JP2020099291A - Sterilization method and sterilization apparatus of food product - Google Patents

Sterilization method and sterilization apparatus of food product Download PDF

Info

Publication number
JP2020099291A
JP2020099291A JP2018241192A JP2018241192A JP2020099291A JP 2020099291 A JP2020099291 A JP 2020099291A JP 2018241192 A JP2018241192 A JP 2018241192A JP 2018241192 A JP2018241192 A JP 2018241192A JP 2020099291 A JP2020099291 A JP 2020099291A
Authority
JP
Japan
Prior art keywords
aqueous solution
sterilization
food
fine bubbles
bactericide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018241192A
Other languages
Japanese (ja)
Inventor
伸一 山上
Shinichi Yamagami
伸一 山上
神村 岳
Takeshi Kamimura
岳 神村
太郎 入戸野
Taro Iritono
太郎 入戸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2018241192A priority Critical patent/JP2020099291A/en
Publication of JP2020099291A publication Critical patent/JP2020099291A/en
Pending legal-status Critical Current

Links

Images

Abstract

To propose an effective and efficient sterilization method capable of suppressing proliferation of viable bacteria and quality degradation of food products under low temperature without using a high concentration bactericide.SOLUTION: A sterilization method of food products includes a preliminary step for injecting fine bubbles into an aqueous solution containing a bactericide at 10°C or lower and a sterilization step for sterilizing food products using the aqueous solution containing the fine bubbles.SELECTED DRAWING: Figure 1

Description

本開示は、食品の殺菌方法及び殺菌装置に関する。 The present disclosure relates to a food sterilizing method and a sterilizing apparatus.

加熱殺菌しない食品製造工程の衛生管理の動向として、ボツリヌス菌やサルモネラ菌等の病原細菌による食中毒の発生を防ぐため、食品の低温管理と殺菌の徹底による微生物対策が行われている。非加熱食品(例えば、野菜類や果実類等)の殺菌プロセスには、次亜塩素酸ナトリウムに代表される塩素系殺菌剤が幅広く使用されている。次亜塩素酸ナトリウムの使用方法として、生鮮野菜類においては、所定濃度の次亜塩素酸ナトリウム水溶液を作製し、所定時間対象となる食材を該水溶液に浸漬させ、食品に付着する生菌に対する次亜塩素酸ナトリウムの酸化作用により食材を殺菌している。
しかし、次亜塩素酸ナトリウムに代表される塩素系殺菌剤は、酸化反応による殺菌作用であるため、低温の冷却水中では酸化反応の停滞により、殺菌能(殺菌率、殺菌速度)が著しく弱まると言われている。
As a trend of hygienic control in food manufacturing processes that do not heat sterilize, in order to prevent the occurrence of food poisoning due to pathogenic bacteria such as botulinum and salmonella, low temperature control of food and microbial control by thorough sterilization are being implemented. Chlorine-based bactericides typified by sodium hypochlorite are widely used in the sterilization process of unheated foods (for example, vegetables and fruits). As a method of using sodium hypochlorite, in fresh vegetables, a sodium hypochlorite aqueous solution having a predetermined concentration is prepared, and the food material to be immersed is immersed in the aqueous solution for a predetermined time, and then the live bacteria attached to the food are treated. The food is sterilized by the oxidizing action of sodium chlorite.
However, a chlorine-based bactericide represented by sodium hypochlorite has a bactericidal action due to an oxidation reaction, and therefore, the bactericidal ability (bactericidal rate, bactericidal rate) is significantly weakened due to the stagnation of the oxidation reaction in low-temperature cooling water. It is said.

非特許文献1には、次亜塩素酸ナトリウムの酸化作用に起因する洗浄(汚れの除去)や殺菌(菌の死滅)の速度は、温度の増加と共に増加し、アレニウス(Arrhenius)の式から求められるアレニウス型の温度依存性を示すことが記載されている。
特許文献1〜4には、次亜塩素酸を含む水溶液に微細気泡を混入させて、食品の殺菌効果を高めることが開示されている。これらの特許文献には、微細気泡として炭酸ガスを用い、水溶液を微酸性として殺菌効果を高めたり、あるいは微細気泡の破裂による攪拌効果で食品の素地肌に殺菌剤を接触させることで殺菌効果を高めることができると記載されている。そして、殺菌工程は、いずれも常温で行われており、さらに、殺菌処理後の経過を見る過程で低温保管を行うことが記載されている。これは、殺菌速度が温度の低下と共に低下する温度依存性を考慮したためと考えられる。
In Non-Patent Document 1, the rate of cleaning (removal of stains) and sterilization (killing of bacteria) due to the oxidizing action of sodium hypochlorite increases with an increase in temperature, and is calculated from the Arrhenius equation. It is described that the temperature dependence of Arrhenius type is shown.
Patent Documents 1 to 4 disclose that fine bubbles are mixed into an aqueous solution containing hypochlorous acid to enhance the sterilizing effect of food. In these patent documents, using carbon dioxide gas as fine bubbles, enhance the sterilizing effect by slightly acidifying the aqueous solution, or by bringing the sterilizing effect into contact with the base skin of the food by the stirring effect by the rupture of fine bubbles, the sterilizing effect is obtained. It is stated that it can be increased. The sterilization process is performed at room temperature in all cases, and further, low temperature storage is performed in the process of observing the progress after the sterilization process. It is considered that this is because the temperature dependence in which the sterilization rate decreases as the temperature decreases is taken into consideration.

国際公開第2015/071995号International Publication No. 2015/071995 国際公開第2013/125051号International Publication No. 2013/125051 特開2013−240742号公報JP, 2013-240742, A 特開2009−268394号公報JP, 2009-268394, A

福崎智司・浦野博水・高橋和宏・山田貞子・高木明彦(岡山県立大学)著「次亜塩素酸ナトリウムの洗浄・殺菌効果に及ぼす温度の影響」(岡山県工業技術センタ 平成22年度センタ報告(No.37))Satoshi Fukusaki, Hiromizu Urano, Kazuhiro Takahashi, Sadako Yamada, Akihiko Takagi (Okayama Prefectural University) "Effect of temperature on cleaning and sterilizing effect of sodium hypochlorite" (Okayama Industrial Technology Center 2010 Center Report ( No. 37)))

通常、食品の洗浄及び殺菌は、微生物の増殖を防ぎ、かつ食品の品質劣化を防ぐため、低温の冷却水に浸漬して行われる。しかし、前述のように、低温の冷却水中では殺菌剤の殺菌能が低下すると言われているため、高濃度の殺菌剤を使用する必要があると考えられる。しかし、高濃度の殺菌剤を使用すると、臭気による食品品質への影響や作業環境の悪化、トリハロメタンの発生等の問題が生じる。従って、低温下で高濃度の殺菌剤を用いずに有効かつ効率的に殺菌できる技術が求められている。 Usually, the washing and sterilization of foods are carried out by immersing them in low-temperature cooling water in order to prevent the growth of microorganisms and to prevent the deterioration of food quality. However, as described above, since it is said that the bactericidal ability of the bactericide decreases in low-temperature cooling water, it is considered necessary to use a high-concentration bactericide. However, use of a high-concentration bactericide causes problems such as influence of odor on food quality, deterioration of working environment, and generation of trihalomethane. Therefore, there is a demand for a technique capable of sterilizing effectively and efficiently at low temperature without using a high concentration bactericide.

一実施形態は、生菌の増殖や食品の品質劣化を抑制可能な低温下での食品の殺菌処理を高濃度の殺菌剤を用いずに有効かつ効率的に行う殺菌方法を提案することを目的とする。 One embodiment is to propose a sterilization method for effectively and efficiently performing sterilization of food at a low temperature capable of suppressing the growth of live bacteria and quality deterioration of food without using a high concentration bactericide. And

(1)一実施形態に係る食品の殺菌方法は、
殺菌剤を含む10℃以下の水溶液に微細気泡を混入させる予備工程と、
前記微細気泡を含む前記水溶液を用いて食品を殺菌する殺菌工程と、
を含む。
(1) The method of sterilizing food according to one embodiment is
A preliminary step of mixing fine air bubbles in an aqueous solution containing a bactericide at 10°C or lower,
A sterilization step of sterilizing food using the aqueous solution containing the fine bubbles,
including.

