JP6212698B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP6212698B2
JP6212698B2 JP2012228611A JP2012228611A JP6212698B2 JP 6212698 B2 JP6212698 B2 JP 6212698B2 JP 2012228611 A JP2012228611 A JP 2012228611A JP 2012228611 A JP2012228611 A JP 2012228611A JP 6212698 B2 JP6212698 B2 JP 6212698B2
Authority
JP
Japan
Prior art keywords
hot water
scale
flow rate
water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012228611A
Other languages
Japanese (ja)
Other versions
JP2014081114A (en
Inventor
尾浜 昌宏
昌宏 尾浜
山田 宗登
宗登 山田
西山 吉継
吉継 西山
佐野 光宏
光宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012228611A priority Critical patent/JP6212698B2/en
Publication of JP2014081114A publication Critical patent/JP2014081114A/en
Application granted granted Critical
Publication of JP6212698B2 publication Critical patent/JP6212698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、スケール抑制手段を備えた給湯装置に関するものである。   The present invention relates to a hot water supply device provided with a scale suppressing means.

従来、この種の給湯装置として、貯湯槽に溜めた高温の湯を用いて給湯を行うものがある(例えば、特許文献1参照)。   Conventionally, as this type of hot water supply apparatus, there is one that performs hot water supply using high-temperature hot water stored in a hot water tank (see, for example, Patent Document 1).

図9は、特許文献1の図1に記載された従来の給湯装置を示すものである。図9に示すように、この給湯装置は、ガスクーラ(給湯熱交換器)1を有するヒートポンプユニット2と、ガスクーラ1にて沸き上げられた湯水が貯留される貯湯タンク3を有する貯湯ユニット4とから構成されている。   FIG. 9 shows a conventional hot water supply apparatus described in FIG. As shown in FIG. 9, this hot water supply apparatus includes a heat pump unit 2 having a gas cooler (hot water supply heat exchanger) 1 and a hot water storage unit 4 having a hot water storage tank 3 in which hot water boiled by the gas cooler 1 is stored. It is configured.

また、ヒートポンプユニット2の冷媒循環路は、圧縮機5、ガスクーラ1、膨張弁(減圧装置)6、蒸発器7などから構成され、貯湯ユニット4の水回路は、循環ポンプ8、ガスクーラ1、貯湯槽3などから構成されている。   The refrigerant circulation path of the heat pump unit 2 includes a compressor 5, a gas cooler 1, an expansion valve (decompression device) 6, an evaporator 7, and the like. The water circuit of the hot water storage unit 4 includes the circulation pump 8, the gas cooler 1, and hot water storage. It is comprised from the tank 3 grade | etc.,.

そして、圧縮機5によって圧縮された高温高圧のガス冷媒をガスクーラ1において貯湯槽3に貯湯された水と熱交換させて水を加熱して沸き上げる。また、貯湯槽3からガスクーラ1に至るまでの水循環路に、スケールの生成を抑制する抑制剤を供給する添加器(スケール抑制手段)9を備えた構成としている。この構成によって、通水に伴い沸き上げ前の低温水に添加剤が添加されるため貯湯ユニット4の水回路におけるスケールの生成が抑制され、水回路における閉塞が防止される。   The high-temperature and high-pressure gas refrigerant compressed by the compressor 5 is heat-exchanged with the water stored in the hot water storage tank 3 in the gas cooler 1 to heat and boil the water. The water circulation path from the hot water tank 3 to the gas cooler 1 is provided with an adder (scale suppression means) 9 for supplying an inhibitor that suppresses the generation of scale. With this configuration, since the additive is added to the low-temperature water before boiling with water flow, scale generation in the water circuit of the hot water storage unit 4 is suppressed, and blockage in the water circuit is prevented.

また、特許文献1には、添加器9を迂回するバイパス回路(図示せず)を備えるとともに、このバイパス回路の分岐箇所に三方弁(図示せず)を設けて、添加器9とバイパス回路とを切り換えて水を流通させる構成が記載されている。   Patent Document 1 includes a bypass circuit (not shown) that bypasses the adder 9, and a three-way valve (not shown) is provided at a branch point of the bypass circuit. A configuration is described in which the water is circulated by switching.

特開2011−69572号公報JP 2011-69572 A

しかしながら、前記従来の構成では、給湯装置の運転条件の変化に応じて、スケール抑制剤の添加量を調整することができず、スケールの生成を効果的に防止することができないという課題を有していた。また、スケール抑制剤が必要量以上に消費され、これにより、添加器9の寿命が短くなり、交換やメンテンナンスのコストが増大してしまうという課題を有していた。   However, the conventional configuration has a problem in that the amount of the scale inhibitor added cannot be adjusted according to changes in the operating conditions of the hot water supply apparatus, and scale generation cannot be effectively prevented. It was. In addition, the scale inhibitor is consumed more than necessary, which shortens the life of the adder 9 and increases the cost of replacement and maintenance.

本発明は上記課題を解決するもので、給湯装置の運転条件の変化に応じてスケール抑制剤の添加量を適切に調整することで、スケール抑制剤を浪費することなく、スケールの析出を抑制することが可能な給湯装置を提供することを目的とする。   This invention solves the said subject, and suppresses precipitation of a scale, without wasting a scale inhibitor, by adjusting the addition amount of a scale inhibitor appropriately according to the change of the operating condition of a hot water supply apparatus. It is an object of the present invention to provide a hot water supply device that can be used.

前記従来の課題を解決するために、本発明の給湯装置は、湯水を貯える貯湯槽と、前記貯湯槽の下部から入水管路を介して送られた水を加熱する加熱手段と、前記入水管路に配設され、前記貯湯槽の下部の水を前記加熱手段に圧送する循環ポンプと、前記加熱手段で加熱された水を前記貯湯槽の上部へと導入する出湯管路と、前記入水管路上に配設され、前記加熱手段に圧送される水に、スケールの生成を抑制するスケール抑制剤を添加するスケール抑制手段と、を備え、給湯負荷および前記加熱手段による前記水の加熱温度が低い運転条件のときよりも、前記給湯負荷および前記加熱手段による前記水の加熱温度が高い運転条件のときに、前記加熱手段に流入する前記水の流量を小さくなるように前記循環ポ
ンプの回転数を制御して、前記加熱手段に流入する水に含まれるスケール抑制剤の濃度を大きくするとともに、前記加熱手段により加熱された水の温度も高くすることを特徴とする。
In order to solve the conventional problems, a hot water supply apparatus of the present invention includes a hot water storage tank for storing hot water, a heating means for heating water sent from a lower part of the hot water storage tank through a water inlet pipe, and the water inlet pipe. A circulation pump that is disposed in a passage and pumps water in the lower part of the hot water tank to the heating means; a hot water outlet pipe that introduces water heated by the heating means into the upper part of the hot water tank; and the water inlet pipe Scale suppression means for adding a scale inhibitor that suppresses the generation of scale to the water that is disposed on the road and pumped to the heating means, and the heating temperature of the water by the hot water supply load and the heating means is low When the operating condition is such that the hot water supply load and the heating temperature of the water by the heating means are higher than the operating conditions, the circulation rate is reduced so that the flow rate of the water flowing into the heating means is reduced.
The number of rotations of the pump is controlled to increase the concentration of the scale inhibitor contained in the water flowing into the heating means, and the temperature of the water heated by the heating means is also increased .

これにより、スケールが生成し易い運転条件に応じて、加熱手段へと流入する水のスケール抑制剤の濃度を調整することができるので、スケール抑制剤の浪費を防止して、その交換や補充などのメンテナンスや維持コストを低減させながら、効果的にスケールの析出を抑制することが可能な信頼性の高い給湯装置を提供することができる。   As a result, the concentration of the scale inhibitor of the water flowing into the heating means can be adjusted according to the operating conditions where the scale is likely to be generated, thereby preventing the waste of the scale inhibitor and replacing or replenishing it. It is possible to provide a highly reliable hot water supply apparatus that can effectively suppress the precipitation of scale while reducing maintenance and maintenance costs.

本発明によれば、給湯装置の運転条件に応じてスケール抑制剤の濃度を調整し、スケール抑制剤の浪費を防止しながらスケールの生成を抑制することが可能な給湯装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the density | concentration of a scale inhibitor can be adjusted according to the operating condition of a hot water supply apparatus, and the hot water supply apparatus which can suppress the production | generation of a scale can be provided, preventing the waste of a scale inhibitor. .

