JP5938573B2 - Water heater - Google Patents
Water heater Download PDFInfo
- Publication number
- JP5938573B2 JP5938573B2 JP2011278103A JP2011278103A JP5938573B2 JP 5938573 B2 JP5938573 B2 JP 5938573B2 JP 2011278103 A JP2011278103 A JP 2011278103A JP 2011278103 A JP2011278103 A JP 2011278103A JP 5938573 B2 JP5938573 B2 JP 5938573B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- scale
- water supply
- flow rate
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Details Of Fluid Heaters (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
本発明は、貯湯槽に溜めた高温の湯を用いて給湯を行う給湯装置に関するものである。 The present invention relates to a hot water supply apparatus that supplies hot water using hot water stored in a hot water storage tank.
従来、この種の給湯装置として、貯湯槽に溜めた高温の湯を用いて給湯を行うものがある(例えば、特許文献1参照)。 Conventionally, as this type of hot water supply apparatus, there is one that performs hot water supply using high-temperature hot water stored in a hot water tank (see, for example, Patent Document 1).
図6は、前記公報の第一実施形態として記載された従来の給湯装置を示すものである。同図に示すように、この給湯装置は、ガスクーラ(給湯熱交換器)1を有するヒートポンプユニット2と、ガスクーラ1にて沸き上げられた湯水が貯留される貯湯タンク3を有する貯湯ユニット4とから構成されている。また、ヒートポンプユニット2の冷媒循環路は、圧縮機5、ガスクーラ1、膨張弁(減圧装置)6、蒸発器7などから構成され、貯湯ユニット4の水回路は、循環ポンプ8、ガスクーラ1、貯湯槽3などから構成されている。 FIG. 6 shows a conventional hot water supply apparatus described as the first embodiment of the publication. As shown in the figure, this hot water supply apparatus includes a heat pump unit 2 having a gas cooler (hot water supply heat exchanger) 1 and a hot water storage unit 4 having a hot water storage tank 3 in which hot water boiled by the gas cooler 1 is stored. It is configured. The refrigerant circulation path of the heat pump unit 2 includes a compressor 5, a gas cooler 1, an expansion valve (decompression device) 6, an evaporator 7, and the like. The water circuit of the hot water storage unit 4 includes the circulation pump 8, the gas cooler 1, and hot water storage. It is comprised from the tank 3 grade | etc.,.
そして、圧縮機5によって圧縮された高温高圧のガス冷媒をガスクーラ1において貯湯槽3に貯湯された水と熱交換させて水を加熱して沸き上げる。そして、貯湯槽3からガスクーラ1に至るまでの水循環路に、スケールの生成を抑制する添加剤を供給する添加器(スケール抑制手段)9を備えた構成としている。 The high-temperature and high-pressure gas refrigerant compressed by the compressor 5 is heat-exchanged with the water stored in the hot water storage tank 3 in the gas cooler 1 to heat and boil the water. And it is set as the structure provided with the adder (scale suppression means) 9 which supplies the additive which suppresses the production | generation of a scale in the water circulation path from the hot water tank 3 to the gas cooler 1. FIG.
また、前記公報の第二実施形態として記載された従来の給湯装置(図示せず)は、添加器9を迂回するバイパス回路(図示せず)を設け、このバイパス回路の分岐箇所には三方弁(図示せず)を備えた構成としている。 Further, the conventional hot water supply device (not shown) described as the second embodiment of the above publication is provided with a bypass circuit (not shown) that bypasses the adder 9, and a three-way valve is provided at a branch point of the bypass circuit. (Not shown).
しかしながら、前記従来の第一実施形態の構成では、貯湯槽3からガスクーラ1に至るまでの水循環路に直列に添加器9を備えているため、次のような課題を有していた。すなわち、循環ポンプ8によって貯湯槽3からガスクーラ1に送られる水に含まれる添加剤の濃度が、このガスクーラ1に送られる水の流量によって大きく変化し、スケール生成の抑制効果に影響を与えるため、必要な効果が得られず、添加剤が過剰で無駄になることがある。 However, the configuration of the conventional first embodiment has the following problems because the adder 9 is provided in series in the water circulation path from the hot water tank 3 to the gas cooler 1. That is, since the concentration of the additive contained in the water sent from the hot water tank 3 to the gas cooler 1 by the circulation pump 8 varies greatly depending on the flow rate of the water sent to the gas cooler 1, and affects the suppression effect of scale generation. Necessary effects cannot be obtained, and additives may be excessively wasted.
図7は、横軸に外気温度をとり、縦軸に市水温度、沸き上げ流量および添加剤濃度をとり、外気温度に対する市水温度、沸き上げ流量および添加剤濃度の変化を示したものである。一般に給湯装置の加熱能力は外気温度が変化してもほぼ一定である。一方、外気温度が変化するとそのときの水道水の温度である市水温度も変化する(一般に外気温度が高い方が市水温度も高い)。貯湯槽3に貯留する温度(ガスクーラ1で沸き上げる温度)が同じ場合、外気温度が高くなれば、市水温度も高くなり、沸き上げ流量が大きくなるため、それに応じて、添加剤濃度は小さくなる。 FIG. 7 shows changes in the city water temperature, the boiling flow rate, and the additive concentration with respect to the outside air temperature, with the outside air temperature on the horizontal axis and the city water temperature, the boiling flow rate, and the additive concentration on the vertical axis. is there. In general, the heating capacity of a hot water supply device is substantially constant even when the outside air temperature changes. On the other hand, when the outside air temperature changes, the city water temperature, which is the temperature of the tap water at that time, also changes (in general, the higher the outside air temperature, the higher the city water temperature). If the temperature stored in the hot water tank 3 (the temperature heated by the gas cooler 1) is the same, the higher the outside air temperature, the higher the city water temperature and the higher the boiling flow rate. Accordingly, the additive concentration decreases accordingly. Become.
