸水の製造方法及び使用方法を提供することを目的とするThis invention is made | formed in view of the said situation, and it aims at providing the manufacturing method and usage method of the said slightly acidic hypochlorous acid water.

前記の課題を解決する本発明の微細気泡含有の微酸性次亜塩素酸水は、炭酸ガスを溶解させた次亜塩素酸を含む水溶液であって、上記炭酸ガスを溶解させた次亜塩素酸を含む水溶液をマイクロバブル発生装置により粒径50μm以下とした微細気泡を含有していることを特徴とするという構成を有している。本発明に使用する次亜塩素酸を含む水溶液に溶解している炭酸ガスは、前述したように次亜塩素酸ナトリウム水溶液をpH5.0付近の微酸性領域にpH調整するために作用しており、殺菌水として使うのに適した状態になっている。また、微細気泡の粒径が50μm以下については、この粒径以下の気泡がマイクロバブルと呼ばれるもの、或いはさらに粒径が1μm以下と微小なナノバブルと呼ばれるものを含む。本発明の微酸性次亜塩素酸水は、マイクロバブル発生装置による生成条件の下で微細気泡とされ、数十日間を超える保存期間を備えるに至る。   The microbubble-containing slightly acidic hypochlorous acid water of the present invention that solves the above problems is an aqueous solution containing hypochlorous acid in which carbon dioxide gas is dissolved, and the hypochlorous acid in which the carbon dioxide gas is dissolved An aqueous solution containing a fine bubble having a particle size of 50 μm or less by a microbubble generator is included. The carbon dioxide gas dissolved in the aqueous solution containing hypochlorous acid used in the present invention acts to adjust the pH of the aqueous sodium hypochlorite solution to a slightly acidic region near pH 5.0 as described above. It is in a state suitable for use as sterilizing water. In addition, when the particle size of the fine bubbles is 50 μm or less, the bubbles having a particle size of less than or equal to the particle size are referred to as microbubbles, or further, those having a particle size of 1 μm or less and the minute nanobubbles. The slightly acidic hypochlorous acid water of the present invention is made into fine bubbles under the production conditions by the microbubble generator, and has a storage period exceeding several tens of days.

粒径が50μm以下の微細気泡は、液中での上昇速度が遅く、ときには下降することもあり、界面張力による自己加圧効果により縮小し、やがて液中に溶解し、消失するという一連の現象からなる経緯をたどる。その間、その自己圧壊作用によって水分子等の分解及びそれによるフリーラジカルの生成を伴うこと、あるいは比表面積が大きく食品等に接触する気泡量が著しく多量となり、混合している次亜塩素酸による殺菌効果を著しく強力にすることなどの特徴を呈する。本発明は、このような炭酸ガスを溶解させた次亜塩素酸を含む水溶液を微細気泡化し、その粒径が50μm以下の微細気泡から成る微酸性次亜塩素酸水を得ている。本発明に適用可能な他のガスとして、窒素ガス(または、アルゴンガス)等の不活性ガスを挙げることができる。窒素ガスは、微細気泡混合液のpHを酸性領域に移行させるものではない。しかし、微細気泡生成ノズルにより発生したマイクロバブルがナノバブルに移行する際に水中に溶け込み、酸化作用を妨げ鮮度保持に寄与するという利点が得られると考えられる。   Fine bubbles with a particle size of 50 μm or less are a series of phenomena in which the ascending speed in the liquid is slow, sometimes drops, shrinks due to the self-pressurizing effect due to the interfacial tension, and eventually dissolves and disappears in the liquid. Follow the process of. In the meantime, the self-crushing action involves the decomposition of water molecules and the like, and the generation of free radicals, or the amount of bubbles that come into contact with food, etc. due to the large specific surface area becomes extremely large, and sterilization with mixed hypochlorous acid. It exhibits characteristics such as making the effect remarkably strong. In the present invention, an aqueous solution containing hypochlorous acid in which carbon dioxide gas is dissolved is made into fine bubbles to obtain slightly acidic hypochlorous acid water composed of fine bubbles having a particle size of 50 μm or less. Examples of other gas applicable to the present invention include an inert gas such as nitrogen gas (or argon gas). Nitrogen gas does not shift the pH of the fine bubble mixture to the acidic region. However, it is considered that there is an advantage that microbubbles generated by the fine bubble generating nozzle dissolve in water when transferred to nanobubbles, thereby preventing oxidation and contributing to maintaining freshness.

上記炭酸ガスを溶解させた微細気泡含有の微酸性次亜塩素酸水は、所望の有効塩素濃度に希釈した電解次亜水又は市販次亜塩素酸ナトリウム水溶液に、ポンプを用いて炭酸ガスを混合し、pH5〜6の次亜塩素酸水を調製する工程と、得られた微酸性の次亜塩素酸水をマイクロバブル発生装置に導通し、粒径50μm以下の微細気泡を生成する工程とを適用する方法によって製造することができる。上記所望塩素濃度に希釈された電解次亜水又は市販の次亜塩素酸ナトリウム水溶液は、請求項1に記載された次亜塩素酸を含む水溶液である。   The microbubble-containing slightly acidic hypochlorous acid water in which the above carbon dioxide gas is dissolved is mixed with electrolytic hypochlorous acid or commercial sodium hypochlorite aqueous solution diluted to a desired effective chlorine concentration using a pump. And a step of preparing hypochlorous acid water having a pH of 5 to 6 and a step of conducting the obtained slightly acidic hypochlorous acid water to a microbubble generator to generate fine bubbles having a particle size of 50 μm or less. It can be manufactured by an applied method. The electrolytic hypochlorous acid diluted to the desired chlorine concentration or a commercially available sodium hypochlorite aqueous solution is an aqueous solution containing hypochlorous acid described in claim 1.

本発明の製造方法には、炭酸ガスの混合のためのポンプと、それによって得られた微酸性の次亜塩素酸水を導通するマイクロバブル発生装置を使用する。ポンプについては特にどのような形式でなければならないということはないが、気液混合能力の高いもの、例えば渦巻きポンプなどは好適である。一方、マイクロバブル発生装置については加圧減圧法や気液剪断法などが知られている。本発明は粒径50μm以下の微細気泡から成ることを要件としており、この要件を満たすものであれば手段方法を問うものではない。しかし、例えば、特開2010−125427号として開示された微細気泡発生用ノズルを使用することにより、好ましい結果につながる。特に、上記の発明を実施した装置を使用した場合は、長期保存において最も結果を呈する微細気泡含有の微酸性次亜塩素酸水を、容易かつ確実に製造することができた。   In the production method of the present invention, a pump for mixing carbon dioxide gas and a microbubble generator for conducting the slightly acidic hypochlorous acid water obtained thereby are used. The type of the pump is not particularly limited, but a pump having a high gas-liquid mixing capability, such as a spiral pump, is preferable. On the other hand, for the microbubble generator, a pressure reduction method, a gas-liquid shearing method, and the like are known. The present invention is required to be composed of fine bubbles having a particle size of 50 μm or less, and any means may be used as long as this requirement is satisfied. However, for example, the use of the fine bubble generating nozzle disclosed in Japanese Patent Application Laid-Open No. 2010-125427 leads to favorable results. In particular, when the apparatus in which the above-described invention was carried out was used, the finely acid-containing slightly acidic hypochlorous acid water containing the finest results that were most effective in long-term storage could be easily and reliably produced.

本発明の製造方法においては、ポンプとマイクロバブル発生装置との間に混合タンクを配置し、上記混合タンクに、空気及び炭酸ガスの混合気と次亜塩素酸水との混合流体を一時貯溜する工程を追加することができる。混合タンクに上記混合流体を一時貯溜することによって、上記炭酸ガスを溶解させた次亜塩素酸を含む水溶液と不活性な炭酸ガスを含んだ混合水の飽和水が生成され、より好ましい結果につながる。   In the production method of the present invention, a mixing tank is disposed between the pump and the microbubble generator, and a mixed fluid of air and carbon dioxide gas mixture and hypochlorous acid water is temporarily stored in the mixing tank. Steps can be added. By temporarily storing the mixed fluid in the mixing tank, an aqueous solution containing hypochlorous acid in which the carbon dioxide gas is dissolved and saturated water of mixed water containing an inert carbon dioxide gas are generated, which leads to a more preferable result. .