本発明の実施の形態1における給湯装置の構成図Configuration diagram of hot water supply apparatus in Embodiment 1 of the present invention 水の温度とスケール成分の溶解度との関係を説明する説明図Explanatory drawing explaining the relationship between the temperature of water and the solubility of scale components 本発明の実施の形態における給湯装置の水の加熱温度と加熱流量との関係を説明する説明図Explanatory drawing explaining the relationship between the heating temperature and the heating flow rate of the water of the hot water supply apparatus in embodiment of this invention 本発明の実施の形態2における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 2 of this invention (a)同給湯装置において流量が小さいときの流量とスケール抑制剤の濃度との関係を説明する説明図(b)同給湯装置において流量が大きいときの流量とスケール抑制剤の濃度との関係を説明する説明図(A) Explanatory drawing explaining the relationship between the flow rate when the flow rate is small and the concentration of the scale inhibitor in the hot water supply device (b) The relationship between the flow rate when the flow rate is large and the concentration of the scale inhibitor in the hot water supply device Explanatory drawing to explain (a)同給湯装置の分流比率を設定する流量調節手段の一例を示す構成図(b)同給湯装置の分流比率を設定する流量調節手段の他の一例を示す構成図(A) The block diagram which shows an example of the flow volume adjustment means which sets the diversion ratio of the hot-water supply apparatus (b) The block diagram which shows another example of the flow volume adjustment means which sets the flow-division ratio of the hot-water supply apparatus 本発明の実施の形態3における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 3 of this invention 本発明の実施の形態4における給湯装置の構成図The block diagram of the hot-water supply apparatus in Embodiment 4 of this invention 従来の給湯装置の構成図Configuration diagram of conventional hot water supply equipment

第1の発明は、湯水を貯える貯湯槽と、前記貯湯槽の下部から入水管路を介して送られた水を加熱する加熱手段と、前記入水管路に配設され、前記貯湯槽の下部の水を前記加熱手段に圧送する循環ポンプと、前記加熱手段で加熱された水を前記貯湯槽の上部へと導入する出湯管路と、前記入水管路上に配設され、前記加熱手段に圧送される水に、スケールの生成を抑制するスケール抑制剤を添加するスケール抑制手段と、を備え、給湯負荷および前記加熱手段による前記水の加熱温度が低い運転条件のときよりも、前記給湯負荷および前記加熱手段による前記水の加熱温度が高い運転条件のときに、前記加熱手段に流入する前記水の流量を小さくなるように前記循環ポンプの回転数を制御して、前記加熱手段に流入する水に含まれるスケール抑制剤の濃度を大きくするとともに、前記加熱手段により加熱された水の温度も高くすることを特徴とする給湯装置である。 1st invention is a hot water storage tank which stores hot water, a heating means which heats the water sent from the lower part of the hot water storage tank via a water inlet pipe, and a lower part of the hot water tank which is disposed in the water inlet pipe. A circulating pump that pumps water of the water to the heating means, a hot water supply pipe that introduces water heated by the heating means to the upper part of the hot water storage tank, and a pump that is pumped to the heating means. Scale suppression means for adding a scale inhibitor that suppresses the generation of scale to the water to be produced, and the hot water supply load and the hot water supply load and the heating temperature of the water by the heating means are lower than in operating conditions The water flowing into the heating means by controlling the number of revolutions of the circulation pump so as to reduce the flow rate of the water flowing into the heating means when the heating temperature of the water by the heating means is high. Scale included in Thereby increasing the concentration of the control agent, a water heater, characterized in that the higher temperature of the heated water by the heating means.

これにより、特に加熱手段においてスケールが生成しやすい、水の流量が小さい運転条件では、加熱手段へ流入する水に含まれるスケール抑制剤の濃度を大きくし、逆に、水の流量が大きい運転条件では、加熱手段へ流入する水に含まれるスケール抑制剤の濃度を小さくすることができるので、給湯装置の運転条件に応じて、効果的にスケールの生成を抑制することができ、また、スケール抑制剤の寿命を長くして、その交換や補充などのメンテナンスや維持コストを低減させることができる。   As a result, particularly in operating conditions where the scale of the heating means is likely to be generated and the flow rate of water is small, the concentration of the scale inhibitor contained in the water flowing into the heating means is increased. Then, since the concentration of the scale inhibitor contained in the water flowing into the heating means can be reduced, it is possible to effectively suppress the generation of scale according to the operating conditions of the hot water supply apparatus, and to suppress the scale. The life of the agent can be extended, and maintenance and maintenance costs such as replacement and replenishment can be reduced.

第2の発明は、特に第1の発明において、前記入水管路上に、前記入水管路の一部を迂回させるバイパス回路を設け、前記スケール抑制手段は、前記バイパス回路に配設される
とともに、前記入水管路に流れる流量と前記バイパス回路に流れる流量との流量比率を調整する流量調節手段と、を備えることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, in the first aspect of the present invention, a bypass circuit that bypasses a part of the water inlet conduit is provided on the water inlet conduit, and the scale suppression means is disposed in the bypass circuit, And a flow rate adjusting means for adjusting a flow rate ratio between the flow rate flowing through the water inlet pipe and the flow rate flowing through the bypass circuit.

これにより、流れる水の一部を分岐してスケール抑制手段へと誘導し、スケール抑制剤を溶解させて、その他の水はそのまま給湯熱交換器に流入するので、加熱手段へと流入する水のスケール抑制剤の濃度を運転条件に応じてより適切に調節することができる。すなわち、スケールが生成され易い条件である加熱流量が小さい場合には、加熱手段へと流入する水に溶解するスケール抑制剤の濃度を濃くすることができるので、スケール付着による給湯熱交換器の詰まりを防いで、信頼性に優れた給湯装置を実現することができる。   As a result, part of the flowing water is branched and guided to the scale suppressing means, the scale inhibitor is dissolved, and other water flows directly into the hot water supply heat exchanger, so that the water flowing into the heating means The concentration of the scale inhibitor can be adjusted more appropriately according to the operating conditions. That is, when the heating flow rate, which is a condition for easily generating scale, is small, the concentration of the scale inhibitor dissolved in the water flowing into the heating means can be increased, so the hot water supply heat exchanger is clogged due to scale adhesion. It is possible to achieve a hot water supply apparatus that is excellent in reliability.

また、スケール抑制剤を浪費することなく、スケール抑制剤の寿命を長くして、その交換や補充などのメンテナンスや維持コストを低減させることができる。   Moreover, the life of the scale inhibitor can be extended without wasting the scale inhibitor, and maintenance and maintenance costs such as replacement and replenishment can be reduced.

さらに、貯棟槽下部から流れる水の流量が変更された場合に、バイパス回路の流路抵抗と、バイパス回路によって迂回される入水管路の流路抵抗との比率を調節して、流量に応じた適切なスケール抑制剤の濃度を実現することが可能となり、スケール抑制剤を効率的に使用することができる。よって、スケール付着による給湯熱交換器の詰まりを防止して給湯装置の信頼性の向上を図ることができるとともに、スケール抑制剤の寿命を長くすることができる。   Furthermore, when the flow rate of the water flowing from the lower part of the storage tank is changed, the ratio between the flow path resistance of the bypass circuit and the flow path resistance of the water inlet pipe bypassed by the bypass circuit is adjusted to correspond to the flow rate. Therefore, it is possible to achieve an appropriate concentration of the scale inhibitor, and the scale inhibitor can be used efficiently. Therefore, clogging of the hot water supply heat exchanger due to scale adhesion can be prevented to improve the reliability of the hot water supply apparatus, and the life of the scale inhibitor can be extended.

第3の発明は、特に第1または2の発明において、前記スケール抑制剤はポリリン酸塩を主成分とすることを特徴とする。   The third invention is characterized in that, in the first or second invention, the scale inhibitor is mainly composed of polyphosphate.

これにより、炭酸カルシウムがスケール化する場合、炭酸カルシウムの結晶の成長を防止することができるため、ガスクーラなど熱交換器内部にスケールの付着、堆積することを防止する効果が大きく、給湯装置の耐久性を向上させるとともに、ガスクーラなどの熱交換器の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減させることができる。   As a result, when calcium carbonate is scaled, it is possible to prevent the growth of crystals of calcium carbonate, so the effect of preventing the scale from adhering to and accumulating inside a heat exchanger such as a gas cooler is great. In addition, the life of the heat exchanger such as a gas cooler is prolonged, and maintenance and maintenance costs such as replacement and replenishment can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における給湯装置の構成図である。図1において、給湯装置の熱源である加熱手段55は、圧縮機51、給湯熱交換器52、減圧装置53および大気熱を吸熱する蒸発器54からなるヒートポンプサイクルを構成したヒートポンプユニットである。そして、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を冷媒とする。
(Embodiment 1)
1 is a configuration diagram of a hot water supply apparatus according to Embodiment 1 of the present invention. In FIG. 1, a heating means 55 that is a heat source of a hot water supply apparatus is a heat pump unit that constitutes a heat pump cycle including a compressor 51, a hot water supply heat exchanger 52, a decompression device 53, and an evaporator 54 that absorbs atmospheric heat. Then, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used as the refrigerant.