いま、外気温度の低い冬条件(例えば、外気温度7℃)で、スケール生成の抑制効果が現れる添加剤の必要濃度に設計した場合、中間期や夏などには、スケール生成の抑制効果が少なくなり、ガスクーラ1にスケールが付着成長するという課題がある。逆に、外気温度が高い夏条件(例えば、深夜の外気温度25℃)でスケール生成の抑制効果が現れる添加剤の必要濃度に設計した場合、冬などには、必要以上の添加剤が溶け出すことになり、添加剤の寿命が短くなり、その交換や補充などのメンテナンスが増え、維持コストが増加するという課題がある。 Now, when it is designed to have the necessary concentration of additives that have the effect of suppressing scale generation under winter conditions with low outside air temperature (for example, outside air temperature 7 ° C), the effect of suppressing scale generation is small in the intermediate period and summer. Thus, there is a problem that the scale adheres to the gas cooler 1 and grows. On the contrary, when it is designed at the required concentration of the additive that exhibits the effect of suppressing the scale formation under the summer conditions where the outdoor temperature is high (for example, the outdoor temperature of midnight at 25 ° C.), the additive more than necessary is dissolved in winter. In other words, there is a problem that the life of the additive is shortened, maintenance such as replacement and replenishment is increased, and maintenance cost is increased.
図7は、季節変化など外気温度が変わった場合であるが、外気温度が同じでも、次のような課題がある。図8は、横軸に貯湯槽3に湯を貯留するための沸き上げ時間を取り、縦軸にガスクーラー1に供給される入水温度、ガスクーラー1を流れる水の流量である沸き上げ流量および添加剤濃度をとり、沸き上げ時間に対する入水温度、沸き上げ流量および
添加剤濃度の変化を示したものである。
FIG. 7 shows a case where the outside air temperature has changed, such as a seasonal change, but there are the following problems even if the outside air temperature is the same. FIG. 8 shows the boiling time for storing hot water in the hot water tank 3 on the horizontal axis, the incoming temperature supplied to the gas cooler 1 on the vertical axis, the boiling flow rate that is the flow rate of water flowing through the gas cooler 1, and The additive concentration is taken, and the changes in the incoming water temperature, the boiling flow rate, and the additive concentration with respect to the boiling time are shown.
例えば、貯湯槽3全体が9℃の水で満たされている状態から貯湯槽3全体を沸き上げる場合、貯湯槽3下部の水が循環ポンプ8によってガスクーラー1に送られ、必要な温度(例えば85℃)まで水の温度を上昇させた後、貯湯槽3の上部に送られることによって、貯湯槽3の上部から高温の湯が貯留される。 For example, when the entire hot water tank 3 is boiled from the state where the entire hot water tank 3 is filled with water at 9 ° C., the water at the lower part of the hot water tank 3 is sent to the gas cooler 1 by the circulation pump 8 and the required temperature (for example, After the temperature of the water is raised to 85 ° C., the hot water is stored from the upper part of the hot water tank 3 by being sent to the upper part of the hot water tank 3.
このとき、貯湯槽3の内部では、上部には85℃の高温の湯の層があり、下部には9℃の水の層がある。この2つの層の間は、85℃から9℃に変化する混合層が存在する。貯湯槽3の全量を沸き上げる場合、最終的には、この混合層の部分を沸き上げることになる(同図に示す混合層の部分)。このとき、ガスクーラ1に送られる水の温度である入水温度が上昇するため、沸き上げ流量が増加し、添加剤濃度は小さくなる。このように、外気温度が同じでも、入水温度が変化するため、結果として、添加剤濃度が変化するため、図7の説明と同様の課題が生じる。 At this time, inside the hot water tank 3, there is a hot water layer of 85 ° C. at the top and a water layer of 9 ° C. at the bottom. Between these two layers is a mixed layer that varies from 85 ° C to 9 ° C. When the whole amount of the hot water storage tank 3 is boiled, finally, the mixed layer portion is boiled (the mixed layer portion shown in the figure). At this time, since the incoming water temperature which is the temperature of the water sent to the gas cooler 1 rises, the boiling flow rate increases and the additive concentration decreases. As described above, even when the outside air temperature is the same, the incoming water temperature changes, and as a result, the additive concentration changes, and the same problem as described in FIG. 7 occurs.
前記従来の第二実施形態の構成では、バイパス回路と添加器9のある回路とを切り替える構成になっているので、添加器9のある回路を使用する場合は、図7及び図8で説明したことと同様な動作になるため、前述の説明と同様の課題が生じる。 In the configuration of the conventional second embodiment, since the bypass circuit and the circuit with the adder 9 are switched, the case where the circuit with the adder 9 is used has been described with reference to FIGS. Therefore, the same problem as described above occurs.
また、ポリリン酸塩などのスケール抑制剤は、炭酸カルシウムがスケール化する場合、炭酸カルシウムの結晶の成長を防止するため、ガスクーラー1などに付着、堆積することを防止する効果が大きい。 In addition, a scale inhibitor such as polyphosphate has a great effect of preventing adhesion and deposition on the gas cooler 1 and the like in order to prevent the growth of calcium carbonate crystals when calcium carbonate is scaled.
