JP2011104534A - Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus - Google Patents

Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus Download PDF

Info

Publication number
JP2011104534A
JP2011104534A JP2009263149A JP2009263149A JP2011104534A JP 2011104534 A JP2011104534 A JP 2011104534A JP 2009263149 A JP2009263149 A JP 2009263149A JP 2009263149 A JP2009263149 A JP 2009263149A JP 2011104534 A JP2011104534 A JP 2011104534A
Authority
JP
Japan
Prior art keywords
gas
liquid
bubble
fine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009263149A
Other languages
Japanese (ja)
Inventor
Toshinori Matsuo
俊徳 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togami Electric Mfg Co Ltd
Original Assignee
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togami Electric Mfg Co Ltd filed Critical Togami Electric Mfg Co Ltd
Priority to JP2009263149A priority Critical patent/JP2011104534A/en
Publication of JP2011104534A publication Critical patent/JP2011104534A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microbubble generator causing no, or hardly causing clogging of the bubble micronizing material of the microbubble generator, and a gas/liquid reaction apparatus equipped therewith. <P>SOLUTION: A chromaticity removing device which is the gas/liquid reaction apparatus includes the microbubble generator (1) discharging a bubble mixed liquid containing the microbubbles. A buffer coil (17) micronizing bubbles by passing the bubble mixed liquid is provided in a flow path (122) of the bubble mixed liquid. In the buffer coil (17), flexible or elastic bristles (171) are disposed in a dense state fixing the outer peripheral edge inwardly in a spiral frame body (170), tips of the bristles (171) abutting or overlapped are free ends, and deformed by the pressure of a gas/liquid mixed flow. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細気泡生成器、該発生器に使用する気泡微細化材及び気液反応装置に関する。更に詳しくは、微細気泡生成器で形成される気泡粒径の分布を所要の範囲内に収めることができると共に、被処理液中の浮遊物質(SS)に起因する吐出部の目詰まりを防止したものに関する。   The present invention relates to a fine bubble generator, a bubble refining material used for the generator, and a gas-liquid reaction apparatus. More specifically, the distribution of the bubble particle size formed by the fine bubble generator can be kept within the required range, and clogging of the discharge part due to suspended solids (SS) in the liquid to be treated has been prevented. About things.

排水処理装置においては、例えば被処理液中の生物処理で除去できなかった色度成分を除去する目的でオゾンガスが使用されている。詳しくは、加圧下においてオゾンガスを被処理液に溶解させてから大気圧に解放し、これにより極めて微細なオゾンガスの気泡を発生させ、この微細なオゾンガスの気泡を被処理液に含ませてオゾンガスを溶存させることにより色度成分を除去することができる。   In the wastewater treatment apparatus, ozone gas is used for the purpose of removing chromaticity components that could not be removed by biological treatment in the liquid to be treated, for example. Specifically, the ozone gas is dissolved in the liquid to be treated under pressure and then released to atmospheric pressure, thereby generating extremely fine bubbles of ozone gas. The chromaticity component can be removed by dissolving it.

このような処理に使用される極めて微細な気泡を生成する生成器としては、例えば特許文献1に記載の微細気泡生成器がある。この生成器は、噴水ノズルの胴部内にてその管路に対し斜めに走る透水孔に水を通すことによって、流水に旋回力を与え、噴水ノズルの先端を管体の入水口に差込み、空気吸引間隙を設けた入水口の近傍で勢い良く流水を噴出させることで、流水に空気を取込み、これにより大気泡を生成し、該大気泡を旋回する流水の剪断力にて破裂させて、更に小さな微細気泡を生成するというものである。   As a generator that generates extremely fine bubbles used for such processing, there is a fine bubble generator described in Patent Document 1, for example. This generator gives a swirl force to the flowing water by passing water through a water-permeable hole that runs obliquely with respect to the pipe line in the body of the fountain nozzle, and inserts the tip of the fountain nozzle into the water inlet of the pipe body. By spouting the flowing water vigorously in the vicinity of the water inlet provided with a suction gap, air is taken into the flowing water, thereby generating large bubbles, which are ruptured by the shearing force of the flowing swirling water, and further It produces small microbubbles.

特開2007−117799JP2007-117799A

しかしながら、特許文献1に記載の微細気泡生成器には、次のような課題があった。
すなわち、オゾンガスは人体に有害であり環境にも悪影響を与えるので、できるだけ被処理液中で酸素に変化させるようにして、オゾンガス自体を大気中に放出するのを防止する必要がある。そのためには、オゾンガスを微細な気泡にして処理液中での浮上速度を遅くする必要があるが、流水に旋回力を与え、単に大気圧に解放しただけでは、微細気泡生成器で形成される気泡粒径の分布は広く、粒径にばらつきがあり、数マイクロメートル(μm)から数十マイクロメートルの範囲で分布する。
However, the fine bubble generator described in Patent Document 1 has the following problems.
That is, since ozone gas is harmful to the human body and has an adverse effect on the environment, it is necessary to prevent the ozone gas itself from being released into the atmosphere by changing it to oxygen in the liquid to be treated as much as possible. For that purpose, it is necessary to make ozone gas into fine bubbles and slow the ascent rate in the processing liquid. However, if the swirl force is given to the flowing water and it is simply released to the atmospheric pressure, it is formed by the fine bubble generator. The bubble particle size distribution is wide, the particle size varies, and is distributed in the range of several micrometers (μm) to several tens of micrometers.

数十マイクロメートルの粒径の気泡は浮上速度が比較的速いため、オゾンガス反応槽中の被処理液の液面に短時間で浮上しやすく、液面からオゾンガスが大気中に放出され、人体や環境に悪影響を与えるおそれがある。これを防止するためには、オゾンガス気泡の粒径を10マイクロメートル以下に抑える必要がある。   Bubbles with a particle size of several tens of micrometers have a relatively high ascent rate, so they can easily rise to the liquid surface of the liquid to be treated in the ozone gas reaction tank in a short time, and ozone gas is released from the liquid surface to the atmosphere. There is a risk of adverse effects on the environment. In order to prevent this, it is necessary to suppress the particle diameter of the ozone gas bubbles to 10 micrometers or less.

