JP6208506B2 - Air heat source heat pump and air conditioning method - Google Patents

Air heat source heat pump and air conditioning method Download PDF

Info

Publication number
JP6208506B2
JP6208506B2 JP2013193196A JP2013193196A JP6208506B2 JP 6208506 B2 JP6208506 B2 JP 6208506B2 JP 2013193196 A JP2013193196 A JP 2013193196A JP 2013193196 A JP2013193196 A JP 2013193196A JP 6208506 B2 JP6208506 B2 JP 6208506B2
Authority
JP
Japan
Prior art keywords
refrigerant
air
water
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013193196A
Other languages
Japanese (ja)
Other versions
JP2015059686A (en
Inventor
石井 秀一
秀一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2013193196A priority Critical patent/JP6208506B2/en
Publication of JP2015059686A publication Critical patent/JP2015059686A/en
Application granted granted Critical
Publication of JP6208506B2 publication Critical patent/JP6208506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気熱源ヒートポンプ、及び空調方法に関する。   The present invention relates to an air heat source heat pump and an air conditioning method.

暖房運転する空気熱源ヒートポンプは、外気より低温の冷媒と外気とを蒸発器で熱交換させて熱を汲み上げる。そのため外気温度が低下すると、汲み上げる圧縮機の高低圧差(ポンプで言えば揚程)が増加して、運転効率が低下する。また外気温度が低く外気湿度が高い場合、冷媒温度が氷点下になると、蒸発器表面に外気の結露水が氷結して運転効率が極端に低下する、霜付き運転に至る場合がある。この場合は何らかの手段で霜を融かす、除霜(デフロスト)運転を間欠的に行う必要がある。   An air heat source heat pump for heating operation pumps up heat by exchanging heat between a refrigerant having a temperature lower than that of the outside air and the outside air using an evaporator. For this reason, when the outside air temperature decreases, the high-low pressure difference (lifting distance in terms of a pump) of the compressor to be pumped increases, and the operation efficiency decreases. In addition, when the outside air temperature is low and the outside air humidity is high, when the refrigerant temperature falls below freezing point, dew condensation water from outside air freezes on the evaporator surface, and the operation efficiency may be extremely reduced, leading to frosted operation. In this case, it is necessary to intermittently perform a defrosting operation in which frost is melted by some means.

運転効率の低下を改善するため、図1に示すような空気熱源ヒートポンプが実用化されている。この従来の空気熱源ヒートポンプ100は、圧縮機101、3方弁102、4方弁103、給湯熱交換器104、空気熱交換器105、冷温水熱交換器106、流量調整弁107を備える。そして、例えば、空気熱源ヒートポンプの暖房運転時に外部から温熱(熱源水)を供給して運転効率を向上させる。具体的には、空気熱交換用の蒸発器(空気熱交換器105)と水熱交換用の蒸発器(給湯熱交換器104、冷温水熱交換器106)を並列設置して、両回路を切り替えることで運転効率を向上させる。   In order to improve the reduction in operating efficiency, an air heat source heat pump as shown in FIG. 1 has been put into practical use. This conventional air heat source heat pump 100 includes a compressor 101, a three-way valve 102, a four-way valve 103, a hot water supply heat exchanger 104, an air heat exchanger 105, a cold / hot water heat exchanger 106, and a flow rate adjustment valve 107. For example, during the heating operation of the air heat source heat pump, warm heat (heat source water) is supplied from the outside to improve the operation efficiency. Specifically, an evaporator for air heat exchange (air heat exchanger 105) and an evaporator for water heat exchange (hot water supply heat exchanger 104, cold / hot water heat exchanger 106) are installed in parallel, and both circuits are connected. Driving efficiency is improved by switching.

また、空調機の稼働中に蓄熱できるエアコンシステム(空気熱源ヒートポンプ)として、特許文献1に記載の技術がある。特許文献1に記載の技術では、室外機と室内機を結合する液管に熱交換器を設け、冷熱源装置から熱交換器に送られる冷熱源と液管の液冷媒を熱交換させて、液冷媒を冷却、又は、加熱するように構成されている。また、冷熱源装置は、蓄熱槽を備え、蓄熱槽内の蓄熱媒体が冷却加熱手段によって、冷却、又は、加熱され、それが冷熱源として、熱交換器へ送られる。   Moreover, there exists a technique of patent document 1 as an air-conditioner system (air heat source heat pump) which can store heat | fever during operation | movement of an air conditioner. In the technique described in Patent Document 1, a heat exchanger is provided in a liquid pipe that joins an outdoor unit and an indoor unit, and heat is exchanged between the cold heat source sent from the cold heat source device to the heat exchanger and the liquid refrigerant in the liquid pipe, The liquid refrigerant is configured to be cooled or heated. Further, the cold heat source device includes a heat storage tank, and the heat storage medium in the heat storage tank is cooled or heated by the cooling and heating means, and is sent to the heat exchanger as a cold heat source.