本発明の炭酸ガスを溶解させた微細気泡含有の微酸性次亜塩素酸水の使用方法は様々であり、例えば、流水による洗浄、散布、塗布その他液体に適用されるあらゆる方法を適用可能である。しかし、本発明の微酸性次亜塩素酸水は粒径50μm以下の微細気泡を含有している炭酸ガスを溶解させた次亜塩素酸水溶液から成るので、その長期間保存可能という特徴を生かした使用方法が有効である。例えば、炭酸ガスを溶解させた微細気泡含有の微酸性次亜塩素酸水の使用方法として、微酸性次亜塩素酸水は、炭酸ガスを溶解させた次亜塩素酸水溶液から成り、上記次亜塩素酸水溶液は粒径50μm以下の微細気泡を含有しており、上記微酸性次亜塩素酸水を有効塩素濃度5〜20ppm、pH5.0〜6.7に調製してバケットに注入し、切り花を上記微細気泡含有の微酸性次亜塩素酸水中に挿して水揚げを行う方法がある。さらにまた、この微細気泡含有の微酸性次亜塩素酸水を、噴霧手段を用いて、対象の領域に噴霧することを一例として挙げることができる。即ち、炭酸ガスを溶解させた次亜塩素酸水溶液から成り、上記次亜塩素酸水溶液は粒径50μm以下の微細気泡を含有している微細気泡含有の微酸性次亜塩素酸水を、噴霧手段を用いて対象物又はそれが存在する密閉空間に噴霧することにより、有効塩素濃度10〜30ppm、pH5.0〜6.9の環境を形成し、上記密閉空間の殺菌を行うものである。この使用方法によれば、噴霧した領域を微細気泡含有の微酸性次亜塩素酸水によって満たすことが可能になり、密閉状態を確保できれば、あたかもガス燻蒸したのと同様の環境に数十日間保持することができる。   There are various methods of using finely acid-containing hypoacidic hypochlorous acid water in which carbon dioxide gas is dissolved according to the present invention. For example, cleaning, spraying, coating, and other methods applied to liquids can be applied. . However, the slightly acidic hypochlorous acid water of the present invention is composed of a hypochlorous acid aqueous solution in which carbon dioxide gas containing fine bubbles having a particle diameter of 50 μm or less is dissolved. The usage is effective. For example, as a method of using finely acidic water containing fine bubbles containing dissolved carbon dioxide gas, the slightly acidic hypochlorous acid water is composed of a hypochlorous acid aqueous solution in which carbon dioxide gas is dissolved. The aqueous chloric acid solution contains fine bubbles with a particle size of 50 μm or less. The above slightly acidic hypochlorous acid aqueous solution is prepared to have an effective chlorine concentration of 5 to 20 ppm and pH of 5.0 to 6.7, poured into a bucket, and cut flowers. There is a method of landing by inserting into the slightly acidic hypochlorous acid water containing the fine bubbles. Furthermore, spraying this fine bubble-containing slightly acidic hypochlorous acid water on a target region using a spraying means can be cited as an example. That is, it comprises a hypochlorous acid aqueous solution in which carbon dioxide gas is dissolved, and the above hypochlorous acid aqueous solution contains fine bubbles containing fine bubbles having a particle size of 50 μm or less. By spraying the target object or the sealed space where it exists, an environment having an effective chlorine concentration of 10 to 30 ppm and a pH of 5.0 to 6.9 is formed, and the sealed space is sterilized. According to this method of use, it becomes possible to fill the sprayed area with the slightly acidic hypochlorous acid water containing fine bubbles. can do.

本発明は以上のように、炭酸ガスを溶解させた次亜塩素酸水溶液の粒径50μm以下のマイクロバブルないしはナノバブルBから成る微細気泡を含有するものであるから、熱安定性に優れた微細気泡含有の微酸性次亜塩素酸水を提供するものである。また、本発明によれば、上記炭酸ガスを溶解させた微酸性の次亜塩素酸水をマイクロバブル発生装置に導通することによって、目的とする微酸性次亜塩素酸水を容易に製造することができる。また、本発明によれば、野菜類などの植物表面にバイオフィルムとして生残する微生物の除菌にも優れた殺菌効果を示し、加湿器などで噴霧した場合でも、微細なミスト中に有効塩素濃度を保持するという効果が得られ、加えて、切花用のプラスチック製バケットに揚げ水として使用することにより、揚げ水に接触するプラスチック製バケットの内壁面が殺菌されることなどで、優れた殺菌効果をもたらす微細気泡含有の微酸性次亜塩素酸水を提供することができる。   As described above, since the present invention contains microbubbles composed of microbubbles or nanobubbles B having a particle size of 50 μm or less in a hypochlorous acid aqueous solution in which carbon dioxide gas is dissolved, microbubbles having excellent thermal stability. A slightly acidic hypochlorous acid aqueous solution is provided. According to the present invention, the desired slightly acidic hypochlorous acid water can be easily produced by passing the slightly acidic hypochlorous acid water in which the carbon dioxide gas is dissolved to the microbubble generator. Can do. In addition, according to the present invention, it exhibits an excellent bactericidal effect on the sterilization of microorganisms that survive as biofilms on the surface of plants such as vegetables, and even when sprayed with a humidifier or the like, effective chlorine is contained in fine mist. The effect of maintaining the concentration is obtained, and in addition, by using the plastic bucket for cut flowers as fried water, the inner wall surface of the plastic bucket that comes into contact with the fried water is sterilized. It is possible to provide a slightly acidic hypochlorous acid water containing fine bubbles that brings about an effect.

以下、実施形態を参照して本発明をより詳細に説明する。図1は本発明に係る微細気泡含有の微酸性次亜塩素酸水の製造方法の実施に使用する装置10の一例を示している。図中、符号11は渦巻きポンプより成るポンプであり、気体取り入れ経路12により炭酸ガス及び空気などの気体を取り入れるとともに、液体取り入れ経路13により液体を取り入れ、かつ、取り入れた流体を混合して所定の圧力で送り出すように機能する。   Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 shows an example of an apparatus 10 used for carrying out a method for producing a slightly acidic hypochlorous acid water containing fine bubbles according to the present invention. In the figure, reference numeral 11 denotes a pump composed of a vortex pump, which takes in gas such as carbon dioxide gas and air through a gas intake passage 12, takes in liquid through a liquid intake passage 13, and mixes the introduced fluid to give a predetermined value. It functions to send out by pressure.

上記気体取り入れ経路12には、空気流量調整器14を有する空気流入経路と、炭酸ガスの供給用として流量調整器付きの炭酸ガスボンベ15及び窒素ガスを供給用として流量調整器付きの窒素ガスボンベ16から成るガス流入経路が接続されている。17は混合分岐弁を示しており、上記炭酸ガスと窒素ガスに代表される不活性ガスの供給の選択を行うとともに、各供給量の調節のために設けられている。また、液体取り入れ経路13には、電解次亜水を生成する電解次亜水生成部18が設けられている。   The gas intake path 12 includes an air inflow path having an air flow rate regulator 14, a carbon dioxide gas cylinder 15 with a flow rate regulator for supplying carbon dioxide gas, and a nitrogen gas cylinder 16 with a flow rate regulator for supplying nitrogen gas. The gas inflow path consisting of is connected. Reference numeral 17 denotes a mixing branch valve, which is provided for selecting the supply of an inert gas typified by the carbon dioxide gas and the nitrogen gas, and for adjusting each supply amount. In addition, the liquid intake passage 13 is provided with an electrolytic sub-sulfur generation unit 18 that generates electrolytic sub-sulfur.

電解次亜水生成部18は、希薄食塩水を電気分解して生成される電解次亜水を本発明に使用するために電解次亜水生成器を具備している。水には飲用可の水を用い、食塩又は塩化カリウムを溶解して使用する。また、電解次亜水生成器によって生成された次亜塩素酸イオン水に加えて、必要であれば他に所望する殺菌料を添加する装置を、液体取り入れ経路13に備えることも可能である。   The electrolytic hyponitrous generator 18 is equipped with an electrolytic hyposulfur generator in order to use electrolytic hyposulfur generated by electrolyzing dilute saline in the present invention. Drinkable water is used as water, and salt or potassium chloride is dissolved. Further, in addition to the hypochlorite ion water generated by the electrolytic hypochlorite generator, it is possible to provide the liquid intake path 13 with a device for adding other desired disinfectant if necessary.

ポンプ11は混合タンク20を介して配管19、21により微細気泡生成ノズル22に接続されている。微細気泡生成ノズル22は、上記空気及び炭酸ガス等の混合気と電解次亜水、他の殺菌料との混合流体を噴射し、好ましくは20マイクロメートルよりも小さい直径の微細気泡を生成する。なお、得られた微細気泡含有の微酸性次亜塩素酸水は、微細気泡混合液槽23に貯溜される。また、混合タンク20は、空気及びガスの混合気と次亜塩素酸水、必要により添加する他の殺菌料との混合流体を一時保留し、飽和状態を生成するという作用をする。   The pump 11 is connected to the fine bubble generating nozzle 22 by piping 19 and 21 via the mixing tank 20. The fine bubble generating nozzle 22 injects a mixed fluid of the air-fuel mixture such as air and carbon dioxide, electrolytic hyponitrous acid, and other sterilizing agents, and generates fine bubbles with a diameter preferably smaller than 20 micrometers. The obtained finely acid-containing slightly acidic hypochlorous acid water is stored in the fine bubble mixture tank 23. Further, the mixing tank 20 acts to temporarily hold a mixed fluid of a mixture of air and gas, hypochlorous acid water, and other sterilizing agent to be added if necessary, and generate a saturated state.