貯湯ユニット56に収納された貯湯槽57への給水は、貯湯槽57下部に接続された給水管58を通ってなされ、貯湯槽57上部の高温の湯は給湯管路59を通り給湯混合弁60で給水と混合することによって所定の温度の湯にしてから給湯配管61を通って蛇口62などの給湯端末から給湯される。   Water is supplied to the hot water storage tank 57 stored in the hot water storage unit 56 through a water supply pipe 58 connected to the lower part of the hot water storage tank 57, and hot water in the upper part of the hot water storage tank 57 passes through the hot water supply pipe 59 and is mixed with the hot water supply mixing valve 60. The hot water is mixed with the hot water at a predetermined temperature, and then hot water is supplied from the hot water supply terminal such as the faucet 62 through the hot water supply pipe 61.

また、貯湯槽57の下部から入水管路64、給湯熱交換器52、出湯管路65および貯湯槽57の上部を順次接続することによって沸き上げ回路を構成し、入水管路64に配設された循環ポンプ63によって、貯湯槽57から圧送された水は、給湯熱交換器52において高温の冷媒により加熱されて貯湯槽57の上から貯留される。   In addition, a boiling circuit is configured by sequentially connecting the water inlet pipe 64, the hot water supply heat exchanger 52, the hot water outlet pipe 65, and the upper part of the hot water tank 57 from the lower part of the hot water tank 57, and is disposed in the incoming water pipe 64. The water pumped from the hot water storage tank 57 by the circulation pump 63 is heated by the high-temperature refrigerant in the hot water supply heat exchanger 52 and stored from above the hot water storage tank 57.

また、給湯熱交換器52の水側出口に接続された出湯管路65には、加熱手段によって沸き上げ加熱された湯温、すなわち加熱温度を検出する温度検出手段66が設けられてい
る。さらに、貯湯槽57と加熱手段55とを接続する入水管路64上には、スケール抑制剤67を充填したスケール抑制手段68が設けられている。
The hot water supply pipe 65 connected to the water outlet of the hot water supply heat exchanger 52 is provided with temperature detecting means 66 for detecting the hot water heated up by the heating means, that is, the heating temperature. Furthermore, a scale suppression means 68 filled with a scale inhibitor 67 is provided on the water inlet pipe 64 connecting the hot water tank 57 and the heating means 55.

以上のように構成された給湯装置について、以下にその動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図1の給湯装置において、湯を生成する沸き上げ運転の要求があると、加熱手段55であるヒートポンプユニットで大気熱を利用した給湯加熱運転を行う。   In the hot water supply apparatus of FIG. 1, when there is a request for a boiling operation for generating hot water, a hot water supply heating operation using atmospheric heat is performed by the heat pump unit which is the heating means 55.

この場合、圧縮機51から吐出された臨界圧力以上の高温高圧の冷媒が給湯熱交換器52に流入し、ここで貯湯槽57の下部から送られてきた水と熱交換して放熱した後、減圧装置53で減圧し、さらに、蒸発器54で大気から熱を吸熱し、ガス化して圧縮機51に戻る。   In this case, a high-temperature and high-pressure refrigerant discharged from the compressor 51 is heated to a hot water supply heat exchanger 52 where heat is exchanged with water sent from the lower part of the hot water tank 57 to dissipate heat. The pressure is reduced by the pressure reducing device 53, and the evaporator 54 absorbs heat from the atmosphere, gasifies it, and returns to the compressor 51.

この時、温度検出手段66で検出される給湯熱交換器52の出口側の温度(加熱温度)が所定温度となるように循環ポンプ63の回転数を制御することで、給湯熱交換器52にて、貯湯槽57の下部から入水管路64を通って送られてきた水が加熱され、所定の温度の湯となり、貯湯槽57の上部から流入し貯留される。   At this time, the number of revolutions of the circulation pump 63 is controlled so that the temperature (heating temperature) on the outlet side of the hot water supply heat exchanger 52 detected by the temperature detection means 66 becomes a predetermined temperature, so that the hot water supply heat exchanger 52 Then, the water sent from the lower part of the hot water storage tank 57 through the water inlet pipe 64 is heated, becomes hot water of a predetermined temperature, flows in from the upper part of the hot water storage tank 57 and is stored.

ここで、スケール抑制剤67を充填したスケール抑制手段68が入水管路64上に配設されているので、循環ポンプ63によって貯湯槽57の下部から送られてきた水は、スケール抑制手段68を流れる。   Here, since the scale suppression means 68 filled with the scale inhibitor 67 is disposed on the water inlet pipe 64, the water sent from the lower part of the hot water storage tank 57 by the circulation pump 63 causes the scale suppression means 68 to flow. Flowing.

スケール抑制手段68にて、スケール抑制剤67が水に溶解し、スケール抑制剤67が溶解した水が給湯熱交換器52に流入して、所定の温度になるように加熱される。このとき、水に含まれるスケール抑制剤67は、特に給湯熱交換器52にて多く析出する炭酸カルシウムなどの結晶の成長を抑制し、スケールの発生を防止する。   In the scale suppressing means 68, the scale inhibitor 67 is dissolved in water, and the water in which the scale inhibitor 67 is dissolved flows into the hot water supply heat exchanger 52 and is heated to a predetermined temperature. At this time, the scale inhibitor 67 contained in the water suppresses the growth of crystals such as calcium carbonate, which are precipitated in the hot water supply heat exchanger 52, and prevents the generation of scale.

スケール抑制剤67としては、ポリリン酸塩を主成分とする粒子をスケール抑制手段68に充填した構成とする。ポリリン酸塩としてはトリポリリン酸ナトリウムやヘキサメタリン酸ナトリウムが代表的であるが、その他のポリリン酸塩を用いても良い。また、ホスホン酸やカルボン酸系高分子電解質等の低分子ポリマーを主成分とするものを用いてもよい。   As the scale inhibitor 67, the scale suppression means 68 is filled with particles containing polyphosphate as a main component. Typical polyphosphates include sodium tripolyphosphate and sodium hexametaphosphate, but other polyphosphates may be used. Moreover, you may use what has low molecular polymers, such as a phosphonic acid and a carboxylic acid type polymer electrolyte, as a main component.

次に、スケールの析出と水の温度の関係について説明する。図2は、横軸に水の温度をとり、縦軸にスケール成分の溶解度をとって、水に対するスケール成分の溶解度を説明する説明図である。図2に示すように、水の温度が高くなればなるほど、スケール成分(たとえば、炭酸カルシウムなど)の溶解度は小さくなり、結晶化して水に析出する。   Next, the relationship between scale precipitation and water temperature will be described. FIG. 2 is an explanatory diagram for explaining the solubility of the scale component in water by taking the temperature of water on the horizontal axis and the solubility of the scale component on the vertical axis. As shown in FIG. 2, the higher the temperature of water, the smaller the solubility of scale components (for example, calcium carbonate, etc.), which crystallizes and precipitates in water.

貯湯式の給湯装置の場合、主として、一日の給湯負荷に見合う分の湯を、電気代の安い深夜電力を利用して、貯湯槽57に貯留する。ここで、給湯負荷は、湯を使用する頻度と使用量が多く、外気温度の低い冬に大きく、逆に、外気温度の高い夏には小さい。   In the case of a hot water storage type hot water supply apparatus, hot water corresponding to the hot water supply load of the day is mainly stored in the hot water storage tank 57 using late-night power with a low electricity bill. Here, the hot water supply load is high in the frequency and amount of hot water used, is large in winter when the outside air temperature is low, and is small in summer when the outside air temperature is high.

季節ごとに異なる給湯負荷に対しては、貯湯槽57に貯留する湯の加熱温度を変更(たとえば、65℃から90℃)して対応する。すなわち、給湯負荷の大きい冬には、たとえば85℃(〜90℃)程度で沸き上げて貯留し、給湯負荷の小さい夏は、冬よりも低い、たとえば65℃〜70℃程度の加熱温度にて湯を貯留する。この加熱温度は、中間期には、その間の温度となる。   The hot water supply load that varies from season to season is dealt with by changing the heating temperature of the hot water stored in the hot water storage tank 57 (for example, 65 ° C. to 90 ° C.). That is, in winter when the hot water supply load is large, the water is boiled and stored at about 85 ° C. (˜90 ° C.), for example, and in summer when the hot water supply load is small, the heating temperature is lower than winter, for example, about 65 ° C. to 70 ° C. Store hot water. This heating temperature is a temperature in the middle period.