しかし、一旦、堆積し硬いスケールの状態になった場合は、その結晶構造を微細化するという働きは少ないので、従来の第二実施形態の構成では、従来の第一実施形態の構成のように沸き上げ動作中連続して添加剤を溶解させる場合よりも、スケール生成の抑制効果が少なくなるので、スケール抑制剤を消費する割りに、ガスクーラー1などの熱交換器が詰まる場合があるという課題もある。これを防止するためには、必要以上のスケール抑制剤を添加する必要がある。 However, once deposited and in a hard scale state, there is little work to refine the crystal structure, so the configuration of the conventional second embodiment is the same as the configuration of the conventional first embodiment. Since the effect of suppressing the scale generation is less than when the additive is continuously dissolved during the boiling operation, the heat exchanger such as the gas cooler 1 may be clogged while the scale inhibitor is consumed. There is also. In order to prevent this, it is necessary to add more scale inhibitor than necessary.
本発明は上記課題を解決するもので、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減させることを図った給湯装置を提供することを目的とする。 This invention solves the said subject, and it aims at providing the hot-water supply apparatus aiming at the lifetime of a scale inhibitor extending and reducing maintenance and maintenance costs, such as the replacement | exchange and replenishment.
前記従来の課題を解決するために、本発明の給湯装置は、湯を貯える貯湯槽と、加熱手段で作られた高温の冷媒と前記貯湯槽下部から送られてきた水とが熱交換する給湯熱交換器と、前記給湯熱交換器と前記貯湯槽の下部とを接続する入水管路と、前記給湯熱交換器と前記貯湯槽の上部とを接続する出湯管路とを備え、前記入水管路に並列に設けられたスケールの生成を抑制するスケール抑制剤を添加するスケール抑制手段を有し、前記貯湯槽下部から送られ前記給湯熱交換器にて所定温度に加熱される水の流量が変化しても、前記給湯熱交換器にて前記所定温度に加熱される水の流量に対する前記スケール抑制手段を流れる水の分岐流量の比率、および、前記給湯熱交換器にて前記所定温度に加熱される水の前記スケール抑制剤の溶解濃度は、ほぼ一定となるように構成したことを特徴とするものである。 In order to solve the above-mentioned conventional problems, a hot water supply apparatus of the present invention is a hot water supply in which hot water is stored in a hot water storage tank, a high-temperature refrigerant produced by heating means, and water sent from the lower part of the hot water storage tank. comprising a heat exchanger, a water inlet conduit which connects the lower portion of the hot water storage tank and the hot water supply heat exchanger, and a hot water pipe connecting the upper portion of the hot water storage tank and the hot water supply heat exchanger, entering-water pipe A scale suppression means for adding a scale inhibitor that suppresses the generation of scale provided in parallel to the path; and a flow rate of water that is sent from the lower part of the hot water tank and heated to a predetermined temperature in the hot water heat exchanger. Even if there is a change, the ratio of the branch flow rate of water flowing through the scale suppression means to the flow rate of water heated to the predetermined temperature by the hot water supply heat exchanger, and heating to the predetermined temperature by the hot water supply heat exchanger Concentration of the scale inhibitor in water And it is characterized by being configured to be substantially constant.
これによって、入水温度が変わってもスケール抑制剤の濃度がほぼ一定になり、効果的にスケール生成の抑制ができるので、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減さることができる給湯装置を提供する。 As a result, the concentration of the scale inhibitor becomes almost constant even when the incoming water temperature changes, and the scale formation can be effectively suppressed, thereby extending the life of the scale inhibitor and maintaining and maintaining costs such as replacement and replenishment. The hot water supply apparatus which can reduce is provided.
本発明の給湯装置は、スケール抑制剤を添加するスケール抑制手段を前記入水管路に並列に設けたことによって、スケール抑制剤の交換頻度を低減し、長寿命化を図ることができる。さらに、短期的には、貯湯槽の混合層を沸き上げるときにも前記入水温度が大きく変化してもスケール抑制剤の濃度をほぼ一定にすることができる。 In the hot water supply apparatus of the present invention, the scale suppression means for adding the scale inhibitor is provided in parallel with the water inlet pipe, thereby reducing the replacement frequency of the scale inhibitor and extending the life. Furthermore, in the short term, the concentration of the scale inhibitor can be made substantially constant even when the mixed layer of the hot water tank is boiled and the incoming water temperature changes greatly.
第1の発明は、湯を貯える貯湯槽と、加熱手段で作られた高温の冷媒と前記貯湯槽下部から送られてきた水とが熱交換する給湯熱交換器と、前記給湯熱交換器と前記貯湯槽の下部とを接続する入水管路と、前記給湯熱交換器と前記貯湯槽の上部とを接続する出湯管路とを備え、前記入水管路に並列に設けられたスケールの生成を抑制するスケール抑制剤を添加するスケール抑制手段を有し、前記貯湯槽下部から送られ前記給湯熱交換器にて所定温度に加熱される水の流量が変化しても、前記給湯熱交換器にて前記所定温度に加熱される水の流量に対する前記スケール抑制手段を流れる水の分岐流量の比率、および、前記給湯熱交換器にて前記所定温度に加熱される水の前記スケール抑制剤の溶解濃度は、ほぼ一定となるように構成したことを特徴とする給湯装置である。 1st invention consists of the hot water storage tank which stores hot water, the high temperature refrigerant | coolant produced with the heating means, the hot water supply heat exchanger with which the water sent from the said hot water storage tank lower part is heat-exchanged, and the said hot water supply heat exchanger, A water inlet line connecting the lower part of the hot water tank and a hot water outlet line connecting the hot water heat exchanger and the upper part of the hot water tank, and generating a scale provided in parallel with the water inlet line Even if the flow rate of water sent from the lower part of the hot water storage tank and heated to a predetermined temperature in the hot water supply heat exchanger changes, the hot water supply heat exchanger has The ratio of the branch flow rate of water flowing through the scale suppression means to the flow rate of water heated to the predetermined temperature, and the dissolution concentration of the scale inhibitor of water heated to the predetermined temperature in the hot water heat exchanger that is, it configured to be substantially constant A hot water supply apparatus according to symptoms.