上記微細気泡生成ノズル22には、図2に詳細に示したように特許第4804527号の微細気泡発生用ノズルが用いられる。上記特許発明に係るノズル22は、一端が微細気泡混合液の流入口24として開口し、内部が流路となり、他端は液流が衝突する壁面25として閉じ、かつ、他端寄りの周面にケースの内外を通じるノズル孔26を有する筒状のノズルケース27と、上記ノズルケース内部に配置して上記微細気泡混合液を衝突させ、流路を遮断する板面28を有し、かつ、板面28に微細気泡混合液流を圧縮状態として通過させ、下流空間にて膨張を生じさせるために、細孔29を形成した圧縮膨張部材30を備え、上記ノズル孔26と圧縮膨張部材30との間に、それぞれ間隔をあけて配置した攪拌部材31を備えるという構成を有している。   As the fine bubble generating nozzle 22, as shown in detail in FIG. 2, the fine bubble generating nozzle of Japanese Patent No. 4804527 is used. The nozzle 22 according to the above-mentioned patent invention has one end opened as an inlet 24 for the fine bubble mixture, the inside becomes a flow path, the other end is closed as a wall surface 25 on which the liquid flow collides, and the peripheral surface near the other end A cylindrical nozzle case 27 having a nozzle hole 26 that passes through the inside and outside of the case, a plate surface 28 that is disposed inside the nozzle case and collides with the fine bubble mixture, and blocks the flow path, and In order to allow the fine bubble mixed liquid flow to pass through the plate surface 28 in a compressed state and to cause expansion in the downstream space, a compression / expansion member 30 having pores 29 is provided, and the nozzle hole 26, the compression / expansion member 30, In this configuration, the agitation members 31 are provided so as to be spaced apart from each other.

上記攪拌部材31は円筒状構造体から成り、その円筒の外周面とノズルケース27の内周面との間に隙間32を設け、この隙間32に通じるスリット33を円筒状構造体の周回りに形成し、上記スリット33の上流及び下流に攪拌手段34、35を設けている。図示の攪拌手段34、35は網材類より成る。上記攪拌部材31は下流側の端部にてノズルケース内部に形成された段差26aに当接し、上流側の鍔部31aにてノズルケース内周面に接しており、上記隙間31を形成している。   The stirring member 31 is formed of a cylindrical structure, and a gap 32 is provided between the outer peripheral surface of the cylinder and the inner peripheral surface of the nozzle case 27. A slit 33 leading to the gap 32 is provided around the circumference of the cylindrical structure. The stirring means 34 and 35 are provided upstream and downstream of the slit 33. The illustrated stirring means 34 and 35 are made of a mesh material. The agitating member 31 is in contact with a step 26a formed inside the nozzle case at the downstream end, and is in contact with the inner peripheral surface of the nozzle case at the upstream flange 31a, thereby forming the gap 31. Yes.

図3に示す微細気泡生成ノズル22は、先端部を覆うノズルフード22aを有し、その軸方向に接続筒22bを設け、接続筒22bに洗浄用ホース22cを接続できるようにしたものである。上記ノズル22は筒状アダプター22dの先端に嵌め込まれ、さらにその先端側にシール手段22eを介してノズルフード22aを気密に取り付けている。なお、配管21は後部接続口22fに接続される。上記の装置10に使用した微細気泡生成ノズル22は好適な効果を期待することができるものであるが、このノズルでなければ本発明が達成できないというものではない。例えば、ノズルとして部分的な相違点があり、それによって上記の装置10による結果には到達できなかったとしても、なお実用になる微細気泡含有の微酸性次亜塩素酸水を製造することができた場合には、完全ではないが本発明の課題を達成できたことになり、従って、製造された微細気泡含有の微酸性次亜塩素酸水は本発明の範囲内のものである。   The fine bubble generating nozzle 22 shown in FIG. 3 has a nozzle hood 22a that covers the tip, and is provided with a connecting cylinder 22b in the axial direction so that a cleaning hose 22c can be connected to the connecting cylinder 22b. The nozzle 22 is fitted into the tip of a cylindrical adapter 22d, and a nozzle hood 22a is airtightly attached to the tip of the nozzle 22 via a sealing means 22e. The pipe 21 is connected to the rear connection port 22f. Although the fine bubble generating nozzle 22 used in the apparatus 10 can be expected to have a suitable effect, the present invention cannot be achieved without this nozzle. For example, there is a partial difference as a nozzle, and even if the result of the above-mentioned apparatus 10 cannot be reached, it is possible to produce a slightly acidic hypochlorous acid water containing fine bubbles that is still practical. In this case, the subject of the present invention could be achieved although it was not perfect, and thus the produced microbubble-containing slightly acidic hypochlorous acid water is within the scope of the present invention.

上記の装置10を始動すると、空気と炭酸ガス及び窒素ガスのいずれか一方又は両方が気体取り入れ経路12によりポンプ11に流入し、また、電解次亜水生成部18にて生成された次亜塩素酸イオン(ClO)を含む電解次亜水、他の殺菌料が液体取り入れ経路13によりポンプ11に流入する。上記気体及び液体から成る流体はポンプ11から混合タンク20に所要の圧力で送られ、同タンク内にて所定の時間貯溜され、その後、微細気泡生成ノズル22から噴射され、20マイクロメートルよりも小さい直径のマイクロバブルないしはナノバブルBから成る微細気泡として微細気泡混合液槽23に貯溜される。微細気泡生成ノズル22から噴射された時点で、既に本発明の微細気泡含有の微酸性次亜塩素酸水となっているので、これを貯溜することなく対象物等に直接作用させることもできるが、その方法は使用の都度、必要量を調製するのと変わらない従来と同じ方法である。これに対して、本発明のマイクロバブルないしはナノバブルBから成る微細気泡含有の微酸性次亜塩素酸水は、密封系に保存すれば数十日間という長期間、製造時と同等の効果を保持するので、この点を以下に実験によって明らかにする。 When the apparatus 10 is started, air, carbon dioxide gas, or nitrogen gas or both of them flow into the pump 11 through the gas intake path 12, and hypochlorous acid generated in the electrolytic hypoxia generation unit 18. Electrolytic hyponitrous acid containing acid ions (ClO ) and other sterilizing agents flow into the pump 11 through the liquid intake path 13. The fluid composed of the gas and the liquid is sent from the pump 11 to the mixing tank 20 at a required pressure, stored in the tank for a predetermined time, and then ejected from the fine bubble generating nozzle 22 and smaller than 20 micrometers. Microbubbles or microbubbles having a diameter are stored in the microbubble mixture tank 23 as microbubbles. Since it is already the microbubble-containing slightly acidic hypochlorous acid water of the present invention when sprayed from the microbubble generating nozzle 22, it can be directly acted on the object or the like without storing it. The method is the same as the conventional method, which is the same as preparing the required amount for each use. On the other hand, the microbubble-containing slightly acidic hypochlorous acid water composed of the microbubbles or nanobubbles B of the present invention retains the same effect as that of production for a long period of several tens of days if stored in a sealed system. Therefore, this point will be clarified by experiments below.

図1に示す装置10を使用し、有効塩素濃度50ppmに希釈した電解次亜水に炭酸ガスボンベ15及び窒素ガスボンベ16から供給される炭酸ガス(2NL/min)と窒素ガス(1NL/min)を渦流ポンプ11内で混合し、pH5.5前後の次亜塩素酸水を混合タンク20内で調製した。得られた微酸性次亜塩素酸水は微細気泡生成ノズル22に導通することで、本発明の微細気泡含有微酸性次亜塩素酸水を製造した。電解次亜水を水道水で希釈後、乳酸でpHを微酸性に調整し(微酸性次亜水と呼ぶ)、安定性実験の対照区とした。   Using the apparatus 10 shown in FIG. 1, carbon dioxide gas (2 NL / min) and nitrogen gas (1 NL / min) supplied from the carbon dioxide gas cylinder 15 and the nitrogen gas cylinder 16 are swirled into the electrolytic hyposulfur diluted to an effective chlorine concentration of 50 ppm. Mixing in the pump 11, hypochlorous acid water having a pH of around 5.5 was prepared in the mixing tank 20. The obtained slightly acidic hypochlorous acid water was conducted to the fine bubble generating nozzle 22 to produce the fine bubble-containing slightly acidic hypochlorous acid water of the present invention. After diluting electrolytic hyponitrous water with tap water, the pH was adjusted to slightly acidic with lactic acid (referred to as slightly acidic hypochlorous acid), and used as a control group for stability experiments.