よって、特に給湯熱交換器52内の水通路表面などに付着、堆積するスケールは、冬における沸き上げ運転のように、加熱温度が高い状況下で多く生じることとなる。   Therefore, the scale which adheres and accumulates especially on the surface of the water passage etc. in the hot water supply heat exchanger 52 is often generated under a situation where the heating temperature is high, such as a heating operation in winter.

よって、スケールの析出が生じやすい運転条件、すなわち加熱温度が高い条件において、水に溶解させるスケール抑制剤67の濃度を大きくすれば、スケールの析出を効果的に抑制することができる。   Therefore, if the concentration of the scale inhibitor 67 dissolved in water is increased under operating conditions where scale deposition is likely to occur, that is, conditions where the heating temperature is high, scale deposition can be effectively suppressed.

ここで、貯湯式の給湯装置の場合、一般に、加熱能力は外気温度が変化してもほぼ一定である。また、給湯装置への給水として使用される水道水の温度は、一般に外気温度が低いほど低くなる。図3は、横軸に加熱温度をとり、縦軸に加熱流量、つまり、加熱手段55にて加熱される水の流量をとって、加熱温度と加熱流量の関係を示した説明図である。   Here, in the case of a hot water storage type hot water supply apparatus, generally, the heating capacity is substantially constant even when the outside air temperature changes. Moreover, the temperature of the tap water used as water supply to a hot water supply apparatus becomes low, so that outside temperature is generally low. FIG. 3 is an explanatory diagram showing the relationship between the heating temperature and the heating flow rate, where the horizontal axis represents the heating temperature and the vertical axis represents the heating flow rate, that is, the flow rate of water heated by the heating means 55.

加熱手段55による加熱能力がほぼ一定であるとすると、図3に示すように、加熱温度は、加熱手段55に流入する水の流量(加熱流量)を調節して対応することができる。例えば、加熱流量を小さくすることで、加熱流量が大きい場合と比較して、加熱手段55に水が滞留する時間が長くなるので、単位流量あたりの水が高温の冷媒から得る熱量が多くなる。よって、加熱温度を高くすることができる。したがって、図3に示すように、加熱温度の目標値が低いときよりも高いときの方が、加熱手段55へと流入する水の流量が小さくなるように、循環ポンプ63の回転数を制御する。これにより、様々な加熱温度に対応することができる。   Assuming that the heating capability of the heating means 55 is substantially constant, the heating temperature can be handled by adjusting the flow rate (heating flow rate) of water flowing into the heating means 55 as shown in FIG. For example, by reducing the heating flow rate, the time during which water stays in the heating means 55 is longer than when the heating flow rate is large, so the amount of heat that water per unit flow rate obtains from the high-temperature refrigerant increases. Therefore, the heating temperature can be increased. Therefore, as shown in FIG. 3, the rotational speed of the circulation pump 63 is controlled so that the flow rate of water flowing into the heating means 55 is smaller when the target value of the heating temperature is higher than when the target value is lower. . Thereby, it can respond to various heating temperatures.

また、加熱流量を小さくする、すなわち、加熱手段55に流入する水の流量を小さくすると、流量が大きい場合と比較して、入水管路64を流れる水がスケール抑制手段68内に滞留する時間も長くなる。よって、水とスケール抑制剤67が接触する時間が長くなり、スケール抑制剤67の水への溶解量を多くすることができるので、加熱手段55へ流入する水のスケール抑制剤67の濃度を増大させることができる。   Further, when the heating flow rate is reduced, that is, when the flow rate of water flowing into the heating means 55 is reduced, the time during which the water flowing through the water inlet pipe 64 stays in the scale suppression means 68 is also smaller than when the flow rate is high. become longer. Therefore, since the time for which the water and the scale inhibitor 67 come into contact with each other is increased and the amount of the scale inhibitor 67 dissolved in water can be increased, the concentration of the scale inhibitor 67 in the water flowing into the heating means 55 is increased. Can be made.

以上のように、スケールが析出しやすい状況、すなわち、加熱温度の目標値が高い運転条件において、加熱手段55に流入する水の流量が小さくなるように循環ポンプ63の回転数を制御すると、加熱温度を高くすることができるとともに、スケール抑制手段68において、単位流量あたりの水へのスケール抑制剤67の溶解量、すなわち、単位流量の水におけるスケール抑制剤の濃度を大きくすることができ、スケールの析出を抑制することができる。   As described above, when the number of rotations of the circulation pump 63 is controlled so that the flow rate of water flowing into the heating means 55 is reduced in a condition in which scale is likely to precipitate, that is, in an operating condition where the target value of the heating temperature is high, The temperature can be increased, and the scale inhibitor 68 can increase the amount of the scale inhibitor 67 dissolved in water per unit flow rate, that is, the concentration of the scale inhibitor in the unit flow rate water. Precipitation can be suppressed.

よって、給湯装置の運転条件に応じて、水に溶解するスケール抑制剤の濃度を調整することができるので、スケール抑制剤を浪費することなくスケールの生成を抑制して、信頼性の高い給湯装置を提供することができる。   Therefore, since the concentration of the scale inhibitor dissolved in water can be adjusted according to the operating conditions of the hot water supply device, the generation of scale can be suppressed without wasting the scale suppressant, and the highly reliable hot water supply device Can be provided.

(実施の形態2)
図4は、本発明の実施の形態2における給湯装置の構成図である。本実施の形態において、実施の形態1と同一の部分については同一符号を付し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 4 is a configuration diagram of a hot water supply apparatus according to Embodiment 2 of the present invention. In the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4において、給湯装置の熱源である加熱手段55は、圧縮機51、給湯熱交換器52、減圧装置53および大気熱を吸熱する蒸発器54からなるヒートポンプサイクルを構成したヒートポンプユニットである。そして、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を冷媒とする。   In FIG. 4, a heating means 55 that is a heat source of a hot water supply device is a heat pump unit that constitutes a heat pump cycle including a compressor 51, a hot water supply heat exchanger 52, a decompression device 53, and an evaporator 54 that absorbs atmospheric heat. Then, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used as the refrigerant.

貯湯ユニット56に収納された貯湯槽57への給水は、貯湯槽57下部に接続された給水管58を通ってなされ、貯湯槽57上部の高温の湯は給湯管路59を通り給湯混合弁60で給水と混合することによって所定の温度の湯にしてから給湯配管61を通って蛇口62などの給湯端末から給湯される。   Water is supplied to the hot water storage tank 57 stored in the hot water storage unit 56 through a water supply pipe 58 connected to the lower part of the hot water storage tank 57, and hot water in the upper part of the hot water storage tank 57 passes through the hot water supply pipe 59 and is mixed with the hot water supply mixing valve 60. The hot water is mixed with the hot water at a predetermined temperature, and then hot water is supplied from the hot water supply terminal such as the faucet 62 through the hot water supply pipe 61.

また、貯湯槽57の下部から入水管路64、給湯熱交換器52、出湯管路65および貯湯槽57の上部を順次接続することによって沸き上げ回路を構成し、入水管路64に配設された循環ポンプ63によって、貯湯槽57から圧送された水は、給湯熱交換器52において高温の冷媒により加熱されて貯湯槽57の上部から貯留される。   In addition, a boiling circuit is configured by sequentially connecting the water inlet pipe 64, the hot water supply heat exchanger 52, the hot water outlet pipe 65, and the upper part of the hot water tank 57 from the lower part of the hot water tank 57, and is disposed in the incoming water pipe 64. The water pumped from the hot water storage tank 57 by the circulating pump 63 is heated by the high-temperature refrigerant in the hot water supply heat exchanger 52 and stored from above the hot water storage tank 57.

また、給湯熱交換器52の水側出口に接続された出湯管路65には、加熱手段によって加熱された湯温を検出する温度検出手段66が設けられている。さらに、入水管路64において、一部を迂回させる別の入水管路であるバイパス回路74を並列に設け、このバイパス回路74上にスケール抑制剤67を充填したスケール抑制手段68が設けられている。これにより、スケール抑制手段68が設けられていない入水管路64が主回路となり、スケール抑制手段68が配置されたバイパス回路74は、入水管路64の副回路を形成することとなる。   The hot water supply pipe 65 connected to the water side outlet of the hot water supply heat exchanger 52 is provided with temperature detecting means 66 for detecting the temperature of the hot water heated by the heating means. Further, in the water intake pipe 64, a bypass circuit 74, which is another water intake pipe that bypasses a part of the water, is provided in parallel, and a scale suppression means 68 filled with a scale inhibitor 67 is provided on the bypass circuit 74. . As a result, the water intake pipe 64 where the scale suppression means 68 is not provided becomes the main circuit, and the bypass circuit 74 in which the scale suppression means 68 is arranged forms a sub circuit of the water intake pipe 64.