これにより、入水温度が変わってもスケール抑制剤の濃度がほぼ一定になる。 As a result , the concentration of the scale inhibitor becomes substantially constant even when the incoming water temperature changes.
このため、効果的にスケール生成の抑制ができるので、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減さることができる。 For this reason , since scale generation can be effectively suppressed, the life of the scale inhibitor is extended, and maintenance and maintenance costs such as replacement and replenishment can be reduced .
第2の発明は、スケール抑制剤はポリリン酸塩を用いた構成としている。 In the second invention, the scale inhibitor uses a polyphosphate .
これにより、炭酸カルシウムがスケール化する場合、炭酸カルシウムの結晶の成長を防止するため、ガスクーラなど熱交換器内部にスケールの付着、堆積することを防止する効果が大きい。 As a result , when calcium carbonate is scaled, growth of calcium carbonate crystals is prevented, so that the effect of preventing the scale from adhering and depositing inside a heat exchanger such as a gas cooler is great.
このため、機器の耐久性を向上させるとともに、ガスクーラなどの熱交換器の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減させることができる。 For this reason, while improving the durability of an apparatus, the lifetime of heat exchangers, such as a gas cooler, becomes long, and maintenance and maintenance costs, such as the replacement | exchange and replenishment, can be reduced.
第3の発明は、加熱手段としてヒートポンプユニットを用いた構成としている。 In the third invention, a heat pump unit is used as the heating means .
これにより、省エネルギーを図ることができる。 Thereby , energy saving can be aimed at.
(実施の形態1)
図1は、本発明の第1の実施の形態における給湯装置の構成図である。図1において、給湯装置の熱源である加熱手段は、圧縮機51、給湯熱交換器52、減圧装置53および大気熱を吸熱する蒸発器54からなるヒートポンプサイクルを構成したヒートポンプユニ
ット55である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a hot water supply apparatus according to the first embodiment of the present invention. In FIG. 1, the heating means that is a heat source of the hot water supply apparatus is a heat pump unit 55 that constitutes a heat pump cycle including a compressor 51, a hot water supply heat exchanger 52, a decompression apparatus 53, and an evaporator 54 that absorbs atmospheric heat.
そして、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を冷媒とする。貯湯ユニット56に収納された貯湯槽57への給水は貯湯槽57下部に接続された給水管58を通ってなされ、貯湯槽57上部の高温の湯は給湯管路59を通り給湯混合弁60で給水と混合することによって所定の温度の湯にしてから給湯配管61を通って給湯端末(蛇口62)から給湯される。 Then, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used as the refrigerant. Water is supplied to the hot water storage tank 57 stored in the hot water storage unit 56 through a water supply pipe 58 connected to the lower part of the hot water storage tank 57, and hot water in the upper part of the hot water storage tank 57 passes through the hot water supply pipe 59 and is supplied by the hot water mixing valve 60. Hot water is supplied from the hot water supply terminal (faucet 62) through the hot water supply pipe 61 after being hot water having a predetermined temperature by mixing with the hot water supply.
また、貯湯槽57の下部から循環ポンプ63,入水管路64、給湯熱交換器52、出湯管路65および貯湯槽57の上部を順次接続することによって沸き上げ回路を構成し、貯湯槽57から循環ポンプ63で送られてきた水は前記給湯熱交換器52で冷媒熱により加熱されて貯湯槽57の上から貯留される。 Further, a boiling circuit is constructed by sequentially connecting the circulation pump 63, the water inlet pipe 64, the hot water supply heat exchanger 52, the hot water outlet pipe 65 and the upper part of the hot water tank 57 from the lower part of the hot water tank 57. The water sent by the circulation pump 63 is heated by the refrigerant heat in the hot water supply heat exchanger 52 and stored from above the hot water storage tank 57.
給湯熱交換器52の水側出口に接続された出湯管路65に備えた沸き上げ温度検出手段66によってヒートポンプ熱源で加熱した湯温を検出する。さらに、入水管路64に並列にスケール抑制剤67を充填したスケール抑制手段68が接続されている。 The hot water temperature heated by the heat pump heat source is detected by the boiling temperature detection means 66 provided in the hot water outlet pipe 65 connected to the water side outlet of the hot water supply heat exchanger 52. Furthermore, a scale suppression means 68 filled with a scale inhibitor 67 is connected in parallel to the water inlet pipe 64.
以上のように構成された給湯装置について、以下にその動作、作用を説明する。図1において、貯湯槽57を沸き上げる給湯加熱運転について説明する。いま、貯湯槽57を沸き上げる要求(図示せず)があると、ヒートポンプユニット55で大気熱を利用した給湯加熱運転を行う。この場合、圧縮機51から吐出された臨界圧力以上の高温高圧の冷媒が給湯熱交換器52に流入し、ここで貯湯槽57の下部から送られてきた水と熱交換し放熱した後、減圧装置53で減圧し、さらに、蒸発器54で大気から熱を吸熱し、ガス化して圧縮機51に戻る。 About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 1, a hot water supply heating operation for boiling the hot water storage tank 57 will be described. If there is a request (not shown) for boiling the hot water storage tank 57, the heat pump unit 55 performs a hot water supply heating operation using atmospheric heat. In this case, high-temperature and high-pressure refrigerant discharged from the compressor 51 flows into the hot water supply heat exchanger 52 where heat is exchanged with the water sent from the lower part of the hot water tank 57 to dissipate heat, and then the pressure is reduced. The pressure is reduced by the device 53, and heat is absorbed from the atmosphere by the evaporator 54, gasified, and returned to the compressor 51.