<実施例1>
本発明の微細気泡含有微酸性次亜塩素酸水と対照区の微酸性次亜水を、2L容量のペットボトルにそれぞれ分注・密栓し、10℃、20℃、30℃、40℃、50℃、60℃の恒温器に保管して有効塩素濃度とpHの経時変化を測定し、表1,表2の結果を得た。

Figure 0006214855
NT: 未測定
なお、本発明の各実験において、有効塩素濃度の測定には柴田科学社製有効塩素濃度測定器AQ−102Pを使用し、pHの測定には佐藤計量器製pHメーターSK‐620PHを使用した。
表1から明らかなように、乳酸でpH調製した対照区の微酸性次亜水は、従来と同様に有効塩素濃度が50℃5日で消失したが、実施例1の微細気泡含有微酸性次亜塩素酸水は、80%以上の有効塩素濃度を40日経過後も保持していた。 <Example 1>
The fine bubble-containing slightly acidic hypochlorous acid water of the present invention and the slightly acidic hypochlorite water of the control group are each dispensed and sealed in a 2 L-volume PET bottle, and 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 The results of Tables 1 and 2 were obtained by storing in a thermostat at 60 ° C. and 60 ° C. and measuring changes in effective chlorine concentration and pH over time.
Figure 0006214855
NT: Not measured In each experiment of the present invention, an effective chlorine concentration measuring device AQ-102P manufactured by Shibata Kagakusha is used for measuring effective chlorine concentration, and a pH meter SK-620PH manufactured by Sato Keiki Co., Ltd. is used for measuring pH. It was used.
As can be seen from Table 1, the slightly acidic hypochlorous acid in the control group prepared by adjusting the pH with lactic acid disappeared in 5 days at 50 ° C. as in the conventional case. The chlorous acid water maintained an effective chlorine concentration of 80% or more after 40 days.

<実施例2>
上記60℃で40日間保存した微細気泡含有微酸性次亜塩素酸水を用いて、大腸菌等に以下の方法で適用し、その殺菌効果を調べた。各微生物はソィビーン・カゼイン・ダイジェスト培地(ダイゴ、日本新薬(株)製)で37℃一夜培養後、生理食塩水で充分洗浄した。次いで、10℃で40日間保存した微細気泡含有微酸性次亜塩素酸水(有効塩素濃度12.8ppm、pH5.9)と60℃で40日間保存した微細気泡含有微酸性次亜塩素酸水(有効塩素濃度13ppm、pH6.1)で菌数が10〜10に希釈し(添加菌液量1%以内)、1分間放置後、ソィビーン・カゼイン・ダイジェスト培地(1ml)を加え、10,000rpmで遠心分離後、生理食塩水(1ml)に再懸濁し、連続希釈法で生菌数をソィビーン・カゼイン・ダイジェスト寒天培地(ダイゴ、日本新薬(株)製)で測定し、殺菌効果を確認した。その結果を表2に示す。

Figure 0006214855
表2によれば、本発明による実施例1の微細気泡を含む微酸性の次亜塩素酸水は、60℃40日という条件で保存した場合でも、これを殺菌水として使用することによって、被検菌を全て死滅させることができた。 <Example 2>
The microbubble-containing slightly acidic hypochlorous acid water stored at 60 ° C. for 40 days was applied to Escherichia coli and the like by the following method to examine its bactericidal effect. Each microorganism was cultured overnight at 37 ° C. in a soybean / casein / digest medium (Digo, manufactured by Nippon Shinyaku Co., Ltd.), and then thoroughly washed with physiological saline. Next, fine bubble-containing slightly acidic hypochlorous acid water (effective chlorine concentration: 12.8 ppm, pH 5.9) stored at 10 ° C. for 40 days and fine bubble-containing slightly acidic hypochlorous acid water stored at 60 ° C. for 40 days ( Dilute the number of bacteria to 10 5 to 10 6 with an effective chlorine concentration of 13 ppm, pH 6.1) (within 1% of the amount of added bacterial solution), leave it for 1 minute, add soybean / casein / digest medium (1 ml), Centrifugation at 000 rpm, resuspension in physiological saline (1 ml), and the number of viable bacteria is measured with a soybean / casein / digest agar medium (Digo, manufactured by Nippon Shinyaku Co., Ltd.) by a serial dilution method to confirm the bactericidal effect did. The results are shown in Table 2.
Figure 0006214855
According to Table 2, the slightly acidic hypochlorous acid water containing the fine bubbles of Example 1 according to the present invention was used as sterilizing water even when stored under the condition of 60 ° C. for 40 days. All the bacteria were killed.

<実施例3>
微細気泡含有の微酸性次亜塩素酸水(28ppm、pH5.1)を、市販加湿器を用いて噴霧し、発生する霧状ミストを集め、有効塩素濃度を計測し、約20ppmを確認した。このように、本発明によれば、微細気泡含有の微酸性次亜塩素酸水を、噴霧手段を用いて対象物又はそれが存在する領域に噴霧するだけで、所望の有効塩素濃度を保持することができることが分かる。
<Example 3>
Finely acid-containing slightly acidic hypochlorous acid water (28 ppm, pH 5.1) was sprayed using a commercially available humidifier, the generated mist mist was collected, the effective chlorine concentration was measured, and about 20 ppm was confirmed. As described above, according to the present invention, a desired effective chlorine concentration can be maintained by spraying the slightly acidic hypochlorous acid water containing fine bubbles onto the object or the region where the object exists using the spraying means. I can see that

<実施例4:微細気泡を含む微酸性次亜塩素酸水によるカット野菜の除菌>
実施例1の微細気泡含有の微酸性次亜塩素酸水を用いて、カット野菜の除菌を行った。除菌は、上記微細気泡含有の微酸性次亜塩素酸水に、長さ約5cmに裁断した水菜あるいは千切りキャベツを3分間浸漬処理し、無菌水で洗浄した後、検体25gをストマッカーの滅菌ポリ袋に入れ、各検体3袋用意して冷蔵庫に保管した。同様に、未処理の検体25gをストマッカーの滅菌ポリ袋に入れ、3袋を冷蔵庫保管した。冷蔵庫保管の1検体を取り出して直ちに室温(約15℃)に戻し、滅菌生理食塩水225mlを加え、ストマッカーで30秒間ホモゲナイズし、生菌数検査をした。同様にして、冷蔵庫で24時間、48時間それぞれ保存した各検体の生菌数を測定した。一般細菌はトリプトソイ寒天培地(栄研化学(株))を使い、大腸菌・大腸菌群はECコリマーク寒天培地(栄研化学(株))を使用し、24時間培養後生菌数を測定した。なお、水菜の処理水は、有効塩素濃度50ppm、pH5.2で、3分間処理後の処理水は、有効塩素濃度50ppm、pH5.4であった。千切りキャベツ処理水は、有効塩素濃度48ppm、pH5.4で、処理後には有効塩素45ppm、pH5.5を呈していた。その結果を表3に示す。

Figure 0006214855
表3に示される如く、1gのカット野菜には10〜10の一般細菌が検出されるが、微細気泡を含む微酸性次亜塩素酸水で、3分間浸漬処理することで効果的に除菌できることを確認した。また、この除菌効果は48時間安定していた。 <Example 4: Disinfection of cut vegetables with slightly acidic hypochlorous acid water containing fine bubbles>
Using the slightly acidic hypochlorous acid water containing fine bubbles in Example 1, the cut vegetables were sterilized. For sterilization, immerse mizuna or shredded cabbage cut into approximately 5 cm length in the slightly acidic hypochlorous acid water containing fine bubbles for 3 minutes, wash it with sterile water, Each sample was put in a bag, and three samples were prepared and stored in a refrigerator. Similarly, 25 g of untreated specimens were placed in a sterile plastic bag of stomacher, and 3 bags were stored in a refrigerator. One specimen stored in the refrigerator was taken out and immediately returned to room temperature (about 15 ° C.), 225 ml of sterilized physiological saline was added, homogenized with a stomacher for 30 seconds, and the viable cell count was examined. Similarly, the viable cell count of each specimen stored for 24 hours and 48 hours in a refrigerator was measured. The tryptic soy agar medium (Eiken Chemical Co., Ltd.) was used as a general bacterium, and the EC colimark agar medium (Eiken Chemical Co., Ltd.) was used as an Escherichia coli / Coliform group. The treated water of mizuna had an effective chlorine concentration of 50 ppm and pH 5.2, and the treated water after the treatment for 3 minutes had an effective chlorine concentration of 50 ppm and pH 5.4. The shredded cabbage treated water had an effective chlorine concentration of 48 ppm and a pH of 5.4, and after the treatment, it exhibited an effective chlorine of 45 ppm and a pH of 5.5. The results are shown in Table 3.
Figure 0006214855
As shown in Table 3, 10 3 to 10 5 general bacteria are detected in 1 g of cut vegetables, but it is effective by soaking for 3 minutes with slightly acidic hypochlorous acid water containing fine bubbles. It was confirmed that sterilization was possible. This sterilization effect was stable for 48 hours.