以上のように構成された給湯装置について、以下にその動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図4において、貯湯槽57を沸き上げる給湯加熱運転について説明する。貯湯槽57に蓄えられた水を沸き上げる要求があると、加熱手段55であるヒートポンプユニットで大気熱を利用した給湯加熱運転を行う。この場合、圧縮機51から吐出された臨界圧力以上の高温高圧の冷媒は、給湯熱交換器52へと流入し、ここで貯湯槽57の下部から送られてきた水と熱交換し放熱した後、減圧装置53で減圧され、さらに、蒸発器54で大気から熱を吸熱し、ガス化して圧縮機51に戻る。   In FIG. 4, a hot water supply heating operation for boiling the hot water storage tank 57 will be described. When there is a request to boil water stored in the hot water storage tank 57, a hot water supply heating operation using atmospheric heat is performed by the heat pump unit which is the heating means 55. In this case, the high-temperature and high-pressure refrigerant discharged from the compressor 51 is heated to a hot water supply heat exchanger 52, where it exchanges heat with the water sent from the lower part of the hot water tank 57 and dissipates heat. The pressure is reduced by the pressure reducing device 53, and the evaporator 54 absorbs heat from the atmosphere, gasifies it, and returns to the compressor 51.

この時、給湯熱交換器52の出口温度、すなわち、温度検出手段66にて検出される温度が所定温度となるように循環ポンプ63の回転数を制御することで、給湯熱交換器52にて、貯湯槽57の下部から入水管路64を通って送られてきた水が加熱され、所定の温度の湯となり、貯湯槽57の上部から流入し貯留される。   At this time, the hot water supply heat exchanger 52 controls the number of revolutions of the circulation pump 63 so that the outlet temperature of the hot water supply heat exchanger 52, that is, the temperature detected by the temperature detecting means 66 becomes a predetermined temperature. The water sent from the lower part of the hot water tank 57 through the water inlet pipe 64 is heated to become hot water having a predetermined temperature, and flows in from the upper part of the hot water tank 57 and is stored.

ここで、スケール抑制剤67を充填したスケール抑制手段68を備えたバイパス回路74が、入水管路64に並列に接続されているので、循環ポンプ63によって貯湯槽57の下部から送られてきた水の一部は、接続部Aでスケール抑制手段68を備えたバイパス回路74側に流れ、残りはスケール抑制手段68を備えていない入水管路64側に流れる。   Here, since the bypass circuit 74 provided with the scale suppressing means 68 filled with the scale inhibitor 67 is connected in parallel to the water inlet pipe 64, the water sent from the lower part of the hot water tank 57 by the circulation pump 63. A part of the gas flows to the bypass circuit 74 side provided with the scale suppressing means 68 at the connection portion A, and the rest flows to the water inlet pipe 64 side not provided with the scale suppressing means 68.

そして、バイパス回路74側に流れた水には、スケール抑制手段68に流入してスケール抑制剤67が溶解し、その後、接続部Bで、スケール抑制手段68を備えていない入水管路64に流れた水と混合する。接続部Bで入水管路64を流れた水と混合され、スケール抑制剤67が溶解した水は、給湯熱交換器52に流入して、所定の温度になるように加熱される。このとき、水に含まれるスケール抑制剤67は、特に給湯熱交換器52中で生成する炭酸カルシウムなどの結晶の成長を抑制し、スケールの発生を防止する。   Then, the water that has flowed to the bypass circuit 74 side flows into the scale suppression means 68 and dissolves the scale inhibitor 67, and then flows into the inlet pipe 64 that does not include the scale suppression means 68 at the connection portion B. Mix with water. The water mixed with the water flowing through the water inlet pipe 64 at the connection portion B and dissolved in the scale inhibitor 67 flows into the hot water supply heat exchanger 52 and is heated to a predetermined temperature. At this time, the scale inhibitor 67 contained in the water suppresses the growth of crystals such as calcium carbonate generated in the hot water supply heat exchanger 52, and prevents the generation of scale.

図2は、横軸に水の温度をとり、縦軸にスケール成分の溶解度をとって、水に対するスケール成分の溶解度を説明する説明図である。図2に示すように、水の温度が高くなればなるほど、スケール成分(たとえば、炭酸カルシウムなど)の溶解度は小さくなり、結晶化して水に析出する。すなわち、給湯熱交換器52の水通路表面などに付着、堆積するスケールは、加熱温度が高い運転条件下で多く生じる。   FIG. 2 is an explanatory diagram for explaining the solubility of the scale component in water by taking the temperature of water on the horizontal axis and the solubility of the scale component on the vertical axis. As shown in FIG. 2, the higher the temperature of water, the smaller the solubility of scale components (for example, calcium carbonate, etc.), which crystallizes and precipitates in water. That is, many scales that adhere to and accumulate on the surface of the water passage of the hot water supply heat exchanger 52 and the like are generated under operating conditions where the heating temperature is high.

また、図3に示すように、加熱能力が一定の条件下で、水道から給水される水を貯湯槽57に貯留する温度(加熱温度)まで加熱する場合、加熱手段に流入して加熱され、貯湯槽57に貯留される水の流量(加熱流量)を調節して対応することができる。すなわち、加熱流量が小さい場合、加熱流量が大きい場合と比較して、加熱手段55において、単位流量あたりの水が高温の冷媒から得る熱量が多くなるので、加熱温度を高くすることがで
きる。
Moreover, as shown in FIG. 3, when heating to the temperature (heating temperature) which stores the water supplied from a water supply in the hot water storage tank 57 on the conditions with a fixed heating capability, it flows into a heating means and is heated, It is possible to respond by adjusting the flow rate (heating flow rate) of the water stored in the hot water tank 57. That is, when the heating flow rate is small, compared with the case where the heating flow rate is large, in the heating means 55, the amount of heat obtained from the high-temperature refrigerant by the water per unit flow rate increases, so that the heating temperature can be increased.

以上のように、加熱温度が高い、つまり、加熱流量が小さい方が、スケールが生成しやすく、給湯熱交換器52の水側流路表面に付着しやすいことになる。よって、スケールの生成と、特に給湯熱交換器52の水側流路表面へのスケールの付着とを防止するためには、加熱流量が小さくなるほど、給湯熱交換器52へと流れる水に含まれるスケール抑制剤の濃度(水の単位質量あたりに含まれるスケール抑制剤の質量)を大きくすればよい。   As described above, the higher the heating temperature, that is, the smaller the heating flow rate, the easier the scale is to be generated and the easier it is to adhere to the water-side flow path surface of the hot water supply heat exchanger 52. Therefore, in order to prevent scale generation and particularly adhesion of the scale to the water-side flow path surface of the hot water supply heat exchanger 52, the smaller the heating flow rate, the more the water flows into the hot water supply heat exchanger 52. What is necessary is just to enlarge the density | concentration (mass of the scale inhibitor contained per unit mass of water) of a scale inhibitor.

図5は、バイパス回路74と入水管路64を流れる流量とそのときのスケール抑制剤67の濃度を説明する説明図である。図5(a)は加熱流量が小さい場合、図5(b)は加熱流量が大きい場合である。   FIG. 5 is an explanatory diagram for explaining the flow rate flowing through the bypass circuit 74 and the water inlet pipe 64 and the concentration of the scale inhibitor 67 at that time. 5A shows a case where the heating flow rate is small, and FIG. 5B shows a case where the heating flow rate is large.

バイパス回路74は、入水管路64の途中にある接続部Aと接続部Bとに接続(接続部AがBよりも上流側)されている。そして、バイパス回路74はスケール抑制剤67を収納したスケール抑制手段68を備えている。   The bypass circuit 74 is connected to a connection part A and a connection part B in the middle of the water inlet pipe 64 (the connection part A is upstream of B). The bypass circuit 74 includes a scale suppression means 68 in which the scale suppression agent 67 is accommodated.

接続部Aで分流した入水管路64側に流れる流量とバイパス回路側に流れる流量を、図5(a)の場合にそれぞれJ1、K1とし、図5(b)の場合にそれぞれJ2、K2とする。また、スケール抑制手段68の出口部Cを出たあとのスケール抑制剤67の濃度を、図5(a)の場合にN1(C)とし、図5(b)の場合はN2(C)とする。   In the case of FIG. 5 (a), the flow rate flowing to the inlet pipe 64 side and the flow rate flowing to the bypass circuit side divided at the connection portion A are J1 and K1, respectively, and in the case of FIG. To do. Moreover, the density | concentration of the scale inhibitor 67 after exiting the exit part C of the scale suppression means 68 is set to N1 (C) in the case of FIG. 5 (a), N2 (C) in the case of FIG.5 (b). To do.