この時、給湯熱交換器52に流入する貯湯槽57の下部から入水管路64を通って送られてきた水は、給湯熱交換器52の出口での温度が所定温度となるように循環ポンプ63の回転数を制御することによって、所定の温度の湯が貯湯槽57の上部から流入し貯留される。 At this time, the water sent from the lower part of the hot water storage tank 57 flowing into the hot water supply heat exchanger 52 through the water inlet pipe 64 is a circulation pump so that the temperature at the outlet of the hot water supply heat exchanger 52 becomes a predetermined temperature. By controlling the number of revolutions 63, hot water of a predetermined temperature flows from the upper part of the hot water tank 57 and is stored.
このとき、入水管路64に並列にスケール抑制剤67を充填したスケール抑制手段68が接続されているので、循環ポンプ63によって貯湯槽57の下部から送られてきた水の一部は、分岐点Aでスケール抑制手段68を備えた回路に流れる。そして、スケール抑制手段68に流入して、スケール抑制剤67を溶解させた水は、合流点Bで、スケール抑制手段68側を循環しなかった水と混合する。 At this time, since the scale suppression means 68 filled with the scale inhibitor 67 is connected in parallel to the water inlet pipe 64, a part of the water sent from the lower part of the hot water tank 57 by the circulation pump 63 is a branch point. A flows through the circuit including the scale suppression means 68. And the water which flowed into the scale suppression means 68 and dissolved the scale inhibitor 67 is mixed with the water which did not circulate through the scale suppression means 68 side at the junction B.
そして、給湯熱交換器52に流入して、前述したように所定の温度になるように加熱される。このとき、水に含まれるスケール抑制剤は、給湯熱交換器52中で生成する炭酸カルシウムの結晶の成長を抑制し、スケールの発生を防止する。 Then, it flows into the hot water supply heat exchanger 52 and is heated to a predetermined temperature as described above. At this time, the scale inhibitor contained in the water suppresses the growth of calcium carbonate crystals generated in the hot water heat exchanger 52 and prevents the generation of scale.
図2は、横軸に沸き上げの流量をとり、縦軸に沸き上げ流量に対するスケール抑制手段68を備えた回路(点A→点C→点B)を流れる分岐流量の比率と、スケール抑制剤の濃度とを取り、沸き上げ流量の変化に対する分岐流量の比率とスケール抑制剤の濃度の変化を示したものである。同図からわかるように、沸き上げ流量が変化しても、分岐流量の比率とスケール抑制剤の濃度は余り変化が無いことがわかる。 FIG. 2 shows the ratio of the branch flow rate flowing through the circuit (point A → point C → point B) having the scale suppression means 68 for the boiling flow rate on the horizontal axis and the scale suppression agent on the vertical axis. The ratio of the branch flow rate to the change in the boiling flow rate and the change in the concentration of the scale inhibitor are shown. As can be seen from the figure, even if the boiling flow rate changes, the ratio of the branch flow rate and the concentration of the scale inhibitor do not change much.
例えば、入水管路64の分岐点Aと合流点B間の流量が増加すれば、その間の圧力損失は増加する。そして、点AB間の圧力損失が大きくなるということは、スケール抑制手段68を備えた回路(点A→点C→点B)を流れる分岐流量も増えることになり、結局、分岐流量の比率はほぼ一定の傾向がある。また、通水した時のスケール抑制剤67の溶解量
は概ね流量に比例するので、同図のような特性となる。
For example, if the flow rate between the branch point A and the junction point B of the water inlet pipe 64 increases, the pressure loss between them increases. Then, the pressure loss between the points AB increases, which means that the branch flow rate flowing through the circuit (point A → point C → point B) provided with the scale suppressing means 68 also increases. There is an almost constant trend. Moreover, since the dissolution amount of the scale inhibitor 67 when water is passed is approximately proportional to the flow rate, the characteristics shown in FIG.
図3は、任意の分岐流量の比率を設定する方法を示す。同図(a)は、入水管路64の分岐点Aと合流点B間の流路抵抗を変化させることで点AB間の圧力損失を設定し、その差圧に応じて分岐流量の比率を決定することができる。また、スケール抑制手段68の流路抵抗が大きい場合には、同図(b)に示すように、スケール抑制手段68を備えた回路側に流体の動圧がかかるような構成にし、そして点AB間の入水管路64の形状を変更することで、点AB間の圧力損失を設定し、その差圧に応じて分岐流量の比率を決定することができる。 FIG. 3 shows a method of setting an arbitrary branch flow rate ratio. The figure (a) sets the pressure loss between the points AB by changing the flow resistance between the branch point A and the confluence point B of the water inlet pipe 64, and the ratio of the branch flow rate according to the differential pressure. Can be determined. Further, when the flow path resistance of the scale suppression means 68 is large, as shown in FIG. 5B, a configuration is adopted in which fluid dynamic pressure is applied to the circuit side provided with the scale suppression means 68, and point AB By changing the shape of the water inlet pipe 64 in between, the pressure loss between the points AB can be set, and the branch flow rate ratio can be determined according to the differential pressure.
このように、入水管路64に並列にスケール抑制剤67を充填したスケール抑制手段68を設けると、分岐点Aでスケール抑制手段68側に分岐して流れる流量の比率がほぼ一定になるため、合流点Bの下流におけるスケール抑制剤67の濃度をほぼ一定にすることが出来る。 Thus, when the scale suppression means 68 filled with the scale inhibitor 67 is provided in parallel to the water inlet pipe 64, the ratio of the flow rate flowing to the scale suppression means 68 side at the branch point A becomes substantially constant. The concentration of the scale inhibitor 67 downstream from the junction B can be made substantially constant.
