JP2013113495A - Hot water storage type hot water supply system - Google Patents

Hot water storage type hot water supply system Download PDF

Info

Publication number
JP2013113495A
JP2013113495A JP2011260222A JP2011260222A JP2013113495A JP 2013113495 A JP2013113495 A JP 2013113495A JP 2011260222 A JP2011260222 A JP 2011260222A JP 2011260222 A JP2011260222 A JP 2011260222A JP 2013113495 A JP2013113495 A JP 2013113495A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat source
flow rate
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011260222A
Other languages
Japanese (ja)
Other versions
JP5401531B2 (en
Inventor
Hironori Inami
裕基 井浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2011260222A priority Critical patent/JP5401531B2/en
Priority to KR1020120136964A priority patent/KR101367474B1/en
Publication of JP2013113495A publication Critical patent/JP2013113495A/en
Application granted granted Critical
Publication of JP5401531B2 publication Critical patent/JP5401531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/48Water heaters for central heating incorporating heaters for domestic water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of stabilizing a temperature of hot water to be supplied to a hot water supply place when switching a heat accumulation hot water supply operation to a combustion hot water supply operation.SOLUTION: A hot water storage type hot water supply system includes a hot water storage tank, an auxiliary heat source machine for heating water from the hot water storage tank when necessary, a heat source machine route for sending water from the hot water storage tank to a hot water supply place through the auxiliary heat source machine, a bypass route for sending water from the hot water storage tank to the hot water supply place without being passed through the auxiliary heat source machine, a bypass control valve arranged on the bypass route, and a flow rate acquisition means for acquiring a total flow rate of water allowed to flow through the heat source machine route and water allowed to flow through the bypass route. The hot water storage type hot water supply system can switch the heat accumulation hot water supply operation to the combustion hot water supply operation and vice versa. In the heat accumulation hot water supply operation of the hot water storage type hot water supply system, an opening degree of the bypass control valve is decreased in accordance with a decrease of the total flow rate acquired by the flow rate acquisition means.

Description

本発明は、貯湯式給湯システムに関する。   The present invention relates to a hot water storage type hot water supply system.

特許文献1に補助熱源機を備える貯湯式給湯システムが開示されている。この貯湯式給湯システムでは、貯湯タンクに十分な量の高温の水が貯えられている場合には、補助熱源機による加熱を行うことなく、給湯箇所への給湯を行う。このような態様での給湯運転を、以下では蓄熱給湯運転という。蓄熱給湯運転を行うことにより、貯湯タンクに貯えられた高温の水が減少していく。貯湯タンクが湯切れした場合には、補助熱源機による加熱を利用して、給湯箇所への給湯を行う。このような態様での給湯運転を、以下では燃焼給湯運転という。   Patent Document 1 discloses a hot water storage type hot water supply system including an auxiliary heat source device. In this hot water storage type hot water supply system, when a sufficient amount of high temperature water is stored in the hot water storage tank, hot water is supplied to the hot water supply location without heating by the auxiliary heat source machine. Hereinafter, the hot water supply operation in such an embodiment is referred to as a heat storage hot water supply operation. By performing the hot water storage hot water operation, the hot water stored in the hot water storage tank decreases. When the hot water storage tank runs out, hot water is supplied to the hot water supply location using heating by the auxiliary heat source machine. Hereinafter, the hot water supply operation in this manner is referred to as a combustion hot water supply operation.

特許文献1の貯湯式給湯システムは、貯湯タンクからの水を補助熱源機を経由して給湯箇所へ送る熱源機経路と、貯湯タンクからの水を補助熱源機を経由しないで給湯箇所へ送るバイパス経路と、バイパス経路に設けられたバイパス制御弁を備えている。蓄熱給湯運転を行っている間は、バイパス制御弁を全開にする。これにより、貯湯タンクからの水は熱源機経路とバイパス経路の双方を流れることになり、給湯箇所へ水を送る際の圧力損失が低下し、給湯箇所へ十分な流量での給湯を行うことができる。また、燃焼給湯運転を行っている間は、バイパス制御弁を全閉にする。これにより、貯湯タンクからの水は全て熱源機経路に流れることになり、補助熱源機における温度調整が容易となる。   The hot water storage type hot water supply system of Patent Document 1 has a heat source path that sends water from the hot water storage tank to the hot water supply location via the auxiliary heat source device, and a bypass that sends water from the hot water storage tank to the hot water supply location without going through the auxiliary heat source device. A path and a bypass control valve provided in the bypass path are provided. During the heat storage hot water supply operation, the bypass control valve is fully opened. As a result, the water from the hot water storage tank flows through both the heat source machine path and the bypass path, and the pressure loss when water is sent to the hot water supply point is reduced, so that hot water can be supplied at a sufficient flow rate to the hot water supply point. it can. Further, the bypass control valve is fully closed during the combustion hot water supply operation. Thereby, all the water from the hot water storage tank flows into the heat source unit path, and the temperature adjustment in the auxiliary heat source unit becomes easy.

特開2010−210182号公報JP 2010-210182 A

蓄熱給湯運転においてバイパス制御弁を全開にすると、多くの水は圧力損失が小さいバイパス経路を流れて、圧力損失が大きい熱源機経路には少量の水が流れる。給湯箇所への給湯流量が少ない場合はこの傾向が顕著となり、大部分の水はバイパス経路を流れて、熱源機経路にはほとんど水が流れなくなる。その結果、熱源機経路の内部に水が滞留してしまう。熱源機経路の内部に滞留した水は、自然放熱によって徐々に冷却されて、低温の水となってしまう。   When the bypass control valve is fully opened in the heat storage hot water supply operation, a lot of water flows through the bypass path with a small pressure loss, and a small amount of water flows through the heat source path with a large pressure loss. This tendency becomes prominent when the hot water supply flow rate to the hot water supply point is small, and most of the water flows through the bypass route, and almost no water flows through the heat source unit route. As a result, water stays inside the heat source unit path. The water staying inside the heat source machine path is gradually cooled by natural heat dissipation and becomes low-temperature water.

熱源機経路の内部に低温の水が滞留している状態で、貯湯タンクが湯切れして蓄熱給湯運転から燃焼給湯運転に切り換わると、バイパス制御弁を全閉とすることで、貯湯タンクからの水が全て熱源機経路に送り出され、熱源機経路の内部に滞留している低温の水が給湯箇所へ押し出されてしまう。特に、補助熱源機よりも下流側の熱源機経路の内部に滞留している低温の水は、補助熱源機による加熱がなされないまま、給湯箇所に送り出されてしまう。蓄熱給湯運転から燃焼給湯運転へ切換える際に、給湯温度が不安定となってしまう。   If the hot water storage tank runs out of water and the hot water storage operation is switched from the hot water storage operation to the combustion hot water supply operation with low temperature water remaining in the heat source machine path, the bypass control valve is fully closed, All of the water is sent out to the heat source machine path, and the low-temperature water staying inside the heat source machine path is pushed out to the hot water supply location. In particular, low-temperature water staying in the heat source unit path downstream of the auxiliary heat source unit is sent to the hot water supply location without being heated by the auxiliary heat source unit. When switching from the regenerative hot water supply operation to the combustion hot water supply operation, the hot water supply temperature becomes unstable.