ここで、図5(a)の場合は、図5(b)の場合に比べ流量が小さいので、スケール抑制手段68内の流速が小さくなる。したがって、スケール抑制手段68内に流入した水とスケール抑制剤67とが接触する時間が長くなり、その結果、スケール抑制手段68を出た後の濃度は図5(a)の方が大きくなる。すなわち、以下の関係となる。   Here, in the case of FIG. 5A, the flow rate is smaller than in the case of FIG. Therefore, the time for which the water flowing into the scale suppression means 68 and the scale suppression agent 67 come into contact with each other becomes longer, and as a result, the concentration after exiting the scale suppression means 68 becomes larger in FIG. That is, the following relationship is established.

また、接続部Bの下流側のスケール抑制剤67の濃度を、図5(a)の場合はN1(B)とし、図5(b)の場合はN2(B)とすると、以下の関係式が得られる。   Further, when the concentration of the scale inhibitor 67 on the downstream side of the connecting portion B is N1 (B) in the case of FIG. 5A and N2 (B) in the case of FIG. Is obtained.

さらに、入水管路64側とバイパス回路74側に流れる流量の分流比率を、   Furthermore, the diversion ratio of the flow rate that flows to the inlet pipe 64 side and the bypass circuit 74 side,

とすると、接続部Bの下流側のスケール抑制剤67の濃度とスケール抑制手段68の出口部Cを出たあとのスケール抑制剤67の濃度との関係は次のようになる。 Then, the relationship between the concentration of the scale inhibitor 67 on the downstream side of the connection B and the concentration of the scale inhibitor 67 after exiting the outlet C of the scale suppression means 68 is as follows.

以上の(式1)、(式5)より、給湯熱交換器52に流入する接続部Bの下流側のスケール抑制剤67の濃度の関係は、以下のようになる。   From the above (Formula 1) and (Formula 5), the relationship of the concentration of the scale inhibitor 67 on the downstream side of the connection portion B flowing into the hot water supply heat exchanger 52 is as follows.

(式6)からわかるように、流量が小さい方が、給湯熱交換器52に流入するスケール抑制剤67の濃度が大きくなる。流量が小さい方が、加熱温度が高く、スケールが生成され易い条件であるが、スケール抑制剤67の濃度を大きくすることができ、給湯熱交換器52などへのスケール付着を防止、または、少なくすることができる。   As can be seen from (Expression 6), the concentration of the scale inhibitor 67 flowing into the hot water supply heat exchanger 52 increases as the flow rate decreases. The smaller the flow rate is, the higher the heating temperature and the easier the scale is generated. However, the concentration of the scale inhibitor 67 can be increased, and the scale adhesion to the hot water supply heat exchanger 52 or the like can be prevented or reduced. can do.

よって、図4および図5に示すような、分流比率を設定することが可能なバイパス回路74によって、加熱手段55へと流入する水を分流することにより、スケール抑制手段68に流入する水の流量を適宜調整することが可能となり、これにより、スケール抑制剤67の水への溶解量を調整することができる。   Therefore, the flow rate of the water flowing into the scale suppression means 68 by diverting the water flowing into the heating means 55 by the bypass circuit 74 capable of setting the diversion ratio as shown in FIGS. Thus, the amount of the scale inhibitor 67 dissolved in water can be adjusted.

図6は、バイパス回路74側と入水管路64側とへ流れる流量の分流比率を設定する方法を説明する説明図である。   FIG. 6 is an explanatory diagram for explaining a method of setting a flow dividing ratio of the flow rate flowing to the bypass circuit 74 side and the water inlet pipe 64 side.

図6(a)は、入水管路64の接続部Aと接続部B間の流路抵抗を、例えば管路断面積をバイパス回路74とは異なるように構成することで変化させ、これにより点AB間の圧力損失を設定して、その差圧に応じて分岐流量の分流比率を決定することができるようにしたものである。   In FIG. 6A, the flow path resistance between the connecting portion A and the connecting portion B of the water inlet pipe 64 is changed by, for example, configuring the pipe cross-sectional area to be different from that of the bypass circuit 74. The pressure loss between AB is set, and the branching ratio of the branch flow rate can be determined according to the differential pressure.

なお、スケール抑制手段68の流路抵抗が大きい場合には、図6(b)に示すように、スケール抑制手段68を備えたバイパス回路74側に流体の動圧がかかる構成とし、点AB間の入水管路64の管の断面積を変更することで、点AB間の圧力損失を設定し、その差圧に応じて分岐流量の分流比率を必要に応じて決定することができる。   In addition, when the flow path resistance of the scale suppression means 68 is large, as shown in FIG. 6B, the configuration is such that fluid dynamic pressure is applied to the bypass circuit 74 side provided with the scale suppression means 68, and between the points AB. By changing the cross-sectional area of the pipe of the incoming water pipe 64, the pressure loss between the points AB can be set, and the diversion ratio of the branch flow rate can be determined as necessary according to the differential pressure.

以上のように、貯湯槽下部からの湯水の一部を分岐して、これにスケール抑制剤67を溶解させ、その他の湯水はスケール抑制手段68を流れることなく給湯熱交換器52に流入するので、スケール抑制剤の浪費を防止することができる。よって、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減させるという効果がある。   As described above, since a part of the hot water from the lower part of the hot water tank is branched and the scale inhibitor 67 is dissolved therein, the other hot water flows into the hot water supply heat exchanger 52 without flowing through the scale suppressing means 68. In addition, waste of the scale inhibitor can be prevented. Therefore, the life of the scale inhibitor is prolonged, and there is an effect of reducing maintenance and maintenance costs such as replacement and replenishment.

さらに、所望の加熱温度に湯水を沸き上げるために、加熱手段55へ流入する水の流量が低下した場合に、加熱手段55へ流入する水のスケール抑制剤67の濃度を濃くすることができるので、給湯装置の運転条件に応じてスケール抑制手段68を使用して、スケールの析出および付着による給湯熱交換器52の詰まりを防止することができるので、給湯
装置としての信頼性を向上させることができる。
Furthermore, in order to boil hot water to a desired heating temperature, when the flow rate of water flowing into the heating means 55 is reduced, the concentration of the scale inhibitor 67 of water flowing into the heating means 55 can be increased. Since the scale suppression means 68 can be used in accordance with the operating conditions of the hot water supply device, clogging of the hot water heat exchanger 52 due to scale deposition and adhesion can be prevented, so that the reliability of the hot water supply device can be improved. it can.

(実施の形態3)
図7は、本発明の実施の形態3における給湯装置の構成図である。
(Embodiment 3)
FIG. 7 is a configuration diagram of a hot water supply apparatus according to Embodiment 3 of the present invention.

本実施の形態において、他の実施の形態と同一部分には同一符号を付し、その詳細な説明は省略する。   In this embodiment, parts that are the same as those in the other embodiments are given the same reference numerals, and detailed descriptions thereof are omitted.

本実施の形態における給湯装置は、図7に示すように、入水管路64の接続部Aと接続部Bの間に流量調節手段69を備え、また、流量調節手段69の動作を制御する制御手段70を備えている。   As shown in FIG. 7, the hot water supply apparatus in the present embodiment includes a flow rate adjusting means 69 between the connection portion A and the connection portion B of the water inlet pipe 64, and control for controlling the operation of the flow rate adjustment means 69. Means 70 are provided.

流量調節手段69としては、例えば、給湯装置で一般に使用されている流量制御弁を用いることができ、ステッピングモータを駆動させることによって、流体が通過する流路断面積を変えることによって流量を調節することができる。   As the flow rate adjusting means 69, for example, a flow rate control valve generally used in a hot water supply apparatus can be used, and the flow rate is adjusted by changing the flow passage cross-sectional area through which the fluid passes by driving a stepping motor. be able to.

以上のように構成された給湯装置について、以下にその動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図7において、接続部Bの下流におけるスケール抑制剤67の濃度を所定の濃度に変更する場合、流量調節手段69の流路抵抗を変更(例えば、流路断面積を変更)し、接続部Aと接続部Bの間の圧力損失を変更することによって、スケール抑制手段68側に分岐して流れる流量(分岐流量)の比率を変更する。   In FIG. 7, when the concentration of the scale inhibitor 67 downstream of the connection portion B is changed to a predetermined concentration, the flow passage resistance of the flow rate adjusting means 69 is changed (for example, the flow passage cross-sectional area is changed), and the connection portion A is changed. And the ratio of the flow volume (branch flow volume) which branches and flows to the scale suppression means 68 side is changed by changing the pressure loss between the connection parts B.