図7で説明したように、季節変化など外気温度が変わった場合に水道水の温度である市水温度も変化し、その結果、沸き上げ流量が変化することになるが、上述で説明したように、沸き上げ流量の影響を余り受けずに、安定したスケール抑制剤67の濃度を得ることが出来るので、無駄なスケール抑制剤67の消費がなくなるため、スケール抑制剤67の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 As described with reference to FIG. 7, when the outside air temperature changes, such as seasonal changes, the city water temperature, which is the temperature of the tap water, also changes. As a result, the boiling flow rate changes, but as described above. In addition, since a stable concentration of the scale inhibitor 67 can be obtained without much influence of the boiling flow rate, useless consumption of the scale inhibitor 67 is eliminated, and the life of the scale inhibitor 67 is prolonged. There is an effect that maintenance and maintenance costs such as replacement and replenishment are reduced.
さらに、図8で説明したように、混合層の部分を沸き上げる時に入水温度が変化(上昇)し、沸き上げ流量が変化(増加)しても、安定したスケール抑制剤67の濃度を得ることが出来るので、上述と同様、無駄なスケール抑制剤67の消費がなくなるため、スケール抑制剤67の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 Furthermore, as explained in FIG. 8, even when the incoming water temperature changes (rises) when the mixed layer portion is boiled, and the boiling flow rate changes (increases), a stable concentration of the scale inhibitor 67 can be obtained. Therefore, as described above, the consumption of the useless scale inhibitor 67 is eliminated, so that the life of the scale inhibitor 67 is prolonged, and there is an effect that maintenance and maintenance costs such as replacement and replenishment are reduced.
(参考例1)
図4は、本発明の参考例1における給湯装置の構成図である。図1の実施の形態1と異なる点は、入水管路64の分岐点Aと合流点Bの間に流量調節手段69を設けたことであり、制御手段70はこの流量調節手段69の動作を制御する。その他の構成は図1と同様なので、説明は省略する。この流量調節手段69としては、例えば、給湯機で一般に使用されている流量制御弁(図示せず)があり、ステッピングモーターを駆動させることによって、流体が通過する流路断面積を変えることによって流量を変更するものである。
( Reference Example 1 )
FIG. 4 is a configuration diagram of a hot water supply apparatus in Reference Example 1 of the present invention. The difference from Embodiment 1 of FIG. 1 is that a flow rate adjusting means 69 is provided between the branch point A and the junction B of the water inlet pipe 64, and the control means 70 operates the flow rate adjusting means 69. Control. Other configurations are the same as those in FIG. As the flow rate adjusting means 69, for example, there is a flow rate control valve (not shown) generally used in a water heater, and the flow rate is changed by changing the cross-sectional area of the flow path through which the fluid passes by driving a stepping motor. Is to change.
以上のように構成された給湯装置について、以下にその動作、作用を説明する。図4において、合流点Bの下流におけるスケール抑制剤67の濃度を所定の濃度に変更する場合、流量調節手段69の流路抵抗を変更(例えば、前述したように流路断面積を変更)し、分岐点Aと合流点Bの間の圧力損失を変えることによって、スケール抑制手段68側に分岐して流れる流量(分岐流量)の比率を変更する。 About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 4, when the concentration of the scale inhibitor 67 downstream of the junction B is changed to a predetermined concentration, the flow path resistance of the flow rate adjusting means 69 is changed (for example, the flow path cross-sectional area is changed as described above). By changing the pressure loss between the branch point A and the junction point B, the ratio of the flow rate (branch flow rate) that branches and flows to the scale suppression means 68 side is changed.
すなわち、流量調節手段69の流路抵抗を大きく(例えば、流路断面積を小さく)すると、分岐点Aと合流点Bの間の圧力損失が大きくなるので、前記分岐流量の比率が大きくなり、入水管路64の合流点Bの下流側のスケール抑制剤67の濃度を大きくすることができる。逆に、濃度を小さくしたい場合は、流量調節手段69の流路抵抗を小さく(例えば、流路断面積を大きく)すればよい。 That is, when the flow path resistance of the flow rate adjusting means 69 is increased (for example, the flow path cross-sectional area is decreased), the pressure loss between the branch point A and the junction point B increases, so the ratio of the branch flow rate increases. The density | concentration of the scale inhibitor 67 of the downstream of the confluence | merging point B of the water intake pipe 64 can be enlarged. Conversely, when it is desired to reduce the concentration, the flow path resistance of the flow rate adjusting means 69 may be decreased (for example, the flow path cross-sectional area is increased).
例えば、高硬度水の地域とか井戸水を給水に利用する場合、給水の硬度を検出する硬度検出手段71からの情報をもとに前記濃度を決定すればよい。そして、給水の硬度が高け
れば、前記濃度をスケールの生成が起こらない濃度となる前記分岐流量の比率に設定するために、制御手段70が流量調節手段69を調整する構成とすればよい。
For example, when using a region with high hardness water or well water for water supply, the concentration may be determined based on information from the hardness detection means 71 that detects the hardness of the water supply. If the hardness of the feed water is high, the control means 70 may adjust the flow rate adjusting means 69 in order to set the concentration to the ratio of the branch flow rate at which the scale is not generated.
また、給水の硬度は、入力手段(図示せず)で直接、前記制御手段70を備えた給湯装置のリモコン72に入力する構成としても良い。更に、給水の硬度とスケールの生成が起こらないスケール抑制剤67の濃度との関係や、流量調節手段69の流路抵抗とスケール抑制剤67の濃度との関係などは、事前に求めておいて、リモコン72に記憶させるようにしても良い。 The hardness of the water supply may be directly input to the remote controller 72 of the hot water supply apparatus provided with the control means 70 by an input means (not shown). Furthermore, the relationship between the hardness of the water supply and the concentration of the scale inhibitor 67 that does not generate scale, the relationship between the flow path resistance of the flow rate adjusting means 69 and the concentration of the scale inhibitor 67, and the like are obtained in advance. Alternatively, it may be stored in the remote controller 72.