生菌の殺菌反応を律速する要素は、温度と殺菌剤の濃度とである。材料が微生物に酸化等の化学反応を起こすとき、化学反応の速度を予測するアレニウスの式が提唱されている。アレニウスの式では、反応する前に活性化エネルギ以上のエネルギ(運動エネルギ)をもつ分子だけがエネルギ障壁を越えて反応が進むと解釈されている。この解釈では、反応速度は温度が高く、活性化エネルギが低いと大きくなるとされている。
前述のように、従来、次亜塩素酸ナトリウムなどの殺菌剤を用いた殺菌は、アレニウスの式から求められるアレニウス型の温度依存性を示し、常温域では殺菌速度が大きく作用効果が高いが、低温域では殺菌速度が小さくなり殺菌効果が大きく低下すると言われている。従って、今まで、殺菌工程の前後工程では、微生物の増殖や食品の品質劣化を抑えるため、低温の冷却水を用いて洗浄などを行うが、殺菌工程は常温下で行われ、そのため、低温域で殺菌を行う実験データなどは示されていない。
The factors that control the bactericidal reaction of viable bacteria are the temperature and the concentration of the bactericide. When a material causes a chemical reaction such as oxidation in a microorganism, the Arrhenius equation for predicting the rate of the chemical reaction has been proposed. According to the Arrhenius equation, only a molecule having an energy (kinetic energy) equal to or higher than the activation energy before the reaction is interpreted as proceeding the reaction across the energy barrier. According to this interpretation, the reaction rate is increased when the temperature is high and the activation energy is low.
As described above, conventionally, sterilization using a disinfectant such as sodium hypochlorite shows Arrhenius-type temperature dependence obtained from the Arrhenius equation, and the sterilization rate is large and the action is high in the normal temperature range, It is said that the sterilization rate becomes low and the sterilization effect is greatly reduced in the low temperature range. Therefore, until now, in the steps before and after the sterilization process, in order to suppress the growth of microorganisms and the deterioration of the quality of foods, cleaning is performed using low-temperature cooling water, but the sterilization process is performed at room temperature, and therefore, in the low temperature range. No experimental data for sterilization is given.

これに対し、本発明者等は、殺菌剤を含む10℃以下の水溶液に微細気泡を混入すると、殺菌反応が弱まらずに進行することを実験的に見い出した。これによって、衛生管理上及び食品品質上好ましい低温域での殺菌処理を高濃度の殺菌剤を用いずに有効かつ効率的に行うことができる。従って、生菌の増殖を抑制し、食品の品質劣化等を抑制しながら、トリハロメタンの発生等の問題を解消するとともに、さらに作業環境の改善に寄与できる。 On the other hand, the present inventors have experimentally found that when fine air bubbles are mixed in an aqueous solution containing a bactericide at 10° C. or less, the bactericidal reaction proceeds without being weakened. As a result, it is possible to effectively and efficiently perform the sterilization treatment in a low temperature range that is favorable for hygiene control and food quality without using a high concentration bactericide. Therefore, while suppressing the growth of viable bacteria and suppressing the deterioration of the quality of foods and the like, it is possible to solve the problems such as the generation of trihalomethane and further contribute to the improvement of the working environment.

(2)一実施形態では、前記(1)の構成において、
前記予備工程において、前記水溶液に微細気泡を混入させることで、殺菌速度定数を増加させ、活性化エネルギを減少させる。
本発明者等は、殺菌剤を含む10℃以下の水溶液に微細気泡を混入することで、該水溶液の温度が低い条件でも、後述するChick−Watson式で用いられる殺菌速度定数が増加し、活性化エネルギが減少することを実験的に見出した。これによって、低温域で低エネルギでエネルギ障壁を乗り越えて生菌に対する酸化反応を進めることができ、食品の殺菌工程を効率化できる。
(2) In one embodiment, in the configuration of (1) above,
In the preliminary step, fine bubbles are mixed into the aqueous solution to increase the sterilization rate constant and decrease the activation energy.
The present inventors, by mixing fine air bubbles in an aqueous solution containing a bactericide at 10° C. or less, increase the sterilization rate constant used in the below-described Chick-Watson equation even under conditions where the temperature of the aqueous solution is low. It was found experimentally that the energy of oxidization is reduced. As a result, it is possible to promote the oxidative reaction with respect to viable bacteria by overcoming the energy barrier with low energy in a low temperature range, and to improve the efficiency of the sterilization process of food.

(3)一実施形態では、前記(1)又は(2)の方法において、
前記殺菌工程において、水槽に貯留した前記水溶液中に前記食品を浸漬させる。
上記(3)の方法によれば、水槽に貯留した水溶液中に食品を浸漬させることで、食品の全表面積で食品に付着する生菌に対する酸化作用が起るので、殺菌速度を速めることができる。
(3) In one embodiment, in the method of (1) or (2) above,
In the sterilization step, the food is immersed in the aqueous solution stored in the water tank.
According to the method of (3) above, by immersing the food in the aqueous solution stored in the water tank, the oxidative action on the viable bacteria adhering to the food over the entire surface area of the food occurs, so that the sterilization rate can be increased. ..

(4)一実施形態では、前記(1)〜(3)の何れかの構成において、
前記殺菌剤は前記食品に付着する生菌に対する酸化作用を有する物質を含む。
上記(4)の方法によれば、殺菌剤は生菌に対する酸化作用を有する物質を含むため、食品に付着した生菌の細胞壁、形質膜、核酸などの必須組織を酸化して死滅できる。
(4) In one embodiment, in the configuration according to any one of (1) to (3) above,
The bactericide contains a substance having an oxidative effect on living bacteria adhering to the food.
According to the above method (4), since the bactericide contains a substance having an oxidizing effect on live bacteria, it can oxidize and kill essential tissues such as cell walls, plasma membranes and nucleic acids of live bacteria attached to food.

(5)一実施形態では、前記(4)の方法において、
前記殺菌剤は前記水溶液中で次亜塩素酸を生成可能な物質を含む。
上記(5)の方法によれば、殺菌剤が水溶液中で生菌に対する強力な酸化作用を有する次亜塩素酸を生成できるため、殺菌効果を向上でき、殺菌工程を効率化できる。
(5) In one embodiment, in the method of (4) above,
The bactericide contains a substance capable of producing hypochlorous acid in the aqueous solution.
According to the above method (5), the bactericidal agent can generate hypochlorous acid which has a strong oxidizing action on living bacteria in the aqueous solution, so that the bactericidal effect can be improved and the sterilizing step can be made efficient.

(6)一実施形態では、前記(1)〜(5)の何れかの方法において、
前記微細気泡は100μm以下の直径を有するように形成される。
上記(6)の方法によれば、微細気泡が100μm以下の直径を有するため、容積に対する表面積の比(比表面積)を大きくすることができる。これによって、微細気泡が水溶液中で長期間均一に分散できる。また、100μm以下の直径を有する微細気泡は表面がマイナス(−)の帯電性を有するため、水溶液中で高密度に凝集した状態で存在できる。これらの特性は活性化エネルギの減少に寄与すると考えられる。
(6) In one embodiment, in the method according to any one of (1) to (5) above,
The fine bubbles are formed to have a diameter of 100 μm or less.
According to the above method (6), since the fine bubbles have a diameter of 100 μm or less, the ratio of the surface area to the volume (specific surface area) can be increased. Thereby, the fine bubbles can be uniformly dispersed in the aqueous solution for a long period of time. In addition, since fine bubbles having a diameter of 100 μm or less have a negative (−) chargeability on the surface, they can exist in an aqueous solution in a densely aggregated state. These properties are believed to contribute to the reduction of activation energy.

(7)一実施形態では、前記(1)〜(6)の何れかの方法において、
前記微細気泡は、不活性ガスを用いて形成される。
上記(7)の方法によれば、微細気泡が不活性ガスで形成されるため、水溶液との反応が抑制され、水溶液中で微細気泡として長く存在できる。
(7) In one embodiment, in the method according to any one of (1) to (6) above,
The fine bubbles are formed by using an inert gas.
According to the above method (7), since the fine bubbles are formed of the inert gas, the reaction with the aqueous solution is suppressed, and the fine bubbles can exist for a long time in the aqueous solution.