本明細書で開示する技術は、上記の課題を解決するために創作されたものである。本明細書では、蓄熱給湯運転から燃焼給湯運転へ切換える際の、給湯箇所への給湯温度を安定化することが可能な技術を提供する。   The technology disclosed in this specification has been created to solve the above problems. In this specification, the technique which can stabilize the hot-water supply temperature to the hot-water supply location at the time of switching from a thermal storage hot-water supply operation to a combustion hot-water supply operation is provided.

本明細書が開示する貯湯式給湯システムは、貯湯タンクと、貯湯タンクからの水を必要に応じて加熱する補助熱源機と、貯湯タンクからの水を補助熱源機を経由して給湯箇所へ送る熱源機経路と、貯湯タンクからの水を補助熱源機を経由しないで給湯箇所へ送るバイパス経路と、バイパス経路に設けられたバイパス制御弁と、熱源機経路を流れる水とバイパス経路を流れる水の合計流量を取得する流量取得手段を備えている。その貯湯式給湯システムは、補助熱源機による加熱を行うことなく給湯箇所へ給湯する蓄熱給湯運転と、補助熱源機による加熱を行って給湯箇所へ給湯する燃焼給湯運転を切り換え可能である。その貯湯式給湯システムでは、蓄熱給湯運転において、流量取得手段で取得される合計流量が少ないほど、バイパス制御弁の開度を下げる。   The hot water storage type hot water supply system disclosed in this specification includes a hot water storage tank, an auxiliary heat source device that heats water from the hot water storage tank as needed, and water from the hot water storage tank to the hot water supply location via the auxiliary heat source device. A heat source unit route, a bypass route for sending water from the hot water storage tank to the hot water supply location without going through the auxiliary heat source unit, a bypass control valve provided in the bypass route, water flowing through the heat source unit route, and water flowing through the bypass route A flow rate acquisition means for acquiring the total flow rate is provided. The hot water storage type hot water supply system can be switched between a heat storage hot water supply operation in which hot water is supplied to a hot water supply location without performing heating by an auxiliary heat source device and a combustion hot water supply operation in which heating is performed by an auxiliary heat source device to supply hot water to a hot water supply location. In the hot water storage type hot water supply system, in the heat storage hot water supply operation, the smaller the total flow rate acquired by the flow rate acquisition means, the lower the opening degree of the bypass control valve.

上記の貯湯式給湯システムでは、蓄熱給湯運転の際に、熱源機経路を流れる水とバイパス経路を流れる水の合計流量が少ないほど、バイパス制御弁の開度を下げる。これにより、蓄熱給湯運転において、給湯流量が少ないときでも、確実に熱源機経路に水を流すことができる。従って、熱源機経路の内部に低温の水が滞留してしまう事態を防ぐことができる。蓄熱給湯運転から燃焼給湯運転に切り換る際に、熱源機経路から給湯箇所へ低温の水が送られてしまう事態を防ぐことができる。蓄熱給湯運転から燃焼給湯運転への切り替えの際の給湯温度を安定化することができる。   In the hot water storage type hot water supply system described above, the opening degree of the bypass control valve is lowered as the total flow rate of the water flowing through the heat source unit path and the water flowing through the bypass path is smaller during the heat storage hot water supply operation. Thereby, in the heat storage hot water supply operation, even when the hot water supply flow rate is small, it is possible to reliably flow water through the heat source unit path. Therefore, it is possible to prevent a situation where low-temperature water stays inside the heat source unit path. When switching from the heat storage hot water supply operation to the combustion hot water supply operation, it is possible to prevent a situation where low temperature water is sent from the heat source machine path to the hot water supply location. The hot water supply temperature at the time of switching from the heat storage hot water supply operation to the combustion hot water supply operation can be stabilized.

上記の貯湯式給湯システムでは、蓄熱給湯運転において、熱源機経路を流れる水の流量に対するバイパス経路を流れる水の流量の比率が一定となるように、バイパス制御弁の開度を調整することが好ましい。   In the above hot water storage type hot water supply system, it is preferable to adjust the opening degree of the bypass control valve so that the ratio of the flow rate of water flowing through the bypass path to the flow rate of water flowing through the heat source path is constant in the heat storage hot water supply operation. .

上記の貯湯式給湯システムによれば、蓄熱給湯運転において、給湯箇所への給湯流量が少ない場合であっても、確実に熱源機経路に水を流すことができる。   According to the hot water storage type hot water supply system described above, in the heat storage hot water supply operation, even when the flow rate of hot water supplied to the hot water supply point is small, water can be reliably supplied to the heat source machine path.

本明細書が開示する貯湯式給湯システムによれば、蓄熱給湯運転から燃焼給湯運転へ切り換える際の、給湯箇所への給湯温度を安定化することができる。   According to the hot water storage type hot water supply system disclosed in the present specification, it is possible to stabilize the hot water supply temperature to the hot water supply point when switching from the heat storage hot water supply operation to the combustion hot water supply operation.

実施例1の給湯システム10の構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system 10 of Example 1. FIG. 実施例1の給湯システム10の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the hot water supply system 10 of Example 1. FIG. 実施例1の給湯システム10における、バイパス制御弁74の開度と、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量と、熱源機/バイパス流量比率の関係を示す図である。The figure which shows the relationship between the opening degree of the bypass control valve 74 in the hot water supply system 10 of Example 1, the total flow rate of the water which flows through the heat source unit forward path 54 and the heat source unit bypass path 58, and the heat source unit / bypass flow rate ratio. It is.

本発明の実施例に係る給湯機について、図面を参照しながら説明する。図1は、給湯システム10の概略構成を示す接続図である。給湯システム10は、給湯箇所(例えば、蛇口、浴槽、シャワー等)に給湯設定温度での給湯を行う。図示するように、給湯システム10は、ヒートポンプ(HP)ユニット12と、タンクユニット14と、ガス熱源機16と、コントローラ15を備えている。   A water heater according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a connection diagram illustrating a schematic configuration of a hot water supply system 10. The hot water supply system 10 supplies hot water at a hot water supply set temperature to a hot water supply location (for example, a faucet, a bathtub, a shower, etc.). As shown in the figure, the hot water supply system 10 includes a heat pump (HP) unit 12, a tank unit 14, a gas heat source device 16, and a controller 15.

HPユニット12は、熱媒体(本実施例では二酸化炭素)を循環させる熱媒体循環路20と、熱媒体循環路20に配設されている蒸発器22、圧縮器24、凝縮器26および膨張弁28と、蓄熱循環水路30と、蓄熱循環水路30に配設されている蓄熱循環ポンプ32を備えている。   The HP unit 12 includes a heat medium circulation path 20 that circulates a heat medium (carbon dioxide in the present embodiment), an evaporator 22, a compressor 24, a condenser 26, and an expansion valve that are disposed in the heat medium circulation path 20. 28, a heat storage circulation water channel 30, and a heat storage circulation pump 32 disposed in the heat storage circulation water channel 30.