特開平05−126428号公報JP 05-126428 A

図1に示すような空気熱源ヒートポンプによれば、熱源水温度が外気温度並みに低くても暖房運転できる。但し、図1に示すような空気熱源ヒートポンプは、2種類の蒸発器を持つ特別なヒートポンプである必要があり、汎用性に欠けるといった問題がある。近年の電力需給逼迫とBCP(Business Continuity Plan)の観点から、事務所ビルで自家用発電機を設置するケースが増えているが、空気熱交換用の蒸発器しか持たない一般の空気熱源ヒートポンプでは、発電機排熱の利用(コ−ジェネレーション)が難しい。   According to the air heat source heat pump as shown in FIG. 1, heating operation can be performed even when the heat source water temperature is as low as the outside air temperature. However, the air heat source heat pump as shown in FIG. 1 needs to be a special heat pump having two kinds of evaporators, and there is a problem that it lacks versatility. From the viewpoint of the tight supply and demand of electric power in recent years and the BCP (Business Continuity Plan), there are increasing cases of installing private generators in office buildings, but in general air heat source heat pumps that have only an evaporator for air heat exchange, Use of generator exhaust heat (co-generation) is difficult.

また、特許文献1に記載の技術では、空気熱源ヒートポンプの暖房運転時に、室内機から室外機に戻る冷媒(液冷媒)を温水で加熱することにより、暖房能力が向上する。しかしながら、特許文献1に記載の技術は、夜間電力を利用した蓄熱による温熱を想定した技術であり、液冷媒の加熱量が暖房に必要な吸熱量を大幅に上回るような状況を想定したものではない。そのため、液冷媒を過剰に加熱した場合、その乾き度(ガスと液の混合比率)が高まって液管に流れる冷媒の体積が増えて圧力損失が増し、室外機の膨張弁による過熱度制御(圧縮機吸入冷媒をガス状態にするため、その温度及び蒸発温度+2〜5℃にな
るように冷媒循環量を調節する制御)がうまくいかなくなる恐れがある。
In the technique described in Patent Document 1, the heating capacity is improved by heating the refrigerant (liquid refrigerant) that returns from the indoor unit to the outdoor unit with warm water during the heating operation of the air heat source heat pump. However, the technique described in Patent Document 1 is a technique that assumes the heat generated by heat storage using nighttime power, and does not assume a situation where the heating amount of the liquid refrigerant greatly exceeds the heat absorption amount necessary for heating. Absent. Therefore, when the liquid refrigerant is heated excessively, its dryness (mixing ratio of gas and liquid) increases, the volume of refrigerant flowing in the liquid pipe increases, pressure loss increases, and superheat degree control by the expansion valve of the outdoor unit ( Since the refrigerant sucked into the compressor is in a gas state, there is a possibility that the control of adjusting the refrigerant circulation amount so that the temperature and the evaporation temperature become +2 to 5 ° C. may not be successful.

本発明は、上記のような条件、例えばコジェネレーションの発電機の排熱を利用して、空気熱源ヒートポンプの暖房運転条件を向上させる場合に、空気熱源ヒートポンプ自体の制御方法に変更を加えずに、暖房運転に支障をもたらさずに暖房運転効率を向上する技術を提供することを課題とする。   The present invention uses the above-described conditions, for example, the exhaust heat of a cogeneration generator to improve the heating operation conditions of the air heat source heat pump without changing the control method of the air heat source heat pump itself. It is an object of the present invention to provide a technique for improving the heating operation efficiency without causing any trouble in the heating operation.

本発明は、上述した課題を解決するため、以下の手段を採用する。すなわち、本発明は、外気温度を検知する外気温度検知部と、室外機の入口における冷媒の圧力を検知する圧力検知部と、前記室外機と室内機との間の冷媒管に設けられ、冷媒管を流れる冷媒と熱交換する冷媒/水熱交換器に供給される排温水が流れる配管と、前記配管に設けられ、前記冷媒/水熱交換器に供給される排温水の流量を調整する制御弁と、前記圧力検知部で検知された、前記室外機の入口における冷媒の圧力が、前記外気温度検知部で検知された外気温度から算出される外気の飽和圧力よりも高くなるように排温水の流量前記制御弁を制御する制御部と、を備える空気熱源ヒートポンプである。   The present invention employs the following means in order to solve the above-described problems. That is, the present invention is provided in an outside air temperature detecting unit that detects an outside air temperature, a pressure detecting unit that detects a refrigerant pressure at an inlet of the outdoor unit, and a refrigerant pipe between the outdoor unit and the indoor unit. Control for adjusting the flow rate of the exhaust water supplied to the refrigerant / water heat exchanger provided in the piping and the pipe through which the exhaust water supplied to the refrigerant / water heat exchanger that exchanges heat with the refrigerant flowing through the pipe The temperature of the refrigerant detected at the valve and the inlet of the outdoor unit is higher than the saturation pressure of the outside air calculated from the outside air temperature detected at the outside air temperature detecting unit. And an air heat source heat pump comprising a control unit for controlling the control valve.

本発明に係る空気熱源ヒートポンプでは、例えばコジェネレーションの発電機の排熱を利用して、空気熱源ヒートポンプの暖房運転条件を向上させる場合に、空気熱源ヒートポンプ自体の制御方法に変更を加えずに、暖房運転に支障をもたらさずに暖房運転効率を向上することができる。なお、制御部は、前記圧力検知部で検知された、前記室外機の入口における冷媒の圧力が、前記外気温度検知部で検知された外気温度の飽和圧力よりも0〜200kPa高くなるように排温水の流量を制御してもよい。その結果、膨張弁入口の冷媒の圧力が下がりすぎて過熱度制御に支障をもたらすことを回避できる。流量に代えて、排温水の温度を制御してもよい。この場合、例えば、制御弁廻りにバイパス管路を設け、還水を往水に混合する制御(ブリードイン制御)を行うことで実現できる。冷媒には、フロン系冷媒、CO2冷媒、アンモニア冷媒が例示される。 In the air heat source heat pump according to the present invention, for example, when improving the heating operation condition of the air heat source heat pump using the exhaust heat of the cogeneration generator, without changing the control method of the air heat source heat pump itself, Heating operation efficiency can be improved without hindering heating operation. The control unit discharges the refrigerant pressure detected by the pressure detection unit so that the refrigerant pressure at the inlet of the outdoor unit is higher by 0 to 200 kPa than the saturation pressure of the outside temperature detected by the outside temperature detection unit. You may control the flow volume of warm water. As a result, it can be avoided that the pressure of the refrigerant at the inlet of the expansion valve is excessively lowered and hinders superheat degree control. Instead of the flow rate, the temperature of the discharged hot water may be controlled. In this case, for example, it can be realized by providing a bypass line around the control valve and performing control (bleed-in control) for mixing the return water with the outgoing water. Examples of the refrigerant include a fluorocarbon refrigerant, a CO 2 refrigerant, and an ammonia refrigerant.