(8)一実施形態では、前記(1)〜(6)の何れかの方法において、
前記微細気泡は、前記食品に付着する生菌を酸化可能なガスを用いて形成される。
上記(8)の方法によれば、微細気泡が食品に付着する生菌を酸化可能なガスを用いて形成されるため、殺菌剤による殺菌効果に加えて、微細気泡の酸化作用による生菌の殺菌効果を発揮でき、これによって、相乗的に殺菌効果が高められ、殺菌工程を効率化できる。
(8) In one embodiment, in any one of the methods (1) to (6) above,
The fine bubbles are formed by using a gas capable of oxidizing live bacteria adhering to the food.
According to the method of (8) above, since the fine bubbles are formed by using a gas capable of oxidizing the viable bacteria adhering to the food, in addition to the bactericidal effect of the bactericidal agent, A bactericidal effect can be exhibited, which synergistically enhances the bactericidal effect and makes the sterilization process efficient.

(9)一実施形態に係る食品の殺菌装置は、
殺菌剤を含む水溶液を貯留するための容器と、
前記容器に貯留された前記水溶液を10℃以下の温度に保持する温度調節部と、
前記水溶液中の前記殺菌剤の濃度を調節する殺菌剤濃度調節部と、
前記水溶液に微細気泡を混入させる微細気泡発生部と、
を備える。
上記(9)の構成によれば、殺菌剤を含み微細気泡が混入した10℃以下の水溶液で食品を殺菌することで、食品に付着する生菌に対する殺菌剤による酸化反応を起すのに必要な活性化エネルギを減少できる。これによって、殺菌速度を速めることができ、殺菌工程を有効かつ効率化できる。また、殺菌剤が投入される容器内の水溶液に対して、殺菌剤濃度調節部とは別個に独立して微細気泡発生部が設けられるため、水溶液の殺菌剤濃度の調整と独立して微細気泡の混入量の調整を行うことができる。これによって、殺菌剤濃度の調整及び微細気泡混入量の調整が容易になる。
(9) The food sterilizer according to one embodiment is
A container for storing an aqueous solution containing a bactericide,
A temperature control unit that holds the aqueous solution stored in the container at a temperature of 10° C. or lower;
A bactericide concentration adjusting unit for adjusting the concentration of the bactericide in the aqueous solution,
A fine bubble generating section for mixing fine bubbles into the aqueous solution,
Equipped with.
According to the configuration of (9), the food is sterilized with an aqueous solution containing a bactericidal agent and containing fine bubbles at a temperature of 10° C. or lower, which is necessary to cause an oxidative reaction by the bactericidal agent with respect to live bacteria adhering to the food. The activation energy can be reduced. As a result, the sterilization speed can be increased, and the sterilization process can be effective and efficient. Further, for the aqueous solution in the container into which the sterilizing agent is charged, since the fine bubble generating section is provided independently of the sterilizing agent concentration adjusting section, the fine bubble generating step is independent of adjusting the sterilizing agent concentration of the aqueous solution. Can be adjusted. This facilitates the adjustment of the bactericide concentration and the amount of fine air bubbles mixed.

(10)一実施形態では、前記(9)の構成において、
前記容器に貯留された前記水溶液を食品に吹き付けるノズルを備える。
上記(10)の構成によれば、上記ノズルから微細気泡と殺菌剤を含む水溶液を食品に吹き付けて食品を殺菌できる。これによって、容器内の水溶液中に浸漬された食品の殺菌と、該ノズルによる食品の殺菌とを同時かつ別個に行うことができ、殺菌工程をさらに効率化できる。
(10) In one embodiment, in the configuration of (9) above,
A nozzle for spraying the aqueous solution stored in the container onto food is provided.
According to the configuration of (10), the food can be sterilized by spraying the aqueous solution containing the fine bubbles and the germicide from the nozzle. As a result, the sterilization of the food immersed in the aqueous solution in the container and the sterilization of the food by the nozzle can be performed simultaneously and separately, and the sterilization process can be made more efficient.

(11)一実施形態では、前記(9)又は(10)の構成において、
前記温度調節部は、
冷媒生成部と、
前記冷媒生成部から前記水溶液中に導設された冷媒循環路と、
を備え、
前記冷媒生成部で生成された冷媒を前記冷媒循環路に循環させ、前記水溶液と前記冷媒とを熱交換させるように構成される。
上記(11)の構成によれば、上記構成の温度調節部によって、殺菌剤及び微細気泡を含む水溶液を10℃以下の温度に調節できる。
(11) In one embodiment, in the configuration of (9) or (10) above,
The temperature control unit,
A refrigerant generation unit,
A refrigerant circulation path introduced from the refrigerant generation unit into the aqueous solution,
Equipped with
The coolant generated by the coolant generation unit is circulated in the coolant circulation path to exchange heat between the aqueous solution and the coolant.
According to the configuration of (11) above, the temperature control unit having the above configuration can adjust the temperature of the aqueous solution containing the bactericide and the fine bubbles to 10° C. or lower.

幾つかの実施形態によれば、殺菌剤を含み微細気泡が混入した10℃以下の水溶液で食品を殺菌することで、食品の殺菌速度を速めることができ、殺菌工程を効率化できる。これによって、低温域で生菌の増殖を抑制し、かつ食品の品質劣化等を抑制しながら、高濃度の殺菌剤を用いずに有効かつ効率的に殺菌処理でき、トリハロメタンの発生等の問題を解消すると共に、さらに作業環境の改善に寄与できる。 According to some embodiments, by sterilizing a food with an aqueous solution containing a bactericide and containing fine bubbles and having a temperature of 10° C. or less, the sterilization speed of the food can be increased and the sterilization process can be made efficient. By this, while suppressing the growth of viable bacteria in the low temperature range, and suppressing the deterioration of food quality, etc., effective and efficient sterilization can be performed without using a high concentration bactericide, and problems such as the generation of trihalomethanes occur. It can be solved and contribute to the improvement of the work environment.

一実施形態に係る食品の殺菌方法の工程図である。It is process drawing of the sterilization method of the foodstuff which concerns on one Embodiment. 殺菌反応における活性化エネルギの低下を説明する説明図である。It is explanatory drawing explaining the fall of the activation energy in a sterilization reaction. 殺菌剤による殺菌能の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the bactericidal ability by a bactericide. 殺菌剤による殺菌能の温度依存性を殺菌速度定数で示すグラフである。It is a graph which shows the temperature dependence of the bactericidal ability by a bactericide with a bactericidal rate constant. 微細気泡なしのときの殺菌率の推移を示すグラフである。It is a graph which shows transition of the sterilization rate when there is no fine air bubble. 微細気泡ありのときの殺菌率の推移を示すグラフである。It is a graph which shows the transition of the sterilization rate when there are fine bubbles. 水溶液の温度が25℃のときの殺菌率の推移を示すグラフである。It is a graph which shows the transition of the sterilization rate when the temperature of the aqueous solution is 25°C. 水溶液の温度が5℃のときの殺菌率の推移を示すグラフである。It is a graph which shows transition of the sterilization rate when the temperature of the aqueous solution is 5°C. 水溶液の温度が25℃のときの殺菌速度定数を示すグラフである。It is a graph which shows a sterilization rate constant when the temperature of an aqueous solution is 25°C. 水溶液の温度が5℃のときの殺菌速度定数を示すグラフである。It is a graph which shows the sterilization rate constant when the temperature of aqueous solution is 5 degreeC. 一実施形態に係る活性化エネルギを示すグラフである。It is a graph which shows the activation energy concerning one Embodiment. 一実施形態に係る食品の殺菌装置のブロック図である。It is a block diagram of the sterilizer of the foodstuff which concerns on one Embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples.
For example, the expression "relative or absolute" such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" is strict. In addition to representing such an arrangement, it also represents a state of relative displacement or a relative displacement with an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous" that indicate that they are in the same state are not limited to strict equality, but also include tolerances or differences in the degree to which the same function is obtained. It also represents the existing state.
For example, the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained. The shape including parts and the like is also shown.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.

図1は、一実施形態に係る食品の殺菌方法の工程図である。この殺菌方法は、基本工程として、予備工程S10と殺菌工程S12とを含む。予備工程S10では、殺菌剤を含む10℃以下の水溶液に微細気泡を混入させる。殺菌工程S12では、微細気泡を含む水溶液を用いて食品を殺菌する。
本発明者等は、殺菌剤を含む10℃以下の水溶液に微細気泡を混入すると、殺菌反応が弱まらずに進行することを実験的に見い出した。これによって、衛生管理上及び食品品質上好ましい低温域での殺菌処理を高濃度の殺菌剤を用いずに有効かつ効率化に行うことができる。従って、生菌の増殖を抑制し、食品の品質劣化等を抑制しながら、トリハロメタンの発生等の問題を解消できる。
FIG. 1 is a process diagram of a food sterilization method according to an embodiment. This sterilization method includes a preliminary step S10 and a sterilization step S12 as basic steps. In the preliminary step S10, fine bubbles are mixed into an aqueous solution containing a bactericide at 10° C. or lower. In the sterilization step S12, the food is sterilized using an aqueous solution containing fine bubbles.
The present inventors have experimentally found that when fine bubbles are mixed in an aqueous solution containing a bactericide at 10° C. or lower, the bactericidal reaction proceeds without being weakened. As a result, it is possible to effectively and efficiently carry out the sterilization treatment in a low temperature range which is favorable for hygiene control and food quality without using a high concentration bactericide. Therefore, problems such as generation of trihalomethane can be solved while suppressing the growth of viable bacteria and suppressing the deterioration of food quality.

一実施形態では、予備工程S10において、殺菌剤を含む水溶液に微細気泡を混入させることで、殺菌速度定数を増加させ、活性化エネルギを減少させる。
本発明者等は、殺菌剤を含む10℃以下の水溶液に微細気泡を混入することで、該水溶液の温度が低い条件で、後述するChick−Watson式で用いられる殺菌速度定数が増加し、活性化エネルギが減少することを実験的に見出した。これによって、低温域で低エネルギでエネルギ障壁を乗り越えて生菌に対する酸化反応を進めることができ、食品の殺菌工程を効率化すると共に、さらに作業環境の改善に寄与できる。
In one embodiment, in the preliminary step S10, microbubbles are mixed into the aqueous solution containing the bactericide to increase the sterilization rate constant and decrease the activation energy.
The present inventors, by mixing fine air bubbles in an aqueous solution containing a bactericide at 10° C. or lower, increase the sterilization rate constant used in the below-described Check-Watson formula under conditions where the temperature of the aqueous solution is low, and It was found experimentally that the energy of oxidization is reduced. As a result, it is possible to proceed with the oxidation reaction to live bacteria by overcoming the energy barrier with low energy in a low temperature region, which makes the sterilization process of food more efficient and contributes to further improvement of the working environment.

一実施形態では、殺菌工程S12において、水槽に貯留した水溶液中に食品を浸漬させる。この実施形態によれば、水槽に貯留した水溶液中に食品を浸漬させることで、食品の全表面積で食品に付着した生菌に対する酸化作用が起るので、殺菌速度を速め、殺菌効率を向上できる。 In one embodiment, in the sterilization step S12, the food is immersed in the aqueous solution stored in the water tank. According to this embodiment, by immersing the food in the aqueous solution stored in the aquarium, the oxidative effect on the live bacteria adhered to the food over the entire surface area of the food occurs, so that the sterilization speed can be increased and the sterilization efficiency can be improved. ..

一実施形態では、殺菌剤として食品に付着する生菌に対して酸化作用を有する物質を含む。これによって、食品に付着した生菌の細胞壁、形質膜、核酸などの必須組織を酸化して死滅できる。食品を酸化可能な物質として、例えば、過酸化水素(H)、オゾンが溶解したオゾン水、塩水を電気分解してできた電解水、次亜塩素酸ナトリウム(NaOCl)などの次亜塩素酸塩等が挙げられる。 In one embodiment, as a bactericidal agent, a substance having an oxidative effect on living bacteria adhering to food is included. As a result, essential tissues such as cell walls of live bacteria, plasma membrane, and nucleic acids attached to food can be oxidized and killed. Examples of substances that can oxidize food include hydrogen peroxide (H 2 O 2 ), ozone water in which ozone is dissolved, electrolyzed water produced by electrolyzing salt water, hypochlorous acid (NaOCl), and the like. Examples include chlorate.

一実施形態では、殺菌剤は水溶液中で次亜塩素酸(HOCl)を生成可能な物質を含む。これらの物質は水溶液中で強力な酸化作用を有する次亜塩素酸を生成することで、殺菌効果を向上でき、これによって、殺菌工程を効率化できる。水溶液中で次亜塩素酸を生成可能な物質は、例えば、次亜塩素酸ナトリウムによって代表される次亜塩素酸塩である。 In one embodiment, the germicide comprises a substance capable of producing hypochlorous acid (HOCl) in aqueous solution. These substances can improve the bactericidal effect by generating hypochlorous acid having a strong oxidizing action in the aqueous solution, thereby making the sterilization process efficient. The substance capable of producing hypochlorous acid in an aqueous solution is, for example, a hypochlorite salt represented by sodium hypochlorite.

図2に示すように、アレニウスの式では、殺菌反応(酸化反応)の進行は、(1)食品に付着した生菌bと殺菌剤hとの接触、(2)生菌bと殺菌剤h間の酸化反応で活性化エネルギEaの山を越え、(3)生菌bの殺菌に至ると解釈される。活性化エネルギEaは環境温度からも与えられる。従って、殺菌反応の進行は、生菌bへの殺菌剤hの接触機会の大小、即ち殺菌剤hの濃度と環境温度とによって律速される。
本発明者等は、殺菌剤が添加される水溶液が10℃以下のとき、殺菌剤hを含む水溶液に微細気泡を含ませることで、活性化エネルギEaを低下できる(Ea→Ea’)ことを実験的に見出した。以下、この知見に至った過程を説明する。
As shown in FIG. 2, in the Arrhenius equation, the progress of the sterilization reaction (oxidation reaction) is as follows: (1) contact between live bacteria b and bactericide h adhering to food, (2) live bacteria b and bactericide h It is construed that the oxidation reaction between them crosses the peak of the activation energy Ea, leading to (3) sterilization of the live bacteria b. The activation energy Ea is also given from the ambient temperature. Therefore, the progress of the bactericidal reaction is limited by the size of the chance of contact of the bactericide h with the live bacterium b, that is, the concentration of the bactericide h and the environmental temperature.
The present inventors have found that the activation energy Ea can be reduced (Ea→Ea′) by including fine bubbles in the aqueous solution containing the bactericide h when the aqueous solution to which the bactericide is added is 10° C. or lower. Found experimentally. The process leading to this finding will be described below.

図3は、水槽に生菌を含む水溶液を満たし、該水溶液に次亜塩素酸ナトリウム14mg/Lを添加し、水温を種々変えて殺菌率の推移を観察した結果を示す。なお、縦軸において、殺菌率0.2とは生菌を20%殺菌できたことを示し、殺菌率1.0とは生菌を100%殺菌できたことを示す。図3から、水溶液の温度が低いほど、殺菌率は低下し、かつ水溶液の10℃付近の水溶液の温度を境にして殺菌率が大きく変化していることがわかる。 FIG. 3 shows the results of observing the transition of the sterilization rate by filling the water tank with an aqueous solution containing viable bacteria, adding 14 mg/L of sodium hypochlorite to the aqueous solution, and changing the water temperature variously. On the vertical axis, a sterilization rate of 0.2 indicates that live cells could be sterilized by 20%, and a sterilization rate of 1.0 indicates that live cells could be sterilized by 100%. It can be seen from FIG. 3 that the lower the temperature of the aqueous solution is, the lower the sterilization rate is, and that the sterilization rate greatly changes at the temperature of the aqueous solution near 10° C. of the aqueous solution.

非特許文献1にも記載されているように、殺菌剤の殺菌作用による生菌数の変化を示す殺菌曲線の解析に、次のChick−Watson式が用いられる。
log(N/N)=−kCT (1)
ここで、N;初発生菌数、N;生菌数、C;殺菌剤濃度、T;殺菌時間、k;殺菌速度定数(l(リットル)/mmol・min)。
図4は、図3に示す実験結果を(1)式に当てはめてグラフに示したものである。同図中の各ラインの数値は殺菌速度定数kを表している。図4からも、水溶液の温度が低くなるほど、殺菌速度定数kは小さくなり、かつ10℃付近の水溶液の温度を境にして殺菌速度定数kが大きく変化しているのがわかる。
As described in Non-Patent Document 1, the following Chick-Watson equation is used for the analysis of the sterilization curve showing the change in the viable cell count due to the bactericidal action of the bactericide.
log(N/N 0 )=−kCT (1)
Here, N 0 : initial number of bacteria, N: number of viable bacteria, C: concentration of bactericide, T: sterilization time, k: sterilization rate constant (l (liter)/mmol·min).
FIG. 4 is a graph in which the experimental results shown in FIG. 3 are applied to the equation (1). The numerical value of each line in the figure represents the sterilization rate constant k. It can also be seen from FIG. 4 that the lower the temperature of the aqueous solution, the smaller the sterilization rate constant k, and that the sterilization rate constant k greatly changes with the temperature of the aqueous solution near 10° C. as the boundary.

図5A及び図5Bは、水槽に生菌を含む水溶液を満たし、水溶液の温度が5℃であって、次亜塩素酸ナトリウムの濃度を種々変えたときの殺菌率の推移を示すグラフである。図5Aは水溶液中に微細気泡を混入させない場合であり、図5Bは、直径100μm以下の微細気泡を混入させた場合である。図5Aでは、殺菌剤の濃度を14mg/Lから10倍の濃度の140mg/Lまで変えても殺菌率は0.5に留まり、あまり変化が見られない。一方、図5Bの微細気泡ありのときは、20min経過後で70mg/Lや140mg/Lでは殺菌率1.0であり、14mg/Lでも殺菌率0.8が得られた。これらの図から、微細気泡を混入させると、殺菌率が大きく向上することがわかる。また、微細気泡なしのとき次亜塩素酸ナトリウムの濃度に応じて殺菌率があまり変化しないのに対して、微細気泡を混入させたときは、微細気泡を混入しないときと比べて殺菌率が向上し、かつ次亜塩素酸ナトリウムの濃度によって殺菌率が変化していることがわかる。即ち、濃度が高いほど殺菌率が向上している。この実験結果から、次の事が推測される。即ち、図5Aに示すように、微細気泡が混入されない場合は、次亜塩素酸ナトリウムの濃度に関係なくいずれも活性化エネルギEaを越えていないため、濃度を変えても殺菌率は向上しない。また、濃度差による殺菌率の差ははっきり表れてこない。図5Bに示すように、微細気泡が混入された場合は、次亜塩素酸ナトリウムの濃度に関係なくいずれも活性化エネルギEaを越えているため、殺菌率は向上し、かつ濃度差による殺菌率の差がはっきり表れる。以上の考察から、微細気泡を混入した場合は、微細気泡を混入しない場合と比べて活性化エネルギEaが低下していることが窺われる。 5A and 5B are graphs showing transitions of the sterilization rate when the water tank is filled with an aqueous solution containing viable bacteria, the temperature of the aqueous solution is 5° C., and the concentration of sodium hypochlorite is variously changed. FIG. 5A shows a case where fine bubbles are not mixed in the aqueous solution, and FIG. 5B shows a case where fine bubbles having a diameter of 100 μm or less are mixed. In FIG. 5A, even if the concentration of the bactericide is changed from 14 mg/L to 140 mg/L which is 10 times the concentration, the bactericidal rate remains at 0.5 and does not change much. On the other hand, when there are fine bubbles in FIG. 5B, the sterilization rate was 1.0 at 70 mg/L or 140 mg/L after 20 minutes, and the sterilization rate of 0.8 was obtained even at 14 mg/L. From these figures, it is understood that the sterilization rate is greatly improved by mixing fine bubbles. In addition, the sterilization rate does not change much depending on the concentration of sodium hypochlorite when there are no fine bubbles, whereas when the fine bubbles are mixed, the sterilization rate is improved compared to when the fine bubbles are not mixed. Moreover, it can be seen that the sterilization rate changes depending on the concentration of sodium hypochlorite. That is, the higher the concentration, the higher the sterilization rate. The following can be inferred from the results of this experiment. That is, as shown in FIG. 5A, when fine air bubbles are not mixed, the activation energy Ea is not exceeded in any case regardless of the concentration of sodium hypochlorite, so that the sterilization rate is not improved even if the concentration is changed. Also, the difference in sterilization rate due to the difference in concentration does not appear clearly. As shown in FIG. 5B, when fine bubbles are mixed, the activation energy Ea is exceeded regardless of the concentration of sodium hypochlorite, so that the sterilization rate is improved and the sterilization rate due to the difference in concentration is increased. The difference between From the above consideration, it can be seen that the activation energy Ea is lower when the fine bubbles are mixed in than when the fine bubbles are not mixed.

次に、水槽に次亜塩素酸ナトリウムの濃度が100mg/Lの水溶液を満たし、この水溶液に食品としてモヤシ試料を浸漬し、直径100μm以下の微細気泡を混入した場合と混入しない場合とで、モヤシ試料に付着した生菌の殺菌率の推移を観察した。図6A及び図6Bはこれらの結果を示す。図6Aでは水溶液の温度を25℃に保持し、図6Bでは水溶液の温度を5℃に保持している。図6Aに示すように、水溶液の温度が25℃のとき、微細気泡の有無に関係なくほぼ同じ高い殺菌率を示している。これは、水溶液の温度が高いため、水溶液がもつエネルギにより両者とも活性化エネルギEaを越えるポテンシャルを有する酸化反応が起っていると考えられる。この状態のときは、殺菌剤の能力が十分発揮され、両者とも高い殺菌率を示しているため、微細気泡の有無によって殺菌効果に顕著な差が表れないのではないかと考えられる。 Next, the water tank was filled with an aqueous solution having a sodium hypochlorite concentration of 100 mg/L, and the bean sprouts sample was immersed in this aqueous solution as food, with and without fine air bubbles having a diameter of 100 μm or less. The transition of the sterilization rate of live bacteria adhering to the sample was observed. 6A and 6B show these results. In FIG. 6A, the temperature of the aqueous solution is kept at 25° C., and in FIG. 6B, the temperature of the aqueous solution is kept at 5° C. As shown in FIG. 6A, when the temperature of the aqueous solution was 25° C., almost the same high sterilization rate was exhibited regardless of the presence or absence of fine bubbles. It is considered that this is because the temperature of the aqueous solution is high, so that the energy of the aqueous solution causes an oxidation reaction in which both have a potential exceeding the activation energy Ea. In this state, the ability of the bactericidal agent is fully exerted, and both have high sterilization rates, so it is considered that there may be a significant difference in the bactericidal effect depending on the presence or absence of fine bubbles.

一方、図6Bに示すように、水溶液の温度が5℃のときは、殺菌工程の前半の段階で両者の殺菌効果に大きな差が見受けられる。この理由として、微細気泡を混入した場合は活性化エネルギEaの減少があり、活性化エネルギEaを越えて酸化反応が早期に始まっているのに対して、微細気泡を加えない場合は活性化エネルギEaの減少が起らないため、酸化反応が始まっていないためと考えられる。従って、図6Bに示すように、微細気泡を加えることで、殺菌速度定数kを増加でき、活性化エネルギEaが減少するため、殺菌効率を向上できることがわかる。 On the other hand, as shown in FIG. 6B, when the temperature of the aqueous solution is 5° C., a large difference can be seen in the sterilizing effect between the two in the first half stage of the sterilizing process. The reason for this is that the activation energy Ea decreases when fine bubbles are mixed in, and the oxidation reaction begins early beyond the activation energy Ea, whereas the activation energy Ea does not occur when fine bubbles are not added. It is considered that the oxidation reaction did not start because the reduction of Ea did not occur. Therefore, as shown in FIG. 6B, it is understood that by adding fine bubbles, the sterilization rate constant k can be increased and the activation energy Ea decreases, so that the sterilization efficiency can be improved.

(1)式で得られた殺菌速度定数kの値を用い、アレニウスの式に従い整理すると、次の(2)式が成り立つ。
In(k)=−Ea/RT+In(A) (2)
ここで、Ea;活性化エネルギEa;活性化エネルギ(J/mol)、R;気体定数(8.314/K・mol)、T;殺菌温度(K)、A;頻度因子(l(リットル)/mmol・min)。
さらに、非特許文献1には、「In(k)と103/Tとの間に直線関係があり、この傾きからEaが算出される」と記載されているので、(2)式は、次の(2)’式に変換できる。
In(k)=(−Ea/10R)・(10/T)+In(A) (2)’
Using the value of the sterilization rate constant k obtained by the equation (1) and rearranging according to the Arrhenius equation, the following equation (2) is established.
In(k)=-Ea/RT+In(A) (2)
Here, Ea; activation energy Ea; activation energy (J/mol), R; gas constant (8.314/K·mol), T; sterilization temperature (K), A; frequency factor (l (liter)) /Mmol·min).
Further, in Non-Patent Document 1, it is described that "there is a linear relationship between In(k) and 103/T, and Ea is calculated from this inclination." Can be converted into the equation (2)'.
In(k)=(−Ea/10 3 R)·(10 3 /T)+In(A) (2)′

図8の縦軸In(k)と横軸10/Tのグラフにおいて、In(k)=−P・(10/T)+Cをプロットし、求める傾きを「−P」とすると、
−P=−Ea/10
Ea=10R・P(J/mol)
=R・P(kJ/mol)
=8.314P(kJ/mol)
以上から、図8のグラフにプロットされた直線の傾きから、活性化エネルギEa(J/mol)を求めることができる。
In the graph of the vertical axis In(k) and the horizontal axis 10 3 /T in FIG. 8, In(k)=−P·(10 3 /T)+C is plotted and the obtained slope is “−P”,
-P=-Ea/10 3 R
Ea=10 3 R·P (J/mol)
= RP (kJ/mol)
= 8.314P (kJ/mol)
From the above, the activation energy Ea (J/mol) can be obtained from the slope of the straight line plotted in the graph of FIG.

図7A、図7Bは、図6A及び図6Bに示す実験結果に関し、(2)式により活性化エネルギEaを算出した過程を示す。同図中の数値は殺菌速度定数kを示す。図7Aに示すように、水溶液の温度が25℃の場合は、殺菌速度定数kの値は、微細気泡の有無に関係なくいずれも増加しており、両者間にほとんど差が出ていない。一方、図7Bに示すように、水溶液の温度が5℃の場合は、微細気泡の有無で殺菌速度定数kの値は大きな差が出ていて、微細気泡ありの殺菌速度定数kの値が大幅に上回っている。これは、微細気泡を加えた場合は、活性化エネルギEaの減少が起り、活性化エネルギEaを乗り越えて酸化反応が起っているのに対し、微細気泡を加えない場合は、活性化エネルギEaが減少しないため、活性化エネルギEaを乗り越えられず、酸化反応が起っていないからであると考えられる。 7A and 7B show the process of calculating the activation energy Ea by the equation (2) with respect to the experimental results shown in FIGS. 6A and 6B. The numerical value in the figure shows the sterilization rate constant k. As shown in FIG. 7A, when the temperature of the aqueous solution is 25° C., the value of the sterilization rate constant k increases regardless of the presence or absence of fine bubbles, and there is almost no difference between the two. On the other hand, as shown in FIG. 7B, when the temperature of the aqueous solution is 5° C., there is a large difference in the value of the sterilization rate constant k depending on the presence or absence of fine bubbles, and the value of the sterilization rate constant k with fine bubbles is large. More than. This is because when the fine bubbles are added, the activation energy Ea is reduced, and the oxidation reaction occurs while overcoming the activation energy Ea, whereas when the fine bubbles are not added, the activation energy Ea is increased. It is considered that this is because the activation energy Ea cannot be overcome and the oxidation reaction has not occurred because the amount of oxygen does not decrease.

図8は、図7Bに示す実験結果に基づいて、活性化エネルギEaを算出した結果を示す。微細気泡なしの場合はEa=35.8(kJ/mol)、微細気泡ありの場合はEa=2.7(kJ/mol)となる。図8に示すように、微細気泡を加えた場合は、微細気泡を加えない場合と比べて、活性化エネルギEaが大幅に低下していることがわかる。 FIG. 8 shows the result of calculating the activation energy Ea based on the experimental result shown in FIG. 7B. Ea=35.8 (kJ/mol) when there are no fine bubbles, and Ea=2.7 (kJ/mol) when there are fine bubbles. As shown in FIG. 8, when the fine bubbles are added, the activation energy Ea is significantly reduced as compared with the case where the fine bubbles are not added.

一実施形態では、微細気泡は水溶液中で100μm以下の直径を有するように形成される。この実施形態によれば、微細気泡が100μm以下の直径を有するため、容積に対する表面積の比(比表面積)を大きくすることができる。これによって、水溶液中で長期間均一に分散できる。また、100μm以下の直径を有する微細気泡は表面がマイナス(−)の帯電性を有するため、水溶液中で高密度に凝集した状態で存在できる。これらの特性は活性化エネルギの減少に寄与すると考えられる。 In one embodiment, the microbubbles are formed to have a diameter of 100 μm or less in an aqueous solution. According to this embodiment, since the fine bubbles have a diameter of 100 μm or less, the ratio of the surface area to the volume (specific surface area) can be increased. Thereby, it can be uniformly dispersed in the aqueous solution for a long period of time. In addition, since fine bubbles having a diameter of 100 μm or less have a negative (−) chargeability on the surface, they can exist in an aqueous solution in a densely aggregated state. These properties are believed to contribute to the reduction of activation energy.

100μm以下の直径を有する微細気泡は、直径が1〜100μmのものと直径が1μm以下のものとに分類され、両者は特性が異なる。前者は水溶液中で白濁し目視可能であるが、後者は水溶液中で無色透明となり目視不可能である。また、前者は水溶液中で自己加圧効果により溶解消滅することが知られており、その過程において局所的に高温高圧となることが数値シミュレーションから示唆されている。この効果により低温下においても酸化反応により殺菌が促進されることが推察される。後者は水溶液中での分散時間を長く維持できる。 Micro bubbles having a diameter of 100 μm or less are classified into those having a diameter of 1 to 100 μm and those having a diameter of 1 μm or less, and both have different characteristics. The former is cloudy and visible in an aqueous solution, while the latter is colorless and transparent in an aqueous solution and invisible. In addition, the former is known to dissolve and disappear in an aqueous solution due to the self-pressurization effect, and it has been suggested by numerical simulation that local high temperature and high pressure occur in the process. It is speculated that this effect promotes sterilization by the oxidation reaction even at low temperatures. The latter can maintain a long dispersion time in an aqueous solution.

一実施形態では、微細気泡は、不活性ガスを用いて形成される。微細気泡が不活性ガスで形成されるため、水溶液との反応が抑制され、微細気泡として水溶液中に長く存在できる。不活性ガスとして、例えば、窒素ガス、アルゴンガス等を用いることができる。 In one embodiment, the microbubbles are formed with an inert gas. Since the fine bubbles are formed of the inert gas, the reaction with the aqueous solution is suppressed, and the fine bubbles can stay in the aqueous solution for a long time. As the inert gas, for example, nitrogen gas, argon gas or the like can be used.

一実施形態では、微細気泡は食品を酸化可能なガスを用いて形成される。微細気泡が食品を酸化可能なガスを用いて形成されるため、殺菌剤による殺菌効果に加えて、微細気泡の酸化作用による生菌の殺菌効果を発揮できる。これによって、相乗的に殺菌効果が高められ、殺菌工程を効率化できる。酸化可能なガスとして、例えば、オゾンガスを用いることができる。 In one embodiment, the microbubbles are formed using a gas capable of oxidizing food. Since the fine bubbles are formed by using a gas that can oxidize food, in addition to the sterilizing effect of the bactericide, the bactericidal effect of live bacteria due to the oxidizing action of the fine bubbles can be exhibited. This synergistically enhances the sterilization effect and makes the sterilization process efficient. As the oxidizable gas, for example, ozone gas can be used.

一実施形態に係る食品の殺菌装置10は、図9に示すように、殺菌剤を含む水溶液を貯留するための容器12と、容器12に貯留された水溶液を10℃以下の温度に保持する温度調節部14と、水溶液中の殺菌剤の濃度を調節する殺菌剤濃度調節部15と、水溶液に微細気泡gを混入させる微細気泡発生部16と、を備える。容器12に貯留された水溶液には、次亜塩素酸ナトリウムなどの殺菌剤が添加され、かつ微細気泡発生部16から微細気泡が送られる。この水溶液に被殺菌対象の食品fとが投入され、食品fに付着した生菌を酸化して殺菌する。なお、殺菌剤濃度調節部15は、水溶液の殺菌剤の濃度をモニタリングして、必要濃度を維持するように殺菌剤を添加するように構成してもよい。 As shown in FIG. 9, a food sterilization apparatus 10 according to an embodiment has a container 12 for storing an aqueous solution containing a bactericide, and a temperature for holding the aqueous solution stored in the container 12 at a temperature of 10° C. or lower. An adjusting unit 14, a sterilizing agent concentration adjusting unit 15 for adjusting the concentration of the sterilizing agent in the aqueous solution, and a fine bubble generating unit 16 for mixing fine bubbles g into the aqueous solution are provided. A bactericide such as sodium hypochlorite is added to the aqueous solution stored in the container 12, and fine bubbles are sent from the fine bubble generating unit 16. The food f to be sterilized is added to this aqueous solution to oxidize live bacteria adhering to the food f for sterilization. The disinfectant concentration adjusting unit 15 may be configured to monitor the concentration of the disinfectant in the aqueous solution and add the disinfectant so as to maintain the required concentration.

上記構成によれば、殺菌剤を含み微細気泡gが混入した10℃以下の水溶液で食品を殺菌することで、殺菌剤による酸化反応に必要な活性化エネルギを減少でき、これによって、殺菌速度を速めることができ、殺菌工程を効率化できる。また、殺菌剤が投入される容器12内の水溶液に対して、殺菌剤濃度調節部15とは別個に独立して微細気泡発生部16が設けられるため、水溶液の殺菌剤濃度の調整と独立して微細気泡の混入量の調整を行うことができる。これによって、殺菌剤濃度の調整及び微細気泡混入量の調整が容易になる。 According to the above configuration, by sterilizing the food with an aqueous solution containing a bactericide and containing fine bubbles g at 10° C. or less, the activation energy required for the oxidation reaction by the bactericide can be reduced, thereby increasing the sterilization rate. It can be accelerated and the sterilization process can be made efficient. Further, since the fine bubble generating section 16 is provided separately from the bactericide concentration adjusting section 15 for the aqueous solution in the container 12 into which the bactericide is put, it is independent of the adjustment of the bactericide concentration of the aqueous solution. Therefore, the amount of fine bubbles mixed can be adjusted. This facilitates the adjustment of the bactericide concentration and the amount of fine air bubbles mixed.

一実施形態では、容器12に貯留された微細気泡gを含む水溶液を食品fに吹き付けるノズル18を備える。この実施形態によれば、容器12内の微細気泡gと殺菌剤を含む水溶液は管路20を経てノズル18に送られ、ノズル18から該水溶液を食品fに吹き付けて食品を殺菌できる。ノズル18による殺菌と、容器12内の水溶液に浸漬された食品fの殺菌とを併用することで、食品fの殺菌工程をさらに効率化できる。 In one embodiment, the nozzle 18 that sprays the aqueous solution containing the fine bubbles g stored in the container 12 onto the food f is provided. According to this embodiment, the aqueous solution containing the fine bubbles g and the sterilizing agent in the container 12 is sent to the nozzle 18 through the conduit 20, and the aqueous solution can be sprayed from the nozzle 18 onto the food f to sterilize the food. By combining the sterilization by the nozzle 18 and the sterilization of the food f immersed in the aqueous solution in the container 12, the sterilization process of the food f can be made more efficient.

一実施形態では、温度調節部14は、冷媒生成部22と、冷媒生成部22から容器12内の水溶液中に導設された冷媒循環路24と、を備える。冷媒生成部22で冷却された冷媒が生成され、この冷媒を冷媒循環路24に循環させる。冷媒循環路24を流れる冷媒は、容器12内の水溶液を冷却する。
この実施形態によれば、上記構成の温度調節部14によって、容器12内に貯留された殺菌剤を含む水溶液を10℃以下の温度に調節できる。
In one embodiment, the temperature control unit 14 includes a refrigerant generation unit 22 and a refrigerant circulation path 24 that is introduced from the refrigerant generation unit 22 into the aqueous solution in the container 12. The cooled coolant is generated in the coolant generation unit 22, and the coolant is circulated in the coolant circulation path 24. The coolant flowing through the coolant circulation path 24 cools the aqueous solution in the container 12.
According to this embodiment, the aqueous solution containing the bactericide stored in the container 12 can be adjusted to a temperature of 10° C. or lower by the temperature adjusting unit 14 having the above configuration.

一実施形態では、容器12と微細気泡発生部16との間に、管路26及び管路28が接続される。微細気泡発生部16から管路26を介して微細気泡含有水が容器12に供給される。容器12内の微細気泡含有量が少なくなった水溶液は、管路28を介して微細気泡発生部16に送られ、微細気泡発生部16で微細気泡を混入された後、管路26を介して容器12に戻される。微細気泡発生部16には微細気泡を形成するための空気を取り入れる空気取入管30を備える。 In one embodiment, the pipe line 26 and the pipe line 28 are connected between the container 12 and the fine bubble generation part 16. The water containing fine bubbles is supplied from the fine bubble generating unit 16 to the container 12 via the pipe line 26. The aqueous solution in which the content of the fine bubbles in the container 12 is reduced is sent to the fine bubble generating unit 16 via the pipe line 28, mixed with the fine bubble in the fine bubble generating unit 16, and then passed through the pipe line 26. It is returned to the container 12. The fine bubble generator 16 is provided with an air intake tube 30 for taking in air for forming fine bubbles.

一実施形態では、殺菌装置10は、次の手順で運転される。
(1)容器12の内部に貯留された水溶液に微細気泡発生部16から微細気泡を導入する。
(2)温度調節部14から冷媒循環路24に冷媒を循環して容器12内の水溶液を10℃以下の低温に調節する。
(3)殺菌剤、例えば、次亜塩素酸ナトリウムを水溶液に添加し、水溶液中の次亜塩素酸ナトリウムが所定の濃度になるように調整する。
(4)水溶液中に被殺菌対象となる食品を浸漬して殺菌する。
この実施形態によれば、温度調節部14によって殺菌剤及び微細気泡を含む水溶液を10℃以下の温度に調節できる。
In one embodiment, the sterilizer 10 is operated in the following procedure.
(1) The fine bubbles are introduced from the fine bubble generating unit 16 into the aqueous solution stored inside the container 12.
(2) The coolant is circulated from the temperature controller 14 to the coolant circulation path 24 to regulate the aqueous solution in the container 12 to a low temperature of 10° C. or lower.
(3) A bactericide, for example, sodium hypochlorite is added to the aqueous solution to adjust the sodium hypochlorite in the aqueous solution to a predetermined concentration.
(4) Sterilize by immersing the food to be sterilized in the aqueous solution.
According to this embodiment, the temperature control unit 14 can control the temperature of the aqueous solution containing the bactericide and fine bubbles to 10° C. or lower.

一実施形態では、上記バッチ式の殺菌装置に代えて、殺菌対象となる食品を搬送するコンベアと、殺菌剤及び微細気泡を含む水溶液を貯留する水槽と、を備え、食品を該コンベアで搬送しながら水槽に貯留された水溶液に浸漬しかつ殺菌処理する連続処理式の殺菌装置としてもよい。 In one embodiment, in place of the batch type sterilizer, a conveyor that conveys food to be sterilized, and a water tank that stores an aqueous solution containing a sterilizing agent and fine bubbles, and convey the food on the conveyor. However, it may be a continuous treatment type sterilizer that is immersed in an aqueous solution stored in a water tank and sterilized.

幾つかの実施形態によれば、生菌の増殖を抑制可能であって、かつ食品の品質劣化を抑制可能な低温下での食品の殺菌処理を有効かつ効率化することができる。 According to some embodiments, it is possible to effectively and efficiently perform the sterilization treatment of food at a low temperature that can suppress the growth of viable bacteria and can suppress the deterioration of the quality of food.

10 殺菌装置
12 容器
14 温度調節部
15 殺菌剤濃度調節部
16 微細気泡発生部
18 ノズル
20、26、28 管路
22 冷媒生成部
24 冷媒循環路
30 空気取入管
10 Sterilizer 12 Container 14 Temperature Control Section 15 Sterilizer Concentration Control Section 16 Micro Bubble Generation Section 18 Nozzles 20, 26, 28 Pipeline 22 Refrigerant Generation Section 24 Refrigerant Circulation Channel 30 Air Intake Pipe

Claims (11)

殺菌剤を含む10℃以下の水溶液に微細気泡を混入させる予備工程と、
前記微細気泡を含む前記水溶液を用いて食品を殺菌する殺菌工程と、
を含むことを特徴とする食品の殺菌方法。
A preliminary step of mixing fine air bubbles in an aqueous solution containing a bactericide at 10°C or lower,
A sterilization step of sterilizing food using the aqueous solution containing the fine bubbles,
A method for sterilizing foods, which comprises:
前記予備工程において、前記水溶液に微細気泡を混入させることで、殺菌速度定数を増加させ、活性化エネルギを減少させることを特徴とする請求項1に記載の食品の殺菌方法。 The method for sterilizing food according to claim 1, wherein in the preliminary step, sterilization rate constant is increased and activation energy is decreased by mixing fine bubbles into the aqueous solution. 前記殺菌工程において、水槽に貯留した前記水溶液中に前記食品を浸漬させることを特徴とする請求項1又は2に記載の食品の殺菌方法。 The sterilization method of food according to claim 1 or 2, wherein in the sterilization step, the food is immersed in the aqueous solution stored in a water tank. 前記殺菌剤は前記食品に付着する生菌を酸化可能な物質を含むことを特徴とする請求項1乃至3の何れか一項に記載の食品の殺菌方法。 The said disinfectant contains the substance which can oxidize the live bacteria adhering to the said foodstuff, The sterilization method of the foodstuff in any one of Claim 1 thru|or 3 characterized by the above-mentioned. 前記殺菌剤は前記水溶液中で次亜塩素酸を生成可能な物質を含むことを特徴とする請求項4に記載の食品の殺菌方法。 The sterilizing method of food according to claim 4, wherein the sterilizing agent contains a substance capable of generating hypochlorous acid in the aqueous solution. 前記微細気泡は100μm以下の直径を有するように形成されることを特徴とする請求項1乃至5の何れか一項に記載の食品の殺菌方法。 The method for sterilizing food according to claim 1, wherein the fine bubbles are formed to have a diameter of 100 μm or less. 前記微細気泡は、不活性ガスを用いて形成されることを特徴とする請求項1乃至6の何れか一項に記載の食品の殺菌方法。 7. The method for sterilizing food according to claim 1, wherein the fine bubbles are formed by using an inert gas. 前記微細気泡は、前記食品に付着する生菌を酸化可能なガスを用いて形成されることを特徴とする請求項1乃至6の何れか一項に記載の食品の殺菌方法。 The said micro air bubble is formed using the gas which can oxidize the live bacteria adhering to the said foodstuff, The sterilization method of the foodstuff in any one of the Claims 1 thru|or 6 characterized by the above-mentioned. 殺菌剤を含む水溶液を貯留するための容器と、
前記容器に貯留された前記水溶液を10℃以下の温度に保持する温度調節部と、
前記水溶液中の前記殺菌剤の濃度を調節する殺菌剤濃度調節部と、
前記水溶液に微細気泡を混入させる微細気泡発生部と、
を備えることを特徴とする食品の殺菌装置。
A container for storing an aqueous solution containing a bactericide,
A temperature control unit that holds the aqueous solution stored in the container at a temperature of 10° C. or lower;
A bactericide concentration adjusting unit for adjusting the concentration of the bactericide in the aqueous solution,
A fine bubble generating section for mixing fine bubbles into the aqueous solution,
An apparatus for sterilizing food, comprising:
前記容器に貯留された前記水溶液を食品に吹き付けるノズルを備えることを特徴とする請求項9に記載の食品の殺菌装置。 The sterilizer for food according to claim 9, further comprising a nozzle that sprays the aqueous solution stored in the container onto the food. 前記温度調節部は、
冷媒生成部と、
前記冷媒生成部から前記水溶液中に導設された冷媒循環路と、
を備え、
前記冷媒生成部で生成された冷媒を前記冷媒循環路に循環させ、前記水溶液と前記冷媒とを熱交換させるように構成されたことを特徴とする請求項9又は10に記載の食品の殺菌装置。
The temperature control unit,
A refrigerant generation unit,
A refrigerant circulation path introduced from the refrigerant generation unit into the aqueous solution,
Equipped with
The sterilizer for food according to claim 9 or 10, wherein the refrigerant generated by the refrigerant generator is circulated in the refrigerant circulation path to exchange heat between the aqueous solution and the refrigerant. ..
JP2018241192A 2018-12-25 2018-12-25 Sterilization method and sterilization apparatus of food product Pending JP2020099291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241192A JP2020099291A (en) 2018-12-25 2018-12-25 Sterilization method and sterilization apparatus of food product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241192A JP2020099291A (en) 2018-12-25 2018-12-25 Sterilization method and sterilization apparatus of food product

Publications (1)

Publication Number Publication Date
JP2020099291A true JP2020099291A (en) 2020-07-02

Family

ID=71139012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241192A Pending JP2020099291A (en) 2018-12-25 2018-12-25 Sterilization method and sterilization apparatus of food product

Country Status (1)

Country Link
JP (1) JP2020099291A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225441A (en) * 1988-03-03 1989-09-08 Shimizu Tekko Kk Sterilization of vegetable and fruit with ozone water and apparatus therefor
WO2015071995A1 (en) * 2013-11-14 2015-05-21 古米 保 Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225441A (en) * 1988-03-03 1989-09-08 Shimizu Tekko Kk Sterilization of vegetable and fruit with ozone water and apparatus therefor
WO2015071995A1 (en) * 2013-11-14 2015-05-21 古米 保 Slightly-acidic aqueous hypochlorous acid solution containing ultrafine bubbles, method for producing same, and method for using same

Similar Documents

Publication Publication Date Title
JP6122139B2 (en) Method for producing and using slightly acidic hypochlorous acid aqueous solution containing ultrafine bubbles
JP4533618B2 (en) Disinfectant cleaning composition
CA2627218C (en) Activated peroxide solutions and process for the preparation thereof
CN1377229A (en) Electrolytic synthesis of peracetic acid
EP1942951A1 (en) Method for the preparation of biocidal activated water solutions
JP2013017963A (en) Device and method for producing sterilized water
JP6214855B2 (en) Slightly acidic hypochlorous acid water containing fine bubbles, method for producing and using the same
KR20180079851A (en) Fresh fruits and vegetable treated with carbonated water and hot water-microbubbles, method for treating fresh fruits and vegetable and hot water-microbubbles washing device
Kovaliova et al. Effect of plasma-chemically activated aqueous solutions on the process of disinfection of food production equipment
US10993448B2 (en) Method for sanitizing fresh produce
JP4975659B2 (en) Control method of microorganisms in food materials by ultrasonic treatment and ozone-containing microbubble treatment
Roobab et al. Applications of water activated by ozone, electrolysis, or gas plasma for microbial decontamination of raw and processed meat
WO2013125051A1 (en) Device for producing liquid mixed with microbubbles containing gas incorporated thereinto
JP2020099291A (en) Sterilization method and sterilization apparatus of food product
JP2014169254A (en) Disinfection and freshness retention apparatus using ultrafine gas water, disinfection and freshness retention method, and perishable food or plant treated with the disinfection and freshness retention method
WO2018003087A1 (en) Disinfection product comprising chlorine-based disinfectant combined with microbubbles, and disinfection method
WO2020121532A1 (en) Radical-water production method, production device and radical water
EP1702519B1 (en) Process for sterilization and production of fish meat paste product with use of microbubble and sterile fish meat paste product obtained by the process
JPH11226579A (en) Sterilizing method and apparatus
JP2014148526A (en) Method for producing disinfectant antiseptic solution
JP4963055B2 (en) Disinfectant composition
JP2007326096A (en) Cleaning method by sterilization or particle removal, and apparatus used therefor
Gökmen et al. Current approaches in water-assisted systems for foodborne microbial inactivation: A review
JP2017038528A (en) Cleaning method and cleaning solution
JP5193907B2 (en) Cleaning method for cut vegetables or fruits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801