JP6210871B2 - Power circuit - Google Patents

Power circuit Download PDF

Info

Publication number
JP6210871B2
JP6210871B2 JP2013263906A JP2013263906A JP6210871B2 JP 6210871 B2 JP6210871 B2 JP 6210871B2 JP 2013263906 A JP2013263906 A JP 2013263906A JP 2013263906 A JP2013263906 A JP 2013263906A JP 6210871 B2 JP6210871 B2 JP 6210871B2
Authority
JP
Japan
Prior art keywords
transformer
main
seat
core
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013263906A
Other languages
Japanese (ja)
Other versions
JP2015122822A (en
Inventor
外村 徹
徹 外村
泰広 藤本
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2013263906A priority Critical patent/JP6210871B2/en
Priority to KR1020140093900A priority patent/KR102195785B1/en
Priority to EP14178753.1A priority patent/EP2887362B1/en
Priority to TW103125673A priority patent/TWI636470B/en
Priority to TW107113823A priority patent/TWI647723B/en
Priority to TW107113822A priority patent/TWI647722B/en
Priority to US14/444,746 priority patent/US10650962B2/en
Priority to TW107113821A priority patent/TWI647721B/en
Priority to CN201410367031.0A priority patent/CN104734525B/en
Publication of JP2015122822A publication Critical patent/JP2015122822A/en
Priority to HK15108399.3A priority patent/HK1207749A1/en
Priority to US15/452,425 priority patent/US10978243B2/en
Priority to US15/452,408 priority patent/US10510480B2/en
Priority to US15/452,368 priority patent/US10840011B2/en
Application granted granted Critical
Publication of JP6210871B2 publication Critical patent/JP6210871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ac-Ac Conversion (AREA)

Description

本発明は、スコット結線変圧器を用いた電源回路に関するものである。   The present invention relates to a power supply circuit using a Scott connection transformer.

主座変圧器及びT座変圧器からなるスコット結線変圧器を用いた電源装置において、主座変圧器の出力電圧及びT座変圧器の出力電圧を制御する場合には、スコット結線変圧器の1次側の三相それぞれに、電圧又は電流を制御する制御素子を設けることが考えられる。   When controlling the output voltage of the main transformer and the output voltage of the T seat transformer in the power supply apparatus using the Scott connection transformer composed of the main transformer and the T seat transformer, 1 of the Scott connection transformer is used. It is conceivable to provide a control element for controlling the voltage or current in each of the three phases on the next side.

ところが、T座変圧器の1次コイルを流れる電流が主座変圧器の1次コイルに流れ込むため、スコット結線変圧器の1次側の三相それぞれに制御素子を設けても、2つの単相回路の出力電圧を個別制御することは出来ない。   However, since the current flowing through the primary coil of the T-sink transformer flows into the primary coil of the main transformer, even if a control element is provided for each of the three phases on the primary side of the Scott connection transformer, The output voltage of the circuit cannot be individually controlled.

以上から、2つの単相回路それぞれに、電圧又は電流を制御する制御素子を設けて、2つの単相回路の出力電圧を個別に制御することが一般的である。   From the above, it is general to provide a control element for controlling the voltage or current in each of the two single-phase circuits and individually control the output voltages of the two single-phase circuits.

ところが、単相回路に接続される負荷が低抵抗の場合には、単相回路は大電流回路となり、当該大電流回路に制御素子を設けることは事実上困難である。したがって、図6に示すように、スコット結線変圧器による2つの単相回路に制御素子を設けると共に、さらに2つの単相回路の出力を低圧大電流に変換する2式の単相変圧器を設ける構成とすることが行われている。つまり、この方法では、スコット結線変圧器1式と、単相変圧器2式の計3式の変圧器が必要となる。   However, when the load connected to the single-phase circuit has a low resistance, the single-phase circuit becomes a large current circuit, and it is practically difficult to provide a control element in the large current circuit. Therefore, as shown in FIG. 6, control elements are provided in two single-phase circuits using Scott connection transformers, and two types of single-phase transformers that convert the outputs of the two single-phase circuits into low-voltage and large currents are provided. It is done to make a configuration. That is, this method requires a total of three transformers, one Scott connection transformer and two single-phase transformers.

特開昭61−248508号公報JP 61-248508 A

そこで本発明は、上記問題点を解決するためになされたものであり、スコット結線変圧器を用いた電源装置において、装置構成を簡略化することができるとともに、スコット結線変圧器の回路特性を生かしつつ、主座変圧器の出力電圧とT座変圧器の出力電圧とを個別に制御することをその主たる課題とするものである。   Therefore, the present invention has been made to solve the above problems, and in the power supply device using the Scott connection transformer, the device configuration can be simplified and the circuit characteristics of the Scott connection transformer can be utilized. On the other hand, the main problem is to individually control the output voltage of the main transformer and the output voltage of the T transformer.

すなわち本発明に係る電源装置は、主座変圧器及びT座変圧器からなるスコット結線変圧器を有する電源回路であって、前記主座変圧器の入力側の2相のうち一方に設けられ、電圧又は電流を制御する第1制御機器と、前記T座変圧器の入力側である1次コイルの一端側に設けられ、電圧又は電流を制御する第2制御機器とを備え、前記主座変圧器の2次コイルの巻数をn1、前記T座変圧器の2次コイルの巻数をn2、前記主座変圧器の励磁インピーダンスと前記T座変圧器の励磁インピーダンスから求まる係数をkとしたときに、前記主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷に接続された状態で、前記第1制御機器及び前記第2制御機器が、前記主座変圧器の出力電圧と前記T座変圧器の出力電圧とを個別に制御することを特徴とする。   That is, the power supply device according to the present invention is a power supply circuit having a Scott connection transformer composed of a main transformer and a T seat transformer, provided in one of the two phases on the input side of the main transformer, A first control device for controlling voltage or current; and a second control device for controlling voltage or current provided on one end side of a primary coil that is an input side of the T seat transformer. When the number of turns of the secondary coil of the transformer is n1, the number of turns of the secondary coil of the T seat transformer is n2, and the coefficient obtained from the excitation impedance of the main transformer and the excitation impedance of the T seat transformer is k. The first control device and the second control device in a state where the output voltage of the main transformer is connected to a load that requires a voltage of k × n1 / n2 or more with respect to the output voltage of the T-slot transformer. Is the output voltage of the main transformer and the T The output voltage of the transformer and controls separately.

また、本発明に係る電源装置の使用方法は、主座変圧器及びT座変圧器からなるスコット結線変圧器を有し、前記主座変圧器の入力側の2相のうち一方に電圧又は電流を制御する第1制御機器が設けられ、前記T座変圧器の入力側である1次コイルの一端側に電圧又は電流を制御する第2制御機器が設けられた電源装置の使用方法であって、前記主座変圧器の2次コイルの巻数をn1、前記T座変圧器の2次コイルの巻数をn2、前記主座変圧器の励磁インピーダンスと前記T座変圧器の励磁インピーダンスから求まる係数をkとしたときに、前記主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷に接続された状態で、前記第1制御機器及び前記第2制御機器により、前記主座変圧器の出力電圧と前記T座変圧器の出力電圧とを個別に制御することを特徴とする。   In addition, the method of using the power supply device according to the present invention includes a Scott connection transformer including a main transformer and a T seat transformer, and voltage or current is applied to one of two phases on the input side of the main transformer. A first control device for controlling the power supply, and a method for using the power supply apparatus in which a second control device for controlling voltage or current is provided on one end side of the primary coil which is the input side of the T-seat transformer. The number of turns of the secondary coil of the main transformer is n1, the number of turns of the secondary coil of the T transformer is n2, and the coefficient obtained from the excitation impedance of the main transformer and the excitation impedance of the T transformer is k, when the output voltage of the main transformer is connected to a load that requires a voltage greater than or equal to k × n1 / n2 with respect to the output voltage of the T-transformer, Output of the main transformer by the second control device And controlling the output voltage of the the pressure T seat transformer separately.

ここで、T座変圧器の1次コイルが主座変圧器の1次コイルの中心点に接続され、T座変圧器の1次コイルから主座変圧器の1次コイルに電流が流れ込むので、主座変圧器の第1制御機器を最小まで絞っても、主座変圧器の出力電圧は、T座変圧器の出力電圧に対して、所定の割合で残留する。ここで、主座変圧器の2次コイルの巻数をn1、T座変圧器の2次コイルの巻数をn2、主座変圧器の励磁インピーダンスとT座変圧器の励磁インピーダンスから求まる係数をkとした場合に、主座変圧器出力電圧は、T座変圧器出力電圧の(k×n1/n2)倍である。また、励磁インピーダンスは、磁路の長さ、磁束密度、ギャップ長、巻数等によって決まるものである。具体的に係数kは、第1制御機器を遮断したときのT座変圧器の励磁インピーダンスと主座変圧器の一次コイルの巻数を半分とした場合の励磁インピーダンスとの比により求まる。   Here, the primary coil of the T seat transformer is connected to the center point of the primary coil of the main transformer, and current flows from the primary coil of the T seat transformer to the primary coil of the main transformer. Even if the first control device of the main transformer is reduced to the minimum, the output voltage of the main transformer remains at a predetermined ratio with respect to the output voltage of the T-seater transformer. Here, the number of turns of the secondary coil of the main transformer is n1, the number of turns of the secondary coil of the T seat transformer is n2, and the coefficient obtained from the excitation impedance of the main transformer and the excitation impedance of the T seat transformer is k. In this case, the main transformer output voltage is (k × n1 / n2) times the T seat transformer output voltage. The excitation impedance is determined by the length of the magnetic path, the magnetic flux density, the gap length, the number of turns, and the like. Specifically, the coefficient k is obtained by the ratio between the excitation impedance of the T-seat transformer when the first control device is shut off and the excitation impedance when the number of turns of the primary coil of the main transformer is halved.

したがって、前記主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷を接続した状態であれば、主座変圧器の入力側の2相のうち一方に設けた第1制御機器、及びT座変圧器の入力側に設けた第2制御機器により、主座変圧器の出力電圧とT座変圧器の出力電圧とを個別に制御することができる。また、従来のように主座変圧器及びT座変圧器の出力側に2台の単相変圧器を設ける必要も無いので、装置構成を簡略化することができる。   Therefore, if the output voltage of the main transformer is connected to a load that requires a voltage of k × n1 / n2 or more with respect to the output voltage of the T-transformer, 2 on the input side of the main transformer. The output voltage of the main transformer and the output voltage of the T seat transformer are individually controlled by the first control device provided on one of the phases and the second control device provided on the input side of the T seat transformer. be able to. In addition, since it is not necessary to provide two single-phase transformers on the output side of the main transformer and the T-seater transformer as in the prior art, the apparatus configuration can be simplified.

前記主座変圧器の2次コイルの巻数と前記T座変圧器の2次コイルの巻数とが同じであることが望ましい。
このとき、実施例としてk=0.66であれば、主座変圧器の出力電圧が、T座変圧器の出力電圧に対して0.66以上の電圧を要する負荷に接続することになる。そして、主座変圧器の単相出力回路(2次コイル)に接続される負荷インピーダンスと、T座変圧器の単相出力回路(2次コイル)に接続される負荷インピーダンスとが同じであれば、主座変圧器の単相出力回路の負荷容量はT座変圧器の単相出力回路の負荷容量に対して0.44(≒0.66)以上であることが条件となる。
It is desirable that the number of turns of the secondary coil of the main transformer and the number of turns of the secondary coil of the T seat transformer are the same.
At this time, if k = 0.66 as an embodiment, the output voltage of the main transformer is connected to a load that requires a voltage of 0.66 or more with respect to the output voltage of the T-transformer. If the load impedance connected to the single-phase output circuit (secondary coil) of the main transformer is the same as the load impedance connected to the single-phase output circuit (secondary coil) of the T-seat transformer The load capacity of the single-phase output circuit of the main transformer is to be 0.44 (≈0.66 2 ) or more with respect to the load capacity of the single-phase output circuit of the T-seat transformer.

前記主座変圧器又は前記T座変圧器の少なくとも一方が、単巻変圧器であることが望ましい。
このように1次コイル及び2コイルを単巻結線することで、1次コイルと2次コイルとの間の絶縁を簡素にすることができ、製作し易くなるとともに、事故発生のリスクを低減することができる。
It is desirable that at least one of the main seat transformer or the T seat transformer is an autotransformer.
In this way, the primary coil and the second coil are connected in a single winding, so that the insulation between the primary coil and the secondary coil can be simplified, making it easier to manufacture and reducing the risk of an accident occurring. be able to.

前記主座変圧器の鉄心及び前記T座変圧器の鉄心が一体形成されたものであることが望ましい。
これならば、スコット結線変圧器を構成する変圧器を2式から1式にすることができ、装置をコンパクトにすることができる。
The iron core of the main transformer and the iron core of the T seat transformer are preferably integrally formed.
If it is this, the transformer which comprises a Scott connection transformer can be changed from 2 sets to 1, and an apparatus can be made compact.

前記主座変圧器又は前記T座変圧器の少なくとも一方が、断面略円形状の脚鉄心と、当該脚鉄心の上下に接続される変形巻鉄心からなる継鉄心とを有することが望ましい。ここで、断面略円形状の脚鉄心としては、インボリュート形状に湾曲された湾曲部を有する多数の磁性鋼板を放射状に積層して円筒状に形成した円筒状のインボリュート鉄心が考えられる。
これならば、脚鉄心が断面略円形状であるので、方形鉄心に比べて、同じ断面積であれば外周長が最短となり、コイルの使用量を低減することができる。また、継鉄心が変形巻鉄心のであるので、断面略円形状の脚鉄心との衝合部を同じ円形にすることが簡単である。
It is desirable that at least one of the main seat transformer or the T seat transformer has a leg iron core having a substantially circular cross section and a yoke core composed of a deformed wound core connected above and below the leg iron core. Here, as the leg iron core having a substantially circular cross section, a cylindrical involute core formed by cylindrically laminating a large number of magnetic steel plates each having a curved portion curved in an involute shape may be considered.
In this case, since the leg iron core has a substantially circular cross section, the outer peripheral length becomes the shortest when the cross-sectional area is the same as that of the square iron core, and the amount of coil used can be reduced. Further, since the yoke core is a deformed wound core, it is easy to make the abutting portion with the leg core having a substantially circular cross section in the same circle.

前記スコット結線変圧器が、スコット結線された誘導コイルが巻回される2つの主脚鉄心と、前記2つの主脚鉄心に生じる磁束の共通の通路になる共通脚鉄心と、前記2つの主脚鉄心及び前記共通脚鉄心の上下それぞれを連結する継鉄心とを備え、前記2つの主脚鉄心及び前記共通脚鉄心が、平面視においてそれぞれが三角形の頂点に位置するように配置され、前記継鉄心が、平面視において前記共通脚鉄心を屈折点として折れ曲がっていることが望ましい。
これならば、前記2つの主脚鉄心及び前記共通脚鉄心が、平面視においてそれぞれが三角形の頂点に位置するように配置されるとともに、前記継鉄心が、平面視において前記共通脚鉄心を屈曲点として折れ曲がっているので、前記2つの主脚鉄心間の距離を小さくして、鉄心全体の幅方向の寸法を小さくし、省スペース化を図ることができる。
The Scott connection transformer includes two main leg cores around which a Scott-connected induction coil is wound, a common leg core serving as a common passage for magnetic flux generated in the two main leg cores, and the two main legs. An iron core and a yoke core connecting the upper and lower sides of the common leg iron core, and the two main leg iron cores and the common leg iron core are arranged so that each is located at the apex of a triangle in plan view, However, it is preferable that the common leg iron core is bent at the refraction point in plan view.
In this case, the two main leg iron cores and the common leg iron cores are arranged so that each is located at the apex of the triangle in plan view, and the yoke core is bent at the common leg iron core in plan view. Therefore, the distance between the two main leg iron cores can be reduced to reduce the dimension in the width direction of the entire iron core, thereby saving space.

前記2つの主脚鉄心の一方及び前記共通脚鉄心の間の距離と、前記2つの主脚鉄心の他方及び前記共通脚鉄心の間の距離とが、互いに等しいことが望ましい。
これならば、一方の前記主脚鉄心及び前記共通脚鉄心の間の磁路長さと、他方の前記主脚鉄心及び前記共通脚鉄心の間の磁路長さとが等しくなるので、前記2つの主脚鉄心の磁気特性が互いに同等となり、効率よく三相電源から2つの単相回路に変換することができる。
It is desirable that a distance between one of the two main leg iron cores and the common leg iron core is equal to a distance between the other of the two main leg iron cores and the common leg iron core.
In this case, the magnetic path length between the one main leg iron core and the common leg iron core is equal to the magnetic path length between the other main leg iron core and the common leg iron core. The magnetic properties of the leg iron cores are equivalent to each other, and the three-phase power source can be efficiently converted into two single-phase circuits.

このように構成した本発明によれば、スコット結線変圧器を用いた電源装置において、装置構成を簡略化することができるとともに、スコット結線変圧器の入力側に制御機器を設けた場合の各変圧器の出力特性を生かしつつ、主座変圧器の出力電圧とT座変圧器の出力電圧とを個別に制御することができる。   According to the present invention configured as described above, in the power supply apparatus using the Scott connection transformer, the apparatus configuration can be simplified and each transformer when the control device is provided on the input side of the Scott connection transformer. It is possible to individually control the output voltage of the main transformer and the output voltage of the T-seat transformer while utilizing the output characteristics of the transformer.

本実施形態に係る過熱水蒸気発生装置の構成を模式的に示す図。The figure which shows typically the structure of the superheated steam generator which concerns on this embodiment. 同実施形態のスコット結線変圧器の構成を模式的に示す平面図及び正面図。The top view and front view which show typically the structure of the Scott connection transformer of the same embodiment. 過熱水蒸気発生装置と同等回路の試験装置を示す図。The figure which shows the test apparatus of a circuit equivalent to a superheated steam generator. 過熱水蒸気を発生させる熱量と過熱水蒸気温度との関係を示す特性グラフ。The characteristic graph which shows the relationship between the calorie | heat amount which generate | occur | produces superheated steam, and superheated steam temperature. 変形実施形態のスコット結線変圧器の構成を模式的に示す平面図。The top view which shows typically the structure of the Scott connection transformer of deformation | transformation embodiment. 従来の過熱蒸気発生装置の構成を示す模式図。The schematic diagram which shows the structure of the conventional superheated steam generator.

以下に本発明に係る電源装置を用いた過熱蒸気生成装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a superheated steam generator using a power supply device according to the present invention will be described with reference to the drawings.

本実施形態に係る過熱水蒸気発生装置100は、流体が流通する加熱導体管を通電加熱することにより加熱水蒸気を発生させるものであり、図1に示すように、三相交流電源8からの三相交流を2つの単相交流に変換するスコット結線変圧器2を有する電源装置200と、スコット結線変圧器2の二相交流により通電加熱される第1加熱導体管3及び第2加熱導体管4とを備えている。   The superheated steam generator 100 according to the present embodiment generates heated steam by energizing and heating a heated conductor tube in which a fluid flows. As shown in FIG. A power supply device 200 having a Scott connection transformer 2 that converts alternating current into two single-phase alternating currents; a first heating conductor tube 3 and a second heating conductor tube 4 that are energized and heated by the two-phase alternating current of the Scott connection transformer 2; It has.

スコット結線変圧器2は、主座変圧器2MとT座変圧器2Tとからなる。また、本実施形態の主座変圧器2Mの鉄心及びT座変圧器2Tの鉄心は、一体形成されたものである。   The Scott connection transformer 2 comprises a main seat transformer 2M and a T seat transformer 2T. Further, the iron core of the main transformer 2M and the iron core of the T seat transformer 2T according to the present embodiment are integrally formed.

第1加熱導体管3は、スコット結線変圧器2の主座変圧器2Mの出力側に接続されて、主座変圧器2Mの出力電圧が印加されて通電加熱されるものであり、流体導入ポート3p1及び流体導出ポート3p2を有している。そして、流体導入ポート3p1から水が導入されて、流体導出ポート3p2から飽和水蒸気が導出されるものである。   The first heating conductor tube 3 is connected to the output side of the main transformer 2M of the Scott connection transformer 2, and is heated by being energized by applying the output voltage of the main transformer 2M. 3p1 and fluid outlet port 3p2. Then, water is introduced from the fluid introduction port 3p1, and saturated water vapor is derived from the fluid outlet port 3p2.

第2加熱導体管4は、スコット結線変圧器2のT座変圧器2Tの出力側に接続されて、T座変圧器2Tの出力電圧が印加されて通電加熱されるものであり、流体導入ポート4p1及び流体導出ポート4p2を有している。そして、流体導入ポート4p1から前記第1加熱導体管3により発生した飽和水蒸気が導入されて、流体導出ポート4p2から所定温度に加熱された過熱水蒸気が導出されるものである。なお、図1では、第2加熱管4の流体導入ポート4p1は、絶縁材料からなる中間接続管7を介して、第1加熱導体管3の流体導出ポートに接続されている。   The second heating conductor tube 4 is connected to the output side of the T seat transformer 2T of the Scott connection transformer 2, and is heated by being energized by applying the output voltage of the T seat transformer 2T. 4p1 and a fluid outlet port 4p2. Then, saturated steam generated by the first heating conductor tube 3 is introduced from the fluid introduction port 4p1, and superheated steam heated to a predetermined temperature is led out from the fluid lead-out port 4p2. In FIG. 1, the fluid introduction port 4p1 of the second heating pipe 4 is connected to the fluid outlet port of the first heating conductor pipe 3 via an intermediate connection pipe 7 made of an insulating material.

そして、本実施形態のスコット結線変圧器2は、図2に示すように、主座変圧器2Mの1次巻線(以下、主座1次コイル2a)及び2次巻線(以下、主座2次コイル2b)が巻回される第1の主脚鉄心(主座脚鉄心21)と、T座変圧器2Tの1次巻線(以下、T座1次コイル2c)及び2次巻線(以下、T座2次コイル2d)が巻回される第2の主脚鉄心(T座脚鉄心22)と、前記2つの主脚鉄心21、22に生じる磁束の共通の通路になる共通脚鉄心23と、前記2つの主脚鉄心21、22及び共通脚鉄心23の上下それぞれを連結する継鉄心24とを備えている。   As shown in FIG. 2, the Scott connection transformer 2 of the present embodiment includes a primary winding (hereinafter referred to as “primary primary coil 2a”) and a secondary winding (hereinafter referred to as “main seat”) of the main transformer 2M. The first main leg core (the main seat leg core 21) around which the secondary coil 2b) is wound, the primary winding (hereinafter referred to as the T seat primary coil 2c) and the secondary winding of the T seat transformer 2T. (Hereinafter referred to as a T-seat secondary coil 2d) a second main leg iron core (T-seat leg iron core 22) and a common leg serving as a common path for magnetic flux generated in the two main leg iron cores 21 and 22. An iron core 23 and a yoke core 24 that connects the upper and lower sides of the two main leg iron cores 21 and 22 and the common leg iron core 23 are provided.

主座1次コイル2aの両端には、三相(U相、V相、W相)のうち二相(例えばV相、W相)が接続される。また、T座1次コイル2cの一方の端は、主座1次コイル2aの中点に接続され、T座1次コイル2cの他方の端は、三相のうち主座1次コイル2aに接続されない残りの一相(例えばU相)が接続される。具体的には、主座1次コイル2aの偶数巻き数Nに対し、T座1次コイル2cの巻き数を(√3/2)Nとして、T座1次コイル2cの一方の端を主座1次コイル2aのN/2の位置に接続するように構成されている。   Two phases (for example, V phase and W phase) of the three phases (U phase, V phase, and W phase) are connected to both ends of the main seat primary coil 2a. One end of the T seat primary coil 2c is connected to the midpoint of the main seat primary coil 2a, and the other end of the T seat primary coil 2c is connected to the main seat primary coil 2a in the three phases. The remaining one phase (for example, U phase) that is not connected is connected. Specifically, the number of turns of the T seat primary coil 2c is (√3 / 2) N with respect to the even number of turns N of the main seat primary coil 2a, and one end of the T seat primary coil 2c is mainly used. It is comprised so that it may connect with the position of N / 2 of the seat primary coil 2a.

また、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23は、インボリュート形状に湾曲された湾曲部を有する多数の磁性鋼板を放射状に積層して円筒状に形成した断面略円形のインボリュート鉄心により構成されている。そして、主座脚鉄心21及びT座脚鉄心22は同寸法のものであり、主座脚鉄心21の横断面積S1と、T座脚鉄心22の横断面積S2とは互いに等しい。また、共通脚鉄心23の横断面積は、主座脚鉄心21及びT座脚鉄心22の横断面積S1、S2の√2倍である。具体的には、図2に示すように、共通脚鉄心23の直径が、主座脚鉄心及びT座脚鉄心の直径をdとした場合に、(√2)0.5dである。 The main seat leg iron core 21, the T seat leg iron core 22, and the common leg iron core 23 are involutes having a substantially circular cross section formed in a cylindrical shape by laminating a large number of magnetic steel plates each having a curved portion curved in an involute shape. It is composed of an iron core. The main seat leg core 21 and the T seat leg core 22 are of the same size, and the cross sectional area S1 of the main seat leg core 21 and the cross sectional area S2 of the T seat leg core 22 are equal to each other. The cross-sectional area of the common leg core 23 is √2 times the cross-sectional areas S1 and S2 of the main seat leg core 21 and the T seat leg core 22. Specifically, as shown in FIG. 2, the diameter of the common leg core 23 is (√2) 0.5 d, where d is the diameter of the main seat leg core and the T seat leg core.

さらに、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23は、スコット結線変圧器2を上面から見た平面視において、それぞれが三角形の頂点の位置になるように配置されている。本実施形態では、平面視において、主座脚鉄心21の中心と共通脚鉄心23の中心とを結ぶ線と、T座脚鉄心22の中心と共通脚鉄心23の中心とを結ぶ線とのなす角度が、約120度となるように構成されている。また、主座脚鉄心41及び共通脚鉄心43の中心間距離L1と、T座脚鉄心42及び共通脚鉄心43の中心間距離L2とが互いに等しい。つまり、主座脚鉄心41、T座脚鉄心42と、共通脚鉄心43とが平面視においてそれぞれが二等辺三角形の頂点に位置するように配置されている。   Further, the main leg core 21, the T leg core 22, and the common leg core 23 are arranged so that each is located at the apex of the triangle when the Scott connection transformer 2 is viewed from above. In the present embodiment, in plan view, a line connecting the center of the main leg core 21 and the center of the common leg core 23 and a line connecting the center of the T leg core 22 and the center of the common leg core 23 are formed. The angle is configured to be about 120 degrees. The center distance L1 between the main leg core 41 and the common leg core 43 is equal to the center distance L2 between the T seat leg core 42 and the common leg core 43. That is, the main leg core 41, the T leg core 42, and the common leg core 43 are arranged so that each is located at the apex of an isosceles triangle in plan view.

継鉄心24は、変形巻鉄心により構成されており、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23の上面を互いに連結する上継鉄心24aと、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23の下面を互いに連結する下継鉄心24bとからなる。この上継鉄心24a及び下継鉄心24bは、それぞれ平面視において共通脚鉄心23を屈折点として折れ曲がっている。本実施形態の各継鉄心24a、24bは、共通脚鉄心23の中心を屈曲点として、くの字状に折れ曲がっている。具体的には、上継鉄心44a及び下継鉄心44bの折れ曲がり角度が120度となるように構成されている。   The yoke core 24 is composed of a deformed wound iron core, and has an upper iron core 24a that connects the upper surfaces of the main leg core 21, the T leg core 22 and the common leg iron core 23, the main leg core 21, and the T seat. The leg iron core 22 and the common leg iron core 23 are composed of a lower iron core 24b that connects the lower surfaces of each other. The upper iron core 24a and the lower iron core 24b are bent with the common leg iron core 23 as a refraction point in plan view. Each of the yoke cores 24a, 24b of the present embodiment is bent in a dogleg shape with the center of the common leg core 23 as a bending point. Specifically, the bending angle of the upper core 44a and the lower core 44b is configured to be 120 degrees.

このように構成したスコット変圧器用鉄心100によれば、主脚鉄心21、22と、共通脚鉄心23とが平面視においてそれぞれが三角形の頂点に位置するように配置されるとともに、継鉄心24が、平面視において共通脚鉄心23を中心にくの字に折れ曲がっているので、主脚鉄心21、22の距離を小さくして、鉄心全体の幅方向の寸法を小さくし、省スペース化を図ることができる。   According to the Scott transformer core 100 configured in this manner, the main leg cores 21 and 22 and the common leg core 23 are arranged so that each is located at the apex of the triangle in plan view, and the yoke core 24 is In the plan view, the common leg iron core 23 is bent into a U-shape, so that the distance between the main leg iron cores 21 and 22 is reduced to reduce the overall width of the iron core to save space. Can do.

しかして本実施形態の電源装置200は、図1に示すように、主座変圧器2Mの入力側の2相のうち一方に、電圧又は電流を制御する第1制御機器5が設けられている。なお、図1では、主座変圧器2Mの入力側のV相に第1制御機器5であるサイリスタ等の半導体制御素子を設けている。また、T座変圧器2Tの入力側である1次コイル2cの一端側(T座1次コイル2cのU相側又は中点O側)に、電圧又は電流を制御する第2制御機器6が設けられている。この第2制御機器6も、前記第1制御機器5と同様、サイリスタ等の半導体制御素子を用いたものである。そして、図示しない制御装置が、第1加熱導体管3の温度及び第2加熱導体管4の温度を用いて前記第1制御機器5及び前記第2制御機器6を制御することによって、主座変圧器2Mが第1加熱導体管3に印加する出力電圧とT座変圧器2Tが第2加熱導体管4に印加する出力電圧とを個別に制御するように構成されている。なお、制御装置は、第1加熱導体管3の温度を、第1加熱導体管3に設けた温度センサから取得し、第2加熱導体管4の温度を、第2加熱導体管4に設けた温度センサから取得する。   Therefore, as shown in FIG. 1, the power supply device 200 of the present embodiment is provided with the first control device 5 that controls the voltage or current in one of the two phases on the input side of the main transformer 2M. . In FIG. 1, a semiconductor control element such as a thyristor as the first control device 5 is provided in the V phase on the input side of the main transformer 2M. Moreover, the 2nd control apparatus 6 which controls a voltage or an electric current at the one end side (the U phase side or the middle point O side of the T seat primary coil 2c) of the primary coil 2c which is the input side of the T seat transformer 2T. Is provided. Similarly to the first control device 5, the second control device 6 uses a semiconductor control element such as a thyristor. Then, a control device (not shown) controls the first control device 5 and the second control device 6 using the temperature of the first heating conductor tube 3 and the temperature of the second heating conductor tube 4, so that the main transformer The device 2M is configured to individually control the output voltage applied to the first heating conductor tube 3 and the output voltage applied to the second heating conductor tube 4 by the T seat transformer 2T. The control device acquires the temperature of the first heating conductor tube 3 from a temperature sensor provided in the first heating conductor tube 3, and provides the temperature of the second heating conductor tube 4 in the second heating conductor tube 4. Obtain from temperature sensor.

このように構成した電源装置200は、主座2次コイル2bの巻数n1、T座2次コイル2dの巻数n2、及び主座変圧器2Mの励磁インピーダンスとT座変圧器2Tの励磁インピーダンスとから求まる係数をkとしたときに、主座変圧器2Mの出力電圧がT座変圧器2Tの出力電圧に対して常時k×n1/n2以上の電圧を要する負荷に接続された状態で、第1制御機器5及び第2制御機器6が、主座変圧器2Mの出力電圧とT座変圧器2Tの出力電圧とを個別に制御するように構成されている。   The power supply device 200 configured as described above includes the number of turns n1 of the main seat secondary coil 2b, the number of turns n2 of the T seat secondary coil 2d, the excitation impedance of the main transformer 2M, and the excitation impedance of the T seat transformer 2T. When the obtained coefficient is k, the output voltage of the main transformer 2M is connected to a load that always requires a voltage of k × n1 / n2 or more with respect to the output voltage of the T seat transformer 2T. The control device 5 and the second control device 6 are configured to individually control the output voltage of the main transformer 2M and the output voltage of the T seat transformer 2T.

本実施形態では、主座変圧器2Mの入力側の2相のうち一方に第1制御機器5を設けて、第1加熱導体管3に印加される主座変圧器2Mの出力電圧を制御して飽和水蒸気を発生させる。主座変圧器2Mの1次コイル2aの両端は電源8に接続されているので、主座変圧器2Mの出力電圧は、巻数比に応じた値となる。   In the present embodiment, the first control device 5 is provided in one of the two phases on the input side of the main transformer 2M to control the output voltage of the main transformer 2M applied to the first heating conductor tube 3. To generate saturated water vapor. Since both ends of the primary coil 2a of the main transformer 2M are connected to the power supply 8, the output voltage of the main transformer 2M has a value corresponding to the turn ratio.

ところが、T座変圧器2Tの1次コイル2cが主座変圧器2Mの1次コイル2aに中心点に接続され、T座変圧器2Tの1次コイル2cから主座変圧器2Mの1次コイル2aに電流が流れ込むので、主座変圧器2Mの第1制御機器5を最小まで絞っても(V相を遮断しても)、主座変圧器2Mの出力電圧は、T座変圧器2Tの出力電圧に対して、k×n1/n2(最大約66%)が残留する。ここで、過熱水蒸気温度を2000℃に設定した時の飽和水蒸気発生熱量と過熱水蒸気発生熱量との比は、1.0:1.79のため、第1加熱導体管3が設けられる単相回路(飽和水蒸気発生側単相回路)と第2加熱導体管4が設けられる単相回路(過熱水蒸気発生側単相)との電流比は、0.75:1.0となり、その残留量は、問題とならない。もちろん過熱水蒸気温度が2000℃未満の場合は、飽和水蒸気発生に必要な電流の比が大きくなるので、残留分は問題にならない。また、過熱水蒸気は2000℃よりも大きい温度では、水素と酸素に分離して過熱水蒸気として存在し得ないことから、残留電流値が問題になる領域には無い。   However, the primary coil 2c of the T seat transformer 2T is connected to the center point of the primary coil 2a of the main transformer 2M, and the primary coil 2c of the T seat transformer 2T to the primary coil of the main transformer 2M. Since the current flows into 2a, even if the first control device 5 of the main transformer 2M is reduced to the minimum (even if the V phase is cut off), the output voltage of the main transformer 2M is the same as that of the T seat transformer 2T. For the output voltage, k × n1 / n2 (maximum of about 66%) remains. Here, since the ratio of the saturated steam generation heat amount and the superheated steam generation heat amount when the superheated steam temperature is set to 2000 ° C. is 1.0: 1.79, the single-phase circuit in which the first heating conductor tube 3 is provided. The current ratio between the (saturated steam generation side single phase circuit) and the single phase circuit (superheated steam generation side single phase) provided with the second heating conductor tube 4 is 0.75: 1.0, and the residual amount is It doesn't matter. Of course, when the superheated steam temperature is less than 2000 ° C., the ratio of the current required for generating saturated steam becomes large, so the residual content is not a problem. Moreover, since the superheated steam cannot be separated into hydrogen and oxygen and cannot exist as superheated steam at a temperature higher than 2000 ° C., the residual current value is not in a region where it becomes a problem.

T座変圧器2Tの第2制御機器6によってT座変圧器2Tの出力電圧は制御されるが、主座変圧器2Mに流れ込む電流は第1制御機器5を遮断しても、第1制御機器5を設けていない他方の相に電流が流れるので、電流が制御されることは無い。また、主座変圧器2Mの第1制御機器5によって、T座変圧器2Tの出力電圧が変動するが、第2加熱導体管4(過熱水蒸気発生用加熱管)の温度に基づく電流制御を行っているので、問題になることは無い。   Although the output voltage of the T-seat transformer 2T is controlled by the second control device 6 of the T-seat transformer 2T, the current flowing into the main seat transformer 2M is not controlled even if the first control device 5 is cut off. Since the current flows in the other phase where 5 is not provided, the current is not controlled. Further, the output voltage of the T seat transformer 2T varies depending on the first control device 5 of the main transformer 2M, but current control based on the temperature of the second heating conductor tube 4 (heating tube for generating superheated steam) is performed. So there is no problem.

さらに過熱蒸気発生装置100の使用方法としては、まず過熱水蒸気の発生量の設定を行い、過熱水蒸気の発生量が決まれば、例えば温度130℃に設定した飽和水蒸気に要する熱量は常に一定であるので、T座変圧器2Tの出力電圧に影響を与えるような主座変圧器2Mの出力電圧の変動は生じない。   Furthermore, as a method of using the superheated steam generator 100, first, the amount of superheated steam generated is set. If the amount of superheated steam is determined, the amount of heat required for saturated steam set at a temperature of 130 ° C. is always constant. The output voltage of the main transformer 2M does not fluctuate so as to affect the output voltage of the T seat transformer 2T.

その上、主座変圧器2Mの出力電圧を大きく変動しない値に大まかに制御して、飽和水蒸気温度が130℃前後に多少変動しても、過熱水蒸気温度は、第2加熱導体管4(過熱水蒸気発生用加熱管)の温度に基づいて、T座変圧器2Tの第2制御機器6により詳細に制御する仕組みであることから、過熱水蒸気温度の制御に支障が発生することは無い。   In addition, the output voltage of the main transformer 2M is roughly controlled to a value that does not fluctuate greatly, and even if the saturated water vapor temperature slightly fluctuates around 130 ° C., the superheated water vapor temperature can be Since the second control device 6 of the T-seat transformer 2T controls in detail based on the temperature of the steam generating heating pipe), there is no problem in controlling the superheated steam temperature.

次に、図3に示す過熱水蒸気発生装置100と同等回路の試験装置を用いた試験結果を説明する。なお、主座1次コイル2aの巻き数は44であり、T座1次コイル2cの巻き数は38であり、各変圧器2M、2Tの2次コイル2b、2dの巻き数n1、n2は22とした。   Next, test results using a test apparatus having a circuit equivalent to that of the superheated steam generator 100 shown in FIG. 3 will be described. The number of turns of the main seat primary coil 2a is 44, the number of turns of the T seat primary coil 2c is 38, and the number of turns n1, n2 of the secondary coils 2b, 2d of each transformer 2M, 2T is It was set to 22.

以下の表1は、第1制御機器5によりV相を遮断して、第2制御機器6により入力電圧(Eu−w(V))を変化させた場合の、各部の電圧及び電流を示す。   Table 1 below shows the voltage and current of each part when the first control device 5 blocks the V phase and the second control device 6 changes the input voltage (Eu-w (V)).

ここで、本試験では、変圧器の2次巻線抵抗が、a−Oa回路及びb−Ob回路ともに、0.16Ωと高いため、出力電圧が低下して巻数比に応じた出力電圧が出ていない。2次巻線抵抗による電圧低下分を修正すると、Eu−o(V)、Eo−w(V)、T座変圧器の出力電圧(Ea−o(V))及び主座変圧器の出力電圧(Eb−o(V))は、以下の表2の通りとなる。 Here, in this test, since the secondary winding resistance of the transformer is as high as 0.16Ω for both the a-Oa circuit and the b-Ob circuit, the output voltage decreases and an output voltage corresponding to the turns ratio is output. Not. When the voltage drop due to the secondary winding resistance is corrected, Eu-o (V), Eo-w (V), the output voltage of the T-seat transformer (Ea-o a (V)) and the output of the main transformer voltage (Eb-o b (V) ) becomes as shown in Table 2 below.

表2に示すように、第1制御機器5によりV相を遮断して、第2制御機器6によりEu−w(V)を変化させた場合には、T座変圧器2Tの出力電圧に対して、主座変圧器2Mの出力電圧が、約66%残留していることが分かる。   As shown in Table 2, when the first control device 5 shuts off the V phase and the second control device 6 changes Eu-w (V), the output voltage of the T-seat transformer 2T is Thus, it can be seen that the output voltage of the main transformer 2M remains about 66%.

ここで、表1におけるEu−w=158(V)の項を見ると、1次コイルにおけるu−o間とo−w間との分担電圧は、それぞれ、114.4(V)と43.1(V)となっており、巻数比である38Tと22Tとの比の分担になっていない。これは、主座変圧器2Mの鉄心及びT座変圧器2Tの鉄心が一体形成されて共通脚鉄心があるとはいえ、磁気回路は別々に構成されているので、1T当たりの分担電圧が同じになっていないためである。Eu−w(V)は、それぞれの励磁インピーダンスの比により分担されており、励磁インピーダンスは磁路の長さ、磁束密度、ギャップ長、巻数等によって決まるものである。つまり、T座変圧器2Tの出力電圧に対する主座変圧器2Mの出力電圧の残留電圧の比は、T座変圧器2Tの励磁インピーダンスに対する主座変圧器2Mの主座一次コイル2aの巻数を半分とした場合の励磁インピーダンスの比となる。   Here, looking at the term of Eu−w = 158 (V) in Table 1, the shared voltages between u−o and o−w in the primary coil are 114.4 (V) and 43. 1 (V), which is not a share of the ratio of 38T and 22T which is the turn ratio. This is because, although the core of the main transformer 2M and the iron core of the T seat transformer 2T are integrally formed and have a common leg iron core, the magnetic circuit is configured separately, so the shared voltage per 1T is the same. It is because it is not. Eu-w (V) is shared by the ratio of the respective excitation impedances, and the excitation impedance is determined by the length of the magnetic path, the magnetic flux density, the gap length, the number of turns, and the like. That is, the ratio of the residual voltage of the output voltage of the main transformer 2M to the output voltage of the T seat transformer 2T is half the number of turns of the main coil 2a of the main transformer 2M with respect to the excitation impedance of the T seat transformer 2T. Is the ratio of the excitation impedance.

次に、以下の表3に、第2制御機器6により制御電流を一定に保ち(EU−W(V)≒158(V))、第1制御機器5により主座変圧器2Mの入力電圧(EV−W(V))を変化させた場合の、各部の電圧及び電流を示す。 Next, in Table 3 below, the control current is kept constant by the second control device 6 (EU −W (V) ≈158 (V)), and the input voltage of the main transformer 2M by the first control device 5 The voltage and electric current of each part at the time of changing ( EVW (V)) are shown.

表3に示すように、第1制御機器5により主座変圧器2Mの入力電圧(EV−W(V))を約1.8倍に変化させることにより、T座変圧器2Tの出力電圧(Ea−o(V))が約18%変動する結果となっている。 As shown in Table 3, by changing the input voltage (E V-W (V)) of the main transformer 2M by about 1.8 times by the first control device 5, the output voltage of the T seat transformer 2T The result shows that (Ea-o a (V)) fluctuates by about 18%.

次に、以下の表4に、第1制御機器5により制御電流を一定に保ち(EV−W(V)≒158(V))、第2制御機器6により入力電圧(EU−W(V))を変化させた場合の、各部の電圧及び電流を示す。 Next, in Table 4 below, the control current is kept constant by the first control device 5 (E V−W (V) ≈158 (V)), and the input voltage (E U−W ( V)) shows the voltage and current of each part when changed.

表4に示すように、主座変圧器2Mの出力電圧(Eb−o(V))は、T座変圧器2Tの出力電圧(Ea−o(V))の変化に影響を受けない結果となっている。 As shown in Table 4, the output voltage (Eb-o b (V)) of the main transformer 2M is not affected by the change in the output voltage (Ea-o a (V)) of the T-seat transformer 2T. It is the result.

次に、以下の表5に、第2制御機器6によりU−O間電圧を一定(≒101(V))に保った状態で、第1制御機器5により主座変圧器2Mの入力電圧(EV−W(V))を変化させた場合の、各部の電圧及び電流を示す。 Next, in Table 5 below, the input voltage (2M) of the main transformer 2M is controlled by the first control device 5 while the U-O voltage is kept constant (≈101 (V)) by the second control device 6. E V−W (V)) is changed, and the voltage and current of each part are shown.

表5に示すように、T座変圧器2Tの出力電圧(Ea−o(V))は一定に保たれており、主座変圧器2Mの出力電圧(Eb−o(V))が制御されている結果となっている。 As shown in Table 5, the output voltage (Ea-o a (V)) of the T-seat transformer 2T is kept constant, and the output voltage (Eb-o b (V)) of the main transformer 2M is The result is controlled.

ここで、飽和水蒸気を発生させる熱量を1としたときの、過熱水蒸気を発生させる熱量と過熱水蒸気温度との関係を示す特性グラフを図4に示す。   Here, a characteristic graph showing the relationship between the amount of heat for generating superheated steam and the temperature of the superheated steam when the amount of heat for generating saturated steam is 1 is shown in FIG.

過熱水蒸気温度が200℃のときは0.059、過熱水蒸気温度が748℃のときは0.5、過熱水蒸気温度が1279℃のときは1.0、過熱水蒸気温度が1752℃のときは1.5、過熱水蒸気温度が2000℃のときは1.79となっている。   When the superheated steam temperature is 200 ° C., 0.059, when the superheated steam temperature is 748 ° C., 0.5, when the superheated steam temperature is 1279 ° C., 1.0, when the superheated steam temperature is 1752 ° C., 1. 5. When the superheated steam temperature is 2000 ° C., it is 1.79.

また、過熱水蒸気温度と三相交流電源の各相の電流値の関係を、以下の表6に示す。   The relationship between the superheated steam temperature and the current value of each phase of the three-phase AC power supply is shown in Table 6 below.

表6から分かるように、過熱水蒸気温度1279℃では、各相の電流比が1:1:1でバランスしており、2000度では、各相の電流比が1.223:1:1となり、748℃では、各相の電流比が0.756:1:1となり、200℃では、各相の電流比が0.278:1:1となる。したがって、過熱水蒸気と呼ばれる最低温度の200℃から極限温度の2000℃の範囲において、1相の電流値がゼロとなるような極端な電流のアンバランスは発生しない。   As can be seen from Table 6, at the superheated steam temperature of 1279 ° C., the current ratio of each phase is balanced at 1: 1: 1, and at 2000 degrees, the current ratio of each phase is 1.223: 1: 1, At 748 ° C., the current ratio of each phase is 0.756: 1: 1, and at 200 ° C., the current ratio of each phase is 0.278: 1: 1. Therefore, in the range from the lowest temperature of 200 ° C., called superheated steam, to the extreme temperature of 2000 ° C., there is no extreme current imbalance such that the current value of one phase becomes zero.

このように構成した本実施形態の過熱水蒸気発生装置100によれば、主座変圧器2Mの出力に第1加熱導体管3(飽和水蒸気発生用加熱管)を接続し、T座変圧器2Tの出力に第2加熱導体管4(過熱水蒸気発生用加熱管)を接続することで、主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷を接続した状態となり、この状態で、主座変圧器2Mの入力側の2相のうち一方に設けた第1制御機器5、及びT座変圧器2Tの入力側に設けた第2制御機器6により、主座変圧器2Mの出力電圧とT座変圧器2Tの出力電圧とを個別に制御することができる。これにより、スコット結線変圧器2を有する電源回路200の特徴を生かしつつ、過熱水蒸気温度の制御を容易に行うことができる。また、従来のように主座変圧器2M及びT座変圧器2Tの出力側に2台の単相変圧器を設ける必要も無いので、装置構成を簡略化することができる。   According to the superheated steam generator 100 of the present embodiment configured as described above, the first heating conductor tube 3 (saturated steam generating heating tube) is connected to the output of the main transformer 2M, and the T seat transformer 2T By connecting the second heating conductor pipe 4 (heating pipe for generating superheated steam) to the output, the output voltage of the main transformer becomes a voltage of k × n1 / n2 or more with respect to the output voltage of the T seat transformer. The required load is connected, and in this state, the first control device 5 provided on one of the two phases on the input side of the main transformer 2M and the second control provided on the input side of the T seat transformer 2T The device 6 can individually control the output voltage of the main transformer 2M and the output voltage of the T seat transformer 2T. Thereby, control of superheated steam temperature can be performed easily, making use of the characteristic of the power supply circuit 200 which has the Scott connection transformer 2. FIG. Moreover, since it is not necessary to provide two single-phase transformers on the output side of the main seat transformer 2M and the T seat transformer 2T as in the prior art, the apparatus configuration can be simplified.

また、主座変圧器2Mの鉄心及びT座変圧器2Tの鉄心が一体形成されたものであり、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23が、平面視においてそれぞれが三角形の頂点に位置するように配置され、継鉄心24が、平面視において共通脚鉄心23を屈折点として折れ曲がっているので、2つの主脚鉄心21、22間の距離を小さくして、スコット結線変圧器2全体の幅方向の寸法を小さくし、省スペース化を図ることができる。また、スコット結線変圧器2を構成する変圧器を2式から1式にすることができ、装置をコンパクトにすることができる。   Also, the iron core of the main seat transformer 2M and the iron core of the T seat transformer 2T are integrally formed, and the main seat leg iron core 21, the T seat leg iron core 22, and the common leg iron core 23 are respectively triangular in plan view. Since the yoke core 24 is bent with the common leg core 23 as a refracting point in a plan view, the distance between the two main leg cores 21 and 22 is reduced, and the Scott connection transformer The size of the entire container 2 in the width direction can be reduced, and space can be saved. Moreover, the transformer which comprises the Scott connection transformer 2 can be changed from 2 sets to 1 set, and a device can be made compact.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態では、第1加熱導体管3及び第2加熱導体管4は、各変圧器2M、2Tの2次コイル2b、2dに接続されて通電加熱されるものであったが、各変圧器2M、2Tの2次コイル2b、2dが中空導体管から形成されており、前記各加熱導体管3、4が、前記2次コイル2b、2dにより構成されたものであっても良い。また、主座変圧器2M又はT座変圧器2Tの何れか一方の2次コイルが中空導体管からなり、第1加熱導体管3又は第2加熱導体管4の何れか一方が、2次コイルにより構成されるものであっても良い。これにより、変圧器2M、2Tの2次コイルと加熱導体管との電気接続が無くなり、効率の良い過熱水蒸気発生装置100を構成することができる。特に、低温側の第1加熱導体管を、中空導体管からなる2次コイルにより構成すると効率が良い。   For example, in the above-described embodiment, the first heating conductor tube 3 and the second heating conductor tube 4 are connected to the secondary coils 2b and 2d of the transformers 2M and 2T and are energized and heated. The secondary coils 2b and 2d of the transformers 2M and 2T may be formed of a hollow conductor tube, and each of the heating conductor tubes 3 and 4 may be constituted by the secondary coils 2b and 2d. In addition, either the secondary coil of the main transformer 2M or the T-sheath transformer 2T is formed of a hollow conductor tube, and either the first heating conductor tube 3 or the second heating conductor tube 4 is a secondary coil. It may be constituted by. Thereby, the electrical connection between the secondary coil of the transformers 2M and 2T and the heating conductor tube is eliminated, and the efficient superheated steam generator 100 can be configured. In particular, it is efficient if the first heating conductor tube on the low temperature side is constituted by a secondary coil made of a hollow conductor tube.

また、主座変圧器2M又はT座変圧器2Tの少なくとも一方において、1次コイルが、脚鉄心周りにおいて2次コイルの内側及び外側にそれぞれ重ねて巻回されているものであっても良い。これにより、1次コイルの間に2次コイルが挟まれる構成となり、漏れ磁束を低減することができ、設備効率を上げることができる。   Further, in at least one of the main transformer 2M or the T transformer 2T, the primary coil may be wound around the leg iron core so as to overlap the inner side and the outer side of the secondary coil. Thereby, it becomes the structure by which a secondary coil is pinched | interposed between primary coils, a leakage magnetic flux can be reduced, and equipment efficiency can be raised.

さらに、1次コイルを中空導体管から構成して、第1加熱導体管3に流入する水を予熱する構成としても良い。これにより、1次コイルを構成する中空導体管で発生する抵抗熱及び鉄心の熱を水に与えることができ、設備効率を向上させることができる。   Furthermore, it is good also as a structure which preheats the water which flows in into the 1st heating conductor pipe | tube 3 by comprising a primary coil from a hollow conductor pipe | tube. Thereby, resistance heat generated in the hollow conductor tube constituting the primary coil and heat of the iron core can be given to the water, and the equipment efficiency can be improved.

その上、前記実施形態では、主座変圧器2Mの鉄心及びT座変圧器2Tの鉄心を一体形成しているが、主座変圧器2Mの鉄心及びT座変圧器2Tの鉄心を別々の鉄心としても良い。   In addition, in the above-described embodiment, the iron core of the main transformer 2M and the iron core of the T seat transformer 2T are integrally formed. However, the iron core of the main transformer 2M and the iron core of the T seat transformer 2T are separated from each other. It is also good.

加えて、前記実施形態の主座変圧器2M及びT座変圧器2Tを単巻変圧器としても良い。これならば、1次コイルと2次コイルとの間の絶縁を簡素にすることができ、製作し易くなるとともに、事故発生のリスクを低減することができる。   In addition, the main transformer 2M and the T transformer 2T of the above embodiment may be single-turn transformers. If this is the case, the insulation between the primary coil and the secondary coil can be simplified, making it easier to manufacture and reducing the risk of accidents.

さらにその上、主座脚鉄心21の中心と共通脚鉄心23の中心とを結ぶ線と、T座脚鉄心22の中心と共通脚鉄心23の中心とを結ぶ線とのなす角度は、120度に限られず、例えば図5に示すように、略直角としても良い。つまり、主座脚鉄心41、T座脚鉄心42と、共通脚鉄心43とが平面視においてそれぞれが直角三角形の頂点に位置するように配置されており、共通脚鉄心43が、直角三角形の頂点のうち直角である頂点に配置されるものであっても良い。具体的には、上継鉄心44a及び下継鉄心44bの折れ曲がり角度が90度となるように構成されている。これならば、前記実施形態よりも、スコット結線変圧器全体の幅方向の寸法を小さくし、省スペース化を図ることができる。   Furthermore, the angle formed by the line connecting the center of the main leg core 21 and the center of the common leg core 23 and the line connecting the center of the T seat core 22 and the center of the common leg core 23 is 120 degrees. For example, as shown in FIG. That is, the main leg iron core 41, the T leg iron core 42, and the common leg iron core 43 are arranged so that each is located at the apex of the right triangle in plan view, and the common leg iron core 43 is the apex of the right triangle. Of these, it may be arranged at a vertex that is a right angle. Specifically, the bending angle of the upper core 44a and the lower core 44b is configured to be 90 degrees. If it is this, the dimension of the width direction of the whole Scott connection transformer can be made smaller than the said embodiment, and space saving can be achieved.

さらに加えて、前記実施形態では、主座脚鉄心21及び共通脚鉄心23の中心間距離と、T座脚鉄心22及び共通脚鉄心23の中心間距離とが互いに異なるものであったが、主座脚鉄心21及び共通脚鉄心23の中心間距離と、T座脚鉄心22及び共通脚鉄心23の中心間距離とが互いに等しいものであっても良い。つまり、主座脚鉄心21、T座脚鉄心22及び共通脚鉄心23が、平面視において、それぞれが二等辺三角形の頂点に位置するように配置されており、各継鉄心24a、24bは、共通脚鉄心23の中心に対して左右対称形状となっている。これならば、2つの主脚鉄心21、22の磁気特性が互いに同等となり、効率良く三相交流電源から2つの単相回路に変換することができる。   In addition, in the above embodiment, the distance between the centers of the main leg core 21 and the common leg core 23 and the distance between the centers of the T leg core 22 and the common leg core 23 are different from each other. The center-to-center distance between the seat leg core 21 and the common leg core 23 and the center-to-center distance between the T seat leg core 22 and the common leg core 23 may be equal to each other. That is, the main leg core 21, the T leg core 22, and the common leg core 23 are arranged so that each is located at the apex of an isosceles triangle in plan view, and the yoke cores 24 a and 24 b are common to each other. The shape is symmetrical with respect to the center of the leg core 23. In this case, the magnetic characteristics of the two main leg iron cores 21 and 22 are equal to each other, and the three-phase AC power source can be efficiently converted into two single-phase circuits.

また、前記実施形態では、スコット結線変圧器2を有する電源回路200を過熱蒸気発生装置100に適用した場合について説明したが、その他、主座変圧器の出力電圧がT座変圧器の出力電圧に対して常時k×n1/n2以上の電圧を要する負荷であれば、第1加熱導体管3及び第2加熱導体管4からなる負荷に限られず、種々の負荷を接続することができる。   Moreover, although the said embodiment demonstrated the case where the power supply circuit 200 which has the Scott connection transformer 2 was applied to the superheated steam generator 100, other than that, the output voltage of a main transformer becomes the output voltage of a T seat transformer. On the other hand, as long as the load always requires a voltage of k × n1 / n2 or more, the load is not limited to the load composed of the first heating conductor tube 3 and the second heating conductor tube 4, and various loads can be connected.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・過熱蒸気生成装置
200・・・電源装置
2 ・・・スコット結線変圧器
21 ・・・主座脚鉄心(主脚鉄心)
22 ・・・T座脚鉄心(主脚鉄心)
23 ・・・共通脚鉄心
24 ・・・継鉄心
2M ・・・主座変圧器
2a ・・・1次コイル
2b ・・・2次コイル
2T ・・・T座変圧器
2c ・・・1次コイル
2d ・・・2次コイル
3 ・・・第1加熱導体管
4 ・・・第2加熱導体管
5 ・・・第1制御機器
6 ・・・第2制御機器
DESCRIPTION OF SYMBOLS 100 ... Superheated steam generator 200 ... Power supply device 2 ... Scott connection transformer 21 ... Main seat leg core (main leg iron core)
22 ・ ・ ・ T seat leg iron core (main leg iron core)
23 ... common leg core 24 ... yoke core 2M ... main transformer 2a ... primary coil 2b ... secondary coil 2T ... T seat transformer 2c ... primary coil 2d ... secondary coil 3 ... first heating conductor tube 4 ... second heating conductor tube 5 ... first control device 6 ... second control device

Claims (9)

主座変圧器及びT座変圧器からなるスコット結線変圧器を有する電源回路であって、
前記主座変圧器の入力側の2相のうち一方に設けられ、電圧又は電流を制御する第1制御機器と、
前記T座変圧器の入力側である1次コイルの一端側に設けられ、電圧又は電流を制御する第2制御機器とを備え、
前記主座変圧器の2次コイルの巻数をn1、前記T座変圧器の2次コイルの巻数をn2、前記主座変圧器の励磁インピーダンスと前記T座変圧器の励磁インピーダンスから求まる係数をkとしたときに、前記主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷に接続された状態で、前記第1制御機器及び前記第2制御機器が、前記主座変圧器の出力電圧と前記T座変圧器の出力電圧とを個別に制御することを特徴とする電源装置。
A power supply circuit having a Scott connection transformer comprising a main transformer and a T-seat transformer,
A first control device that is provided in one of the two phases on the input side of the main transformer and controls voltage or current;
A second control device that is provided on one end side of the primary coil that is the input side of the T-seat transformer and controls voltage or current;
The number of turns of the secondary coil of the main transformer is n1, the number of turns of the secondary coil of the T transformer is n2, and a coefficient obtained from the excitation impedance of the main transformer and the excitation impedance of the T transformer is k. When the output voltage of the main transformer is connected to a load that requires a voltage of k × n1 / n2 or more with respect to the output voltage of the T-seat transformer, the first control device and the The second control device individually controls the output voltage of the main seat transformer and the output voltage of the T seat transformer.
前記主座変圧器の2次コイルの巻数と前記T座変圧器の2次コイルの巻数とが同じである請求項1記載の電源装置。   The power supply device according to claim 1, wherein the number of turns of the secondary coil of the main transformer and the number of turns of the secondary coil of the T-seat transformer are the same. 前記主座変圧器又は前記T座変圧器の少なくとも一方が、単巻変圧器である請求項1又は2記載の電源装置。   3. The power supply device according to claim 1, wherein at least one of the main seat transformer or the T seat transformer is an autotransformer. 前記主座変圧器の鉄心及び前記T座変圧器の鉄心が一体形成されたものである請求項1乃至3の何れか一項に記載の電源装置。   4. The power supply device according to claim 1, wherein an iron core of the main transformer and an iron core of the T-transformer are integrally formed. 5. 前記主座変圧器又は前記T座変圧器の少なくとも一方が、断面略円形状の脚鉄心と、当該脚鉄心の上下に接続される変形巻鉄心からなる継鉄心とを有する請求項1乃至4の何れか一項に記載の電源装置。   The at least one of the main seat transformer or the T seat transformer has a leg core having a substantially circular cross section and a yoke core composed of a deformed wound core connected to the top and bottom of the leg core. The power supply device according to any one of the above. 前記スコット結線変圧器が、
スコット結線されたコイルが巻回される2つの主脚鉄心と、
前記2つの主脚鉄心に生じる磁束の共通の通路になる共通脚鉄心と、
前記2つの主脚鉄心及び前記共通脚鉄心の上下それぞれを連結する継鉄心とを備え、
前記2つの主脚鉄心及び前記共通脚鉄心が、平面視においてそれぞれが三角形の頂点に位置するように配置され、
前記継鉄心が、平面視において前記共通脚鉄心を屈折点として折れ曲がっている請求項1乃至5の何れか一項に記載の電源装置。
The Scott connection transformer is
Two main leg cores around which Scott-connected coils are wound;
A common leg iron core serving as a common path for magnetic flux generated in the two main leg iron cores;
A yoke core connecting the upper and lower sides of the two main leg iron cores and the common leg iron core,
The two main leg iron cores and the common leg iron core are arranged so that each is located at the apex of a triangle in plan view,
The power supply device according to any one of claims 1 to 5, wherein the yoke core is bent with the common leg iron core as a refracting point in plan view.
前記2つの主脚鉄心の一方及び前記共通脚鉄心の間の距離と、前記2つの主脚鉄心の他方及び前記共通脚鉄心の間の距離とが、互いに等しい請求項6記載の電源装置。   The power supply device according to claim 6, wherein a distance between one of the two main leg iron cores and the common leg iron core is equal to a distance between the other of the two main leg iron cores and the common leg iron core. 前記2つの主脚鉄心及び前記共通脚鉄心が、平面視においてそれぞれが直角三角形の頂点に位置するように配置され、
前記共通脚鉄心が、前記直角三角形の頂点のうち直角である頂点に位置するように配置される請求項6又は7記載の電源装置。
The two main leg iron cores and the common leg iron core are arranged so that each is located at the apex of a right triangle in plan view,
8. The power supply device according to claim 6, wherein the common leg iron core is disposed so as to be positioned at a vertex that is a right angle among the vertices of the right triangle.
主座変圧器及びT座変圧器からなるスコット結線変圧器を有し、前記主座変圧器の入力側の2相のうち一方に電圧又は電流を制御する第1制御機器が設けられ、前記T座変圧器の入力側である1次コイルの一端側に電圧又は電流を制御する第2制御機器が設けられた電源装置の使用方法であって、
前記主座変圧器の2次コイルの巻数をn1、前記T座変圧器の2次コイルの巻数をn2、前記主座変圧器の励磁インピーダンスと前記T座変圧器の励磁インピーダンスから求まる係数をkとしたときに、前記主座変圧器の出力電圧が前記T座変圧器の出力電圧に対してk×n1/n2以上の電圧を要する負荷に接続された状態で、前記第1制御機器及び前記第2制御機器により、前記主座変圧器の出力電圧と前記T座変圧器の出力電圧とを個別に制御することを特徴とする電源装置の使用方法。
A Scott connection transformer comprising a main transformer and a T transformer is provided, and a first control device for controlling voltage or current is provided in one of the two phases on the input side of the main transformer, and the T A method of using a power supply apparatus in which a second control device for controlling voltage or current is provided on one end side of a primary coil that is an input side of a transformer,
The number of turns of the secondary coil of the main transformer is n1, the number of turns of the secondary coil of the T transformer is n2, and a coefficient obtained from the excitation impedance of the main transformer and the excitation impedance of the T transformer is k. When the output voltage of the main transformer is connected to a load that requires a voltage of k × n1 / n2 or more with respect to the output voltage of the T-seat transformer, the first control device and the A method of using a power supply apparatus, wherein the output voltage of the main transformer and the output voltage of the T-seat transformer are individually controlled by a second control device.
JP2013263906A 2013-12-20 2013-12-20 Power circuit Active JP6210871B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2013263906A JP6210871B2 (en) 2013-12-20 2013-12-20 Power circuit
KR1020140093900A KR102195785B1 (en) 2013-12-20 2014-07-24 Power circuit, iron core for scott connected transformer, scott connected transformer and superheated steam generator
TW107113821A TWI647721B (en) 2013-12-20 2014-07-28 Power supply unit
TW107113823A TWI647723B (en) 2013-12-20 2014-07-28 Scott's wiring transformer with three iron core
TW107113822A TWI647722B (en) 2013-12-20 2014-07-28 How to use the power supply unit
US14/444,746 US10650962B2 (en) 2013-12-20 2014-07-28 Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
EP14178753.1A EP2887362B1 (en) 2013-12-20 2014-07-28 Power circuit, iron core for Scott connected transformer, Scott connected transformer and superheated steam generator
TW103125673A TWI636470B (en) 2013-12-20 2014-07-28 Superheated steam generator
CN201410367031.0A CN104734525B (en) 2013-12-20 2014-07-29 Power supply device and its application method, overheated steam generation device
HK15108399.3A HK1207749A1 (en) 2013-12-20 2015-08-28 Power device and its usage, superheated steam generator, and iron core for scott connected transformer
US15/452,425 US10978243B2 (en) 2013-12-20 2017-03-07 Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
US15/452,408 US10510480B2 (en) 2013-12-20 2017-03-07 Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
US15/452,368 US10840011B2 (en) 2013-12-20 2017-03-07 Power circuit, iron core for scott connected transformer, scott connected transformer, and superheated steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263906A JP6210871B2 (en) 2013-12-20 2013-12-20 Power circuit

Publications (2)

Publication Number Publication Date
JP2015122822A JP2015122822A (en) 2015-07-02
JP6210871B2 true JP6210871B2 (en) 2017-10-11

Family

ID=53533996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263906A Active JP6210871B2 (en) 2013-12-20 2013-12-20 Power circuit

Country Status (1)

Country Link
JP (1) JP6210871B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116176A (en) * 1977-03-19 1978-10-11 Hokushin Electric Works Gyrocompass
JPS61248508A (en) * 1985-04-26 1986-11-05 Toshiba Corp Iron core for scott-connected transformer
FR2610150B1 (en) * 1987-01-23 1989-05-12 Trailigaz ELECTRICAL SUPPLY DEVICE FOR AN OZONEUR
JP2003299361A (en) * 2002-03-29 2003-10-17 Takaoka Electric Mfg Co Ltd Low-voltage automatic voltage regulator
JP5630829B2 (en) * 2011-02-04 2014-11-26 トクデン株式会社 Superheated steam generator
JP2013128057A (en) * 2011-12-19 2013-06-27 Jib Electric Co Ltd Scott connection transformer
JP6259277B2 (en) * 2013-12-20 2018-01-10 トクデン株式会社 Scott connection transformer iron core and Scott connection transformer
JP6282220B2 (en) * 2013-12-20 2018-02-21 トクデン株式会社 Superheated steam generator

Also Published As

Publication number Publication date
JP2015122822A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6282220B2 (en) Superheated steam generator
JP5748202B2 (en) Superheated steam generator
KR20130092481A (en) Fluid heating apparatus
TWI706692B (en) Induction heating system
US10510480B2 (en) Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
JP2015519747A (en) Magnetic shield three-phase rotary transformer
JP6210871B2 (en) Power circuit
CN105939548B (en) Induction heating system
US2482489A (en) Interwound coil
JP5257938B2 (en) Three-phase single-phase conversion voltage regulator
JP6552840B2 (en) Induction heating system
JP6552841B2 (en) Induction heating roller system
TWI608204B (en) Fluid heating apparatus
JP2021044200A (en) Superheated steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6210871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250