本発明者等は、微細気泡を安定して供給するための研究を重ね、微細気泡生成器の放出側に綿塊、微細な網目を有する網、通液・通気性を有する不織布等、気泡を微細化する微細化材を配置して、それらに気液混合液を通過させると、気泡微細化材を通過した気泡は気泡粒径の分布幅が狭く、細かい方に偏る傾向にあり、オゾンガス処理に必要な粒径の気泡が安定して得られることを知見した。   The inventors of the present invention have conducted research to stably supply fine bubbles, and on the discharge side of the fine bubble generator, a cotton lump, a mesh having a fine mesh, a liquid-permeable / breathable nonwoven fabric, etc. When the material to be refined is placed and the gas-liquid mixture is passed through them, the bubbles that have passed through the cell refinement material have a narrow distribution range of the bubble particle size and tend to be biased toward the finer, ozone gas treatment It was found that bubbles having a particle size necessary for the production can be stably obtained.

しかし、被処理水には浮遊物質が分散しており、浮遊物質を含む気液混合液が微細化材を通過する際に浮遊物質が溜まり、微細化材が目詰まりを起こすことが判明した。
微細化材が目詰まりを起こすと、色度成分除去装置(脱色装置)を停止させて、気泡微細化材の洗浄や交換を行う必要があり、装置の停止は以降の処理の停止、すなわち排水処理の効率の低下を招く結果となる。
However, it was found that suspended substances are dispersed in the water to be treated, and suspended substances accumulate when the gas-liquid mixture containing suspended substances passes through the refined material, causing the refined material to become clogged.
When the micronized material becomes clogged, it is necessary to stop the chromaticity component removing device (decoloring device) and clean or replace the bubble micronized material. This results in a decrease in processing efficiency.

(本発明の目的)
本発明の目的は、微細気泡生成器の気泡微細化材が浮遊物質による目詰まりを起こさないか、起こしにくい微細気泡生成器、該発生器に使用する気泡微細化材及び微細気泡生成器を備えた気液反応装置を提供することにある。
(Object of the present invention)
An object of the present invention is to provide a fine bubble generator in which the fine bubble generating material of the fine bubble generator does not clog or hardly cause clogging due to suspended substances, a bubble refiner used in the generator, and a fine bubble generator. Another object is to provide a gas-liquid reactor.

上記課題を解決するために本発明が講じた手段は次のとおりである。
(1)本発明は、
気液混合手段で被処理液中に気体を溶存させた気体溶存液をケーシングに導入し、該ケーシング内に設けられている流路面積を制限する絞り部を通過して発生した微細気泡を含む気泡混合液を吐出する微細気泡生成器であって、
気泡混合液の流路に、気泡混合液を通過させて気泡を微細化する気泡微細化材が設けられており、該気泡微細化材は、可撓性又は弾性を有する毛及び/又は繊維が外周縁から内方に向かって密集状態に配置され、可撓性又は弾性を有する毛及び/又は繊維は外周縁で固定され、当接又は重なっている先端は気液混合流の圧力によって変形する自由端となっている、
微細気泡生成器である。
Means taken by the present invention to solve the above problems are as follows.
(1) The present invention
Introducing a gas-dissolved liquid in which a gas is dissolved in a liquid to be treated by a gas-liquid mixing means into a casing, and includes fine bubbles generated through a throttle portion that restricts a flow path area provided in the casing A fine bubble generator for discharging a bubble mixture,
A bubble refining material is provided in the flow path of the bubble mixed solution to allow the bubble mixed solution to pass therethrough, and the bubble refining material includes flexible and elastic hair and / or fibers. The hair and / or fiber having flexibility or elasticity are arranged in a dense state from the outer peripheral edge inward, and the tips that contact or overlap are deformed by the pressure of the gas-liquid mixed flow. The free end,
It is a fine bubble generator.

(2)本発明は、
前記(1)の微細気泡生成器を構成する気泡微細化材であって、
可撓性又は弾性を有する毛及び/又は繊維が外周縁から内方に向かって密集状態に配置され、可撓性又は弾性を有する毛及び/又は繊維は外周縁が固定され、当接又は重なっている先端は気液混合流の圧力によって変形する自由端となっている、
気泡微細化材である。
(2) The present invention
A bubble refining material constituting the fine bubble generator of (1),
Flexible or elastic hairs and / or fibers are densely arranged inward from the outer periphery, and the flexible or elastic hairs and / or fibers are fixed at the outer periphery and abut or overlap. The tip is a free end that is deformed by the pressure of the gas-liquid mixed flow,
It is a bubble refining material.

(3)本発明は、
可撓性又は弾性を有する毛及び/又は繊維が、流路に収めることができる螺旋枠体に固定されている、
前記(2)に記載の気泡微細化材である。
(3) The present invention
Flexible or elastic hairs and / or fibers are fixed to a spiral frame that can be accommodated in the flow path,
It is a bubble refining material as described in said (2).

(4)本発明は、
被処理液を入れる処理槽と、
処理槽から被処理液を吸引し反応ガスと混合する気液混合ポンプと、
気液混合ポンプから気液混合液が送られる加圧タンクと、
加圧タンクから気液混合液が送られて、反応ガスの微細気泡を含む気泡混合液を処理槽に送る前記(1)の微細気泡生成器と、
を備えている、
気液反応装置である。
(4) The present invention
A treatment tank for storing the liquid to be treated;
A gas-liquid mixing pump that sucks the liquid to be processed from the processing tank and mixes it with the reaction gas;
A pressurized tank to which the gas-liquid mixture is sent from the gas-liquid mixing pump;
The fine bubble generator of the above (1), wherein a gas-liquid mixture is sent from a pressurized tank, and a bubble mixture containing fine bubbles of the reaction gas is sent to the treatment tank;
With
It is a gas-liquid reactor.

「可撓性又は弾性を有する毛及び/又は繊維」は、流路内壁に直接固定することもできるし、流路に収めることができる螺旋枠体や環状枠体に固定することもできる。   The “flexible or elastic hair and / or fiber” can be directly fixed to the inner wall of the flow channel, or can be fixed to a spiral frame or an annular frame that can be accommodated in the flow channel.

気液反応装置としては、例えば排水処理における曝気処理装置や色度除去装置、設備の脱臭装置,処理水の殺菌装置等があげられるが、これらに限定はされない。
また、本発明の気泡生成器は、例えば酸素、窒素、二酸化炭素、オゾン等の反応ガスを使用し、被処理液中にマイクロメートルオーダーのきわめて微細な反応ガスの気泡を生成することができ、様々な気液反応装置に対応できるものである。
Examples of the gas-liquid reactor include, but are not limited to, an aeration treatment device and a chromaticity removal device in wastewater treatment, a deodorization device for equipment, a sterilization device for treated water, and the like.
In addition, the bubble generator of the present invention can use, for example, a reaction gas such as oxygen, nitrogen, carbon dioxide, ozone, etc., and can generate extremely fine reaction gas bubbles of the order of micrometers in the liquid to be treated. It can be used for various gas-liquid reactors.