蒸発器22は、外気を送風するファン22aを備えており、送風した外気と熱媒体循環路20内の熱媒体との間で熱交換させる熱交換器である。後に説明するように、蒸発器22には、膨張弁28を通過後の低圧低温の液体状態にある熱媒体が供給される。蒸発器22は、熱媒体と外気とを熱交換させることによって、熱媒体を加熱する。熱媒体は、加熱されることにより気化して、比較的高温であり、低圧の気体状態となる。   The evaporator 22 includes a fan 22 a that blows outside air, and is a heat exchanger that exchanges heat between the blown outside air and the heat medium in the heat medium circulation path 20. As will be described later, the evaporator 22 is supplied with a heat medium in a low-pressure, low-temperature liquid state after passing through the expansion valve 28. The evaporator 22 heats the heat medium by exchanging heat between the heat medium and the outside air. The heating medium is vaporized by being heated, and is in a relatively high temperature and low pressure gas state.

圧縮器24は、熱媒体循環路20内の熱媒体を圧縮して凝縮器26側に送り出す。圧縮器24が熱媒体循環路20内の熱媒体を送り出すので、熱媒体が、蒸発器22、圧縮器24、凝縮器26、膨張弁28の順に熱媒体循環路20内を循環する。圧縮器24には、蒸発器22を通過後の熱媒体が供給される。すなわち、比較的高温であり、低圧の気体状態にある熱媒体が供給される。圧縮器24が熱媒体を圧縮すると、熱媒体は高温高圧の気体状態となる。   The compressor 24 compresses the heat medium in the heat medium circuit 20 and sends it out to the condenser 26 side. Since the compressor 24 sends out the heat medium in the heat medium circuit 20, the heat medium circulates in the heat medium circuit 20 in the order of the evaporator 22, the compressor 24, the condenser 26, and the expansion valve 28. The heat medium after passing through the evaporator 22 is supplied to the compressor 24. That is, a heat medium having a relatively high temperature and a low-pressure gas state is supplied. When the compressor 24 compresses the heat medium, the heat medium becomes a high-temperature and high-pressure gas state.

凝縮器26は、熱媒体循環路20内の熱媒体と蓄熱循環水路30内の水との間で熱交換させる熱交換器である。凝縮器26の熱媒体循環路20には、圧縮器24から送り出された熱媒体が供給される。すなわち、高温高圧の気体状態にある熱媒体が供給される。凝縮器26では、熱媒体によって蓄熱循環水路30内の水が加熱される。また、熱媒体は、熱を奪われることによって冷却される。これによって、熱媒体は、比較的低温であり、高圧の液体状態となる。   The condenser 26 is a heat exchanger that exchanges heat between the heat medium in the heat medium circuit 20 and the water in the heat storage circuit 30. The heat medium sent out from the compressor 24 is supplied to the heat medium circuit 20 of the condenser 26. That is, a heat medium in a gas state of high temperature and pressure is supplied. In the condenser 26, the water in the heat storage circulation channel 30 is heated by the heat medium. Further, the heat medium is cooled by taking heat away. As a result, the heat medium is at a relatively low temperature and is in a high-pressure liquid state.

膨張弁28には、凝縮器26を通過後の熱媒体が供給される。すなわち、比較的低温であり、高圧の液体状態の熱媒体が供給される。熱媒体は、膨張弁28を通過すると、減圧されて膨張する。これによって、低温低圧の液体状態となる。膨張弁28を通過した熱媒体は、上述したように蒸発器22に供給される。   The expansion medium 28 is supplied with the heat medium that has passed through the condenser 26. That is, a relatively low temperature and high pressure liquid heat medium is supplied. When the heat medium passes through the expansion valve 28, the heat medium is decompressed and expanded. As a result, a low-temperature and low-pressure liquid state is obtained. The heat medium that has passed through the expansion valve 28 is supplied to the evaporator 22 as described above.

HPユニット12が作動すると、圧縮器24、ファン22a、蓄熱循環ポンプ32が駆動する。これによって、熱媒体循環路20内の熱媒体が外気から熱を吸収し、高温となった熱媒体によって蓄熱循環水路30内を流れる水が加熱される。   When the HP unit 12 is activated, the compressor 24, the fan 22a, and the heat storage circulation pump 32 are driven. Thereby, the heat medium in the heat medium circulation path 20 absorbs heat from the outside air, and the water flowing in the heat storage circulation water path 30 is heated by the heat medium having a high temperature.

タンクユニット14は、貯湯タンク40と、蓄熱循環往路42と、蓄熱循環復路44と、タンク給水路46と、タンク出水路48と、第1給湯路50と、第2給湯路52と、熱源機往路54と、熱源機復路56と、熱源機バイパス路58と、タンクバイパス路60を備えている。   The tank unit 14 includes a hot water storage tank 40, a heat storage circulation forward path 42, a heat storage circulation return path 44, a tank water supply path 46, a tank discharge path 48, a first hot water supply path 50, a second hot water supply path 52, and a heat source machine. A forward path 54, a heat source machine return path 56, a heat source machine bypass path 58, and a tank bypass path 60 are provided.

貯湯タンク40は、HPユニット12によって加熱された高温の水を貯える。貯湯タンク40の底部近傍には蓄熱循環往路42が接続されており、貯湯タンク40の頂部近傍には蓄熱循環復路44が接続されている。HPユニット12の蓄熱循環ポンプ32が駆動すると、貯湯タンク40の下部から低温の水が吸い出されて、蓄熱循環往路42を経て蓄熱循環水路30に送られる。凝縮器26を通過することで加熱された水は、蓄熱循環水路30から蓄熱循環復路44を経て貯湯タンク40の上部に戻される。貯湯タンク40内には、上部に高温の水の層が形成され、下部に低温の水の層が形成される。このように、高温の層と低温の層が形成されている状態を、温度成層という。貯湯タンク40の上部には、内部の水の温度を検出するタンクサーミスタ41が設けられている。   The hot water storage tank 40 stores hot water heated by the HP unit 12. A heat storage circulation path 42 is connected near the bottom of the hot water storage tank 40, and a heat storage circulation return path 44 is connected near the top of the hot water storage tank 40. When the heat storage circulation pump 32 of the HP unit 12 is driven, low-temperature water is sucked out from the lower part of the hot water storage tank 40 and is sent to the heat storage circulation water path 30 through the heat storage circulation path 42. The water heated by passing through the condenser 26 is returned to the upper part of the hot water storage tank 40 from the heat storage circulation water passage 30 through the heat storage circulation return passage 44. In the hot water storage tank 40, a high-temperature water layer is formed at the top and a low-temperature water layer is formed at the bottom. Thus, the state in which the high temperature layer and the low temperature layer are formed is called temperature stratification. A tank thermistor 41 for detecting the temperature of the internal water is provided at the upper part of the hot water storage tank 40.