<実施例5:40日保存した微細気泡含有微酸性次亜塩素酸水のUV吸収スペクトル>
10℃〜60℃にて40日間保存した微細気泡含有微酸性次亜塩素酸水のUV吸収スペクトルは、全て236nm付近に弱い吸収を認め、希薄な水酸化ナトリウム溶液でpH9.5に調整したUV吸収スペクトルは、新たに292.4nm付近に最大吸収を示した。実データとして60℃にて40日間保存の微細気泡含有微酸性次亜塩素酸水溶液のUV吸収スペクトルを以下に示した。図4は、60℃にて40日間保存の微細気泡含有微酸性次亜塩素酸水溶液で、pH6.4である。図5は、図4の溶液をpH9.5に調製した溶液、図6は、図5のpH9.5の溶液を再度塩酸でpH6.0に調製したUV吸収スペクトルを示している。これらのスペクトルにより、微酸性領域では236nm付近に弱い吸収を示し、アルカリ側では292.4nmの最大吸収を示していることが理解される(10℃〜50℃保存溶液のUV吸収スペクトルも全て同一の結果であった)。なお、UV吸収スペクトルの測定は日立自記分光光度計U−3210を使用した。これらの知見は、文献値(Shuji Nakagawa et al., Analytical Sciences 14:691〜698, 1998)の次亜塩素酸と次亜塩素酸イオンに一致していたことより、10℃〜60度40日間密封保存した微細気泡含有の微酸性次亜塩素酸水の塩素成分は、次亜塩素酸であると同定した。
<Example 5: UV absorption spectrum of slightly acidic hypochlorous acid water containing fine bubbles stored for 40 days>
All UV absorption spectra of finely acid-containing slightly acidic hypochlorous acid water stored at 10 ° C. to 60 ° C. for 40 days showed weak absorption near 236 nm, and the pH was adjusted to 9.5 with a dilute sodium hydroxide solution. The absorption spectrum newly showed maximum absorption near 292.4 nm. As actual data, the UV absorption spectrum of a slightly acidic hypochlorous acid aqueous solution containing fine bubbles stored at 60 ° C. for 40 days is shown below. FIG. 4 shows a microbubble-containing slightly acidic hypochlorous acid aqueous solution stored at 60 ° C. for 40 days and pH 6.4. 5 shows a solution obtained by adjusting the solution of FIG. 4 to pH 9.5, and FIG. 6 shows a UV absorption spectrum obtained by adjusting the pH 9.5 solution of FIG. 5 again to pH 6.0 with hydrochloric acid. From these spectra, it is understood that in the slightly acidic region, the absorption is weak in the vicinity of 236 nm, and the maximum absorption is 292.4 nm on the alkali side (the UV absorption spectra of the 10 ° C. to 50 ° C. storage solutions are all the same). Result). The UV absorption spectrum was measured using a Hitachi auto-recorded spectrophotometer U-3210. These findings were consistent with the hypochlorous acid and hypochlorite ions in the literature values (Shuji Nakagawa et al., Analytical Sciences 14: 691-698, 1998). The chlorine component of the slightly acidic hypochlorous acid water containing fine bubbles stored in a sealed state was identified as hypochlorous acid.

<実施例6:微細気泡含有微酸性次亜塩素酸水の開放系における安定性>
上記密封系での安定性と同様に調製した微細気泡含有微酸性次亜塩素酸水(有効塩素濃度200ppm、pH5.7)と微酸性次亜水(有効塩素濃度171ppm、pH5.4)をタッパーウエアーに600mlずつ分注し、アルミホイルを被せた後、10℃と30℃の恒温器に保存して、経時変化を調べた。その結果を表4に示す。

Figure 0006214855
表4の如く、微酸性次亜水は30℃では次亜塩素酸は1日後には47%程度に減少し、4日後には殆どが消失していたことが分かる。 <Example 6: Stability in an open system of microacid-containing slightly acidic hypochlorous acid water>
Tapper containing finely acid-containing slightly acidic hypochlorous acid water (effective chlorine concentration 200 ppm, pH 5.7) and slightly acidic hypochlorous acid (effective chlorine concentration 171 ppm, pH 5.4) prepared in the same manner as the stability in the above-mentioned sealed system 600 ml each was dispensed to the wear and covered with aluminum foil, and then stored in a 10 ° C. and 30 ° C. incubator to examine changes over time. The results are shown in Table 4.
Figure 0006214855
As shown in Table 4, it can be seen that the slightly acidic hypochlorous acid was reduced to about 47% after 1 day at 30 ° C. and almost disappeared after 4 days.

一方、微細気泡含有の微酸性次亜塩素酸水は10度保存で4日後98.5%が残存し、30℃では77.5%が残っていた。図7と図8に示すUVスペクトラム解析から、10度4日間開放系で保存すると、次亜塩素酸と次亜塩素酸イオンの混在を認めた。30℃4日保存では、次亜塩素酸イオンの存在を確認した。これらの結果は、電解次亜水(あるいは次亜塩素酸ナトリウム溶液)に炭酸ガスを溶解させて微酸性に調整すると、塩素成分は次亜塩素酸となり、炭酸ガスが放出されるに従い次亜塩素酸イオンに変化することを示唆している。一方、従来の酢酸などの有機酸で微酸性に調整した微酸性次亜水は、開放系下では分解していた。   On the other hand, the slightly acidic hypochlorous acid water containing fine bubbles remained 98.5% after 4 days after storage at 10 ° C., and 77.5% remained at 30 ° C. From the UV spectrum analysis shown in FIG. 7 and FIG. 8, when stored in an open system at 10 degrees for 4 days, a mixture of hypochlorous acid and hypochlorite ions was recognized. In storage at 30 ° C. for 4 days, the presence of hypochlorite ions was confirmed. These results show that when carbon dioxide is dissolved in electrolytic hyposulfite (or sodium hypochlorite solution) and adjusted to slightly acidic, the chlorine component becomes hypochlorous acid, and as the carbon dioxide is released, hypochlorous acid is released. This suggests that it changes to an acid ion. On the other hand, the slightly acidic hypochlorous acid adjusted to be slightly acidic with an organic acid such as acetic acid has been decomposed in an open system.

<実施例7:微細気泡含有微酸性次亜塩素酸水の加湿器噴霧による殺菌効果>
加湿器(超音波式:(株)アピックスインターナショナル製、超音波式加湿器AHD−010及び(株)シー・シー・ピー製、スチームファン式加湿器KX−235m)に微細気泡含有の微酸性次亜塩素酸水(有効塩素濃度28ppm、pH5.1)を入れて稼働する。噴霧口から発生した霧状のミストをビニール袋に集めた後、しずくになった部分にアドバンテック東洋(株)製のクロール試験紙(10〜50 ppm測定用)にて測定した。表5に示す如く、超音波式加湿器では約20ppmの有効塩素濃度を確認したが、スチームファン式では約1ppm程度しか検出できなかった。
<Example 7: Bactericidal effect by spraying humidified spray of finely acid-containing slightly acidic hypochlorous acid water>
Microbubble-containing micro acidity in a humidifier (ultrasonic type: manufactured by Apics International, Inc., ultrasonic humidifier AHD-010 and manufactured by CCP, steam fan type humidifier KX-235m) Operate with chlorous acid water (effective chlorine concentration 28ppm, pH 5.1). After collecting the mist-like mist generated from the spray port in a plastic bag, it was measured on the drips with a crawl test paper (for measurement of 10 to 50 ppm) manufactured by Advantech Toyo Co., Ltd. As shown in Table 5, the ultrasonic humidifier confirmed an effective chlorine concentration of about 20 ppm, but the steam fan type could detect only about 1 ppm.

加えて、予めソィビーン・カゼイン・ダイジェスト培地(日本新薬(株)製)で37℃一夜培養したスタフィロコッカス アウレウス(Staphylococcus
aureus)209P JC−1を生理食塩水で洗浄し、1.3x107/ml菌液を調製した。次に、アルミ製のトレー上に面積25cmの円を2つ描き、この2つの円内に前記菌液の0.1mlを広げ、クリーンベンチ(日立製、 PCV−750AP)内で自然乾燥した。続いて、1つの円にぺたんチェック25標準寒天培地(栄研化学(株)製の商品名)をスタンプして無処理区とした。このトレーは、クリーンベンチ内に吊るした。クリーンベンチ内には超音波加湿器AHD−010を置き、微細気泡含有微酸性次亜塩素酸水(有効塩素濃度28ppm、pH5.1)を3分間噴霧し、加湿器から放出されたミストにトレーが囲まれるのを確認した。続いて、トレー上の残る1つの円にぺたんチェック25標準寒天培地(栄研化学(株)製の商品名)をスタンプして処理区とした。得られた
2個のぺたんチェック25標準寒天培地(栄研化学(株)製の商品名)は37℃で一夜培養した。下記表5に、微細気泡含有微酸性次亜塩素酸水の加湿器噴霧による殺菌効果を示した如く、無処理のぺたんチェック25標準寒天培地上には菌数測定が不能(無限大)の微生物増殖を認めたが、微細気泡含有微酸性次亜塩素酸水の噴霧した処理区のぺたんチェック25 標準寒天培地上には、黄色ブドウ球菌が135集落の増殖を計測した。