すなわち、流量調節手段69の流路抵抗を大きく(例えば、弁開度を小さくすることで流路断面積を小さく)すると、接続部Aと接続部Bの間の圧力損失が大きくなるので、分岐流量の比率を大きくすることができる。逆に、流量調節手段69の流路抵抗を小さく(例えば、流路断面積を大きく)すれば分岐流量の比率を小さくすることができ、これによって、分岐流量を調整することができる。   That is, if the flow path resistance of the flow rate adjusting means 69 is increased (for example, the flow path cross-sectional area is decreased by decreasing the valve opening degree), the pressure loss between the connection part A and the connection part B increases. The ratio of flow rate can be increased. Conversely, if the flow path resistance of the flow rate adjusting means 69 is reduced (for example, the flow path cross-sectional area is increased), the ratio of the branch flow rate can be reduced, thereby adjusting the branch flow rate.

給湯熱交換器52内にスケールが付着、成長する要因としては、貯湯槽57に貯留する温度(加熱温度)がある。加熱温度が高い方がスケールの生成と成長が大きい。また、加熱温度と加熱流量とは図3に示すような関係がある。すなわち、加熱流量が小さい方が、スケールが生成されやすく、また、スケールの成長も早い。   As a factor that the scale adheres and grows in the hot water supply heat exchanger 52, there is a temperature (heating temperature) stored in the hot water storage tank 57. The higher the heating temperature, the greater the scale generation and growth. Further, the heating temperature and the heating flow rate have a relationship as shown in FIG. That is, the smaller the heating flow rate, the easier the scale is generated and the faster the scale grows.

そこで、加熱手段55への流入する湯水に含まれるスケール抑制剤67の濃度が、加熱流量に対して、スケールの生成と成長が抑制されるような濃度となるように、分岐流量の比率を設定すればよい。このとき、スケールの生成と成長がないスケール抑制剤67の濃度と、加熱流量との関係を事前に求めておき、この関係をリモコン72に記憶させるようにしても良い。   Therefore, the ratio of the branch flow rate is set so that the concentration of the scale inhibitor 67 contained in the hot water flowing into the heating means 55 is such that the scale generation and growth are suppressed with respect to the heating flow rate. do it. At this time, the relationship between the concentration of the scale inhibitor 67 without scale generation and growth and the heating flow rate may be obtained in advance, and this relationship may be stored in the remote controller 72.

なお、分岐流量の比率は流量調節手段69を調節することで行うが、必要な流量は循環ポンプ63の回転数を調整することで得ることができる。   The ratio of the branch flow rate is adjusted by adjusting the flow rate adjusting means 69, but the required flow rate can be obtained by adjusting the rotational speed of the circulation pump 63.

このように、加熱流量に応じて、流量調節手段69を一つ使用するだけで、スケールの生成を抑制することが可能なスケール抑制剤67の濃度を設定できるので、給湯装置の運転条件に応じて、加熱手段55への流入する水のスケール抑制剤67の濃度を適切に調整することができる。よって、スケールの析出および付着を長期にわたって防止する信頼性に優れた給湯装置を提供することができるとともに、スケール抑制剤67の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減することができるという効果がある。   Thus, according to the heating flow rate, the concentration of the scale inhibitor 67 that can suppress the generation of scale can be set by using only one flow rate adjusting means 69, so that it depends on the operating conditions of the hot water supply device. Thus, the concentration of the scale inhibitor 67 of the water flowing into the heating means 55 can be adjusted appropriately. Therefore, it is possible to provide a highly reliable hot water supply apparatus that prevents scale deposition and adhesion over a long period of time, and the life of the scale inhibitor 67 is prolonged, thereby reducing maintenance and maintenance costs such as replacement and replenishment. There is an effect that can be.

なお、貯湯槽57に貯留される湯の温度(加熱温度)は、一般的に、65〜90℃程度である。そして、加熱温度が高い方が、加熱流量が低く、スケールの生成と成長が生じやすいが、加熱温度が65℃前後であれば、スケールの生成が少なく、成長もほとんど無い。   In addition, the temperature (heating temperature) of the hot water stored in the hot water tank 57 is generally about 65 to 90 ° C. The higher the heating temperature, the lower the heating flow rate and the easier the generation and growth of the scale. However, if the heating temperature is around 65 ° C., the generation of scale is small and there is almost no growth.

よって、このような加熱温度条件に相当する加熱流量のとき、スケール抑制剤67の濃度を最小にするように、制御手段70が流量調節手段69を調整する構成とすればよい。すなわち、流量調節手段69の流路抵抗を最小(流量調節手段69の流体が通過する流路断面積を最大)になるように制御する。   Therefore, the control unit 70 may be configured to adjust the flow rate adjusting unit 69 so that the concentration of the scale inhibitor 67 is minimized when the heating flow rate corresponds to such a heating temperature condition. That is, the flow path resistance of the flow rate adjusting means 69 is controlled to be the minimum (the flow path cross-sectional area through which the fluid of the flow rate adjusting means 69 passes is maximized).

このように、スケールの生成が少なく、成長もほとんど無いような加熱流量の場合には、スケール抑制剤67の濃度を最小に設定できるので、常にスケール抑制剤濃度を高くすることなく、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。   In this way, when the heating flow rate is such that there is little generation of scale and little growth, the concentration of the scale inhibitor 67 can be set to the minimum, so that the scale inhibitor is not always increased without increasing the scale inhibitor concentration. This has the effect of extending the life of the battery and reducing maintenance and maintenance costs such as replacement and replenishment.

(実施の形態4)
図8は、本発明の実施の形態4における給湯装置の構成図である。本実施の形態において、他の実施の形態と同一部分については同一符号を付し、その詳細な説明は省略する。
(Embodiment 4)
FIG. 8 is a configuration diagram of a hot water supply apparatus according to Embodiment 4 of the present invention. In this embodiment, the same parts as those in the other embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示すように、2つの出口側流路の断面積を変えることによって、2つの出口側流路に流れる流量を調節できる流量調節手段69(三方弁)を接続部Aに設ける。すなわち、入口側は貯湯槽57側の入水管路64に接続し、2つの出口側の一方は加熱手段55側の入水管路64側に、他方はバイパス回路74側に接続する。制御手段70は、それぞれの出口側の流量が必要な分流比率となるように、この流量調節手段69の動作を制御する。   As shown in FIG. 8, flow rate adjusting means 69 (three-way valve) capable of adjusting the flow rate flowing through the two outlet-side flow paths by changing the cross-sectional areas of the two outlet-side flow paths is provided at the connection portion A. That is, the inlet side is connected to the inlet pipe 64 on the hot water tank 57 side, one of the two outlet sides is connected to the inlet pipe 64 side on the heating means 55 side, and the other is connected to the bypass circuit 74 side. The control means 70 controls the operation of the flow rate adjusting means 69 so that the flow rates on the respective outlet sides have the required diversion ratio.

流量調節手段69としては、例えば、給湯装置で一般に使用されている混合弁を用いることができ、ステッピングモータを駆動させることによって、流体が通過する出口側の流路断面積を変えることによって流量を変更するものである。   As the flow rate adjusting means 69, for example, a mixing valve generally used in a hot water supply device can be used. By driving a stepping motor, the flow rate is changed by changing the cross-sectional area of the outlet side through which the fluid passes. To change.

以上のように構成された給湯装置について、以下にその動作、作用を説明する。図8に示す給湯装置において、接続部Bの下流における水のスケール抑制剤67の濃度を所定の濃度に変更する場合、流量調節手段69の流路抵抗を変更(例えば、流路断面積を変更)する。これにより、バイパス回路74側(スケール抑制手段68側)に分岐して流れる流量(分岐流量)とスケール抑制手段68を備えていない入水管路64を流れる流量(分岐流量)の比率を変更することができる。すなわち、流量調節手段69によって、入水管路64を流れる流量とバイパス回路74を流れる流量の双方を適宜調整する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In the hot water supply apparatus shown in FIG. 8, when the concentration of the water scale inhibitor 67 downstream of the connection portion B is changed to a predetermined concentration, the flow path resistance of the flow rate adjusting means 69 is changed (for example, the flow path cross-sectional area is changed). ) Thereby, the ratio of the flow rate (branch flow rate) branched and flowing to the bypass circuit 74 side (scale suppression means 68 side) and the flow rate (branch flow rate) flowing through the water inlet pipe 64 not provided with the scale suppression means 68 is changed. Can do. In other words, the flow rate adjusting means 69 appropriately adjusts both the flow rate flowing through the water inlet pipe 64 and the flow rate flowing through the bypass circuit 74.

給湯熱交換器52内にスケールが付着、成長する要因としては、貯湯槽57に貯留する水の温度(加熱温度)がある。加熱温度が高い方がスケールの生成と成長が大きい。また、加熱温度と加熱流量とは図3に示すような関係がある。よって、加熱流量が小さい方が、スケールが生成されやすく、また、スケールの成長も早い。   As a factor that the scale adheres and grows in the hot water supply heat exchanger 52, there is a temperature (heating temperature) of water stored in the hot water storage tank 57. The higher the heating temperature, the greater the scale generation and growth. Further, the heating temperature and the heating flow rate have a relationship as shown in FIG. Therefore, the smaller the heating flow rate, the easier the scale is generated and the faster the scale grows.