貯湯タンク40の底部近傍にはタンク給水路46が接続されており、貯湯タンク40の頂部近傍にはタンク出水路48が接続されている。タンク給水路46は上水道に接続しており、貯湯タンク40の下部に低温の水(水道水)を供給する。タンク出水路48はタンクバイパス路60と合流して第1給湯路50に接続しており、貯湯タンク40の上部の水を第1給湯路50に送り出す。タンク出水路48には、タンク出水路48を流れる水の流量を調整する高温水制御弁62、タンク出水路48を流れる水の流量を検出する高温水流量センサ64、タンク出水路48を流れる水の温度を検出する高温水サーミスタ66が設けられている。   A tank water supply path 46 is connected to the vicinity of the bottom of the hot water storage tank 40, and a tank water discharge path 48 is connected to the vicinity of the top of the hot water storage tank 40. The tank water supply channel 46 is connected to the water supply, and supplies low temperature water (tap water) to the lower part of the hot water storage tank 40. The tank outlet 48 joins the tank bypass 60 and is connected to the first hot water supply 50, and sends the water in the upper part of the hot water storage tank 40 to the first hot water supply 50. The tank outlet 48 includes a high-temperature water control valve 62 that adjusts the flow of water flowing through the tank outlet 48, a high-temperature water flow sensor 64 that detects the flow of water flowing through the tank outlet 48, and water flowing through the tank outlet 48. A high temperature water thermistor 66 for detecting the temperature of the water is provided.

タンクバイパス路60は、タンク給水路46から分岐し、タンク出水路48と合流して第1給湯路50に接続している。タンクバイパス路60には、タンクバイパス路60を流れる水の流量を調整する低温水制御弁68、タンクバイパス路60を流れる水の流量を検出する低温水流量センサ70、タンクバイパス路60を流れる水の温度を検出する低温水サーミスタ72が設けられている。   The tank bypass channel 60 branches from the tank water supply channel 46, joins the tank water discharge channel 48, and is connected to the first hot water supply channel 50. The tank bypass path 60 includes a low-temperature water control valve 68 that adjusts the flow rate of water flowing through the tank bypass path 60, a low-temperature water flow sensor 70 that detects the flow rate of water flowing through the tank bypass path 60, and water flowing through the tank bypass path 60. A low temperature water thermistor 72 that detects the temperature of the water is provided.

第1給湯路50には、タンク出水路48からの高温の水と、タンクバイパス路60からの低温の水が混合した水が供給される。貯湯タンク40の上部に給湯設定温度よりも高い温度の水が貯えられている場合には、高温水制御弁62の開度と、低温水制御弁68の開度を調整することによって、タンク出水路48からの高温の水の流量と、タンクバイパス路60からの低温の水の流量の比率を調整して、給湯設定温度に調温された水を第1給湯路50に流すことができる。高温水制御弁62および低温水制御弁68は、いわゆるミキシングバルブを構成している。第1給湯路50には、第1給湯路50を流れる水の温度を検出する第1給湯サーミスタ73が設けられている。   The first hot water supply path 50 is supplied with water in which high-temperature water from the tank outlet path 48 and low-temperature water from the tank bypass path 60 are mixed. When water having a temperature higher than the hot water supply set temperature is stored in the upper part of the hot water storage tank 40, the opening of the tank is adjusted by adjusting the opening of the high temperature water control valve 62 and the opening of the low temperature water control valve 68. By adjusting the ratio between the flow rate of hot water from the water channel 48 and the flow rate of low-temperature water from the tank bypass channel 60, the water adjusted to the hot water supply set temperature can be flowed to the first hot water supply channel 50. The high temperature water control valve 62 and the low temperature water control valve 68 constitute a so-called mixing valve. The first hot water supply path 50 is provided with a first hot water supply thermistor 73 that detects the temperature of the water flowing through the first hot water supply path 50.

第1給湯路50は、熱源機往路54と熱源機バイパス路58に分岐している。熱源機往路54は、ガス熱源機16を介して、熱源機復路56に接続している。熱源機復路56は、熱源機バイパス路58と合流して第2給湯路52に接続している。熱源機バイパス路58には、熱源機バイパス路58を流れる水の流量を調整するバイパス制御弁74が設けられている。第2給湯路52には、第2給湯路52を流れる水の温度を検出する第2給湯サーミスタ76が設けられている。   The first hot water supply path 50 is branched into a heat source unit forward path 54 and a heat source unit bypass path 58. The heat source unit forward path 54 is connected to the heat source unit return path 56 via the gas heat source unit 16. The heat source machine return path 56 joins the heat source machine bypass path 58 and is connected to the second hot water supply path 52. The heat source unit bypass path 58 is provided with a bypass control valve 74 that adjusts the flow rate of water flowing through the heat source unit bypass path 58. The second hot water supply passage 52 is provided with a second hot water supply thermistor 76 that detects the temperature of the water flowing through the second hot water supply passage 52.

ガス熱源機16は、ガスを燃焼させるバーナ78と、バーナ78の燃焼熱を利用して内部を流れる水を加熱する燃焼加熱路80を備えている。燃焼加熱路80の上流側は熱源機往路54に接続しており、燃焼加熱路80の下流側は熱源機復路56に接続している。ガス熱源機16は、熱源機往路54から受け入れた水を必要に応じて加熱し、熱源機復路56へ送り出す。   The gas heat source unit 16 includes a burner 78 that burns gas, and a combustion heating path 80 that heats water flowing inside using the combustion heat of the burner 78. The upstream side of the combustion heating path 80 is connected to the heat source unit forward path 54, and the downstream side of the combustion heating path 80 is connected to the heat source unit return path 56. The gas heat source unit 16 heats the water received from the heat source unit forward path 54 as necessary, and sends it to the heat source unit return path 56.

コントローラ15は、HPユニット12、タンクユニット14およびガス熱源機16の各構成要素の動作を制御する。   The controller 15 controls the operation of each component of the HP unit 12, the tank unit 14, and the gas heat source machine 16.

次に、図2のフローチャートを参照しながら、給湯システム10の動作について説明する。給湯システム10に電源が投入されると、コントローラ15は以下の処理を行う。   Next, the operation of the hot water supply system 10 will be described with reference to the flowchart of FIG. When the hot water supply system 10 is turned on, the controller 15 performs the following processing.

ステップS2では、給湯箇所への給湯流量が所定値を超えるまで待機する。本実施例の給湯システム10では、高温水流量センサ64で検出される高温水流量と、低温水流量センサ70で検出される低温水流量を合算して合計流量を算出することで、給湯箇所への給湯流量を取得する。ステップS2で給湯箇所への給湯流量が所定値を超えると(YESとなると)、ステップS4へ進む。   In step S2, it waits until the hot water supply flow volume to a hot-water supply location exceeds a predetermined value. In the hot water supply system 10 of the present embodiment, the total flow rate is calculated by adding the high temperature water flow rate detected by the high temperature water flow rate sensor 64 and the low temperature water flow rate detected by the low temperature water flow rate sensor 70 to the hot water supply location. Get the hot water flow rate. When the hot water supply flow rate to the hot water supply location exceeds a predetermined value in step S2 (when it becomes YES), the process proceeds to step S4.

ステップS4では、貯湯タンク40における湯切れの有無を判断する。本実施例の給湯システム10では、タンクサーミスタ41で検出されるタンク上部温度Taが、給湯設定温度T0以上である場合に、貯湯タンク40には十分な量の温水が貯えられており、湯切れをしていないと判断する。なお、貯湯タンク40における湯切れの判断は、他の様々な手法によって行ってもよい。ステップS4で貯湯タンク40が湯切れをしていないと判断した場合(NOの場合)、ステップS6へ進む。   In step S4, it is determined whether or not the hot water tank 40 has run out of hot water. In the hot water supply system 10 of the present embodiment, when the tank upper temperature Ta detected by the tank thermistor 41 is equal to or higher than the hot water supply set temperature T0, a sufficient amount of hot water is stored in the hot water storage tank 40, and the hot water runs out. Judge that you have not. Note that the determination of running out of hot water in the hot water storage tank 40 may be made by various other methods. If it is determined in step S4 that the hot water storage tank 40 has not run out (NO), the process proceeds to step S6.

ステップS6では、給湯箇所への給湯温度が給湯設定温度T0に一致するように、高温水制御弁62と低温水制御弁68の開度をそれぞれ調整する。高温水制御弁62と低温水制御弁68の開度の調整は、様々な手法により行うことができる。例えば、高温水サーミスタ66で検出される温度Tbと、低温水サーミスタ72で検出される温度Tcと、給湯設定温度T0に基づいて、高温水制御弁62と低温水制御弁68の開度を調整してもよい。あるいは、第1給湯サーミスタ73で検出される温度Tdと、給湯設定温度T0に基づいて、高温水制御弁62と低温水制御弁68の開度を調整してもよい。高温水制御弁62と低温水制御弁68の開度をそれぞれ調整することで、第1給湯路50には給湯設定温度T0に調温された水が供給される。   In step S6, the opening degrees of the hot water control valve 62 and the low temperature water control valve 68 are adjusted so that the hot water supply temperature to the hot water supply point coincides with the hot water supply set temperature T0. Adjustment of the opening degree of the high-temperature water control valve 62 and the low-temperature water control valve 68 can be performed by various methods. For example, the opening degrees of the high temperature water control valve 62 and the low temperature water control valve 68 are adjusted based on the temperature Tb detected by the high temperature water thermistor 66, the temperature Tc detected by the low temperature water thermistor 72, and the hot water supply set temperature T0. May be. Alternatively, the opening degrees of the high temperature water control valve 62 and the low temperature water control valve 68 may be adjusted based on the temperature Td detected by the first hot water supply thermistor 73 and the hot water supply set temperature T0. By adjusting the opening degree of the high temperature water control valve 62 and the low temperature water control valve 68, water adjusted to the hot water supply set temperature T0 is supplied to the first hot water supply path 50.

ステップS8では、バイパス制御弁74の開度を調整する。本実施例の給湯システム10では、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量、すなわち給湯箇所への給湯流量に応じて、バイパス制御弁74の開度を調整する。   In step S8, the opening degree of the bypass control valve 74 is adjusted. In the hot water supply system 10 of the present embodiment, the opening degree of the bypass control valve 74 is adjusted in accordance with the total flow rate of the water flowing through the heat source unit forward path 54 and the water flowing through the heat source unit bypass path 58, that is, the hot water flow rate to the hot water supply location. .

図3は、バイパス制御弁74の開度と、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量と、熱源機/バイパス流量比率の関係を示している。ここでいう熱源機/バイパス流量比率とは、熱源機往路54を流れる水の流量に対する、熱源機バイパス路58を流れる水の流量の比率を示している。バイパス制御弁74の開度を一定とした場合、合計流量がある程度の大きさであれば、合計流量に関わらず熱源機/バイパス流量比率はほぼ一定となる。しかしながら、合計流量が少なくなると、熱源機/バイパス流量比率は急激に上昇する。これは、合計流量が少なくなると、第1給湯路50からの水の大部分が熱源機バイパス路58を流れて、熱源機往路54にはほとんど水が流れなくなってしまうことを意味している。   FIG. 3 shows the relationship between the opening degree of the bypass control valve 74, the total flow rate of water flowing through the heat source unit forward path 54 and the water flowing through the heat source unit bypass path 58, and the heat source unit / bypass flow rate ratio. The heat source unit / bypass flow rate ratio here indicates the ratio of the flow rate of water flowing through the heat source unit bypass path 58 to the flow rate of water flowing through the heat source unit forward path 54. When the opening degree of the bypass control valve 74 is constant, the heat source unit / bypass flow rate ratio is substantially constant regardless of the total flow rate if the total flow rate is a certain level. However, as the total flow rate decreases, the heat source machine / bypass flow rate ratio increases rapidly. This means that when the total flow rate decreases, most of the water from the first hot water supply path 50 flows through the heat source unit bypass path 58 and almost no water flows through the heat source unit forward path 54.

そこで、本実施例の給湯システム10では、熱源機/バイパス流量比率がほぼ一定となるように、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量に応じて、バイパス制御弁74の開度を調整する。より具体的には、合計流量が所定値(例えば12リットル/分)を超えている場合には、バイパス制御弁74の開度を100%とする。この場合には、合計流量の大きさに関わらず、熱源機/バイパス流量比率はほぼ一定となる。そして、合計流量が所定値を下回る場合には、熱源機/バイパス流量比率がほぼ一定に保たれるように、バイパス制御弁74の開度を下げる。バイパス制御弁74の開度は、例えば図3に示す関係から、任意の合計流量に対して、一定の熱源機/バイパス流量比率を実現するバイパス制御弁74の開度を線形補間によって算出しておくことで、設定しておくことができる。これによって、合計流量が少ない場合でも、熱源機往路54に温水を確実に送り出し、ガス熱源機16および熱源機復路56内に水が滞留することを防止することができる。ステップS8でバイパス制御弁74の開度を調整した後、ステップS10へ進む。   Therefore, in the hot water supply system 10 of the present embodiment, bypass control is performed according to the total flow rate of water flowing through the heat source unit forward path 54 and water flowing through the heat source unit bypass path 58 so that the heat source unit / bypass flow rate ratio is substantially constant. The opening degree of the valve 74 is adjusted. More specifically, when the total flow rate exceeds a predetermined value (for example, 12 liters / minute), the opening degree of the bypass control valve 74 is set to 100%. In this case, the heat source unit / bypass flow rate ratio is substantially constant regardless of the total flow rate. When the total flow rate is lower than the predetermined value, the opening degree of the bypass control valve 74 is lowered so that the heat source unit / bypass flow rate ratio is kept substantially constant. The opening degree of the bypass control valve 74 is calculated, for example, from the relationship shown in FIG. 3 by linear interpolation to calculate the opening degree of the bypass control valve 74 that realizes a constant heat source unit / bypass flow rate ratio for an arbitrary total flow rate. Can be set. Accordingly, even when the total flow rate is small, it is possible to reliably send hot water to the heat source unit forward path 54 and prevent water from staying in the gas heat source unit 16 and the heat source unit return path 56. After adjusting the opening degree of the bypass control valve 74 in step S8, the process proceeds to step S10.

ステップS10では、給湯箇所への給湯が終了したか否かを判断する。本実施例の給湯システム10では、給湯箇所への給湯流量が所定値を下回った場合に、給湯箇所への給湯が終了したと判断する。ステップS10で給湯が終了したと判断した場合(YESの場合)、給湯システム10は給湯運転を終了する。給湯が終了していないと判断した場合(NOの場合)、ステップS4へ戻る。   In step S10, it is determined whether or not the hot water supply to the hot water supply location is completed. In the hot water supply system 10 of the present embodiment, it is determined that the hot water supply to the hot water supply location is completed when the hot water supply flow rate to the hot water supply location is below a predetermined value. When it is determined in step S10 that the hot water supply has ended (in the case of YES), the hot water supply system 10 ends the hot water supply operation. If it is determined that the hot water supply has not ended (NO), the process returns to step S4.

ステップS6からステップS10までの一連の動作においては、給湯システム10はガス熱源機16による加熱を行うことなく、貯湯タンク40に貯えられた高温の水を利用して給湯箇所への給湯を行っている。すなわち、給湯システム10は蓄熱給湯運転を行っている。この蓄熱給湯運転を継続していくと、貯湯タンク40に貯えられた高温の水が減少していき、貯湯タンク40が湯切れを生じることになる。   In a series of operations from step S6 to step S10, the hot water supply system 10 performs hot water supply to the hot water supply location using high-temperature water stored in the hot water storage tank 40 without heating by the gas heat source unit 16. Yes. That is, the hot water supply system 10 performs a heat storage hot water supply operation. If this heat storage hot water supply operation is continued, the hot water stored in the hot water storage tank 40 will decrease, and the hot water storage tank 40 will run out of hot water.

ステップS4で、貯湯タンク40が湯切れしたと判断した場合(YESの場合)、ステップS12へ進む。   If it is determined in step S4 that the hot water storage tank 40 has run out (YES), the process proceeds to step S12.

ステップS12では、バイパス制御弁74を全閉にする。これにより、第1給湯路50を流れる水の全量が熱源機往路54へ送り出される。   In step S12, the bypass control valve 74 is fully closed. As a result, the entire amount of water flowing through the first hot water supply passage 50 is sent out to the heat source unit forward passage 54.

ステップS14では、ガス熱源機16を作動する。第1給湯路50から熱源機往路54へ流れた水は、ガス熱源機16で加熱された後、熱源機復路56から第2給湯路52へ流入し、給湯箇所へ送られる。   In step S14, the gas heat source unit 16 is operated. The water that has flowed from the first hot water supply path 50 to the heat source machine forward path 54 is heated by the gas heat source machine 16, then flows from the heat source machine return path 56 to the second hot water supply path 52, and is sent to the hot water supply location.

ステップS16では、給湯箇所への給湯温度が給湯設定温度T0に一致するように、ガス熱源機16での火力を調整する。ガス熱源機16での火力の調整は、例えば第2給湯サーミスタ76で検出される温度Teと、給湯設定温度T0に基づいて行うことができる。   In step S16, the heating power in the gas heat source unit 16 is adjusted so that the hot water supply temperature to the hot water supply location matches the hot water supply set temperature T0. The adjustment of the thermal power in the gas heat source device 16 can be performed based on, for example, the temperature Te detected by the second hot water supply thermistor 76 and the hot water supply set temperature T0.

ステップS18では、ステップS10と同様に、給湯箇所への給湯が終了したか否かを判断する。ステップS18で給湯が終了したと判断した場合(YESの場合)、ステップS20でガス熱源機16を停止した後、給湯システム10は給湯運転を終了する。ステップS18で給湯が終了していないと判断した場合(NOの場合)、ステップS16へ戻る。   In step S18, as in step S10, it is determined whether or not the hot water supply to the hot water supply location is completed. When it is determined in step S18 that the hot water supply has ended (in the case of YES), the hot water supply system 10 ends the hot water supply operation after stopping the gas heat source unit 16 in step S20. If it is determined in step S18 that the hot water supply has not ended (NO), the process returns to step S16.

ステップS12からステップS18までの一連の動作においては、給湯システム10はガス熱源機16による加熱を利用して、給湯箇所への給湯を行っている。すなわち、給湯システム10は燃焼給湯運転を行っている。   In a series of operations from step S12 to step S18, the hot water supply system 10 uses the heating by the gas heat source unit 16 to supply hot water to the hot water supply location. That is, the hot water supply system 10 performs the combustion hot water supply operation.

仮に、蓄熱給湯運転において、バイパス制御弁74を常に全開とした場合、第1給湯路50からの水の大部分は熱源機バイパス路58を流れて、熱源機往路54、ガス熱源機16、熱源機復路56にはわずかな水しか流れなくなる。特に、給湯箇所への給湯流量が少ない場合には、この傾向は顕著となり、熱源機往路54、ガス熱源機16、熱源機復路56にはほとんど水が流れなくなる。このような場合、熱源機往路54、ガス熱源機16、熱源機復路56内に滞留した水は、自然放熱によって温度が低下していく。その後に蓄熱給湯運転から燃焼給湯運転に切り換える際に、ステップS12でバイパス制御弁74を全閉にすることで、ガス熱源機16や熱源機復路56内に滞留していた水は、ガス熱源機16で加熱されることなく、第2給湯路52を経て給湯箇所へ供給されてしまう。その結果、給湯箇所に低温の水が一時的に供給されてしまい、給湯温度が不安定となってしまう。   If the bypass control valve 74 is always fully opened in the heat storage hot water supply operation, most of the water from the first hot water supply passage 50 flows through the heat source device bypass passage 58, the heat source device forward passage 54, the gas heat source device 16, the heat source. Only a small amount of water flows through the machine return path 56. In particular, when the flow rate of hot water to the hot water supply point is small, this tendency becomes remarkable, and almost no water flows through the heat source unit forward path 54, the gas heat source unit 16, and the heat source unit return path 56. In such a case, the temperature of the water staying in the heat source unit forward path 54, the gas heat source unit 16, and the heat source unit return path 56 is lowered by natural heat dissipation. Thereafter, when the heat storage hot water supply operation is switched to the combustion hot water supply operation, the water remaining in the gas heat source machine 16 and the heat source machine return path 56 is removed from the gas heat source machine by fully closing the bypass control valve 74 in step S12. Without being heated at 16, it is supplied to the hot water supply location via the second hot water supply path 52. As a result, low temperature water is temporarily supplied to the hot water supply location, and the hot water supply temperature becomes unstable.

上記の点について、本実施例の給湯システム10では、ステップS8に示すように、蓄熱給湯運転において、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量に応じて、バイパス制御弁74の開度を調整する。このような構成とすることによって、給湯箇所への給湯流量が少ない場合であっても、熱源機往路54、ガス熱源機16および熱源機復路56に確実に水を送り出し、熱源機往路54、ガス熱源機16および熱源機復路56内に水が滞留することを防止することができる。蓄熱給湯運転から燃焼給湯運転に切り換る際に、ガス熱源機16や熱源機復路56から低温の水が給湯箇所へ送り出されてしまう事態を防ぐことができる。蓄熱給湯運転から燃焼給湯運転に切り換る際の給湯温度を安定化することができる。   Regarding the above point, in the hot water supply system 10 of the present embodiment, as shown in step S8, in the heat storage hot water supply operation, the bypass is performed according to the total flow rate of the water flowing through the heat source unit forward path 54 and the water flowing through the heat source unit bypass path 58. The opening degree of the control valve 74 is adjusted. With such a configuration, even when the flow rate of hot water to the hot water supply point is small, water is reliably sent to the heat source unit forward path 54, the gas heat source unit 16 and the heat source unit return path 56, and the heat source unit forward path 54, gas It is possible to prevent water from staying in the heat source unit 16 and the heat source unit return path 56. When switching from the heat storage hot water supply operation to the combustion hot water supply operation, it is possible to prevent a situation in which low temperature water is sent from the gas heat source device 16 or the heat source device return path 56 to the hot water supply location. The hot water supply temperature at the time of switching from the heat storage hot water supply operation to the combustion hot water supply operation can be stabilized.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

上記の実施例では、貯湯タンク40にHPユニット12によって加熱された高温の水を貯える場合について説明した。これとは異なり、例えば太陽熱温水器によって加熱された高温の水を貯湯タンク40に貯える構成としてもよい。あるいは、コージェネレーションシステムの排熱を利用して加熱された高温の水を貯湯タンク40に貯える構成としてもよい。   In the above embodiment, the case where the hot water heated by the HP unit 12 is stored in the hot water storage tank 40 has been described. Unlike this, for example, a configuration may be adopted in which high-temperature water heated by a solar water heater is stored in the hot water storage tank 40. Or it is good also as a structure which stores the hot water heated using the waste heat of a cogeneration system in the hot water storage tank 40. FIG.

上記の実施例では、高温水流量センサ64で検出される高温水流量と、低温水流量センサ70で検出される低温水流量を合算することで、温水利用箇所への給湯流量、すなわち熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量を取得している。これとは異なり、例えば第1給湯路50または第2給湯路52に流量センサを別途設けておいて、その検出値から給湯箇所への給湯流量、すなわち熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量を取得してもよい。あるいは、給湯システム10から給湯箇所への給湯流量は上水道から給湯システム10への給水流量と同じであるから、上水道から給湯システム10への給水流量を検出する流量センサを別途設けておいて、その検出値を給湯箇所への給湯流量、すなわち熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量としてもよい。   In the above embodiment, the hot water flow rate detected by the high temperature water flow rate sensor 64 and the low temperature water flow rate detected by the low temperature water flow rate sensor 70 are added together, so that the hot water supply flow rate to the hot water use location, that is, the heat source machine forward path. The total flow rate of the water flowing through 54 and the water flowing through the heat source unit bypass 58 is acquired. Unlike this, for example, a flow rate sensor is separately provided in the first hot water supply path 50 or the second hot water supply path 52, and the hot water supply flow rate from the detected value to the hot water supply location, that is, the water flowing through the heat source unit forward path 54 and the heat source unit bypass A total flow rate of water flowing through the path 58 may be acquired. Alternatively, since the hot water supply flow rate from the hot water supply system 10 to the hot water supply location is the same as the water supply flow rate from the water supply to the hot water supply system 10, a flow rate sensor for detecting the water supply flow rate from the water supply to the hot water supply system 10 is separately provided. The detected value may be a hot water supply flow rate to the hot water supply location, that is, a total flow rate of water flowing through the heat source unit forward path 54 and water flowing through the heat source unit bypass path 58.

上記の実施例では、タンク給水路46から分岐するタンクバイパス路60が第1給湯路50の上流側でタンク出水路48と合流する構成について説明した。これとは異なり、タンク給水路46から分岐するタンクバイパス路60が第2給湯路52に合流する構成としてもよい。なお、この場合は、高温水流量センサ64で検出される高温水流量が、熱源機往路54を流れる水と熱源機バイパス路58を流れる水の合計流量に相当する。   In the above embodiment, the configuration in which the tank bypass passage 60 branched from the tank water supply passage 46 joins the tank discharge passage 48 on the upstream side of the first hot water supply passage 50 has been described. Unlike this, the tank bypass passage 60 branched from the tank water supply passage 46 may be joined to the second hot water supply passage 52. In this case, the high-temperature water flow rate detected by the high-temperature water flow rate sensor 64 corresponds to the total flow rate of the water flowing through the heat source unit forward path 54 and the water flowing through the heat source unit bypass path 58.

上記の実施例では、熱源機/バイパス流量比率がほぼ一定となるようにバイパス制御弁74の開度を調整する構成について説明した。これとは異なり、熱源機往路54を流れる水の流量がほぼ一定となるようにバイパス制御弁74の開度を調整する構成としてもよい。但し、上記の実施例の方が、合計流量が所定値を超えている場合のバイパス制御弁74の開度がほぼ一定でよく、調整が容易であるため、より実用的である。   In the above embodiment, the configuration in which the opening degree of the bypass control valve 74 is adjusted so that the heat source unit / bypass flow rate ratio is substantially constant has been described. Alternatively, the opening degree of the bypass control valve 74 may be adjusted so that the flow rate of water flowing through the heat source unit forward path 54 is substantially constant. However, the above embodiment is more practical because the opening degree of the bypass control valve 74 when the total flow rate exceeds a predetermined value may be substantially constant and adjustment is easy.

本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

10 給湯システム
12 ヒートポンプユニット
14 タンクユニット
15 コントローラ
16 ガス熱源機
20 熱媒体循環路
22 蒸発器
22a ファン
24 圧縮器
26 凝縮器
28 膨張弁
30 蓄熱循環水路
32 蓄熱循環ポンプ
40 貯湯タンク
41 タンクサーミスタ
42 蓄熱循環往路
44 蓄熱循環復路
46 タンク給水路
48 タンク出水路
50 第1給湯路
52 第2給湯路
54 熱源機往路
56 熱源機復路
58 熱源機バイパス路
60 タンクバイパス路
62 高温水制御弁
64 高温水流量センサ
66 高温水サーミスタ
68 低温水制御弁
70 低温水流量センサ
72 低温水サーミスタ
73 第1給湯サーミスタ
74 バイパス制御弁
76 第2給湯サーミスタ
78 バーナ
80 燃焼加熱路
DESCRIPTION OF SYMBOLS 10 Hot water supply system 12 Heat pump unit 14 Tank unit 15 Controller 16 Gas heat source machine 20 Heat medium circulation path 22 Evaporator 22a Fan 24 Compressor 26 Condenser 28 Expansion valve 30 Heat storage circulation water path 32 Heat storage circulation pump 40 Hot water storage tank 41 Tank thermistor 42 Heat storage Circulation path 44 Heat storage circulation path 46 Tank supply path 48 Tank outlet path 50 First hot water path 52 Second hot water path 54 Heat source machine forward path 56 Heat source machine return path 58 Heat source machine bypass path 60 Tank bypass path 62 High temperature water control valve 64 High temperature water flow rate Sensor 66 Hot Water Thermistor 68 Low Temperature Water Control Valve 70 Low Temperature Water Flow Sensor 72 Low Temperature Water Thermistor 73 First Hot Water Thermistor 74 Bypass Control Valve 76 Second Hot Water Thermistor 78 Burner 80 Combustion Heating Path

Claims (2)

貯湯タンクと、
貯湯タンクからの水を必要に応じて加熱する補助熱源機と、
貯湯タンクからの水を補助熱源機を経由して給湯箇所へ送る熱源機経路と、
貯湯タンクからの水を補助熱源機を経由しないで給湯箇所へ送るバイパス経路と、
バイパス経路に設けられたバイパス制御弁と、
熱源機経路を流れる水とバイパス経路を流れる水の合計流量を取得する流量取得手段を備えており、
補助熱源機による加熱を行うことなく給湯箇所へ給湯する蓄熱給湯運転と、補助熱源機による加熱を行って給湯箇所へ給湯する燃焼給湯運転を切り換え可能であり、
蓄熱給湯運転において、流量取得手段で取得される合計流量が少ないほど、バイパス制御弁の開度を下げることを特徴とする貯湯式給湯システム。
A hot water storage tank,
An auxiliary heat source machine that heats water from the hot water storage tank as needed,
A heat source machine path for sending water from the hot water storage tank to the hot water supply point via the auxiliary heat source machine,
A bypass route for sending water from the hot water storage tank to the hot water supply location without going through the auxiliary heat source machine,
A bypass control valve provided in the bypass path;
It has a flow rate acquisition means to acquire the total flow rate of water flowing through the heat source machine path and water flowing through the bypass path,
It is possible to switch between a regenerative hot water supply operation that supplies hot water to a hot water supply location without heating by an auxiliary heat source device, and a combustion hot water supply operation that supplies heat to a hot water supply location by heating with an auxiliary heat source device,
In a hot water storage hot water operation, a hot water storage hot water supply system is characterized in that the smaller the total flow rate acquired by the flow rate acquisition means, the lower the opening of the bypass control valve.
蓄熱給湯運転において、熱源機経路を流れる水の流量に対するバイパス経路を流れる水の流量の比率が一定となるように、バイパス制御弁の開度を調整することを特徴とする請求項1の貯湯式給湯システム。   2. The hot water storage system according to claim 1, wherein the opening degree of the bypass control valve is adjusted so that a ratio of a flow rate of water flowing through the bypass path to a flow rate of water flowing through the heat source path is constant in the heat storage hot water supply operation. Hot water system.
JP2011260222A 2011-11-29 2011-11-29 Hot water storage hot water supply system Active JP5401531B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011260222A JP5401531B2 (en) 2011-11-29 2011-11-29 Hot water storage hot water supply system
KR1020120136964A KR101367474B1 (en) 2011-11-29 2012-11-29 Storage type hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260222A JP5401531B2 (en) 2011-11-29 2011-11-29 Hot water storage hot water supply system

Publications (2)

Publication Number Publication Date
JP2013113495A true JP2013113495A (en) 2013-06-10
JP5401531B2 JP5401531B2 (en) 2014-01-29

Family

ID=48709193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260222A Active JP5401531B2 (en) 2011-11-29 2011-11-29 Hot water storage hot water supply system

Country Status (2)

Country Link
JP (1) JP5401531B2 (en)
KR (1) KR101367474B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199164A (en) * 2013-03-29 2014-10-23 株式会社ガスター Heat source device
JP2015048992A (en) * 2013-09-02 2015-03-16 リンナイ株式会社 Thermal apparatus
JP2016075407A (en) * 2014-10-03 2016-05-12 リンナイ株式会社 Hot water supply device
JP2016188745A (en) * 2015-03-30 2016-11-04 リンナイ株式会社 Hot water supply system
JP2017040383A (en) * 2015-08-17 2017-02-23 リンナイ株式会社 Water heater
WO2019026801A1 (en) 2017-08-02 2019-02-07 ダイキン工業株式会社 Hot water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225693A1 (en) * 2014-12-12 2016-06-16 Vaillant Gmbh Heating system with hot water supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165458A (en) * 1999-12-06 2001-06-22 Osaka Gas Co Ltd Hot water supply equipment
JP2006242509A (en) * 2005-03-04 2006-09-14 Gastar Corp Exhaust heat utilization-hot water supply system
JP2010210182A (en) * 2009-03-11 2010-09-24 Rinnai Corp Hot water supply system
JP2010210180A (en) * 2009-03-11 2010-09-24 Rinnai Corp Hot water supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165458A (en) * 1999-12-06 2001-06-22 Osaka Gas Co Ltd Hot water supply equipment
JP2006242509A (en) * 2005-03-04 2006-09-14 Gastar Corp Exhaust heat utilization-hot water supply system
JP2010210182A (en) * 2009-03-11 2010-09-24 Rinnai Corp Hot water supply system
JP2010210180A (en) * 2009-03-11 2010-09-24 Rinnai Corp Hot water supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199164A (en) * 2013-03-29 2014-10-23 株式会社ガスター Heat source device
JP2015048992A (en) * 2013-09-02 2015-03-16 リンナイ株式会社 Thermal apparatus
JP2016075407A (en) * 2014-10-03 2016-05-12 リンナイ株式会社 Hot water supply device
JP2016188745A (en) * 2015-03-30 2016-11-04 リンナイ株式会社 Hot water supply system
JP2017040383A (en) * 2015-08-17 2017-02-23 リンナイ株式会社 Water heater
WO2019026801A1 (en) 2017-08-02 2019-02-07 ダイキン工業株式会社 Hot water supply system
JP2019027740A (en) * 2017-08-02 2019-02-21 ダイキン工業株式会社 Hot water supply system

Also Published As

Publication number Publication date
KR101367474B1 (en) 2014-02-25
JP5401531B2 (en) 2014-01-29
KR20130060155A (en) 2013-06-07

Similar Documents

Publication Publication Date Title
JP5401531B2 (en) Hot water storage hot water supply system
JP5202261B2 (en) Water heater
US9010281B2 (en) Hot water supply system
JP5097624B2 (en) Hot water supply system
JP5171410B2 (en) Hot water supply system
JP2014156987A (en) Heat pump system
JP2010236713A (en) Hot water storage type hot water supply system
KR101467088B1 (en) Storage type hot water supply device
JP2013217596A (en) Heating system
JP4692148B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP5746104B2 (en) Hot water heating system
JP2007024458A (en) Hot-water supplier
JP2004340535A (en) Heat pump water heater
JP6390903B2 (en) Hot water storage hot water system
JP2014016105A (en) Hot-water supply heating system
JP2005098530A (en) Heat pump type water heater
JP2006132889A (en) Hot water storage type heat pump hot water supply apparatus
JP2015038397A (en) Hot water supply system
JP2005121284A (en) Heat pump water heater
JP2017194219A (en) Storage water heater
JP2013257083A (en) Heating device
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP2011141069A (en) Bath device
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5401531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250