このように、給水の硬度が高い場合、スケールの生成が起こらないスケール抑制剤67の濃度を設定できるので、安全目に高濃度に設定して使用する場合に比べ、添加剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 In this way, when the hardness of the feed water is high, the concentration of the scale inhibitor 67 that does not generate scale can be set, so the life of the additive becomes longer than when using it at a high concentration for safety. This has the effect of reducing maintenance and maintenance costs such as replacement and replenishment.
また、給湯熱交換器52の寿命が長くなり、その交換などのメンテナンスや維持コストが少なくなるという効果もある。 In addition, there is an effect that the service life of the hot water supply heat exchanger 52 is extended, and maintenance and maintenance costs such as replacement are reduced.
給湯熱交換器52内にスケールが付着、成長する主な要因としては、前述の給水の硬度の要因と貯湯槽57に貯留する温度(沸き上げ温度)の要因とがある。沸き上げ温度が高い方がスケールの生成と成長が大きい。そこで、沸き上げ温度に対するスケールの生成と成長がないスケール抑制剤67の濃度を求め、この濃度となるように前記分岐流量の比率に設定するために、制御手段70が流量調節手段69を調整する構成とすればよい。 The main factors that cause the scale to adhere to and grow in the hot water supply heat exchanger 52 include the aforementioned factors of the hardness of the water supply and the factors of the temperature stored in the hot water storage tank 57 (boiling temperature). The higher the boiling temperature, the greater the scale formation and growth. Therefore, the control means 70 adjusts the flow rate adjusting means 69 in order to obtain the concentration of the scale inhibitor 67 that does not generate and grow scale with respect to the boiling temperature, and to set the branch flow rate ratio to be this concentration. What is necessary is just composition.
このとき、沸き上げ温度に対するスケールの生成と成長がないスケール抑制剤67の濃度の関係を事前に求めておき、この関係をリモコン72に記憶させるようにしても良い。 At this time, the relationship between the scale generation with respect to the boiling temperature and the concentration of the scale inhibitor 67 that does not grow may be obtained in advance, and this relationship may be stored in the remote controller 72.
このように、沸き上げ温度に応じて、スケールの生成が起こらないスケール抑制剤67の濃度を設定できるので、安全目に高濃度に設定して使用する場合に比べ、スケール抑制剤67の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 Thus, since the concentration of the scale inhibitor 67 that does not cause scale generation can be set according to the boiling temperature, the life of the scale inhibitor 67 is longer than that in the case of using a high concentration for safety. There is an effect that maintenance and maintenance costs such as replacement and replenishment are reduced.
また、給湯熱交換器52の寿命が長くなり、その交換などのメンテナンスや維持コストが少なくなるという効果もある。 In addition, there is an effect that the service life of the hot water supply heat exchanger 52 is extended, and maintenance and maintenance costs such as replacement are reduced.
貯湯槽57に貯留される温度(沸き上げ温度)は、一般的に、65〜90℃程度である。そして、沸き上げ温度が高い方がスケールの生成と成長が大きいが、65℃前後であれば、スケールの生成が少なく、成長もほとんど無い。この場合、スケール抑制剤67の濃度を最小にするように、制御手段70が流量調節手段69を調整する構成とすればよい。すなわち、流量調節手段69の流路抵抗を最小(流量調節手段69の流体が通過する流路断面積を最大)になるように制御する。 The temperature (boiling temperature) stored in the hot water tank 57 is generally about 65 to 90 ° C. The higher the boiling temperature is, the larger the scale is generated and grown, but if it is around 65 ° C., the scale is generated little and there is almost no growth. In this case, the control means 70 may adjust the flow rate adjusting means 69 so that the concentration of the scale inhibitor 67 is minimized. That is, the flow path resistance of the flow rate adjusting means 69 is controlled to be the minimum (the flow path cross-sectional area through which the fluid of the flow rate adjusting means 69 passes is maximized).
このように、スケールの生成が少なく、成長もほとんど無いような沸き上げ温度の場合には、スケール抑制剤67の濃度を最小に設定できるので、安全目に高濃度に設定して使用する場合に比べ、添加剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 In this way, when the boiling temperature is such that there is little generation of scale and little growth, the concentration of the scale inhibitor 67 can be set to the minimum. In comparison, there is an effect that the life of the additive is prolonged, and maintenance and maintenance costs such as replacement and replenishment are reduced.
(参考例2)
図5は、本発明の参考例2における給湯装置の構成図である。図1の実施の形態1と異なる点は、スケール抑制剤67を充填したスケール抑制手段68に直列に開閉弁73を設けたことであり、制御手段70はこの開閉弁73の動作を制御する。その他の構成は図1
と同様なので、説明は省略する。
( Reference Example 2 )
FIG. 5 is a configuration diagram of a hot water supply apparatus in Reference Example 2 of the present invention. The difference from Embodiment 1 of FIG. 1 is that an opening / closing valve 73 is provided in series with the scale suppressing means 68 filled with the scale inhibitor 67, and the control means 70 controls the operation of the opening / closing valve 73. Other configuration is shown in FIG.
Since it is the same as that, description is abbreviate | omitted.