例えば水に酸素を溶存させて水中に微細な酸素ガスの気泡を生成すると、高濃度酸素水をつくることができ、これを使用すれば活性汚泥処理の曝気等に効果がある。なお、高濃度酸素水を曝気槽に用いると、散気管では十分な溶解効率を得られない底浅な槽であっても活性汚泥内の微生物の活性化に大きく効果が上がる。   For example, if oxygen is dissolved in water to generate fine oxygen gas bubbles in the water, high-concentration oxygen water can be produced. If this is used, it is effective for aeration of activated sludge treatment. When high-concentration oxygen water is used in the aeration tank, the effect of activating microorganisms in the activated sludge is greatly increased even in a shallow tank where sufficient dissolution efficiency cannot be obtained with an air diffuser.

また、同様に水中に微細な窒素ガスの気泡を生成すると、脱酸素水(溶存酸素の低減)をつくることができ、これを使用すれば食品等の酸化防止や配管内部の腐食の低減等に効果がある。同様に水中に微細な二酸化炭素ガスの気泡を生成すると、高濃度炭酸水をつくることができる。さらに、水中にオゾンガスの気泡を生成すると、高濃度オゾン水溶液をつくることができ、脱臭、殺菌、脱色等に高い効果がある。   Similarly, if fine nitrogen gas bubbles are generated in the water, deoxygenated water (reduced oxygen reduction) can be created, which can be used to prevent oxidation of foods and to reduce corrosion inside pipes. effective. Similarly, by generating fine carbon dioxide gas bubbles in water, high-concentration carbonated water can be produced. Furthermore, when ozone gas bubbles are generated in water, a high-concentration ozone aqueous solution can be produced, which is highly effective for deodorization, sterilization, decolorization, and the like.

(作用)
本発明に係る微細気泡生成器及び気液反応装置の作用を説明する。なお、ここでは、気液反応装置が、排水処理における色度成分除去装置であり、反応ガスとしてオゾンガスを使用するものを例にとり説明する。また、説明で使用する各構成要件に、後述する実施の形態において各部に付与した符号を対応させて付与するが、この符号は、特許請求の範囲の各請求項に記載した符号と同様に、あくまで内容の理解を容易にするためであって、各構成要件の意味を上記各部に限定するものではない。
(Function)
The operation of the fine bubble generator and gas-liquid reactor according to the present invention will be described. Here, a gas-liquid reaction apparatus is a chromaticity component removal apparatus in wastewater treatment, and an example using ozone gas as a reaction gas will be described. In addition, the constituent elements used in the description are assigned in correspondence with the reference numerals given to the respective parts in the embodiments described later, but the reference numerals are the same as the reference numerals described in the claims. It is only for the purpose of facilitating understanding of the contents, and the meaning of each component is not limited to the above-described parts.

気液混合ポンプ(320)は反応槽(31)から、色度成分等を含む原水等の被処理水を吸引すると共に、被処理水にオゾンガスを混合し、加圧タンク(322)に送る。
加圧タンク(322)内では、加圧された被処理液中にオゾンガスが溶解してオゾン水溶液となり、オゾン水溶液は微細気泡生成器(1)に送られる。微細気泡生成器(1)に送られてきたオゾン水溶液は、絞り部(13)を通過する。これにより、オゾン水溶液は減圧されて大気圧に戻り、その際に微細気泡を発生し気泡混合液となる。気泡混合液は、気泡微細化材(17)を通過し、その後、反応槽(31)に送られ、残っている被処理液と混合される。色度成分除去装置(3)においては、前記処理が繰り返されることにより、被処理液中の色度成分はオゾンガスと接触し、除去される。
The gas-liquid mixing pump (320) sucks water to be treated such as raw water containing chromaticity components from the reaction tank (31), mixes ozone gas with the water to be treated, and sends it to the pressurized tank (322).
In the pressurized tank (322), ozone gas is dissolved in the pressurized liquid to be treated to form an aqueous ozone solution, and the aqueous ozone solution is sent to the fine bubble generator (1). The aqueous ozone solution sent to the fine bubble generator (1) passes through the throttle unit (13). Thereby, the ozone aqueous solution is depressurized and returned to the atmospheric pressure. At that time, fine bubbles are generated to become a bubble mixture. The bubble mixed solution passes through the bubble refining material (17), and then is sent to the reaction tank (31) to be mixed with the remaining liquid to be processed. In the chromaticity component removing device (3), the chromaticity component in the liquid to be treated comes into contact with the ozone gas and is removed by repeating the process.

気泡混合液は、気泡微細化材(17)を通過する際に、径が大きい気泡は密集している毛(171)によって破裂して分裂し、極めて微細な気泡となる。この微細気泡は、被処理液と混じった気泡混合液中での浮上速度が比較的遅いために、反応槽(31)内の液中に長時間止まり、その間に液中の色素成分はオゾンガスと接触して除去され、これにより脱色される。また、反応槽(31)内では、オゾンは化学変化を起こして酸素となり、液面から大気中に放出される。このため排オゾン分解装置が不必要か、小型のもので済む。   When the air bubble mixture passes through the air bubble refining material (17), the air bubbles having a large diameter are ruptured and broken by the dense hair (171) to become extremely fine air bubbles. These fine bubbles stay in the liquid in the reaction tank (31) for a long time because the ascending speed in the bubble mixed liquid mixed with the liquid to be treated is relatively slow. It is removed by contact and is thereby decolorized. In the reaction tank (31), ozone undergoes a chemical change to oxygen and is released from the liquid surface into the atmosphere. For this reason, an exhaust ozone decomposing apparatus is unnecessary or a small one is sufficient.

また、被処理液中の浮遊物質は、気泡微細化材(17)を通過する際に、密集状態の毛(171)に絡み、目詰まり状態を起こす場合があるが、密集状態の毛(171)は気泡混合液が流れる圧力によって撓んで下流側に向かうように変形し、その際には絡んだ浮遊物質が密集状態の毛(171)から離脱し、その結果、気泡を破裂させて微細化する機能は維持しながら、目詰まりは防止される。   In addition, suspended solids in the liquid to be treated may entangle with the dense hair (171) when passing through the bubble refining material (17) and cause clogging, but the dense hair (171 ) Bends and deforms toward the downstream side due to the pressure of the flow of the bubble mixture, and at that time, the entangled suspended matter separates from the dense hair (171), and as a result, the bubbles are ruptured and refined Clogging is prevented while maintaining the function to perform.

本発明は、微細気泡生成器によって微細気泡にすることで、被処理液と気泡との接触面積が増すとともに、形成される気泡粒径の分布を所要の範囲内に収めることができるので、気液反応効率が良くなる。このことによりオゾン等の反応ガスを過剰に注入する必要がなくなり、少ない量でも殺菌・脱色等の効果が上がる。また、気泡微細化材は、被処理液中の浮遊物質(SS)に起因する吐出部の目詰まりを起こさないか、起こしにくいので、従来のように例えば色度成分除去装置等を停止させて、気泡微細化材の洗浄や交換を行う等、以降の処理を停止させて排水処理の効率の低下を招くことを防止できる。   According to the present invention, since the contact area between the liquid to be treated and the bubbles is increased by making the bubbles into fine bubbles using the fine bubble generator, the distribution of the formed bubble particle diameter can be kept within a required range. The liquid reaction efficiency is improved. This eliminates the need for excessive injection of a reaction gas such as ozone, and increases the effects of sterilization and decolorization even with a small amount. In addition, since the bubble refining material does not cause or is unlikely to cause clogging of the discharge part due to suspended solids (SS) in the liquid to be treated, for example, the chromaticity component removing device etc. is stopped as in the past. Further, it is possible to prevent the efficiency of the wastewater treatment from being reduced by stopping the subsequent processing, such as cleaning or replacing the bubble refining material.

本発明に係る微細気泡生成器の構造を示し、(a)は外観を示した説明図、(b)はA−A断面を示した説明図。The structure of the fine bubble generator which concerns on this invention is shown, (a) is explanatory drawing which showed the external appearance, (b) is explanatory drawing which showed the AA cross section. 本発明に係る気泡微細化材であるバッファコイルの構造を示す斜視図。The perspective view which shows the structure of the buffer coil which is a bubble refinement | miniaturization material which concerns on this invention. 本発明に係る色度成分除去装置の構成を示す説明図。Explanatory drawing which shows the structure of the chromaticity component removal apparatus which concerns on this invention. 本発明に係る気泡微細化材の他の実施形態の構造を示す斜視図。The perspective view which shows the structure of other embodiment of the bubble refinement | miniaturization material which concerns on this invention. 微細気泡生成器により生成された微細気泡の大きさの一例を示す説明図。Explanatory drawing which shows an example of the magnitude | size of the fine bubble produced | generated by the fine bubble generator. 養豚場における排水処理において、色度成分除去装置と同等の構成で、使用する反応ガスのみ酸素に置換した気液反応装置による高濃度酸素水の生成能力を示し、(a)は気液反応装置の運転時を示すグラフ、(b)は気液反応装置の停止時を示すグラフ。In the wastewater treatment in pig farms, it shows the ability to produce high-concentration oxygen water with a gas-liquid reactor in which only the reaction gas used is replaced with oxygen, with the same configuration as the chromaticity component removal device, (a) is a gas-liquid reactor (B) is a graph which shows the time of a gas-liquid reaction device stop.

本発明を図面に示した実施例に基づき詳細に説明する。   The present invention will be described in detail based on embodiments shown in the drawings.

図1に示すように、微細気泡生成器1は、一端側に導入口110を、他端側に排出口120を備えているケーシング10を有する。ケーシング10は、導入口110を有する導入側部材11と排出口120を有する排出側部材12を備え、導入側部材11と排出側部材12の間には、オリフィス13が挟持されている。導入側部材11と排出側部材12は、オリフィス13を挟持した状態で連結具14で締め付けられて連結されている。   As shown in FIG. 1, the fine bubble generator 1 has a casing 10 having an inlet 110 on one end side and an outlet 120 on the other end side. The casing 10 includes an introduction side member 11 having an introduction port 110 and a discharge side member 12 having a discharge port 120, and an orifice 13 is sandwiched between the introduction side member 11 and the discharge side member 12. The introduction side member 11 and the discharge side member 12 are coupled by being fastened by a coupling tool 14 with the orifice 13 being sandwiched therebetween.

符号100は、導入側部材11と排出側部材12の当接面の水密を図るためのOリングである。また、導入側部材11とオリフィス13の間には、水密を図るためのOリング130が介在させてあり、排出側部材12とオリフィス13の間には、同じく水密のためのOリング131が介在させてある。   Reference numeral 100 denotes an O-ring for watertightness of the contact surface between the introduction side member 11 and the discharge side member 12. Further, an O-ring 130 for watertightness is interposed between the introduction side member 11 and the orifice 13, and an O-ring 131 for watertightness is also interposed between the discharge side member 12 and the orifice 13. I'm allowed.

導入側部材11の導入口110には、雌ねじ部111が形成してあり、雌ねじ部111に続いて旋流室112が形成されている。旋流室112の内部には、螺旋板状の旋流羽根15が収められている。旋流羽根15は、雌ねじ部111に螺合されている固定具16により旋流室112端壁との間で挟むようにして締め付け固定されている。固定具16の中心には、六角穴状でレンチ孔を兼ねた通水孔160が形成されている。   A female screw part 111 is formed at the introduction port 110 of the introduction member 11, and a whirling chamber 112 is formed following the female screw part 111. Inside the whirling chamber 112, spiral plate-like whirling blades 15 are housed. The whirling blade 15 is fastened and fixed so as to be sandwiched between the end wall of the whirling chamber 112 by a fixture 16 screwed into the female threaded portion 111. In the center of the fixture 16, a water passage hole 160 that is a hexagonal hole and also serves as a wrench hole is formed.

また、旋流室112には、絞流路113が連設されている。絞流路113は、オリフィス13に通じるように、かつオリフィス13に近付くにつれて口径が徐々に径小となるように形成されている。オリフィス13は、導入側部材11側が径小で、排出側部材12側が径大であり、オリフィス13を通過する気液混合液は、排出側部材12側で大気圧に解放される。   In addition, a throttle channel 113 is connected to the whirling chamber 112. The throttle channel 113 is formed so as to communicate with the orifice 13 and the diameter gradually decreases as the orifice 13 is approached. The orifice 13 has a small diameter on the introduction side member 11 side and a large diameter on the discharge side member 12 side, and the gas-liquid mixture passing through the orifice 13 is released to atmospheric pressure on the discharge side member 12 side.

排出側部材12は、オリフィス13を通った気液混合液が大気圧に戻るときに気泡を発生する気泡発生室121を有し、気泡発生室121からは気泡発生室121より径大の気泡微細化室122が連設されている。気泡微細化室122は、排出口120につながっており、排出口120には雌ねじ部123が形成されている。   The discharge side member 12 has a bubble generation chamber 121 that generates bubbles when the gas-liquid mixture that has passed through the orifice 13 returns to atmospheric pressure, and the bubble generation chamber 121 has a bubble diameter larger than that of the bubble generation chamber 121. A chemical conversion chamber 122 is provided continuously. The bubble miniaturization chamber 122 is connected to the discharge port 120, and a female screw part 123 is formed in the discharge port 120.

気泡微細化室122には、気泡微細化材であるバッファコイル17が収められている。
図1、図2に示すように、バッファコイル17は、ステンレススチール製の螺旋枠体170を有している。本実施例では、螺旋枠体170の巻き数は3.5であるが、これに限定されるものではなく、適宜設定することができる。
In the bubble miniaturization chamber 122, a buffer coil 17 which is a bubble miniaturization material is accommodated.
As shown in FIGS. 1 and 2, the buffer coil 17 has a spiral frame 170 made of stainless steel. In the present embodiment, the number of turns of the spiral frame 170 is 3.5, but is not limited to this and can be set as appropriate.

螺旋枠体170には、可撓性又は弾性を有する合成樹脂製(本実施例では、オゾンガスにより劣化しにくいフッ素系樹脂(PFA)を採用しているが、反応ガスの特性に合わせて適宜選択ができる)の多数の毛171が、毛列の外周縁から中心に向かって集束するよう密集状態に配置され、外周縁が螺旋枠体170の内周部に、厚み方向両側で挟まれ圧着されて固定されている。密集している毛171の先端部は、互いに当接するか又は重なっており、気液混合流である気泡混合液の圧力によって撓んで変形することができる自由端となっている。   The spiral frame 170 is made of a synthetic resin having flexibility or elasticity (in this embodiment, a fluorine-based resin (PFA) that is not easily deteriorated by ozone gas is used, but it is appropriately selected according to the characteristics of the reaction gas. A large number of bristles 171 are arranged in a dense state so as to converge toward the center from the outer peripheral edge of the row of hairs, and the outer peripheral edge is sandwiched and crimped to the inner peripheral portion of the spiral frame 170 on both sides in the thickness direction. Is fixed. The tips of the dense bristles 171 are in contact with each other or overlap each other, and are free ends that can be bent and deformed by the pressure of the bubble mixed liquid that is a gas-liquid mixed flow.

バッファコイル17は、雌ねじ部123に螺合されている固定具18により気泡微細化室122端壁との間で螺旋枠体170を挟むようにして締め付け固定されている。固定具18の中心には、六角穴状でレンチ孔を兼ねた通水孔180が形成されている。   The buffer coil 17 is fastened and fixed by a fixing tool 18 screwed into the female screw portion 123 so as to sandwich the spiral frame body 170 between the end walls of the bubble miniaturization chamber 122. At the center of the fixture 18, a water passage hole 180 having a hexagonal hole shape also serving as a wrench hole is formed.

なお、図1に示した前記導入側部材11と排出側部材12は、それぞれ二つの部材を螺合して組み合わせたものであるが、前記説明ではそれぞれを一体物として説明している。
また、前記オリフィス13は、連結具14による締め付けを解除して導入側部材11と排出側部材12を分離することにより、他のオリフィスに交換することができる。これにより、オリフィスを通る気液混合液の流量を調節することができる。
In addition, although the said introduction side member 11 and the discharge | emission side member 12 which were shown in FIG. 1 are the two members screwed together, respectively, in the said description, each is demonstrated as an integrated object.
The orifice 13 can be replaced with another orifice by releasing the tightening by the connector 14 and separating the introduction side member 11 and the discharge side member 12. As a result, the flow rate of the gas-liquid mixture passing through the orifice can be adjusted.

図3には、排水処理における原水の色度成分を除去するものであり、気液反応装置である色度成分除去装置3を示している。色度成分除去装置3は、原水槽30、オゾン反応槽31、装置本体32及び処理水槽33を備えている。
装置本体32は、オゾン反応槽31内の被処理液である原水を吸引し、オゾンガス発生装置であるオゾナイザー321から供給されるオゾンガスを原水と混合して気液混合液をつくり、加圧タンクであるミキシングタンク322に送る気液混合ポンプ320を備えている。
FIG. 3 shows a chromaticity component removing device 3 that removes the chromaticity component of raw water in wastewater treatment and is a gas-liquid reaction device. The chromaticity component removing apparatus 3 includes a raw water tank 30, an ozone reaction tank 31, an apparatus main body 32, and a treated water tank 33.
The apparatus main body 32 sucks raw water that is the liquid to be treated in the ozone reaction tank 31, mixes ozone gas supplied from an ozonizer 321 that is an ozone gas generator with raw water, and creates a gas-liquid mixed liquid. A gas-liquid mixing pump 320 for sending to a certain mixing tank 322 is provided.

ミキシングタンク322は、気液混合ポンプ320から送られてきた気液混合液を加圧し、オゾンガスを高濃度で溶解させて、気体溶存液であるオゾン水溶液をつくるものである。ミキシングタンク322の排出側は、前記微細気泡生成器1の導入口110と配管118(図1(b)参照)でつながっている。また、微細気泡生成器1の排出口120に接続された配管124はオゾン反応槽31内に導入されている。色度成分除去装置3は、オゾン反応槽31内の被処理液を循環させながら脱色処理を行うようになっている。   The mixing tank 322 pressurizes the gas-liquid mixture sent from the gas-liquid mixing pump 320 and dissolves ozone gas at a high concentration to produce an ozone aqueous solution that is a gas-dissolved liquid. The discharge side of the mixing tank 322 is connected to the inlet 110 of the fine bubble generator 1 by a pipe 118 (see FIG. 1B). A pipe 124 connected to the outlet 120 of the fine bubble generator 1 is introduced into the ozone reaction tank 31. The chromaticity component removing apparatus 3 performs a decoloring process while circulating the liquid to be processed in the ozone reaction tank 31.

また、前記原水槽30の内部には下限用液位センサ300が設けられており、処理水槽33の内部には上限用液位センサ330が設けられている。下限用液位センサ300が液位を感知すると原水槽30に原水が供給され、上限用液位センサ330が液位を感知すると処理水槽33から処理済み液が外部へ放流される。
なお、色度成分除去装置3は、下限用液位センサ300がON、上限用液位センサ330がOFFで作動し、下限用液位センサ300がOFF又は上限用液位センサ330がONで装置が止まるように制御される。
Further, a lower limit liquid level sensor 300 is provided inside the raw water tank 30, and an upper limit liquid level sensor 330 is provided inside the treated water tank 33. When the lower limit liquid level sensor 300 senses the liquid level, the raw water is supplied to the raw water tank 30, and when the upper limit liquid level sensor 330 senses the liquid level, the treated liquid is discharged from the treated water tank 33 to the outside.
The chromaticity component removing device 3 operates when the lower limit liquid level sensor 300 is ON and the upper limit liquid level sensor 330 is OFF, and the lower limit liquid level sensor 300 is OFF or the upper limit liquid level sensor 330 is ON. Is controlled to stop.

(作用)
図1乃至図3及び図5を参照して、色度成分除去装置3の作用を説明する。
気液混合ポンプ320はオゾンガス反応槽31から、色度成分等を含む原水(排水)を吸引すると共に、原水にオゾナイザー321から送られてきたオゾンガスを混合し、ミキシングタンク322に送る。
ミキシングタンク322内では、加圧された気液混合液中にオゾンガスが溶解してオゾン水溶液となり、微細気泡生成器1に送られる。微細気泡生成器1に送られてきたオゾン水溶液は、旋流室112内に送られ、旋流羽根15によって旋回し、旋回流となって絞流路11を通りオリフィス13に向かう。
(Function)
With reference to FIG. 1 thru | or FIG. 3 and FIG. 5, the effect | action of the chromaticity component removal apparatus 3 is demonstrated.
The gas-liquid mixing pump 320 sucks raw water (drainage) containing chromaticity components and the like from the ozone gas reaction tank 31, mixes the ozone gas sent from the ozonizer 321 with the raw water, and sends it to the mixing tank 322.
In the mixing tank 322, ozone gas is dissolved in the pressurized gas-liquid mixture to form an ozone aqueous solution, which is sent to the fine bubble generator 1. The aqueous ozone solution sent to the fine bubble generator 1 is sent into the whirling chamber 112, swirled by the swirling blades 15, turned into a swirling flow, passes through the throttle channel 11, and heads toward the orifice 13.

オリフィス13を通過したオゾン水溶液は、減圧されて大気圧に解放され、その際に微細気泡を発生し気泡混合液となる。気泡混合液は、バッファコイル17を通過した後、オゾン反応槽31に送られ、残っている原水(または原水と気泡混合液の混合液)と混合される。色度成分除去装置3によって、前記処理が繰り返されることにより、原水中の色度成分はオゾンガスと接触し、除去される。   The aqueous ozone solution that has passed through the orifice 13 is depressurized and released to atmospheric pressure. At that time, fine bubbles are generated to become a bubble mixture. After passing through the buffer coil 17, the bubble mixture is sent to the ozone reaction tank 31 and mixed with the remaining raw water (or a mixture of the raw water and the bubble mixture). By repeating the above process by the chromaticity component removing device 3, the chromaticity component in the raw water comes into contact with the ozone gas and is removed.

なお、気泡混合液は、バッファコイル17を通過する際に、径が大きい気泡は密集している毛171によって破裂して分裂し、図5に示すように平均径が10マイクロメートル程度の極めて微細な気泡となる。
図5において、中心部にあらわれているスケールの長さは、0.1mm(100マイクロメートル)である。液中に分散している各気泡は、スケールと比較して分かるように、大きいもので10マイクロメートル程度であり、さらに小さいものでは1〜2マイクロメートル程度のものも認められるが、気泡の径はおおむね平均化されている。
When the bubble mixture passes through the buffer coil 17, bubbles having large diameters are ruptured and split by the dense bristles 171 and the average diameter is as extremely small as about 10 micrometers as shown in FIG. Bubbles.
In FIG. 5, the length of the scale appearing at the center is 0.1 mm (100 micrometers). As can be seen from the scale, each bubble dispersed in the liquid is about 10 micrometers at the largest and about 1 to 2 micrometers at the smaller one. Is generally averaged.

このような微細気泡は、原水または原水と気泡混合液の混合液と混じった液中での浮上速度が比較的遅いために、オゾン反応槽31内の液中に長時間止まり、その間に液中の色素成分はオゾンガスと接触して除去され、これにより効率的に脱色される。また、オゾン反応槽31内では、オゾンは化学変化を起こして酸素となり、液面から大気中に放出される。このため排オゾン分解装置が不必要か、小型のもので済む。   Such a fine bubble stays in the liquid in the ozone reaction tank 31 for a long time because the ascending speed in the raw water or the mixed liquid of the raw water and the bubble mixed liquid is relatively slow. The pigment component is removed by contact with ozone gas, whereby it is efficiently decolorized. In the ozone reaction tank 31, ozone undergoes a chemical change to oxygen and is released from the liquid surface to the atmosphere. For this reason, an exhaust ozone decomposing apparatus is unnecessary or a small one is sufficient.

また、原水中の浮遊物質は、バッファコイル17を通過する際に、密集状態の毛171に絡み、目詰まり状態を起こす場合があるが、密集状態の毛171は気泡混合液が流れる圧力によって撓んで下流側に向かうように変形し、その際には絡んだ浮遊物質が密集状態の毛171から離脱し、結果、気泡を破裂させて微細化する機能は維持しながら、目詰まりは防止される。   Further, suspended substances in the raw water may get entangled with the dense hair 171 when passing through the buffer coil 17 and cause clogging. However, the dense hair 171 is bent by the pressure at which the air bubble mixture flows. In this case, the entangled floating substance is detached from the dense hair 171 and, as a result, the function of rupturing and miniaturizing the bubbles is maintained, and clogging is prevented. .

図4に示すバッファリング19は、ステンレススチール製の環状枠体190を有している。環状枠体190には、可撓性又は弾性を有する合成樹脂製の多数の毛191が、毛列の外周縁から中心に向かって集束するよう密集状態に配置され、外周縁が環状枠体190の内周部に、厚み方向両側で挟まれ圧着されて固定されている。密集している毛191の先端部は、互いに当接するか又は重なっており、気液混合流の圧力によって撓んで変形することができる自由端となっている。   The buffer ring 19 shown in FIG. 4 has an annular frame 190 made of stainless steel. In the annular frame 190, a large number of flexible or elastic synthetic resin bristles 191 are arranged so as to converge from the outer peripheral edge of the hair row toward the center, and the outer peripheral edge is the annular frame 190. The inner periphery of each of the two is sandwiched between both sides in the thickness direction and fixed by being crimped. The tips of the dense bristles 191 are in contact with or overlap each other, and are free ends that can be bent and deformed by the pressure of the gas-liquid mixed flow.

バッファリング19は、各種固定手段によって気泡微細化室122内部に単独で、または複数を所要間隔で配置して固定される。なお、バッファリング19の作用については、前記バッファコイル17とほぼ同様であるので、説明は省略する。   The buffer ring 19 is fixed inside the bubble miniaturization chamber 122 by various fixing means, or a plurality of the buffer rings 19 are arranged at a required interval. The operation of the buffer ring 19 is substantially the same as that of the buffer coil 17, and thus the description thereof is omitted.

図6を参照し、養豚場における排水処理において、前記色度成分除去装置3と同等の構成で、使用する反応ガスのみ酸素に置換した気液反応装置(図示省略)による高濃度酸素水の生成能力について説明する。
本実施例においては、気液反応装置を図3に記載したものと同様に使用し、酸素反応槽(図3でオゾン反応槽31に対応)と処理水槽の間に曝気槽(何れも図示省略)を配置して排水処理を行うようにし、酸素反応槽内の被処理液の溶存酸素濃度を測定した。
なお、溶存酸素濃度については、データに確実性を持たせるために二台のセンサを使用して計測した(DO1,DO2)。
Referring to FIG. 6, in wastewater treatment at a pig farm, high-concentration oxygen water is generated by a gas-liquid reactor (not shown) in which only the reactive gas used is replaced with oxygen in the same configuration as the chromaticity component removing device 3. Explain the ability.
In this embodiment, the gas-liquid reactor is used in the same manner as described in FIG. 3, and an aeration tank (both not shown) is provided between the oxygen reaction tank (corresponding to the ozone reaction tank 31 in FIG. 3) and the treated water tank. ) Was disposed to perform wastewater treatment, and the dissolved oxygen concentration of the liquid to be treated in the oxygen reaction tank was measured.
The dissolved oxygen concentration was measured using two sensors (DO1, DO2) to ensure the data.

図6(a)のグラフから分かるように、気液反応装置の運転開始から約10分後には、被処理液中の溶存酸素濃度はほぼ飽和状態にまで上昇した。
なお、図6(b)のグラフから分かるように、溶存酸素濃度が飽和している状態から気液反応装置の運転を停止すると、被処理液中の溶存酸素濃度は急激に低下し、約30分後からは、0(ゼロ)にきわめて近い値で推移した。
このように、気液反応装置を使用することにより、短時間の運転で水中の溶存酸素濃度を飽和状態にすることができ、活性汚泥処理における曝気処理等をより効果的に行うことができる。
As can be seen from the graph of FIG. 6A, the dissolved oxygen concentration in the liquid to be treated rose to a substantially saturated state about 10 minutes after the start of operation of the gas-liquid reactor.
As can be seen from the graph of FIG. 6 (b), when the operation of the gas-liquid reactor is stopped from the state where the dissolved oxygen concentration is saturated, the dissolved oxygen concentration in the liquid to be treated is rapidly reduced to about 30. After minutes, the value was very close to 0 (zero).
Thus, by using a gas-liquid reaction apparatus, the dissolved oxygen concentration in water can be saturated in a short time operation, and aeration treatment in activated sludge treatment can be performed more effectively.

本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。   The terms and expressions used in this specification are merely explanatory and are not limiting at all, and exclude terms and expressions equivalent to the features described in this specification and parts thereof. There is no intention to do. It goes without saying that various modifications are possible within the scope of the technical idea of the present invention.

1 微細気泡生成器
10 ケーシング
100 Oリング
11 導入側部材
110 導入口
111 雌ねじ部
112 旋流室
113 絞流路
118 配管
12 排出側部材
120 排出口
121 気泡発生室
122 気泡微細化室
123 雌ねじ部
124 配管
13 オリフィス
130、131 Oリング
14 連結具
15 旋流羽根
16 固定具
160 通水孔
17 バッファコイル
170 螺旋枠体
171 毛
18 固定具
180 通水孔
3 色度成分除去装置
30 原水槽
300 下限用液位センサ
31 オゾン反応槽
32 装置本体
320 気液混合ポンプ
321 オゾナイザー
322 ミキシングタンク
33 処理水槽
330 上限用液位センサ
19 バッファリング
190 環状枠体
191 毛
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 10 Casing 100 O-ring 11 Introduction side member 110 Introduction port 111 Female thread part 112 Whirling chamber 113 Constriction flow path 118 Pipe 12 Discharge side member 120 Discharge port 121 Bubble generation chamber 122 Bubble refinement chamber 123 Female screw part 124 Piping 13 Orifice 130, 131 O-ring 14 Connecting tool 15 Whirling blade 16 Fixing tool 160 Water flow hole 17 Buffer coil 170 Spiral frame 171 Hair 18 Fixing tool 180 Water flow hole 3 Chromaticity component removing device 30 Raw water tank 300 For lower limit Liquid level sensor 31 Ozone reaction tank 32 Main body 320 Gas-liquid mixing pump 321 Ozonizer 322 Mixing tank 33 Treated water tank 330 Upper limit liquid level sensor 19 Buffering 190 Annular frame 191 Hair

Claims (4)

気液混合手段(320,322)で被処理液中に気体を溶存させた気体溶存液をケーシング(10)に導入し、該ケーシング(10)内に設けられている流路面積を制限する絞り部(13)を通過して発生した微細気泡を含む気泡混合液を吐出する微細気泡生成器であって、
気泡混合液の流路(122)に、気泡混合液を通過させて気泡を微細化する気泡微細化材(17)が設けられており、該気泡微細化材(17)は、可撓性又は弾性を有する毛(171)及び/又は繊維が外周縁から内方に向かって密集状態に配置され、可撓性又は弾性を有する毛(171)及び/又は繊維は外周縁で固定され、当接又は重なっている先端は気液混合流の圧力によって変形する自由端となっている、
微細気泡生成器。
The gas-liquid mixing means (320, 322) introduces a gas-dissolved liquid in which a gas is dissolved in the liquid to be treated into the casing (10), and restricts the flow path area provided in the casing (10) ( 13) a fine bubble generator for discharging a bubble mixture containing fine bubbles generated through
A bubble refining material (17) is provided in the flow path (122) of the bubble mixed solution to allow the bubble mixed solution to pass therethrough, and the bubble refining material (17) is flexible or The elastic bristles (171) and / or fibers are densely arranged inward from the outer periphery, and the flexible or elastic bristles (171) and / or fibers are fixed at the outer periphery and abut Or the overlapping tip is a free end that is deformed by the pressure of the gas-liquid mixed flow,
Fine bubble generator.
請求項1に記載の微細気泡生成器を構成する気泡微細化材(17)であって、
可撓性又は弾性を有する毛(171)及び/又は繊維が外周縁から内方に向かって密集状態に配置され、可撓性又は弾性を有する毛(171)及び/又は繊維は外周縁が固定され、当接又は重なっている先端は気液混合流の圧力によって変形する自由端となっている、
気泡微細化材。
A bubble refining material (17) constituting the fine bubble generator according to claim 1,
Flexible or elastic hair (171) and / or fibers are densely arranged inward from the outer periphery, and flexible or elastic hair (171) and / or fibers are fixed at the outer periphery The abutting or overlapping tip is a free end deformed by the pressure of the gas-liquid mixed flow,
Bubble refining material.
可撓性又は弾性を有する毛(171)及び/又は繊維が、流路(122)に収めることができる螺旋枠体(170)に固定されている、
請求項2記載の気泡微細化材。
Flexible or elastic hair (171) and / or fibers are fixed to a spiral frame (170) that can be accommodated in the flow path (122).
The bubble refining material according to claim 2.
被処理液を入れる処理槽(31)と、
処理槽(31)から被処理液を吸引し反応ガスと混合する気液混合ポンプ(320)と、
気液混合ポンプ(320)から気液混合液が送られる加圧タンク(322)と、
加圧タンク(322)から気液混合液が送られて、反応ガスの微細気泡を含む気泡混合液を処理槽(31)に送る請求項1記載の微細気泡生成器と、
を備えている、
気液反応装置。
A treatment tank (31) for containing the liquid to be treated;
A gas-liquid mixing pump (320) that sucks the liquid to be treated from the treatment tank (31) and mixes it with the reaction gas;
A pressurized tank (322) to which the gas-liquid mixed liquid is sent from the gas-liquid mixing pump (320);
The fine bubble generator according to claim 1, wherein the gas-liquid mixture is sent from the pressurized tank (322) and the bubble mixture containing the fine bubbles of the reaction gas is sent to the treatment tank (31).
With
Gas-liquid reactor.
JP2009263149A 2009-11-18 2009-11-18 Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus Pending JP2011104534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263149A JP2011104534A (en) 2009-11-18 2009-11-18 Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263149A JP2011104534A (en) 2009-11-18 2009-11-18 Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus

Publications (1)

Publication Number Publication Date
JP2011104534A true JP2011104534A (en) 2011-06-02

Family

ID=44228660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263149A Pending JP2011104534A (en) 2009-11-18 2009-11-18 Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus

Country Status (1)

Country Link
JP (1) JP2011104534A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847453A (en) * 2012-08-28 2013-01-02 河海大学 Microbubble generator used for irrigation
JP2013240742A (en) * 2012-05-18 2013-12-05 Shinwa:Kk Slightly acidic hypochlorous acid water containing fine bubble methods for producing and using the same
JP2013248585A (en) * 2012-06-01 2013-12-12 Shinwa:Kk Nozzle for generating microbubble
KR101524438B1 (en) * 2015-03-03 2015-05-28 한국해양과학기술원 System for process for purifying ocean and lake bottom sediment using nano bubble
JP2017136590A (en) * 2017-02-25 2017-08-10 株式会社micro−bub Microbubble generator and microbubble generating tube structure
CN109966941A (en) * 2019-05-13 2019-07-05 江苏炬焰智能科技有限公司 Carbonate spring mixer
CN111377528A (en) * 2018-12-29 2020-07-07 北京博海云通国际商贸有限公司 Vortex ozone aeration device
JP2022063993A (en) * 2020-10-13 2022-04-25 株式会社富士計器 Union-type fine air bubble water generator for city water pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240742A (en) * 2012-05-18 2013-12-05 Shinwa:Kk Slightly acidic hypochlorous acid water containing fine bubble methods for producing and using the same
JP2013248585A (en) * 2012-06-01 2013-12-12 Shinwa:Kk Nozzle for generating microbubble
CN102847453A (en) * 2012-08-28 2013-01-02 河海大学 Microbubble generator used for irrigation
KR101524438B1 (en) * 2015-03-03 2015-05-28 한국해양과학기술원 System for process for purifying ocean and lake bottom sediment using nano bubble
JP2017136590A (en) * 2017-02-25 2017-08-10 株式会社micro−bub Microbubble generator and microbubble generating tube structure
CN111377528A (en) * 2018-12-29 2020-07-07 北京博海云通国际商贸有限公司 Vortex ozone aeration device
CN109966941A (en) * 2019-05-13 2019-07-05 江苏炬焰智能科技有限公司 Carbonate spring mixer
JP2022063993A (en) * 2020-10-13 2022-04-25 株式会社富士計器 Union-type fine air bubble water generator for city water pipe
JP7143382B2 (en) 2020-10-13 2022-09-28 株式会社富士計器 Union type micro-bubble water generator for water pipes

Similar Documents

Publication Publication Date Title
JP2011104534A (en) Microbubble generator, bubble micronizing material used for the generator, and gas/liquid reaction apparatus
KR101192809B1 (en) Apparatus for Generating Water Containing Micro-Nano Bubbles
JP2009082903A (en) Microbubble generator
JP2008149209A (en) Fine air bubble producer and fine air bubble supply system
JP3765759B2 (en) Microbubble generator
JP2010075838A (en) Bubble generation nozzle
JP2006263505A (en) Water treatment method and apparatus therefor
KR100824714B1 (en) Device for generating micro bubble
JP6964363B2 (en) Fine bubble generator
KR100807189B1 (en) Micro bubble nozzle
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
KR20100104973A (en) Micro bubble nozzle and bubble generating module
JP2006272147A (en) Ballast water treatment apparatus
KR101792157B1 (en) Gas soluble device for enhancing gas disovled and generating microbubble
JP2012120997A (en) Method for producing microbubble and device therefor
JP5682904B2 (en) High concentration dissolved water generating apparatus and high concentration dissolved water generating system
JP2002059186A (en) Water-jet type fine bubble generator
KR20080101047A (en) Micro bubble occurrence nozzle
AU2003272977A1 (en) Method for clarifying fluid and static mixer
TWI619546B (en) Microbubble generator and microbubble water generator having the microbubble generator
JP2009125684A (en) Water treatment apparatus
JP2008114099A (en) Microbubble generation device and bubble fining implement
JP2014113553A (en) Fine bubble generation nozzle
KR102305014B1 (en) Apparatus for manufacturing micro-bubble type functional water
JP6342029B1 (en) Sludge treatment equipment