そこで、加熱手段55への流入する湯水に含まれるスケール抑制剤67の濃度が、スケールの生成と成長が抑制される濃度となるように、流量調節手段69によって、分岐流量の比率を設定すればよい。このとき、スケールの生成と成長が抑制することが可能な水のスケール抑制剤67の濃度と、加熱流量との関係を事前に求めておき、この関係をリモコン72に記憶させるようにしても良い。   Therefore, if the ratio of the branch flow rate is set by the flow rate adjusting unit 69 so that the concentration of the scale inhibitor 67 contained in the hot water flowing into the heating unit 55 becomes a concentration at which scale generation and growth are suppressed. Good. At this time, a relationship between the concentration of the water scale inhibitor 67 capable of suppressing scale generation and growth and the heating flow rate is obtained in advance, and this relationship may be stored in the remote controller 72. .

なお、分岐流量の比率は流量調節手段69を調節することで行うが、必要な流量は循環ポンプ63の回転数を調整することで得ることができる。   The ratio of the branch flow rate is adjusted by adjusting the flow rate adjusting means 69, but the required flow rate can be obtained by adjusting the rotational speed of the circulation pump 63.

このように、加熱流量に応じて、スケールの生成が起こらないスケール抑制剤67の濃度を設定できるので、給湯装置の運転条件に応じて、加熱手段55への流入する湯水のスケール抑制剤67の濃度を適切に調整することができるので、スケールの析出および付着を長期にわたって防止する信頼性に優れた給湯装置を提供することができるとともに、スケール抑制剤67の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減することができるという効果がある。   Thus, since the density | concentration of the scale inhibitor 67 which does not generate | occur | produce a scale can be set according to a heating flow rate, according to the operating condition of a hot water supply apparatus, the scale inhibitor 67 of the hot water which flows into the heating means 55 is set. Since the concentration can be adjusted appropriately, it is possible to provide a highly reliable hot water supply apparatus that prevents the deposition and adhesion of scale over a long period of time, and the life of the scale inhibitor 67 is increased, and replacement and replenishment thereof are possible. There is an effect that maintenance and maintenance costs can be reduced.

以上のように、本発明にかかる給湯装置は、運転条件に応じてスケール抑制剤の溶解量を適切に調整し、給湯装置の信頼性を向上させるとともにスケール抑制手段の長寿命化を図ることができるので、家庭用や業務用などの給湯装置に適用することができる。   As described above, the hot water supply apparatus according to the present invention appropriately adjusts the amount of dissolution of the scale inhibitor according to the operating conditions, improves the reliability of the hot water supply apparatus, and extends the life of the scale suppression means. Therefore, it can be applied to hot water supply devices for home use and business use.

55 加熱手段
57 貯湯槽
63 循環ポンプ
64 入水管路
65 出湯管路
67 スケール抑制剤
68 スケール抑制手段
69 流量調節手段
74 バイパス回路
55 Heating means 57 Hot water storage tank 63 Circulation pump 64 Water inlet pipe 65 Hot water outlet pipe 67 Scale inhibitor 68 Scale suppressing means 69 Flow rate adjusting means 74 Bypass circuit

Claims (3)

湯水を貯える貯湯槽と、
前記貯湯槽の下部から入水管路を介して送られた水を加熱する加熱手段と、
前記入水管路に配設され、前記貯湯槽の下部の水を前記加熱手段に圧送する循環ポンプと、
前記加熱手段で加熱された水を前記貯湯槽の上部へと導入する出湯管路と、
前記入水管路上に配設され、前記加熱手段に圧送される水に、スケールの生成を抑制するスケール抑制剤を添加するスケール抑制手段と、を備え、
給湯負荷および前記加熱手段による前記水の加熱温度が低い運転条件のときよりも、前記給湯負荷および前記加熱手段による前記水の加熱温度が高い運転条件のときに、前記加熱手段に流入する前記水の流量が小さくなるように前記循環ポンプの回転数を制御して、前記加熱手段に流入する水に含まれるスケール抑制剤の濃度を大きくするとともに、前記加熱手段により加熱された水の温度も高くすることを特徴とする給湯装置。
A hot water storage tank for storing hot water,
A heating means for heating the water sent from the lower part of the hot water storage tank through the water inlet line;
A circulation pump that is disposed in the water inlet pipe and pumps water below the hot water tank to the heating means;
A hot water outlet pipe for introducing water heated by the heating means into the upper part of the hot water storage tank;
A scale suppressing means for adding a scale inhibitor that suppresses generation of scale to the water that is disposed on the water inlet pipe and is pumped to the heating means; and
The water that flows into the heating means when the hot water supply load and the heating temperature of the water by the heating means are higher in operating conditions than when the hot water supply load and the heating temperature of the water by the heating means are low. The rotational speed of the circulation pump is controlled so as to reduce the flow rate of the water, and the concentration of the scale inhibitor contained in the water flowing into the heating means is increased, and the temperature of the water heated by the heating means is also increased. A hot water supply apparatus characterized by the above.
前記入水管路上に、前記入水管路の一部を迂回させるバイパス回路を設け、前記スケール抑制手段は、前記バイパス回路に配設されるとともに、前記入水管路に流れる流量と前記バイパス回路に流れる流量との流量比率を調整する流量調節手段と、を備えることを特徴とする請求項1に記載の給湯装置。 A bypass circuit for bypassing a part of the water inlet pipe is provided on the water inlet pipe, and the scale suppression means is disposed in the bypass circuit, and flows to the water inlet and the bypass circuit. The hot water supply apparatus according to claim 1, further comprising a flow rate adjusting unit that adjusts a flow rate ratio with the flow rate. 前記スケール抑制剤はポリリン酸塩を主成分とすることを特徴とする請求項1または2に記載の給湯装置。 The hot water supply apparatus according to claim 1 or 2, wherein the scale inhibitor is mainly composed of polyphosphate.
JP2012228611A 2012-10-16 2012-10-16 Water heater Active JP6212698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228611A JP6212698B2 (en) 2012-10-16 2012-10-16 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228611A JP6212698B2 (en) 2012-10-16 2012-10-16 Water heater

Publications (2)

Publication Number Publication Date
JP2014081114A JP2014081114A (en) 2014-05-08
JP6212698B2 true JP6212698B2 (en) 2017-10-18

Family

ID=50785459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228611A Active JP6212698B2 (en) 2012-10-16 2012-10-16 Water heater

Country Status (1)

Country Link
JP (1) JP6212698B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224041B2 (en) * 2007-06-27 2013-07-03 ダイキン工業株式会社 Heat pump type water heater
JP5308977B2 (en) * 2009-09-28 2013-10-09 サンデン株式会社 Hot water system
JP2011252677A (en) * 2010-06-03 2011-12-15 Hitachi Appliances Inc Heat pump water heater
JP5793650B2 (en) * 2011-03-14 2015-10-14 パナソニックIpマネジメント株式会社 Water heater
JP5938573B2 (en) * 2011-12-20 2016-06-22 パナソニックIpマネジメント株式会社 Water heater

Also Published As

Publication number Publication date
JP2014081114A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2017126580A1 (en) Cold hydrogen supply station and hydrogen cooling device
JP2014200696A (en) Hot water supply apparatus
JP6239333B2 (en) Hot water supply system and control method thereof
JP2014081117A (en) Water heater
JP2008145096A (en) Hot water supply system and hot water supply method
JP5971149B2 (en) Water heater
JP2014081116A (en) Water heater
JP2013217596A (en) Heating system
JP2013113495A (en) Hot water storage type hot water supply system
JP6078787B2 (en) Water heater
JP2014081115A (en) Water heater
JP5938573B2 (en) Water heater
JP6212698B2 (en) Water heater
JP2006207882A (en) Absorption heat pump
JP2012229895A (en) Cogeneration system, exhaust heat utilization apparatus, method of controlling cogeneration system, and heat pump type hot water supply device
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP2017036842A (en) Hot water supply system
CN103154630B (en) Heat pump hot-water supply system
JP2008249169A (en) Heat pump type water heater
EP2778562B1 (en) Water heater
JP2010181049A (en) Cogeneration system
JP2013130356A (en) Storage water heater
JP2015218925A (en) Water heater
JP2007003055A (en) Storage type hot water supply device
JP2016207581A (en) Fuel cell cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R151 Written notification of patent or utility model registration

Ref document number: 6212698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151