Figure 0006214855
これらの結果は、これまでに開示された技術では、特開2003‐153989号(特許第3820462号)に、有効塩素濃度80ppm、pH2.57〜2.58の電解水に界面活性剤を添加して超音波加湿器で噴霧すると、噴霧された霧粒子有効塩素濃度は0.02〜0.05ppmで、新たに発明された噴霧装置でも、有効塩素濃度80〜90ppmを噴霧して、検出される有効塩素濃度は0.19〜0.34ppmであることを示している。従って、本発明の微細気泡含有微酸性次亜塩素酸水を超音波加湿器で噴霧する有用性は、先行技術より著しく改善されていることを立証している。 In addition, Staphylococcus aureus cultured overnight at 37 ° C in Soybean casein digest medium (manufactured by Nippon Shinyaku Co., Ltd.)
aureus) 209P JC-1 was washed with physiological saline to prepare a 1.3 × 10 7 / ml bacterial solution. Next, two circles with an area of 25 cm 2 are drawn on an aluminum tray, 0.1 ml of the bacterial solution is spread in the two circles, and air-dried in a clean bench (Hitachi, PCV-750AP). . Subsequently, a Petan Check 25 standard agar medium (trade name, manufactured by Eiken Chemical Co., Ltd.) was stamped on one circle to make an untreated section. This tray was hung in a clean bench. Place the ultrasonic humidifier AHD-010 in the clean bench, spray fine water-containing slightly acidic hypochlorous acid water (effective chlorine concentration 28ppm, pH 5.1) for 3 minutes, and put it on the mist released from the humidifier. I was confirmed to be surrounded. Subsequently, a Petan Check 25 standard agar medium (trade name, manufactured by Eiken Chemical Co., Ltd.) was stamped on one remaining circle on the tray to form a treatment zone. The two Petan Check 25 standard agar media (trade name, manufactured by Eiken Chemical Co., Ltd.) were cultured overnight at 37 ° C. As shown in Table 5 below, the microbe-containing microacidic hypochlorous acid water sterilization effect by the humidifier spray shows that the number of bacteria cannot be measured (infinite) on the untreated Petcheck 25 standard agar medium. Although growth was recognized, the growth of 135 colonies of Staphylococcus aureus was measured on the Petan Check 25 standard agar medium in the treatment area sprayed with microbubble-containing slightly acidic hypochlorous acid water.
Figure 0006214855
These results show that, in the technology disclosed so far, a surfactant is added to electrolyzed water having an effective chlorine concentration of 80 ppm and a pH of 2.57 to 2.58 in JP2003-153898 (Patent No. 3820462). When sprayed with an ultrasonic humidifier, the sprayed fog particles have an effective chlorine concentration of 0.02 to 0.05 ppm, and even with a newly invented spray device, an effective chlorine concentration of 80 to 90 ppm is sprayed and detected. It shows that the effective chlorine concentration is 0.19 to 0.34 ppm. Therefore, the usefulness of spraying the microbubble-containing slightly acidic hypochlorous acid water of the present invention with an ultrasonic humidifier proves to be significantly improved over the prior art.

<微細気泡含有微酸性次亜塩素酸水によるスプレー菊の水揚げ促進効果>
切花を長く日持ちさせるためには、水揚げの良否が最も重要なポイントと言われている。そして、この切花の水揚げを妨げる要因として細菌類の増殖による切花茎の腐敗や導管閉塞があげられている。この問題を解決するため、硝酸銀や硫酸アルミニウム鮮などの抗菌剤・静菌剤や有機酸を添加した鮮度保持剤、あるいは切花の老化に関与するエチレン発生阻害活性を持つSTS(チオ硫酸銀錯塩)が切花延命剤として市販されている。一方、食塩、塩化カリウムあるいは塩酸などの溶液を電気分解して生成する次亜塩素酸水の切花日持ち効果に関する技術が、特許第3078791号や特開2000‐109401号に開示されている。前者は、pH3以下で、かつ、次亜塩素酸を10〜50 ppm含む電解水に切花を漬けると、地下水を生け花水とする対照区と比較してカーネションで1.4〜1.6倍、バラで1.75倍で、市販の鮮度保持剤と同程度であるとしている。後者の技術では、有効塩素濃度10ppm、pH6.2の次亜塩素酸水で、バラを使い市販の薬剤溶液とほぼ同等の効果があると記述している。本発明の微細気泡含有の微酸性次亜塩素酸水は、スプレー菊の水揚げ促進にも効果があり、実験により確認したので、これを実施例8として立証する。
<Effects of spraying chrysanthemum with sprayed fine chrysanthemum hypochlorous acid containing fine bubbles>
In order to keep cut flowers for a long time, it is said that the quality of landing is the most important point. In addition, as a factor that hinders the landing of cut flowers, rot of cut flower stems due to bacterial growth and blockage of conduits are cited. In order to solve this problem, antibacterial agents such as silver nitrate and aluminum sulfate, bacteriostatic agents, freshness-preserving agents to which organic acids are added, or STS (silver thiosulfate complex salt) that has an ethylene generation inhibitory activity involved in senescence of cut flowers Is commercially available as a cut flower life prolonging agent. On the other hand, Japanese Patent No. 3078791 and Japanese Patent Application Laid-Open No. 2000-109401 disclose techniques relating to the long-lasting effect of hypochlorous acid water generated by electrolyzing a solution of salt, potassium chloride or hydrochloric acid. In the former, when cut flowers are immersed in electrolyzed water having a pH of 3 or less and containing 10 to 50 ppm of hypochlorous acid, the carnation is 1.4 to 1.6 times that of the control zone in which the groundwater is ikebana water. The rose is 1.75 times the same as a commercially available freshness-preserving agent. In the latter technique, it is described that hypochlorous acid water having an effective chlorine concentration of 10 ppm and pH 6.2 has almost the same effect as a commercially available drug solution using roses. The slightly acidic hypochlorous acid water containing fine bubbles of the present invention is also effective in promoting the landing of spray chrysanthemums, which was confirmed by experiments.

<実施例8>
ベトナム産白色スプレー菊(以下、キク切り花。)を使用し、以下の処理を行った。
揚げ水処理: 対照区(水道水)、微細気泡含有の微酸性次亜塩素酸水の有効塩素濃度10ppm区と、同20ppm区の3処理区とした。各処理は、プラスチック製バケット(縦40cm×横30cm×深さ35cm)に、7Lの微細気泡含有の微酸性次亜塩素酸水(有効塩素濃度10ppm区と、同20ppm区、いずれもpH5.0)をそれぞれ注入した。供試材料のキク切り花は、3本を1組とし、各処理区に3組ずつ挿した。対照区としては、水道水7Lを使い同様に処理をした。実験期間中は、バケットを室温(約15℃)で自然光条件下に静置した。
キク切り花の水揚げ量の測定: 水揚げ量は、実験開始時の切り花重量から4日と8日後の重量を差し引くことで評価した。すなわち、差し引き重量の値が小さければ水揚げ量が大きいと判定される。
有効塩素濃度とpHの測定: 柴田科学社製の有効塩素濃度測定器AQ−102Pと佐藤計量器製のpH計SK−620PHを使用した。
微生物の測定: プラスチック製バケットの内側面をペタンチェック法で、一般細菌はぺたんチェック25トリプトソイ寒天培地(栄研化学(株)製の商品名))を、大腸菌・大腸菌群には、ぺたんチェック25 ESコリマーク寒天培地((栄研化学(株)製の商品名))を使用した。
<Example 8>
Using Vietnamese white spray chrysanthemums (hereinafter referred to as chrysanthemum cut flowers), the following treatment was performed.
Pumped water treatment: Three treatment zones were prepared: a control zone (tap water), an effective chlorine concentration of 10 ppm for fine acidic hypochlorite water containing fine bubbles, and a 20 ppm zone. Each treatment was carried out in a plastic bucket (length 40 cm x width 30 cm x depth 35 cm), 7 L of finely acid-containing slightly acidic hypochlorous acid water (effective chlorine concentration 10 ppm and 20 ppm, pH 5.0). ) Was injected respectively. Three sets of chrysanthemum flowers as test materials were used as one set, and three sets were inserted into each treatment area. As a control, 7L of tap water was used for the same treatment. During the experiment, the bucket was allowed to stand at room temperature (about 15 ° C.) under natural light conditions.
Measurement of landing amount of chrysanthemum cut flower: The landing amount was evaluated by subtracting the weight after 4 and 8 days from the cut flower weight at the start of the experiment. That is, if the value of the subtraction weight is small, it is determined that the landing amount is large.
Measurement of effective chlorine concentration and pH: An effective chlorine concentration measuring device AQ-102P manufactured by Shibata Kagakusha and a pH meter SK-620PH manufactured by Sato Keiki were used.
Microorganism measurement: The inner surface of a plastic bucket is petan-checked. General bacteria are Petan Check 25 Tryptosoy Agar (trade name, manufactured by Eiken Chemical Co., Ltd.) ES colimark agar medium (trade name, manufactured by Eiken Chemical Co., Ltd.) was used.

実施例8の結果を次に示す。

Figure 0006214855
表6によれば、スプレー菊水揚げ実験に使用した微細気泡含有微酸性次亜水の有効塩素濃度は数日を経過すると低下する傾向が見られ、それに伴ってpHも変化するが、8日程度では、なお、有効な濃度を保っていることが分かる。 The results of Example 8 are shown below.
Figure 0006214855
According to Table 6, the effective chlorine concentration of microbubble-containing slightly acidic hyponitrous acid used in the spray chrysanthemum landing experiment tends to decrease after a few days, and the pH also changes accordingly, but about 8 days. It can be seen that the effective concentration is maintained.

さらに、微細気泡含有の微酸性次亜塩素酸水の切り花重量減少量に及ぼす変化について測定を行ったので、その結果を示す。

Figure 0006214855
(切り花重量減少量は、室温(約15℃)条件下で測定した。)

表7によれば、対照区は4日後減少量B/Aが13%を超え、8日後になると減少量C/Aが16.3%を示す。これに対して、本発明の微細気泡含有の微酸性次亜塩素酸水による場合10ppmで4日後減少量B/Aが9.6%、8日後減少量C/Aは12.7%、20ppmでは4日後減少量B/Aが12.9%、8日後減少量C/Aは16.6%であった。これらにより、本発明の微細気泡含有の微酸性次亜塩素酸水を切り花に使用することによって、延命効果を図れることが分かる。 Furthermore, the change in the amount of cut flower weight of slightly acidic hypochlorous acid water containing fine bubbles was measured, and the results are shown.
Figure 0006214855
(The cut flower weight loss was measured under room temperature (about 15 ° C.) conditions.)

According to Table 7, the amount of decrease B / A after 4 days exceeds 13% in the control group, and the amount of decrease C / A shows 16.3% after 8 days. On the other hand, in the case of the slightly acidic hypochlorous acid water containing fine bubbles of the present invention, the decrease amount B / A after 4 days is 9.6% at 10 ppm, and the decrease amount C / A after 8 days is 12.7%, 20 ppm. The decrease B / A after 4 days was 12.9%, and the decrease C / A after 8 days was 16.6%. From these, it can be seen that the life-prolonging effect can be achieved by using the finely acid-containing slightly acidic hypochlorous acid water of the present invention for cut flowers.

<実施例9:微細気泡含有の微酸性次亜塩素酸水の噴霧による殺菌効果>
実施例1に示された微細気泡含有の微酸性次亜塩素酸水を、20℃に110日間保存したもの(有効塩素濃度52ppm、pH6.2)を使用し、約600,000cm(間口132x奥行き67x高さ72cm)の密閉空間に3分間噴霧し、有効塩素濃度30ppm、pH6.4の環境を形成した。上記噴霧後2日を経過したのちソィビーン・カゼイン・ダイジェスト寒天平板を30分間開放する落下法で、落下細菌を試験した。その結果、平板1個当たり0〜2個の細菌が検出された。なお、噴霧後炭酸ガスが抜けて、pHが多少上昇しても良いので、pH5.0〜6.9が有効な範囲と判断される。
<Example 9: Bactericidal effect by spray of slightly acidic hypochlorous acid water containing fine bubbles>
Using the slightly acidic hypochlorous acid water containing fine bubbles shown in Example 1, which was stored at 20 ° C. for 110 days (effective chlorine concentration 52 ppm, pH 6.2), about 600,000 cm 3 (frontage 132 × It sprayed for 3 minutes to the sealed space of depth 67x 72cm in height, and the environment of effective chlorine concentration 30ppm and pH 6.4 was formed. Two days after the spraying, the falling bacteria were tested by a dropping method in which a soy bean, casein, digest agar plate was opened for 30 minutes. As a result, 0 to 2 bacteria were detected per plate. In addition, since carbon dioxide gas may escape after spraying and the pH may rise slightly, it is determined that pH 5.0 to 6.9 is an effective range.

昨今、インフルエンザやノロウイルスなどの感染症が多く発生して、その対策として色々な薬品、医薬部外品が製品化されている。しかし、微酸性次亜水は殺菌力の速効性と使用後は速やかに有効塩素が失活するという特徴を持っている上、本発明によって、炭酸ガスと窒素ガスの混合ガスでpH調整し、ナノマイクロバブルを発生させることで、上記の実施例に見られるように、使用時まで熱安定性を著しく改良できることが確認されたの
で、広範な用途に使用することができると考えられる。
Recently, many infectious diseases such as influenza and norovirus have occurred, and various drugs and quasi-drugs have been commercialized as countermeasures. However, the slightly acidic hyponitrous acid has the characteristics that the effective chlorine is deactivated quickly after use and the rapid effect of sterilizing power, and according to the present invention, the pH is adjusted with a mixed gas of carbon dioxide gas and nitrogen gas, By generating nano-microbubbles, it was confirmed that the thermal stability can be remarkably improved until the time of use, as seen in the above-mentioned examples, so that it can be used for a wide range of applications.

本発明に係る微細気泡含有の微酸性次亜塩素酸水の製造方法の実施に使用する装置の一例を示すブロック図である。It is a block diagram which shows an example of the apparatus used for implementation of the manufacturing method of the micro acid-containing slightly acidic hypochlorous acid water which concerns on this invention. 同上の装置に用いるノズルの一例を示す断面図である。It is sectional drawing which shows an example of the nozzle used for an apparatus same as the above. 図2のノズルに装着する部材の一例を示す断面図である。It is sectional drawing which shows an example of the member with which the nozzle of FIG. 2 is mounted | worn. 本発明の微細気泡含有の微酸性次亜塩素酸水を60℃にて40日間保存した資料のUV吸収スペクトルを示すチャート図である。の一例を示す正面説明図である。It is a chart figure which shows the UV absorption spectrum of the data which preserve | saved 40 days of the slightly acidic hypochlorous acid water containing fine bubbles of this invention at 60 degreeC. It is front explanatory drawing which shows an example. 同じく図4の試料をpH9.5に調整後のUV吸収スペクトルを示すチャート図である。Similarly, it is a chart showing a UV absorption spectrum after adjusting the sample of FIG. 4 to pH 9.5. 同じく図5の試料を再度pH6.0に調整後のUV吸収スペクトルを示すチャート図である。FIG. 6 is a chart showing a UV absorption spectrum after adjusting the sample of FIG. 5 to pH 6.0 again. 本発明の微細気泡含有の微酸性次亜塩素酸水を10℃、4日間開放系で保存した微細気泡含有微酸性次亜塩素酸水のUVスペクトラムを示すチャート図である。It is a chart which shows the UV spectrum of the fine bubble containing slightly acidic hypochlorous acid water which preserve | saved the fine bubble containing slightly acidic hypochlorous acid water of this invention by 10 degreeC and the open system for 4 days. 同じく30℃、4日間開放系で保存の微細気泡含有微酸性次亜塩素酸水のUVスペクトラムを示すチャート図である。It is a chart which similarly shows the UV spectrum of the microbubble containing slightly acidic hypochlorous acid water containing 30 degreeC and an open system for 4 days preservation | save. 同じく有効塩素濃度10ppm、pH6.7、水揚げ8日目のUVスペクトラムを示すチャート図である。It is a chart figure which similarly shows the UV spectrum of 10 ppm of effective chlorine concentration, pH 6.7, and landing 8th day. 同じく有効塩素濃度20ppm、pH6.7、水揚げ8日目のUVスペクトラムを示すチャート図である。Similarly, it is a chart showing the UV spectrum of effective chlorine concentration 20 ppm, pH 6.7, landing 8th day.

10 微細気泡含有の微酸性次亜塩素酸水の製造方法の実施に使用する装置
11 ポンプ
12 気体取り入れ経路
13 液体取り入れ経路
14 空気流量調整器
15 炭酸ガスボンベ
16 ガス源
17 制御弁
18 殺菌料生成部
19、21 配管
20 混合タンク
22 微細気泡生成ノズル
23 微細気泡混合液槽
24 流入口
25 衝突壁面
26 ノズル孔
27 ノズルケース
28 板面
29 細孔
30 圧縮膨張部材
31 攪拌部材
32 隙間
33 スリット
34、35 攪拌手段
B マイクロバブル
DESCRIPTION OF SYMBOLS 10 Apparatus used for implementation of the manufacturing method of the slightly acidic hypochlorous acid water containing a fine bubble 11 Pump 12 Gas intake path 13 Liquid intake path 14 Air flow regulator 15 Carbon dioxide cylinder 16 Gas source 17 Control valve 18 Sterilizer production | generation part DESCRIPTION OF SYMBOLS 19, 21 Piping 20 Mixing tank 22 Fine bubble production | generation nozzle 23 Fine bubble mixing liquid tank 24 Inlet 25 Collision wall surface 26 Nozzle hole 27 Nozzle case 28 Plate surface 29 Fine hole 30 Compression expansion member 31 Stirring member 32 Gap 33 Slits 34, 35 Stirring means B Microbubble

Claims (3)

炭酸ガスと窒素ガスを溶解させた微細気泡含有する微酸性次亜塩素酸水の製造方法であって、
所望の有効塩素濃度に希釈した電解次亜水又は次亜塩素酸ナトリウム水溶液に、ポンプを用いて炭酸ガスと窒素ガスを混合し、pH5〜6の次亜塩素酸水を調製する工程と、
得られた微酸性の前記次亜塩素酸水をマイクロバブル発生装置に導通し、微細気泡生成ノズルから噴射することによって、粒径50μm以下の微細気泡を前記次亜塩素酸水の中に生成する工程とを備えたことを特徴とする微酸性次亜塩素酸水の製造方法。
A method of manufacturing a slightly acidic hypochlorous acid water containing fine bubbles dissolved carbon dioxide gas and nitrogen gas,
A step of mixing carbon dioxide gas and nitrogen gas with a pump in an electrolytic hypochlorous acid or sodium hypochlorite aqueous solution diluted to a desired effective chlorine concentration to prepare pH 5-6 hypochlorous acid water,
Resulting the hypochlorous acid solution of slightly acidic conducts the microbubble generator, by injecting a fine bubble generating nozzle, to produce the following fine-bubble particle size 50μm in the hypochlorous acid solution method for producing a slightly acidic hypochlorous acid water which is characterized in that a step.
所望の有効塩素濃度に希釈した電解次亜水又は次亜塩素酸ナトリウム水溶液に、ポンプを用いて炭酸ガスと窒素ガスを混合し、pH5〜6の次亜塩素酸水を調製し
得られた微酸性の前記次亜塩素酸水をマイクロバブル発生装置に導通し、微細気泡生成ノズルから噴射することによって、粒径50μm以下の微細気泡を生成して、微細気泡を含有した前記次亜塩素酸水を製造し、
前記次亜塩素酸水を有効塩素濃度5〜20ppm、pH5.0〜6.7に調製してバケットに注入し、切り花を前記微細気泡含有の微酸性次亜塩素酸水中に挿して水揚げを行うことを特徴とする微酸性次亜塩素酸水の使用方法。
Carbon dioxide gas and nitrogen gas are mixed using a pump with electrolytic hypochlorous acid or sodium hypochlorite aqueous solution diluted to a desired effective chlorine concentration to prepare pH 5-6 hypochlorous acid water ,
By passing the obtained slightly acidic hypochlorous acid water through a microbubble generator and spraying it from a microbubble generating nozzle, microbubbles having a particle diameter of 50 μm or less are generated, and the next containing microbubbles Producing chlorite water,
The hypochlorous acid water is adjusted to an effective chlorine concentration of 5 to 20 ppm and pH is 5.0 to 6.7, poured into a bucket, and cut flowers are inserted into the slightly acidic hypochlorous acid water containing the fine bubbles for landing. A method of using slightly acidic hypochlorous acid water characterized by that.
所望の有効塩素濃度に希釈した電解次亜水又は次亜塩素酸ナトリウム水溶液に、ポンプを用いて炭酸ガスと窒素ガスを混合し、pH5〜6の次亜塩素酸水を調製し
得られた微酸性の前記次亜塩素酸水をマイクロバブル発生装置に導通し、微細気泡生成ノズルから噴射することによって、粒径50μm以下の微細気泡を生成して、微細気泡を含有した前記次亜塩素酸水を製造し、
前記次亜塩素酸水を、噴霧手段を用いて対象物又はそれが存在する密閉空間に噴霧することにより、有効塩素濃度10〜30ppm、pH5.0〜6.9の環境を形成し、前記対象物又は前記密閉空間の殺菌を行うことを特徴とする微酸性次亜塩素酸水の使用方法。
Carbon dioxide gas and nitrogen gas are mixed using a pump with electrolytic hypochlorous acid or sodium hypochlorite aqueous solution diluted to a desired effective chlorine concentration to prepare pH 5-6 hypochlorous acid water ,
By passing the obtained slightly acidic hypochlorous acid water through a microbubble generator and spraying it from a microbubble generating nozzle, microbubbles having a particle diameter of 50 μm or less are generated, and the next containing microbubbles Producing chlorite water,
The hypochlorous acid solution, by spraying in a closed space existing object or it with spray means, to form an effective chlorine concentration 10 to 30 ppm, PH5.0~6.9 environment, the target A method of using slightly acidic hypochlorous acid water characterized by sterilizing a product or the enclosed space.
JP2012114940A 2012-05-18 2012-05-18 Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same Active JP6214855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114940A JP6214855B2 (en) 2012-05-18 2012-05-18 Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114940A JP6214855B2 (en) 2012-05-18 2012-05-18 Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same

Publications (2)

Publication Number Publication Date
JP2013240742A JP2013240742A (en) 2013-12-05
JP6214855B2 true JP6214855B2 (en) 2017-10-18

Family

ID=49842183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114940A Active JP6214855B2 (en) 2012-05-18 2012-05-18 Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same

Country Status (1)

Country Link
JP (1) JP6214855B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083093A (en) * 2015-10-29 2017-05-18 株式会社ユナイテッド Food storage with high humidity
WO2017099085A1 (en) * 2015-12-07 2017-06-15 新日本空調株式会社 Cleaning method of article worn on human body
JPWO2018003087A1 (en) * 2016-06-30 2019-04-18 マルハニチロ株式会社 Bactericidal agent combining chlorine-based germicidal agent and microbubbles, and sterilizing method
JP6852205B2 (en) * 2019-02-28 2021-03-31 株式会社ナック Hypochlorous acid aqueous solution
JP7324483B2 (en) * 2019-04-12 2023-08-10 大宮高圧有限会社 Highly functional sterilizing rinse water and rinsing method
CN112093930A (en) * 2020-08-10 2020-12-18 中山市原域企业投资有限公司 Method and equipment for preparing hypochlorous acid by combining gas-liquid synthesis with electrolysis method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871136A (en) * 1994-09-06 1996-03-19 Tatsuo Okazaki Sterilizing method
JP2000109401A (en) * 1998-09-30 2000-04-18 Morinaga Milk Ind Co Ltd Freshness-retaining agent for cut flower and freshness- retaining method for cut flower
JP4204955B2 (en) * 2003-11-20 2009-01-07 株式会社富永製作所 Electrolyzed water generation method and apparatus
JP4505560B2 (en) * 2003-12-15 2010-07-21 宮崎県 Generation method of monodisperse bubbles
JP2008183502A (en) * 2007-01-29 2008-08-14 Japan Ship Technology Research Association Water treatment apparatus with nano-bubble and water treating method by nano-bubble
JP2009220081A (en) * 2008-03-19 2009-10-01 Spg Techno Kk Gas/liquid mixing dissolving apparatus
JP4595001B2 (en) * 2008-06-26 2010-12-08 株式会社 シンワ Medical cleaning water supply device
JP2011104534A (en) * 2009-11-18 2011-06-02 Togami Electric Mfg Co Ltd Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus
JP2011224526A (en) * 2010-04-19 2011-11-10 Masami Fujita Method of manufacturing aqueous hypochlorous acid, and device therefor

Also Published As

Publication number Publication date
JP2013240742A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP6122139B2 (en) Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles
JP6214855B2 (en) Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same
USRE31779E (en) Germ-killing composition and method
US4084747A (en) Germ killing composition and method
KR102386583B1 (en) Microbicide and method for manufacturing same
JP2007275089A (en) Long-term sustainable ozone water, and environment sterilization and deodorizing/clarification method using long-term sustainable ozone water
CN104621181A (en) Disinfectant and preparation method and device thereof
CN110250200A (en) The device and method that focusing gas phase for biocide is applied
US20160151525A1 (en) System and method for treatment of perishable goods with hydrogen-rich water
US10993448B2 (en) Method for sanitizing fresh produce
JP2014033955A (en) Chlorine dioxide gas sterilizer/pure chlorine dioxide solution generator
WO2013125051A1 (en) Device for producing liquid mixed with microbubbles containing gas incorporated thereinto
CN112675338A (en) Automatic ozone water sterilizing device
WO2020122258A1 (en) Radical-water production method, production device and radical water
EP3153184A2 (en) Method and system for disinfecting with chlorine dioxide gas
JP5030089B2 (en) Cleaning method by sterilization or particle removal, and apparatus used therefor
JP2019072707A (en) Ultrafine bubble-containing liquid generated by quick gas filling device using ultrafine bubble nozzle
WO2018003087A1 (en) Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method
US20200056293A1 (en) Electrolysis apparatus capable of producing disinfectant or cleaning agent, and electrolysis method therefor
JP2020099291A (en) Sterilization method and sterilization apparatus of food product
JPWO2004022208A1 (en) Liquid dilution mixing device
GB1571975A (en) Disinfecting and sterilising process
JP2555088B2 (en) Ozone sterilization method for food and hygiene products
TW202031601A (en) Free radical water production method and device, and free radical water for easily producing free radical water containing hydrogen free radicals and/or hydroxyl free radicals by performing electrolysis and applying ultrasonic waves
JP2019024321A (en) Manufacturing method of packaged food and packaged food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6214855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250