以上のように構成された給湯装置について、以下にその動作、作用を説明する。図5において、開閉弁73を開いた場合、貯湯槽57の下部の水は、入水管路64の点Aと点B間側とスケール抑制手段68側との両方に流れる。また、開閉弁73を閉じた場合、貯湯槽57の下部の水は、入水管路64の点Aと点B間側だけに流れ、スケール抑制手段68側には流れない。 About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 5, when the on-off valve 73 is opened, the water in the lower part of the hot water tank 57 flows to both the points A and B side of the water inlet pipe 64 and the scale suppression means 68 side. Further, when the on-off valve 73 is closed, the water in the lower part of the hot water tank 57 flows only between the point A and the point B of the water inlet pipe 64 and does not flow to the scale suppressing means 68 side.
前述したように、沸き上げ温度が、65℃前後であれば、スケールの生成が少なく、成長もほとんど無い。この場合、スケール抑制剤67を消費する必要がないので、制御手段70が開閉弁73を閉じる構成とすればよい。 As described above, when the boiling temperature is around 65 ° C., there is little generation of scale and almost no growth. In this case, since it is not necessary to consume the scale inhibitor 67, the control means 70 may be configured to close the on-off valve 73.
このように、スケールの生成が少なく、成長もほとんど無いような沸き上げ温度の場合には、スケール抑制剤67の消費が無いように設定できるので、安全目に高濃度に設定して使用する場合に比べ、添加剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストが少なくなるという効果がある。 Thus, when the boiling temperature is such that there is little generation of scale and little growth, it can be set so that the scale inhibitor 67 is not consumed. Compared to the above, there is an effect that the life of the additive is prolonged, and maintenance and maintenance costs such as replacement and replenishment are reduced.
以上のように、本発明にかかる給湯装置は、入水温度が変わってもスケール抑制剤の濃度がほぼ一定になり、効果的にスケール生成の抑制ができるので、スケール抑制剤の寿命が長くなり、その交換や補充などのメンテナンスや維持コストを低減さることができるものである。 As described above, the hot water supply apparatus according to the present invention has a substantially constant concentration of the scale inhibitor even when the incoming water temperature changes, and can effectively suppress the generation of scale, so the life of the scale inhibitor is prolonged, Maintenance and maintenance costs such as replacement and replenishment can be reduced.
52 給湯熱交換器
55 ヒートポンプユニット(加熱手段)
57 貯湯槽
64 入水管路
65 出湯管路
67 スケール抑制剤
68 スケール抑制手段
69 流量調節手段
73 開閉弁
52 Hot water supply heat exchanger 55 Heat pump unit (heating means)
57 Hot water storage tank 64 Intake pipe 65 Hot water outlet 67 Scale inhibitor 68 Scale suppression means 69 Flow rate control means 73 On-off valve
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278103A JP5938573B2 (en) | 2011-12-20 | 2011-12-20 | Water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011278103A JP5938573B2 (en) | 2011-12-20 | 2011-12-20 | Water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013130308A JP2013130308A (en) | 2013-07-04 |
JP5938573B2 true JP5938573B2 (en) | 2016-06-22 |
Family
ID=48908008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011278103A Expired - Fee Related JP5938573B2 (en) | 2011-12-20 | 2011-12-20 | Water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5938573B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014081114A (en) * | 2012-10-16 | 2014-05-08 | Panasonic Corp | Water heater |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6400256B1 (en) * | 2017-12-06 | 2018-10-03 | 三菱電機株式会社 | Water circulation device construction method and scale removal device |
JP6919696B2 (en) * | 2019-11-05 | 2021-08-18 | ダイキン工業株式会社 | Hot water heater |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001324296A (en) * | 2000-05-18 | 2001-11-22 | Kurita Water Ind Ltd | Open circulation type cooling equipment |
JP5224041B2 (en) * | 2007-06-27 | 2013-07-03 | ダイキン工業株式会社 | Heat pump type water heater |
JP5308977B2 (en) * | 2009-09-28 | 2013-10-09 | サンデン株式会社 | Hot water system |
-
2011
- 2011-12-20 JP JP2011278103A patent/JP5938573B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014081114A (en) * | 2012-10-16 | 2014-05-08 | Panasonic Corp | Water heater |
Also Published As
Publication number | Publication date |
---|---|
JP2013130308A (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5087484B2 (en) | Hot water storage hot water heater | |
JP2009162458A (en) | Heat pump hot water supply system | |
CN103727674B (en) | Hot-water supply | |
JP2015068539A (en) | Hot water supply system and control method of the same | |
JP5938573B2 (en) | Water heater | |
JP2014200696A (en) | Hot water supply apparatus | |
JP5401531B2 (en) | Hot water storage hot water supply system | |
JP2014081116A (en) | Water heater | |
JP6078787B2 (en) | Water heater | |
JP2014016103A (en) | System of supplying hot water and heating | |
JP2006343056A (en) | Heat pump water heater | |
CN108317588A (en) | Compound heating device, supply control method for heat and its device | |
JP2006300383A (en) | Hot water storage type water heater | |
JP2014081115A (en) | Water heater | |
KR101211482B1 (en) | Mgo cooling system | |
JP6212698B2 (en) | Water heater | |
JP2007132658A (en) | Generation suppression method of liquid passage of hydrate slurry | |
JP3947780B2 (en) | Remodeling existing air conditioning system | |
CN110848835A (en) | Energy storage and flow increasing auxiliary device for air energy cooling and heating engineering | |
JP2014173825A (en) | Hot water supply device | |
AU2022220392B2 (en) | System for producing heat for domestic hot water or central heating | |
JP6916061B2 (en) | Heat exchange system | |
JP2013130356A (en) | Storage water heater | |
JP2007003055A (en) | Storage type hot water supply device | |
RU2641489C2 (en) | Central thermal item of closed heat supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20141020 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141126 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160315 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160328 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5938573 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |