JP2013128057A - Scott connection transformer - Google Patents

Scott connection transformer Download PDF

Info

Publication number
JP2013128057A
JP2013128057A JP2011277212A JP2011277212A JP2013128057A JP 2013128057 A JP2013128057 A JP 2013128057A JP 2011277212 A JP2011277212 A JP 2011277212A JP 2011277212 A JP2011277212 A JP 2011277212A JP 2013128057 A JP2013128057 A JP 2013128057A
Authority
JP
Japan
Prior art keywords
core
iron core
scott connection
transformer
connection transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011277212A
Other languages
Japanese (ja)
Inventor
Matatsugu Nagata
又嗣 永田
Shoyu Yamaguchi
彰宥 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIB ELECTRIC CO Ltd
Original Assignee
JIB ELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIB ELECTRIC CO Ltd filed Critical JIB ELECTRIC CO Ltd
Priority to JP2011277212A priority Critical patent/JP2013128057A/en
Publication of JP2013128057A publication Critical patent/JP2013128057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Scott connection transformer exhibiting excellent energy consumption efficiency while reducing the no-load loss.SOLUTION: As the core of a Scott connection transformer 1, a wound core 8b consisting of two inner cores 86, 87, each formed by winding a thin magnetic steel sheet in multiple, and an outer core 88 is used. In the wound core 8b, two inner cores 86, 87 of the same shape are juxtaposed in the hollow part of the outer core 88.

Description

本発明は、三相の交流電力を単相の交流電力に変換する際に用いられるスコット結線変圧器に関する。   The present invention relates to a Scott connection transformer used when converting three-phase AC power into single-phase AC power.

交流電源として、単相の交流電力を供給するものと三相の交流電力を供給するものとがある。単相の交流電力は一般家庭などで電気製品を動かすために用いられ、三相の交流電力は工場等で三相のモータ等の動力源として用いられる。   There are two types of AC power supplies that supply single-phase AC power and three-phase AC power. Single-phase AC power is used to move electrical products in general households, and three-phase AC power is used as a power source for three-phase motors in factories and the like.

一方、三相の交流電力だけが利用可能な所で、単相の交流電力を必要とする場合がある。具体的には、三相3線式の電源から大容量の単相負荷(例えば、単相電気炉や単相交流電車)に給電したい場合などである。   On the other hand, there are cases where single-phase AC power is required where only three-phase AC power is available. Specifically, there is a case where power is supplied from a three-phase three-wire power source to a large-capacity single-phase load (for example, a single-phase electric furnace or a single-phase AC train).

このような場合には、スコット結線変圧器を用いて三相の交流電力を単相の交流電力に変換することが一般的である(例えば、特許文献1参照)。以下、図3を参照して、スコット結線変圧器を用いて三相の交流電力を単相の交流電力に変換する方法について説明する。   In such a case, it is common to convert three-phase AC power into single-phase AC power using a Scott connection transformer (see, for example, Patent Document 1). Hereinafter, a method for converting three-phase AC power into single-phase AC power using a Scott connection transformer will be described with reference to FIG.

図3に、スコット結線変圧器の結線図の一例を示す。スコット結線変圧器1は主座変圧器2とT座変圧器3とで構成されている。主座変圧器2は、鉄心8に一次巻線4と二次巻線5が巻装され、T座変圧器3は、鉄心8に一次巻線6と二次巻線7が巻装されている。   FIG. 3 shows an example of a connection diagram of the Scott connection transformer. The Scott connection transformer 1 is composed of a main seat transformer 2 and a T seat transformer 3. In the main transformer 2, the primary winding 4 and the secondary winding 5 are wound around the iron core 8, and in the T seat transformer 3, the primary winding 6 and the secondary winding 7 are wound around the iron core 8. Yes.

主座変圧器2の一次巻線4と二次巻線5は鉄心8を介して互いに磁気的に結合されている。また、一次巻線4の両端は端子UとWに接続され、二次巻線5の両端は端子u1とouに接続されている。   The primary winding 4 and the secondary winding 5 of the main transformer 2 are magnetically coupled to each other via an iron core 8. Further, both ends of the primary winding 4 are connected to terminals U and W, and both ends of the secondary winding 5 are connected to terminals u1 and ou.

同様に、T座変圧器3の一次巻線6と二次巻線7は鉄心8を介して互いに磁気的に結合されている。また一次巻線6の一方の端は、主座変圧器2の一次巻線4の中点に接続され、他方の端は端子Vに接続されている。二次巻線7の両端は端子ovとv1に接続されている。   Similarly, the primary winding 6 and the secondary winding 7 of the T seat transformer 3 are magnetically coupled to each other via an iron core 8. One end of the primary winding 6 is connected to the midpoint of the primary winding 4 of the main transformer 2 and the other end is connected to the terminal V. Both ends of the secondary winding 7 are connected to terminals ov and v1.

図3に示したスコット結線変圧器において、主座変圧器2の一次巻線4の端子U、WとT座変圧器3の端子Vとをそれぞれ三相の交流電源に接続すると、主座変圧器2の二次巻線5の両端の端子u1とou、およびT座変圧器3の二次巻線7の両端の端子ovとv1から二相の単相交流電力が得られる。   In the Scott connection transformer shown in FIG. 3, when the terminals U and W of the primary winding 4 of the main transformer 2 and the terminal V of the T transformer 3 are respectively connected to a three-phase AC power source, the main transformer Two-phase single-phase AC power is obtained from the terminals u1 and ou at both ends of the secondary winding 5 of the transformer 2 and the terminals ov and v1 at both ends of the secondary winding 7 of the T-seater transformer 3.

次に、図4を参照して、鉄心に積鉄心を採用した従来のスコット結線変圧器(例えば、特許文献2参照)の構造を説明する。積鉄心8aは、電磁鋼板の薄板を紙面と垂直な方向に積層したもので、上下の継鉄部81および82、左右の側脚部83および84、ならびに中央脚部85で構成され、中央脚部85と左右の側脚部83および84との間に巻線を挿入する長方形状の中空部が形成されている。   Next, with reference to FIG. 4, the structure of the conventional Scott connection transformer (for example, refer patent document 2) which employ | adopted the iron core as an iron core is demonstrated. The stacked iron core 8a is formed by laminating thin magnetic steel sheets in a direction perpendicular to the paper surface, and includes upper and lower yoke portions 81 and 82, left and right side leg portions 83 and 84, and a central leg portion 85. A rectangular hollow portion into which a winding is inserted is formed between the portion 85 and the left and right side leg portions 83 and 84.

紙面に向かって左側の側脚部83に主座一次巻線4と主座二次巻線5が巻装されて主座変圧器2が構成され、右側の側脚部84にT座一次巻線6とT座二次巻線7が巻装されてT座変圧器3が構成されている。図4には示されていないが、それぞれの巻線から線が引き出され、図3の各端子に接続されている。   The main seat primary winding 4 and the main seat secondary winding 5 are wound around the left side leg portion 83 toward the paper surface to constitute the main transformer 2, and the right side leg portion 84 has the T seat primary winding. The wire 6 and the T seat secondary winding 7 are wound to constitute the T seat transformer 3. Although not shown in FIG. 4, lines are drawn from the respective windings and connected to the terminals of FIG.

特開開平8−335520号公報JP-A-8-335520 特開2004−88834号公報JP 2004-88834 A

一般に、変圧器の損失は無負荷損失と負荷損失に分けられる。このうち負荷損失は、変圧器の巻線の抵抗(R)と機器に流れる負荷電流(I)よりI2Rで求められ、負荷の大きさにより損失が変化する。 In general, transformer loss is divided into no-load loss and load loss. Of these, the load loss is obtained as I 2 R from the resistance (R) of the winding of the transformer and the load current (I) flowing through the device, and the loss varies depending on the magnitude of the load.

これに対し、無負荷損失は、変圧器の入力側に電圧が印加された場合に発生する損失で、一般的な待機電源の損失と同様に負荷の大きさに関係しない。変圧器は電力を供給する側の機器であり、一次入力が遮断されることが少ないため、常時、無負荷損失が発生している。   On the other hand, the no-load loss is a loss that occurs when a voltage is applied to the input side of the transformer, and is not related to the size of the load, as is the case with a general standby power supply loss. A transformer is a device that supplies power, and the primary input is rarely interrupted, so no-load loss always occurs.

近年、電気製品に対する省エネの要請が高まっており、変圧器もその例外ではない。しかし、図4に示したような積鉄心を用いた従来のスコット結線変圧器は無負荷損失が大きく、エネルギー消費効率が悪いために、省エネの要請に十分応えることができていない。   In recent years, there has been an increasing demand for energy saving for electrical products, and transformers are no exception. However, since the conventional Scott connection transformer using the stacked iron core as shown in FIG. 4 has a large no-load loss and poor energy consumption efficiency, it cannot sufficiently meet the demand for energy saving.

本発明はこのような問題点に鑑みてなされたもので、省エネの要請に十分応えることができるスコット結線変圧器を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a Scott connection transformer that can sufficiently meet the demand for energy saving.

上記目的を達成するため本発明にかかるスコット結線変圧器は、鉄心に設けられた2つの側脚部のうち一方の側脚部に主座の一次巻線と二次巻線が巻装され、他方の側脚部にT座の一次巻線と二次巻線が巻装され、さらに前記主座の一次巻線の中点と前記T座の一次巻線の一方の端が接続され、前記主座の一次巻線の両端および前記T座の一次巻線の他方の端に三相交流が印加されるスコット結線変圧器であって、
前記鉄心は、それぞれ磁性材料で作製された薄板が多重に巻回された2つの内鉄心と1つの外鉄心で構成され、前記外鉄心の中空部に同一形状の前記2つの内鉄心が並置されていることを特徴とする。
In order to achieve the above object, the Scott connection transformer according to the present invention has a primary winding and a secondary winding wound around one of the two side legs provided on the iron core, The primary winding and the secondary winding of the T seat are wound on the other side leg, and the midpoint of the primary winding of the main seat and one end of the primary winding of the T seat are connected, A Scott connection transformer in which a three-phase alternating current is applied to both ends of the primary winding of the main seat and the other end of the primary winding of the T seat,
The iron core is composed of two inner iron cores and one outer iron core each of which a thin plate made of a magnetic material is wound in multiple layers, and the two inner iron cores having the same shape are juxtaposed in the hollow portion of the outer iron core. It is characterized by.

ここで、前記側脚部の幅をWとしたとき、前記第1および第2の内鉄心の幅は√2/2Wであり、また前記外鉄心の幅は(1−√2/2)Wであることが好ましい。また前記磁性材料で作製された薄板としてアモルファス磁性薄板を用いることが好ましい。   Here, when the width of the side leg portion is W, the width of the first and second inner iron cores is √2 / 2 W, and the width of the outer iron core is (1−√2 / 2) W. It is preferable that Further, it is preferable to use an amorphous magnetic thin plate as the thin plate made of the magnetic material.

本発明にかかるスコット結線変圧器は、巻鉄心を使用することで無負荷損失を大幅に減少させ、結果として、エネルギー消費効率を改善することによって省エネを実現している。   The Scott connection transformer according to the present invention significantly reduces no-load loss by using a wound iron core, and as a result, achieves energy saving by improving energy consumption efficiency.

本発明の実施の形態にかかるスコット結線変圧器の構成を示す正面図である。It is a front view which shows the structure of the Scott connection transformer concerning embodiment of this invention. 本実施の形態にかかるスコット結線変圧器の鉄心(A)と従来のスコット結線変圧器の鉄心(B)の外観を示す斜視図である。It is a perspective view which shows the external appearance of the iron core (A) of the Scott connection transformer concerning this Embodiment, and the iron core (B) of the conventional Scott connection transformer. スコット結線変圧器の結線図である。It is a connection diagram of a Scott connection transformer. 従来のスコット結線変圧器の構成を示す正面図である。It is a front view which shows the structure of the conventional Scott connection transformer.

以下、本発明の実施の形態にかかるスコット結線変圧器について、図面を参照しながら説明する。   Hereinafter, a Scott connection transformer according to an embodiment of the present invention will be described with reference to the drawings.

<スコット結線変圧器の構成>
図1に、本実施の形態にかかるスコット結線変圧器1の外観を示す。本実施の形態にかかるスコット結線変圧器1は、鉄心に巻鉄心8bを採用している。巻鉄心8bは、同一形状の第1および第2の内鉄心86および87と、外鉄心88で構成されている。
<Configuration of Scott connection transformer>
In FIG. 1, the external appearance of the Scott connection transformer 1 concerning this Embodiment is shown. The Scott connection transformer 1 according to the present embodiment employs a wound core 8b as an iron core. The wound iron core 8b includes first and second inner iron cores 86 and 87 having the same shape and an outer iron core 88.

内鉄心86および87は、磁性材料で作製された薄板(本実施の形態では電磁鋼板の薄板)を、内側に長方形の中空部が形成されるように多重の巻回したものであり、外鉄心88は、内側の中空部に2個の内鉄心86および87が並置できるように、電磁鋼板の薄板を方形状に多重に巻回したものである。   Inner cores 86 and 87 are obtained by winding a thin plate made of a magnetic material (in this embodiment, a thin plate of an electromagnetic steel plate) in multiple turns so that a rectangular hollow portion is formed on the inner side. No. 88 is obtained by winding a thin sheet of an electromagnetic steel sheet in a square shape so that two inner iron cores 86 and 87 can be juxtaposed in the inner hollow portion.

紙面に向かって左側に位置する第1の内鉄心86と外鉄心88に主座一次巻線4と主座二次巻線5(図3参照)が巻装されて主座変圧器2が構成され、右側に位置する第2の内鉄心87と外鉄心88にT座一次巻線6とT座二次巻線7(図3参照)が巻装されてT座変圧器3が構成されている。また図1には示されていないが、それぞれの巻線から線が引き出され、図3の各端子に接続されている。   The main transformer 2 is configured by winding the main primary winding 4 and the main secondary winding 5 (see FIG. 3) around the first inner iron core 86 and the outer iron core 88 located on the left side of the drawing. The T seat primary winding 6 and the T seat secondary winding 7 (see FIG. 3) are wound around the second inner iron core 87 and outer iron core 88 located on the right side to constitute the T seat transformer 3. Yes. Although not shown in FIG. 1, lines are drawn from the respective windings and connected to the terminals of FIG.

<鉄心の種類による特性の比較>
次に、スコット結線変圧器1の鉄心に本発明の巻鉄心8bを用いた場合と、従来の積鉄心8a(図4参照)を用いた場合の特性上の差異について説明する。図2(A)に、本実施の形態にかかるスコット結線変圧器の巻鉄心8bの斜視図を、また図2(B)に従来のスコット結線変圧器の積鉄心8aの斜視図を示す。図中、W1〜W6は幅、H1、H2は高さ、D1は奥行きを示している。
<Comparison of characteristics by core type>
Next, the difference in characteristics between the case where the wound core 8b of the present invention is used for the iron core of the Scott connection transformer 1 and the case where the conventional stacked core 8a (see FIG. 4) is used will be described. FIG. 2A shows a perspective view of the wound core 8b of the Scott connection transformer according to the present embodiment, and FIG. 2B shows a perspective view of the product core 8a of the conventional Scott connection transformer. In the figure, W1 to W6 are widths, H1 and H2 are heights, and D1 is a depth.

最初に、本発明において図2(A)に示す構成の巻鉄心を採用するに至った理由を説明する。同一容積の鉄心の場合、積鉄心より巻鉄心の方が、無負荷損失が少ないことが知られている。また、鉄心の外側には磁束の流れが生じ難いことから、積鉄心を用いた場合、コーナー部の鉄心が無駄になる。これに対し、巻鉄心を用いた場合には、コーナー部が円弧状に形成されていることから、積鉄心と比較して無駄となる鉄心部分が少ない。主としてこれらの理由から、発明者等はスコット結線変圧器の鉄心に巻鉄心を採用できないか検討した。   First, the reason why the wound core having the configuration shown in FIG. In the case of an iron core having the same volume, it is known that a wound iron core has less no-load loss than a stacked iron core. Further, since the flow of magnetic flux hardly occurs outside the iron core, the iron core at the corner portion is wasted when the stacked iron core is used. On the other hand, when the wound core is used, since the corner portion is formed in an arc shape, there is less waste core portion than the stacked core. Mainly for these reasons, the inventors examined whether a wound core could be used as the core of the Scott connection transformer.

スコット結線変圧器では、鉄心の左右の側脚部にコイルが巻装されるため、当初、図2(A)に示す内鉄心86と同様の形状の鉄心を2つ並置して巻鉄心を構成することを考えた。このような構造を採用した場合、中央脚部85の幅(積層された薄板の厚み)W2は側脚部86の幅W5の2倍となる。   In the Scott connection transformer, the coil is wound around the left and right side legs of the iron core. Therefore, two iron cores having the same shape as the inner iron core 86 shown in FIG. Thought to do. When such a structure is employed, the width (thickness of the laminated thin plates) W2 of the central leg portion 85 is twice the width W5 of the side leg portion 86.

一方、図2(B)に示す構成の積鉄心を採用したスコット結線変圧器では、中央脚部85を通過する磁束密度の観点より、中央脚部85の幅W2を側脚部83(または84)の幅W1の√2倍としたときに変圧器の効率が最大となり、鉄心の量を節減できることが知られている。しかし、巻鉄心として上述した内鉄心86と同様の形状の鉄心を2つ並置する構造を採用した場合、必然的に、中央脚部85の幅W2は側脚部86の幅W5の2倍となるため、使用する電磁鋼板に無駄が生じる。   On the other hand, in the Scott connection transformer employing the stacked iron core having the configuration shown in FIG. 2B, from the viewpoint of the magnetic flux density passing through the central leg 85, the width W2 of the central leg 85 is set to the side leg 83 (or 84). It is known that the transformer efficiency is maximized and the amount of iron core can be reduced when the width W1 is √2 times. However, when a structure in which two iron cores having the same shape as the inner iron core 86 described above are employed as the wound iron core, the width W2 of the central leg 85 is inevitably twice the width W5 of the side leg 86. Therefore, waste is generated in the electromagnetic steel sheet to be used.

そこで、発明者等は巻鉄心8bとして、図2(A)に示すような、並置された2つの内鉄心86および87を外鉄心88で取り囲む構成について検討した。この構成の場合、側脚部83、84の幅W1に対し、内鉄心86および87の幅W5を√2/2×W1とし、また外鉄心88の幅W6を(1−√2/2)×W1に設定すれば、中央脚部85の幅W2は側脚部83の幅W1(=W5+W6)の√2倍となるため、電磁鋼板に無駄が生じるのを避けることができる。   Therefore, the inventors examined a configuration in which the two inner cores 86 and 87 juxtaposed as shown in FIG. 2A are surrounded by the outer core 88 as the wound core 8b. In this configuration, the width W5 of the inner iron cores 86 and 87 is √2 / 2 × W1 with respect to the width W1 of the side legs 83 and 84, and the width W6 of the outer iron core 88 is (1−√2 / 2). If set to × W1, the width W2 of the central leg portion 85 is √2 times the width W1 (= W5 + W6) of the side leg portion 83, and therefore it is possible to avoid waste in the electromagnetic steel sheet.

なお、上述した内鉄心86および87の幅W5と外鉄心88の幅W6は最適値であり、この値が多少増減しても変圧器の効率は緩やかに低下するため、実用上問題はない。従って、採用可能な幅W5とW6は一定の幅を持った値である。   The above-described width W5 of the inner cores 86 and 87 and the width W6 of the outer iron core 88 are optimum values. Even if these values increase or decrease slightly, the efficiency of the transformer gradually decreases, so there is no practical problem. Therefore, the employable widths W5 and W6 are values having a certain width.

次に、図2を参照して、巻鉄心8bを採用した場合と積鉄心8aを採用した場合の無負荷損失の相違について説明する。図2では、前提として、巻鉄心8bと積鉄心8aの容積を同じに設定している。すなわち、巻鉄心8bと積鉄心8aの幅W4、高さH1および奥行きD1を同一にしている。また、内鉄心86および87の中空部の形状および容積(W3×H2×D1)を同一にしている。   Next, with reference to FIG. 2, the difference in no-load loss when the wound core 8b is employed and when the stacked core 8a is employed will be described. In FIG. 2, the volume of the wound core 8b and the stacked core 8a is set to be the same as a premise. That is, the wound core 8b and the stacked core 8a have the same width W4, height H1, and depth D1. Further, the hollow portions of the inner iron cores 86 and 87 have the same shape and volume (W3 × H2 × D1).

図2に示す寸法の巻鉄心8bと積鉄心8aを、同じ材質の電磁鋼板を用いて作製し、更に、左右の側脚部83および84に一次巻線および二次巻線を同一の回数巻装して(磁束密度1.49T)スコット結線変圧器1を構成する。   The wound iron core 8b and the stacked iron core 8a having the dimensions shown in FIG. 2 are manufactured by using electromagnetic steel plates made of the same material, and the primary winding and the secondary winding are wound on the left and right side legs 83 and 84 the same number of times. The magnetic flux density is 1.49T to constitute the Scott connection transformer 1.

電磁鋼板として比重7.65、占積率0.96の薄板を用い、下記(1)および(2)に示す寸法の鉄心を作製した場合、巻鉄心8bの重量は117.5kg、積鉄心8aの重量は136.3kgとなる。無負荷損失は同一の条件であれば、用いる電磁鋼板の重量が少ない程少なくなるため、巻鉄心8bの無負荷損失は積鉄心8aのそれに比較して約24%少なくなる。
(1)巻鉄心8b:W1=W5+W6=75mm、W5=53mm、W6=22mm、W2=106mm、W4=356mm、H1=400mm、H2=250mm、D1=158mm
(2)積鉄心8a:W1=75mm、W2=106mm、W4=356mm、H1=400mm、H2=250mm、D1=158mm
When an iron core having the dimensions shown in the following (1) and (2) is manufactured using a thin plate having a specific gravity of 7.65 and a space factor of 0.96 as the electromagnetic steel sheet, the weight of the wound core 8b is 117.5 kg, and the stacked core 8a. The weight of is 136.3 kg. Under the same conditions, the no-load loss decreases as the weight of the magnetic steel sheet used decreases, so the no-load loss of the wound core 8b is about 24% less than that of the product core 8a.
(1) Wound core 8b: W1 = W5 + W6 = 75 mm, W5 = 53 mm, W6 = 22 mm, W2 = 106 mm, W4 = 356 mm, H1 = 400 mm, H2 = 250 mm, D1 = 158 mm
(2) Product core 8a: W1 = 75mm, W2 = 106mm, W4 = 356mm, H1 = 400mm, H2 = 250mm, D1 = 158mm

また積鉄心8aを用いた場合、図2(B)に示すように、形状の異なる4種類、計6枚の短冊状の電磁鋼板を組み合わせて1枚の薄板を形成している。このため、主座変圧器2およびT座変圧器3のそれぞれについて鉄心の継ぎ目が4箇所生じ、継ぎ目で磁束の流れが乱れ、それにより生じる抵抗によって無負荷損失が増加する。   Further, when the stacked iron core 8a is used, as shown in FIG. 2 (B), a single thin plate is formed by combining four different types of shapes, a total of six strip-shaped electromagnetic steel plates. For this reason, four joints of the iron core are generated for each of the main transformer 2 and the T transformer 3, and the flow of magnetic flux is disturbed at the joint, and the no load loss is increased by the resistance generated thereby.

このための対策として従来の変圧器では、隣接する電磁鋼板において継ぎ目が生じる箇所をずらすことにより、磁束の流れが妨げられるのを防止している。しかし、このような手法を採用した場合、短冊状の電磁鋼板の寸法を変える必要があるため、切断の工程や配列の工程が複雑となり、変圧器の製造コストをアップさせることになる。   As a countermeasure for this, in the conventional transformer, the flow of magnetic flux is prevented from being disturbed by shifting the place where the seam is generated in the adjacent electromagnetic steel sheet. However, when such a method is adopted, it is necessary to change the dimensions of the strip-shaped electrical steel sheet, which complicates the cutting process and the arrangement process, and increases the manufacturing cost of the transformer.

一方、巻鉄心8bを用いた場合には、短冊状に切断された電磁鋼板を曲げ、それらを重ね合わせることにより巻鉄心を作製することから、それぞれの薄板の継ぎ目は1箇所であり、本来的に磁束の損失が少ない。結果として、巻鉄心8bは継ぎ目により生じる無負荷損失が積鉄心8aのそれに比較して50%以下になる。   On the other hand, when the wound iron core 8b is used, since the wound iron core is produced by bending the electromagnetic steel sheets cut into strips and superimposing them, the seam of each thin plate is one place. There is little loss of magnetic flux. As a result, the wound core 8b has a no-load loss caused by the seam of 50% or less as compared with that of the stacked core 8a.

上述の各寸法の巻鉄心8bおよび積鉄心8aについて無負荷損失を測定したところ、巻鉄心8bでは140W、積鉄心8aでは175Wであった。すなわち、巻鉄心8bの無負荷損失は積鉄心8aのそれの80%となった。この結果より、本発明の巻鉄心8bを用いれば、エネルギー消費効率の高いスコット結線変圧器を実現できることがわかる。   When the no-load loss was measured for the wound core 8b and the stacked core 8a having the above dimensions, it was 140W for the wound core 8b and 175W for the stacked core 8a. That is, the no-load loss of the wound core 8b was 80% of that of the stacked core 8a. From this result, it is understood that a Scott connection transformer with high energy consumption efficiency can be realized by using the wound core 8b of the present invention.

なお、本実施の形態では、電磁鋼板を用いてスコット結線変圧器を作製したが、電磁鋼板の代わりに鉄系アモルファス磁性材料で作製された薄板(以降、「アモルファス磁性薄板」という)を用いてスコット結線変圧器を作製してもよい。アモルファス磁性薄板は、電磁鋼板に比較して無負荷損失が20%程度と低いため、待機電力の大幅な削減が可能となる。   In this embodiment, the Scott connection transformer is manufactured using an electromagnetic steel sheet. However, instead of the electromagnetic steel sheet, a thin plate made of an iron-based amorphous magnetic material (hereinafter referred to as “amorphous magnetic thin plate”) is used. A Scott connection transformer may be fabricated. Since the amorphous magnetic thin plate has a low no-load loss of about 20% as compared with the electromagnetic steel plate, the standby power can be greatly reduced.

更に、アモルファス磁性薄板は電磁鋼鈑の薄板に比較して薄く、柔軟性に優れている。巻鉄心を作製する際には、短冊状の磁性薄板を両端部が重ね合わされた状態で巻回し、その動作を繰り返すだけであるため、鉄心の製造工程が簡素化され、組立時間も短縮される。また、電磁鋼板を用いた場合と異なり継ぎ目が生じず、重ね合わされた部分の厚さを調節するために隣接する薄板の接合位置を若干ずらす程度で済むため、製造コストを抑えることができる。   Furthermore, the amorphous magnetic thin plate is thinner and more flexible than the electromagnetic steel plate. When manufacturing a wound core, a strip-shaped magnetic thin plate is wound in a state where both ends are overlapped, and only the operation is repeated, thereby simplifying the manufacturing process of the core and shortening the assembly time. . Further, unlike the case of using the electromagnetic steel sheet, no seam is generated, and the manufacturing cost can be reduced because the joining position of the adjacent thin plates is slightly shifted in order to adjust the thickness of the overlapped portion.

参考として、図2(A)に示す形状の巻鉄心8bを、アモルファス磁性薄板を用いて作製した容量30kVAのスコット結線変圧器と、図2(B)に示す形状の積鉄心8aを、電磁鋼板を用いて作製した同容量のスコット結線変圧器について、50Hz、負荷率40%のときの電気的特性をそれぞれ測定した。   As a reference, a wound core 8b having a shape shown in FIG. 2A is manufactured using an amorphous magnetic thin plate and a Scott connection transformer having a capacity of 30 kVA, and a stacked iron core 8a having a shape shown in FIG. The electrical characteristics at 50 Hz and a load factor of 40% were measured for Scott connection transformers of the same capacity manufactured using

アモルファス磁性薄板を用いたスコット結線変圧器では、無負荷損失32.4W、負荷損失119W、全損失151.4W、効率98.8%であった。これに対し、電磁鋼板を用いたスコット結線変圧器では、無負荷損失175W、負荷損失109W、全損失284.0W、効率97.7%であった。なお、「効率」は、変圧器の有効出力と(有効出力+全損失)の比をパーセントで表したものである。   In the Scott connection transformer using the amorphous magnetic thin plate, the no-load loss was 32.4 W, the load loss was 119 W, the total loss was 151.4 W, and the efficiency was 98.8%. On the other hand, the Scott connection transformer using the electromagnetic steel sheet had no load loss 175 W, load loss 109 W, total loss 284.0 W, and efficiency 97.7%. “Efficiency” is the ratio between the effective output of the transformer and (effective output + total loss) expressed as a percentage.

同様に負荷率100%において、アモルファス磁性薄板を用いたスコット結線変圧器では、無負荷損失32.4W、負荷損失742W、全損失774.4W、効率97.5%であった。これに対し、電磁鋼板を用いたスコット結線変圧器では、無負荷損失175.0W、負荷損失680.0W、全損失855.0W、効率97.2%であった。   Similarly, at a load factor of 100%, the Scott connection transformer using an amorphous magnetic thin plate had no load loss 32.4W, load loss 742W, total loss 774.4W, and efficiency 97.5%. On the other hand, in the Scott connection transformer using the electromagnetic steel sheet, the no-load loss was 175.0 W, the load loss was 680.0 W, the total loss was 855.0 W, and the efficiency was 97.2%.

上述の結果を見ても、巻鉄心を用いた本発明のスコット結線変圧器は、積鉄心を用いた従来のスコット結線変圧器に比べて無負荷損失が少なく、高い効率を実現していることがわかる。   Even if it sees the above-mentioned result, the Scott connection transformer of the present invention using a wound iron core has less no-load loss compared with the conventional Scott connection transformer using a load iron core, and has realized high efficiency. I understand.

1 スコット結線変圧器
2 主座変圧器
3 T座変圧器
4 主座一次巻線
5 主座一次巻線
6 T座一次巻線
7 T座二次巻線
8、8b 鉄心
83、84 側脚部
85 中央脚部
86、87 内鉄心
88 外鉄心
DESCRIPTION OF SYMBOLS 1 Scott connection transformer 2 Main seat transformer 3 T seat transformer 4 Main seat primary winding 5 Main seat primary winding 6 T seat primary winding 7 T seat secondary winding 8, 8b Iron core 83, 84 Side leg 85 Center leg 86, 87 Inner core 88 Outer core

Claims (3)

鉄心に設けられた2つの側脚部のうち一方の側脚部に主座の一次巻線と二次巻線が巻装され、他方の側脚部にT座の一次巻線と二次巻線が巻装され、さらに前記主座の一次巻線の中点と前記T座の一次巻線の一方の端が接続され、前記主座の一次巻線の両端および前記T座の一次巻線の他方の端に三相交流が印加されるスコット結線変圧器であって、
前記鉄心は、それぞれ磁性材料で作製された薄板が多重に巻回された2つの内鉄心と1つの外鉄心で構成され、前記外鉄心の中空部に同一形状の前記2つの内鉄心が並置されていることを特徴とするスコット結線変圧器。
The primary winding and secondary winding of the main seat are wound on one side leg of the two side legs provided on the iron core, and the primary winding and secondary winding of the T seat are mounted on the other side leg. A wire is wound, and a midpoint of the primary winding of the main seat and one end of the primary winding of the T seat are connected, and both ends of the primary winding of the main seat and the primary winding of the T seat A Scott connection transformer in which a three-phase alternating current is applied to the other end of
The iron core is composed of two inner iron cores and one outer iron core each of which a thin plate made of a magnetic material is wound in multiple layers, and the two inner iron cores having the same shape are juxtaposed in the hollow portion of the outer iron core. Scott connection transformer, characterized by
前記側脚部の幅をWとしたとき、前記第1および第2の内鉄心の幅は√2/2Wであり、また前記外鉄心の幅は(1−√2/2)Wであることを特徴とする、請求項1に記載のスコット結線変圧器。   When the width of the side legs is W, the width of the first and second inner iron cores is √2 / 2 W, and the width of the outer iron core is (1−√2 / 2) W. The Scott connection transformer according to claim 1, wherein: 前記磁性材料で作製された薄板としてアモルファス磁性薄板を用いることを特徴とする、請求項1または2に記載のスコット結線変圧器。   The Scott connection transformer according to claim 1, wherein an amorphous magnetic thin plate is used as the thin plate made of the magnetic material.
JP2011277212A 2011-12-19 2011-12-19 Scott connection transformer Pending JP2013128057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277212A JP2013128057A (en) 2011-12-19 2011-12-19 Scott connection transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277212A JP2013128057A (en) 2011-12-19 2011-12-19 Scott connection transformer

Publications (1)

Publication Number Publication Date
JP2013128057A true JP2013128057A (en) 2013-06-27

Family

ID=48778426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277212A Pending JP2013128057A (en) 2011-12-19 2011-12-19 Scott connection transformer

Country Status (1)

Country Link
JP (1) JP2013128057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122822A (en) * 2013-12-20 2015-07-02 トクデン株式会社 Power supply circuit
JP2015122346A (en) * 2013-12-20 2015-07-02 トクデン株式会社 Iron core for scott connection transformer and scott connection transformer
JP2019016650A (en) * 2017-07-04 2019-01-31 ファナック株式会社 Core body and reactor
US10510480B2 (en) 2013-12-20 2019-12-17 Tokuden Co., Ltd. Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248508A (en) * 1985-04-26 1986-11-05 Toshiba Corp Iron core for scott-connected transformer
JPH02159706A (en) * 1988-12-13 1990-06-19 Toshiba Corp Transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248508A (en) * 1985-04-26 1986-11-05 Toshiba Corp Iron core for scott-connected transformer
JPH02159706A (en) * 1988-12-13 1990-06-19 Toshiba Corp Transformer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122822A (en) * 2013-12-20 2015-07-02 トクデン株式会社 Power supply circuit
JP2015122346A (en) * 2013-12-20 2015-07-02 トクデン株式会社 Iron core for scott connection transformer and scott connection transformer
US10510480B2 (en) 2013-12-20 2019-12-17 Tokuden Co., Ltd. Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
US10650962B2 (en) 2013-12-20 2020-05-12 Tokuden Co., Ltd. Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
US10840011B2 (en) 2013-12-20 2020-11-17 Tokuden Co., Ltd. Power circuit, iron core for scott connected transformer, scott connected transformer, and superheated steam generator
US10978243B2 (en) 2013-12-20 2021-04-13 Tokuden Co., Ltd. Power circuit, iron core for Scott connected transformer, Scott connected transformer, and superheated steam generator
JP2019016650A (en) * 2017-07-04 2019-01-31 ファナック株式会社 Core body and reactor
US10734154B2 (en) 2017-07-04 2020-08-04 Fanuc Corporation Core body reactor
US11107618B2 (en) 2017-07-04 2021-08-31 Fanuc Corporation Core body and reactor

Similar Documents

Publication Publication Date Title
JP4800451B1 (en) High frequency transformer
CN106998142B (en) Controlled resonant converter, the inductance of multi-channel parallel integrate magnetic element and transformer integrates magnetic element
CN102916594B (en) Power supply unit
EP2498266A2 (en) Reactor and power converter using the same
CN103890874A (en) Reactor, transformer, and power conversion apparatus using same
CN102412057A (en) Symmetric leakage inductance adjustable flat transformer
JP2013128057A (en) Scott connection transformer
CN202585079U (en) Polyphase transformer
JP4287495B1 (en) Three-phase high frequency transformer
CN204480858U (en) A kind of iron core of transformer
US4547721A (en) Transformer structure
KR100996979B1 (en) Magnetic powder block core reactor and it&#39;s manufacturing method for uninterruptible power supply
KR102136026B1 (en) Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same
CN208478093U (en) The transformer of winding construction
KR101506698B1 (en) iron core winding assembly for transformer
JP6278153B1 (en) Transformer
CN207977198U (en) A kind of electronic transformer
TWM446964U (en) Edge-winding type winding transformer
JP7143235B2 (en) Iron core for stationary induction electric machine
CN212084828U (en) 12-pulse direct-current smelting electric smelting magnesium transformer
CN209357573U (en) The inductance balance magnetic core and three-phase reactor of three-phase reactor
CN211828417U (en) Transformer core unit and iron core
CN2605651Y (en) High-power high-frequency transformer
CN211907190U (en) Transformer iron core
CN219716636U (en) Novel high-voltage transformer for microwave oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602