ここで、本発明に係る空気熱源ヒートポンプは、外気と熱交換する外気用熱交換器を含む前記室外機と、室内空気と熱交換する室内用熱交換器を含む前記室内機と、前記室外機と前記室内機と接続され、冷媒が流れる冷媒管と、前記室外機と前記室内機との間の冷媒管に設けられ、前記冷媒管を流れる冷媒と熱交換する前記冷媒/水熱交換器と、を更に備え、暖房運転時、前記冷媒/水熱交換器には、50〜90℃の排温水が供給されるものでもよい。   Here, the air heat source heat pump according to the present invention includes the outdoor unit including an outdoor air heat exchanger that exchanges heat with the outside air, the indoor unit including an indoor heat exchanger that exchanges heat with the indoor air, and the outdoor unit. A refrigerant pipe that is connected to the indoor unit and through which the refrigerant flows, and a refrigerant / water heat exchanger that is provided in a refrigerant pipe between the outdoor unit and the indoor unit and exchanges heat with the refrigerant that flows through the refrigerant pipe; In the heating operation, the refrigerant / water heat exchanger may be supplied with 50 to 90 ° C. waste hot water.

本発明に係る空気熱源ヒートポンプでは、暖房運転時、冷媒管の冷媒温度が、例えば、室内温度+5〜15℃(25〜40℃)になっており、冷媒/水熱交換器において、50
〜90°の排温水によって加熱される。そのため、暖房運転に必要な吸熱を行うのに必要な圧縮機の動力が削減され、冷媒/水熱交換器が設けられていない従来技術よりも運転効率を向上することができる。また、本発明によれば、排温水の水量が空気熱源ヒートポンプの暖房運転に必要な吸熱量に対して過剰な場合でも、冷媒/水熱交換器における熱交換量を適正な範囲に抑えて室外機の膨張弁入口冷媒圧力が過度に低下することを防ぎ、過熱度制御を支障なく続けさせることが可能である。
In the air source heat pump according to the present invention, during the heating operation, the refrigerant temperature of the refrigerant pipe is, for example, the room temperature +5 to 15 ° C. (25 to 40 ° C.).
Heated by ˜90 ° waste water. Therefore, the power of the compressor necessary for performing the heat absorption necessary for the heating operation is reduced, and the operation efficiency can be improved as compared with the conventional technique in which the refrigerant / water heat exchanger is not provided. Further, according to the present invention, even when the amount of waste water is excessive with respect to the amount of heat absorption required for the heating operation of the air heat source heat pump, the heat exchange amount in the refrigerant / water heat exchanger is suppressed to an appropriate range and the outdoor It is possible to prevent the refrigerant pressure at the inlet of the expansion valve of the machine from excessively decreasing and to keep the superheat control without any trouble.

ここで、本発明に係る空気熱源ヒートポンプでは、冷房運転時、前記冷媒管用熱交換器には、排温水を冷凍機に供給することで得た5〜30℃の冷水が供給されるようにしてもよい。これにより、本発明に係る空気熱源ヒートポンプは、暖房運転時(例えば、冬季)において運転効率を向上するだけでなく、冷房運転時(例えば、夏季)においても運転効率を向上することができる。また、排温水を有効に活用することができる。   Here, in the air source heat pump according to the present invention, during the cooling operation, the refrigerant pipe heat exchanger is supplied with cold water of 5 to 30 ° C. obtained by supplying waste hot water to the refrigerator. Also good. Thereby, the air source heat pump according to the present invention can improve not only the operation efficiency during the heating operation (for example, winter) but also the operation efficiency during the cooling operation (for example, summer). In addition, the hot water can be used effectively.

ここで、本発明は、上述した空気熱源ヒートポンプにおける空調方法として特定するこ
ともできる。具体的には、本発明は、外気温度を検知し、室外機の入口における冷媒の圧力を検知し、前記室外機の入口における冷媒の圧力が、外気温度から算出される外気の飽和圧力よりも高くなるように、前記室外機と室内機との間の冷媒管に設けられ、冷媒管を流れる冷媒と熱交換する冷媒/水熱交換器に供給される排温水の流量を調整する、空調方法である。
Here, this invention can also be specified as an air-conditioning method in the air heat source heat pump mentioned above. Specifically, the present invention detects the outside air temperature, detects the pressure of the refrigerant at the inlet of the outdoor unit, and the refrigerant pressure at the inlet of the outdoor unit is greater than the saturation pressure of the outside air calculated from the outside air temperature. An air conditioning method for adjusting a flow rate of exhaust water supplied to a refrigerant / water heat exchanger that is provided in a refrigerant pipe between the outdoor unit and the indoor unit and exchanges heat with the refrigerant flowing through the refrigerant pipe so as to be higher It is.

本発明に係る空調方法によれば、例えばコジェネレーションの発電機の排熱を利用して、空気熱源ヒートポンプの暖房運転条件を向上させる場合に、空気熱源ヒートポンプ自体の制御方法に変更を加えずに、暖房運転に支障をもたらさずに暖房運転効率を向上することができる。また、本発明によれば、排温水の水量が空気熱源ヒートポンプの暖房運転に必要な吸熱量に対して過剰な場合でも、冷媒/水熱交換器における熱交換量を適正な範囲に抑えて室外機の膨張弁入口冷媒圧力が過度に低下することを防ぎ、過熱度制御を支障なく続けさせることが可能である。なお、暖房運転時、冷媒管用熱交換器に50〜90℃の排温水を供給することができる。この場合、外気温度が低下した場合でも、室外機における圧力損失が抑えられるので、室外機と室内機との間の冷媒管に冷媒管用熱交換器が設けられていない従来技術よりも運転効率を向上することができる。   According to the air conditioning method of the present invention, for example, when the heating operation conditions of the air heat source heat pump are improved by utilizing the exhaust heat of the cogeneration generator, the control method of the air heat source heat pump itself is not changed. The heating operation efficiency can be improved without causing any trouble in the heating operation. Further, according to the present invention, even when the amount of waste water is excessive with respect to the amount of heat absorption required for the heating operation of the air heat source heat pump, the heat exchange amount in the refrigerant / water heat exchanger is suppressed to an appropriate range and the outdoor It is possible to prevent the refrigerant pressure at the inlet of the expansion valve of the machine from excessively decreasing and to keep the superheat control without any trouble. In addition, 50-90 degreeC waste-water can be supplied to the heat exchanger for refrigerant pipes at the time of heating operation. In this case, even when the outside air temperature decreases, the pressure loss in the outdoor unit can be suppressed. Therefore, the operating efficiency is higher than that in the conventional technique in which the refrigerant pipe heat exchanger is not provided in the refrigerant pipe between the outdoor unit and the indoor unit. Can be improved.

本発明によれば、空気熱源ヒートポンプ自体の制御方法に変更を加えずに、暖房運転に支障をもたらさずに暖房運転効率を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, heating operation efficiency can be improved, without making a change in the control method of the air heat source heat pump itself, without causing trouble in heating operation.

従来技術に係る空気熱源ヒートポンプの一例を示す。An example of the air heat source heat pump which concerns on a prior art is shown. 実施形態に係る空気熱源ヒートポンプの暖房運転時の配管系統図を示す。The piping system figure at the time of the heating operation of the air heat source heat pump which concerns on embodiment is shown. 比較例に係る空気熱源ヒートポンプの暖房運転時の配管系統図を示す。The piping system figure at the time of the heating operation of the air heat source heat pump which concerns on a comparative example is shown. 暖房運転時のp−h線図を示す。The ph diagram at the time of heating operation is shown. 実施形態に係る空気熱源ヒートポンプの冷房運転時の配管系統図を示す。The piping system figure at the time of air_conditionaing | cooling operation of the air heat source heat pump which concerns on embodiment is shown. 比較例に係る空気熱源ヒートポンプの冷房運転時の配管系統図を示す。The piping system figure at the time of air_conditionaing | cooling operation of the air heat source heat pump which concerns on a comparative example is shown. 冷房運転時のp−h線図を示す。The ph diagram at the time of cooling operation is shown. 暖房運転の運転制御例を示す。The example of operation control of heating operation is shown.

次に、本発明の実施形態について図面に基づいて説明する。以下に説明する実施形態は例示にすぎず、本発明は、以下に説明する実施形態に限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is merely an example, and the present invention is not limited to the embodiment described below.

<暖房運転>
図2は、第一実施形態に係る空気熱源ヒートポンプの暖房運転時の配管系統図を示す。第一実施形態に係る空気熱源ヒートポンプ200は、室外機210、室内機220、冷媒管230、冷媒/水熱交換器240、配管250、外気温度センサ260、低圧センサ270、水制御弁280、制御装置290を備える。
<Heating operation>
FIG. 2 shows a piping system diagram at the time of heating operation of the air source heat pump according to the first embodiment. The air heat source heat pump 200 according to the first embodiment includes an outdoor unit 210, an indoor unit 220, a refrigerant pipe 230, a refrigerant / water heat exchanger 240, a pipe 250, an outside air temperature sensor 260, a low pressure sensor 270, a water control valve 280, control. A device 290 is provided.

室外機210は、室外に設置され、外気と熱交換する。具体的には、室外機210は、膨張弁211、ファン212、蒸発器213、圧縮機214等を含む。暖房運転時、室外機210では、膨張弁211を通過して圧力低下した低温の冷媒(気液2相流冷媒:例えば、−5〜+5℃)と外気(例えば、5℃)とが蒸発器213で熱交換し、冷媒が外気から熱を吸収して低圧ガスとなり、圧縮機214で圧縮され、高圧の高温ガス冷媒(例えば、70〜100℃)が室内機220に送られる。   The outdoor unit 210 is installed outside and exchanges heat with the outside air. Specifically, the outdoor unit 210 includes an expansion valve 211, a fan 212, an evaporator 213, a compressor 214, and the like. During the heating operation, in the outdoor unit 210, the low-temperature refrigerant (gas-liquid two-phase flow refrigerant: for example, −5 to + 5 ° C.) and the outside air (for example, 5 ° C.) whose pressure has dropped after passing through the expansion valve 211 are evaporated. Heat is exchanged at 213, the refrigerant absorbs heat from the outside air, becomes low-pressure gas, is compressed by the compressor 214, and high-pressure high-temperature gas refrigerant (for example, 70 to 100 ° C.) is sent to the indoor unit 220.

室内機220は、室内空気と熱交換する。具体的には、室内機220は、凝縮器221、ファン222、膨張弁223等を含む。暖房運転時、室内機220では、室外機210
からの高温ガス冷媒(例えば、70〜100℃)は、凝縮器221で凝縮された後、高温ガス冷媒の熱が室内空気に吸収され、液冷媒(例えば、40〜50℃)となり、冷媒/水熱交換器240へ送られる。本実施形態では、室内機220が2機設置されているが、室内機220の数は1機でもよく、また、3機以上でもよい。
The indoor unit 220 exchanges heat with room air. Specifically, the indoor unit 220 includes a condenser 221, a fan 222, an expansion valve 223, and the like. During the heating operation, the indoor unit 220 has the outdoor unit 210.
After being condensed in the condenser 221, the high-temperature gas refrigerant (from 70 to 100 ° C.) is absorbed by the indoor air and becomes liquid refrigerant (eg 40 to 50 ° C.). It is sent to the water heat exchanger 240. In the present embodiment, two indoor units 220 are installed, but the number of indoor units 220 may be one, or three or more.

冷媒管230は、室外機210と室内機220と接続され、冷媒が流れる。冷媒には、フロン系冷媒、CO2冷媒、アンモニア冷媒が例示される。 The refrigerant pipe 230 is connected to the outdoor unit 210 and the indoor unit 220, and the refrigerant flows. Examples of the refrigerant include a fluorocarbon refrigerant, a CO 2 refrigerant, and an ammonia refrigerant.

冷媒/水熱交換器240(本発明の冷媒管用熱交換器に相当する。)は、室外機210と室内機220との間の冷媒管230に設けられている。また、冷媒/水熱交換器240には、温水(例えば、50〜90℃)が流れる配管250が通過している。冷媒/水熱交換器240は、冷媒と温水とで熱交換させる。温水は、発電機の排温水や、ボイラ等を使用する工場の排温水などが望ましい。暖房運転時、室内機220から送られた液冷媒(例えば、40〜50℃)は、冷媒/水熱交換器240を通過することで、温水で加熱され、高圧の気液2層流冷媒(例えば、10〜40℃)となり、冷媒管230を流れることで圧力低下し、室外機210の膨張弁211に送られる。   The refrigerant / water heat exchanger 240 (corresponding to the refrigerant pipe heat exchanger of the present invention) is provided in the refrigerant pipe 230 between the outdoor unit 210 and the indoor unit 220. Further, a pipe 250 through which hot water (for example, 50 to 90 ° C.) flows passes through the refrigerant / water heat exchanger 240. The refrigerant / water heat exchanger 240 exchanges heat between the refrigerant and hot water. The hot water is preferably the waste water from the generator or the waste water from the factory that uses the boiler. During the heating operation, the liquid refrigerant (for example, 40 to 50 ° C.) sent from the indoor unit 220 is heated with hot water by passing through the refrigerant / water heat exchanger 240, and a high-pressure gas-liquid two-layer refrigerant ( For example, the pressure decreases by flowing through the refrigerant pipe 230 and is sent to the expansion valve 211 of the outdoor unit 210.

配管250は、図示しない発電機と接続され、発電機の排熱を利用した排温水(例えば、50〜90℃)が流れる。   The pipe 250 is connected to a generator (not shown), and exhaust hot water (for example, 50 to 90 ° C.) using the exhaust heat of the generator flows.

外気温度センサ260(本発明の外気温度検知部に相当する。)は、室外に設置され、外気温度を検知する。外気温度センサ260は、制御装置290と電気的に接続され、検知された外気温度は、制御装置290へ送られる。外気温度センサ260は、既存の温度センサによって構成することができる。   An outside air temperature sensor 260 (corresponding to an outside air temperature detector of the present invention) is installed outside the room and detects the outside air temperature. The outside temperature sensor 260 is electrically connected to the control device 290, and the detected outside temperature is sent to the control device 290. The outside air temperature sensor 260 can be configured by an existing temperature sensor.

低圧センサ270(本発明の圧力検知部に相当する。)は、室外機210の入口、換言すると膨張弁211の上流側に設置され、室外機210の入口(膨張弁211の近傍)における冷媒の圧力を検知する。低圧センサ270は、制御装置290と電気的に接続され、検知された圧力は、制御装置290へ送られる。低圧センサ270は、既存の低圧センサによって構成することもできる。   The low-pressure sensor 270 (corresponding to the pressure detection unit of the present invention) is installed at the inlet of the outdoor unit 210, in other words, upstream of the expansion valve 211, and the refrigerant at the inlet of the outdoor unit 210 (near the expansion valve 211). Detect pressure. The low pressure sensor 270 is electrically connected to the control device 290, and the detected pressure is sent to the control device 290. The low pressure sensor 270 can also be configured by an existing low pressure sensor.

水制御弁280は、配管250に設置され、冷媒/水熱交換器240に供給される排温水0の流量を調整する。水制御弁280は、例えば電磁弁によって構成され、制御装置290と電気的に接続され、制御装置290によって開度が制御される。   The water control valve 280 is installed in the pipe 250 and adjusts the flow rate of the exhaust warm water 0 supplied to the refrigerant / water heat exchanger 240. The water control valve 280 is configured by, for example, an electromagnetic valve, and is electrically connected to the control device 290, and the opening degree is controlled by the control device 290.

制御装置290は、低圧センサ270で検知された、室外機210の入口における冷媒の圧力が、外気温度センサ260で検知された外気温度の飽和圧力よりも0〜200kPa高くなるように水制御弁280の開度を制御する。制御装置290は、CPU(Central Processing Unit:中央演算処理装置)、メモリ、記憶装置等によって構成され、CP
Uがメモリに展開されるプログラムに従って水制御弁の開度を制御する。
The control device 290 controls the water control valve 280 so that the refrigerant pressure detected by the low pressure sensor 270 at the inlet of the outdoor unit 210 is 0 to 200 kPa higher than the saturation pressure of the outside temperature detected by the outside temperature sensor 260. To control the opening degree. The control device 290 includes a CPU (Central Processing Unit), a memory, a storage device, and the like.
U controls the opening of the water control valve in accordance with a program developed in the memory.

ここで、図3は、比較例に係る空気熱源ヒートポンプの暖房運転時の配管系統図を示す。なお、本実施形態と同様の構成については、同一符号を付し、説明は割愛する。比較例に係る空気熱源ヒートポンプの暖房運転時の配管系統は、従来技術の配管系統の一例であり、冷媒/水熱交換器240を有しておらず、これに伴い、配管250、外気温度センサ260、低圧センサ270、水制御弁280、制御装置290も設けられていない。そのため、膨張弁211を通過した後の気液2相流冷媒は、例えば−10℃であり、外気(例えば、5℃)との温度差(例えば15℃)が、上述した実施形態の温度差(例えば、0〜10℃)よりも大きくなっている。そのため、蒸発器213通過後のガス冷媒の温度(例えば−5℃)が、上述した実施形態におけるガス冷媒の温度(例えば、0〜5℃)よりも
低くなっている。
Here, FIG. 3 shows a piping system diagram at the time of heating operation of the air heat source heat pump according to the comparative example. In addition, about the structure similar to this embodiment, the same code | symbol is attached | subjected and description is omitted. The piping system at the time of heating operation of the air heat source heat pump according to the comparative example is an example of a conventional piping system and does not include the refrigerant / water heat exchanger 240. Accordingly, the piping 250, the outside air temperature sensor 260, the low pressure sensor 270, the water control valve 280, and the control device 290 are also not provided. Therefore, the gas-liquid two-phase flow refrigerant after passing through the expansion valve 211 is, for example, −10 ° C., and the temperature difference (for example, 15 ° C.) from the outside air (for example, 5 ° C.) is the temperature difference of the above-described embodiment. (For example, 0 to 10 ° C.). Therefore, the temperature (for example, −5 ° C.) of the gas refrigerant after passing through the evaporator 213 is lower than the temperature (for example, 0 to 5 ° C.) of the gas refrigerant in the above-described embodiment.

図4は、暖房運転時のp−h線図を示す。図4において、横軸は比エンタルピ、縦軸は絶対圧力であり、実線は比較例、点線は実施形態を示す。比較例のように、一般的には、室内機220で凝縮した冷媒(C)は室外機210の膨張弁211で圧力低下し低圧気液二相流(F)となり、蒸発器213で外気から熱を吸収して低圧ガス(G)となり圧縮機214に吸い込まれる。これに対し、実施形態では、室内機220で凝縮した冷媒(C)はまず冷媒/水熱交換器240を通過することで温水で加熱され、高圧の気液二相流(D)となる。それから冷媒管230で圧力低下し(E)、更に室外機210の膨張弁211で圧力低下し低圧気液二相流(F)となる。本実施形態では、比較例に比べて蒸発器213の入口における冷媒(F)の比エンタルピが高いため、蒸発器213の冷媒温度を外気に比べてそれ程下げなくても冷媒を完全にガス化できる。そのため蒸発圧力が高くなり、圧縮機214出入口のエンタルピ差が小さくなって運転効率が向上する。   FIG. 4 shows a ph diagram during heating operation. In FIG. 4, the horizontal axis represents specific enthalpy, the vertical axis represents absolute pressure, the solid line represents a comparative example, and the dotted line represents an embodiment. As in the comparative example, generally, the refrigerant (C) condensed in the indoor unit 220 is reduced in pressure by the expansion valve 211 of the outdoor unit 210 to become a low-pressure gas-liquid two-phase flow (F), and from the outside air by the evaporator 213. It absorbs heat and becomes low-pressure gas (G) and is sucked into the compressor 214. On the other hand, in the embodiment, the refrigerant (C) condensed in the indoor unit 220 first passes through the refrigerant / water heat exchanger 240 and is heated with warm water to become a high-pressure gas-liquid two-phase flow (D). Then, the pressure is reduced in the refrigerant pipe 230 (E), and further the pressure is reduced in the expansion valve 211 of the outdoor unit 210 to become a low-pressure gas-liquid two-phase flow (F). In this embodiment, since the specific enthalpy of the refrigerant (F) at the inlet of the evaporator 213 is higher than that of the comparative example, the refrigerant can be completely gasified without reducing the refrigerant temperature of the evaporator 213 as much as that of the outside air. . For this reason, the evaporation pressure is increased, the enthalpy difference at the inlet / outlet of the compressor 214 is reduced, and the operation efficiency is improved.

ここで、一般に液冷媒の流量で設計されている冷媒管230に、体積の増えた気液二相流の冷媒を流すことによる、圧力低下(C〜E間)の増加には注意が必要である。冷媒/水熱交換器240で過剰に冷媒を加熱すると、単に室内機の還り冷媒を加熱するだけでは、室外機210の膨張弁211入口の冷媒(E)の圧力が低下しすぎて、膨張弁211の過熱度制御ができなくなることが懸念される。過熱度制御とは、圧縮機入口冷媒(G)の過熱度を2〜5℃確保し、圧縮機214に完全なガス冷媒が戻るようにする制御であり、蒸発器213における外気からの吸熱で冷媒が完全にガス化できる程度に、冷媒循環量を制御するものである。実施形態では、制御装置290は、外気温度センサ260によって外気温度を検知させ、外気温度の飽和圧力を算出し、低圧センサ270で検知された、膨張弁211の入口冷媒(E)の圧力がこの値より0〜200kPa高くなるように、温水加熱量を制御する。例えば、制御装置290は、冷媒/水熱交換器240の温水の流れにおける上流側に設けた水制御弁280の開度を制御する。   Here, it is necessary to pay attention to an increase in pressure drop (between C and E) caused by flowing a gas-liquid two-phase flow refrigerant having an increased volume through a refrigerant pipe 230 that is generally designed with a liquid refrigerant flow rate. is there. When the refrigerant is excessively heated by the refrigerant / water heat exchanger 240, simply by heating the return refrigerant of the indoor unit, the pressure of the refrigerant (E) at the inlet of the expansion valve 211 of the outdoor unit 210 is too low, and the expansion valve There is a concern that the superheat control of 211 cannot be performed. The superheat degree control is a control that ensures a superheat degree of the compressor inlet refrigerant (G) of 2 to 5 ° C. so that the complete gas refrigerant returns to the compressor 214, and is an endothermic heat from the outside air in the evaporator 213. The refrigerant circulation amount is controlled to such an extent that the refrigerant can be completely gasified. In the embodiment, the control device 290 detects the outside air temperature by the outside air temperature sensor 260, calculates the saturation pressure of the outside air temperature, and the pressure of the inlet refrigerant (E) of the expansion valve 211 detected by the low pressure sensor 270 is this. The amount of hot water heating is controlled to be 0 to 200 kPa higher than the value. For example, the control device 290 controls the opening degree of the water control valve 280 provided on the upstream side in the hot water flow of the refrigerant / water heat exchanger 240.

本実施形態では、比較例の空気熱源ヒートポンプ200の暖房運転において膨張弁211で与える圧力損失を、冷媒管230における圧力損失と膨張弁211で与える圧力損失分割し、更にトータルの圧力損失を減らしているといえる。   In this embodiment, the pressure loss given by the expansion valve 211 in the heating operation of the air heat source heat pump 200 of the comparative example is divided into the pressure loss in the refrigerant pipe 230 and the pressure loss given by the expansion valve 211, and the total pressure loss is further reduced. It can be said that.

<冷房運転>
上述した実施形態に係る空気熱源ヒートポンプを空冷ビル用マルチ(ビルマルともいう)に導入した場合、夏季の冷房運転時に外部からの冷水を冷媒/水熱交換器240に供給し、冷房運転効率を向上させることもできる。ここで、図5は、実施形態に係る空気熱源ヒートポンプの冷房運転時の配管系統図を示す。なお、暖房運転時の配管系統図と同様の構成については、同一符号を付し、説明は割愛する。
<Cooling operation>
When the air heat source heat pump according to the above-described embodiment is introduced into an air-cooled building mulch (also referred to as “billmaru”), cold water from the outside is supplied to the refrigerant / water heat exchanger 240 during the cooling operation in summer, thereby improving the cooling operation efficiency It can also be made. Here, FIG. 5 shows a piping system diagram at the time of cooling operation of the air heat source heat pump according to the embodiment. In addition, about the structure similar to the piping system diagram at the time of heating operation, the same code | symbol is attached | subjected and description is omitted.

室外機210では、冷房運転時、圧縮機214で圧縮されたガス冷媒(例えば、60〜90℃)が凝縮器213(暖房運転時における蒸発器に相当する)で凝縮され、ガス冷媒の熱が外気(例えば、30℃)と接して吸収され、液冷媒(例えば、40〜45℃)となり、冷媒/水熱交換器240へ送られる。   In the outdoor unit 210, during the cooling operation, the gas refrigerant (for example, 60 to 90 ° C.) compressed by the compressor 214 is condensed by the condenser 213 (corresponding to the evaporator during the heating operation), and the heat of the gas refrigerant is increased. It is absorbed in contact with outside air (for example, 30 ° C.), becomes a liquid refrigerant (for example, 40 to 45 ° C.), and is sent to the refrigerant / water heat exchanger 240.

冷媒/水熱交換器240では、冷房運転時、室外機210から送られた液冷媒(例えば、40〜45℃)は、冷媒/水熱交換器240を通過することで、冷水で冷却された液冷媒(例えば、10〜35℃)となり、室内機220へ送られる。   In the refrigerant / water heat exchanger 240, during the cooling operation, the liquid refrigerant (for example, 40 to 45 ° C.) sent from the outdoor unit 210 is cooled with cold water by passing through the refrigerant / water heat exchanger 240. It becomes a liquid refrigerant (for example, 10 to 35 ° C.) and is sent to the indoor unit 220.

室内機220では、冷房運転時、膨張弁223を通過して圧力低下した冷媒と室内空気とが蒸発器221(暖房運転時における凝縮器に相当する)で熱交換し、冷媒が室内空気から熱を吸収して低圧ガスとなり、ガス冷媒(例えば15〜20℃)として、室外機21
0の圧縮機214へ送られる。
In the indoor unit 220, during the cooling operation, the refrigerant whose pressure has dropped through the expansion valve 223 and the room air exchange heat with the evaporator 221 (corresponding to the condenser during the heating operation), and the refrigerant heats from the room air. Into the low-pressure gas, and the outdoor unit 21 as a gas refrigerant (for example, 15 to 20 ° C.)
0 to the compressor 214.

配管250は、図示しない冷却機と接続され、発電機の排熱を利用した排温水を例えば吸収式の冷凍機に投入して得た冷水が流れる。   The pipe 250 is connected to a cooler (not shown), and cold water obtained by charging waste water using waste heat from the generator into, for example, an absorption refrigerator flows.

制御装置290は、外気温度センサ260で検知された外気温度に基づいて水制御弁280の開度を制御する。開度の制御方法には、特開2006−284083号公報に記載の技術を適宜用いることができる。   Control device 290 controls the opening degree of water control valve 280 based on the outside air temperature detected by outside air temperature sensor 260. The technique described in JP 2006-284083 A can be used as appropriate for the method of controlling the opening.

ここで、図6は、比較例に係る空気熱源ヒートポンプの冷房運転時の配管系統図を示す。なお、本実施形態と同様の構成については、同一符号を付し、説明は割愛する。比較例に係る空気熱源ヒートポンプの冷房運転時の配管系統は、従来技術の配管系統の一例であり、冷媒/水熱交換器240を有しておらず、これに伴い、配管250、外気温度センサ260、低圧センサ270、水制御弁280、制御装置290も設けられていない。そのため、室外機210から室内機220へ送られる液冷媒(例えば、10〜35℃)は、上述した実施形態の液冷媒(例えば、10〜35℃)よりも温度が高くなっている。   Here, FIG. 6 shows a piping system diagram during cooling operation of the air source heat pump according to the comparative example. In addition, about the structure similar to this embodiment, the same code | symbol is attached | subjected and description is omitted. The piping system at the time of cooling operation of the air heat source heat pump according to the comparative example is an example of a conventional piping system, and does not include the refrigerant / water heat exchanger 240. Accordingly, the piping 250, the outside air temperature sensor 260, the low pressure sensor 270, the water control valve 280, and the control device 290 are also not provided. Therefore, the temperature of the liquid refrigerant (for example, 10 to 35 ° C.) sent from the outdoor unit 210 to the indoor unit 220 is higher than that of the liquid refrigerant (for example, 10 to 35 ° C.) of the above-described embodiment.

図7は、冷房運転時のp−h線図を示す。図7において、横軸は比エンタルピ、縦軸は絶対圧力であり、実線は比較例、点線は実施形態を示す。図7に示すように、冷媒/水熱交換器240の冷却効果により、実施形態では室外機210から送られる冷媒液(C)のエンタルピが小さくなっており、運転効率が向上している。   FIG. 7 shows a ph diagram during cooling operation. In FIG. 7, the horizontal axis represents specific enthalpy, the vertical axis represents absolute pressure, the solid line represents a comparative example, and the dotted line represents an embodiment. As shown in FIG. 7, due to the cooling effect of the refrigerant / water heat exchanger 240, in the embodiment, the enthalpy of the refrigerant liquid (C) sent from the outdoor unit 210 is reduced, and the operation efficiency is improved.

<効果>
実施形態に係る空気熱源ヒートポンプ200では、暖房運転時、冷媒/水熱交換器240に50〜90℃の排温水が供給される。そのため、外気温度が低下した場合でも、室外機210における圧力損失が抑えられるので、室外機210と室内機220との間の冷媒管230に冷媒/水熱交換器240が設けられていない従来技術(例えば、上述した比較例)よりも運転効率を向上することができる。また、冷媒/水熱交換器240には、50〜90℃の排温水が供給されるので、発電機等からの排熱の有効活用が図れ、夜間電力を利用した蓄熱による温熱を想定した従来技術よりも運転効率を向上することができる。
<Effect>
In the air source heat pump 200 according to the embodiment, 50 to 90 ° C. waste hot water is supplied to the refrigerant / water heat exchanger 240 during the heating operation. Therefore, even when the outside air temperature decreases, the pressure loss in the outdoor unit 210 can be suppressed, so that the refrigerant / water heat exchanger 240 is not provided in the refrigerant pipe 230 between the outdoor unit 210 and the indoor unit 220. Operation efficiency can be improved more than (for example, the comparative example mentioned above). In addition, since the exhaust heat water of 50 to 90 ° C. is supplied to the refrigerant / water heat exchanger 240, the exhaust heat from the generator and the like can be effectively used, and the conventional heat assuming heat storage using night electricity is assumed. Driving efficiency can be improved over technology.

ここで、図8は暖房運転の運転制御例を示す。図8は、外気温度7℃の場合において、膨張弁211の入口(E点)冷媒の圧力が992〜1192kPaになるように、例1と例2とで温水加熱量が異なるように、温水加熱量を制御した例である。温水加熱量を増やすこと(水制御弁280の開度を大きくし温水の流量を増加させること)で運転効率が向上することが想定される。また、別の試験では、例えば、空気熱源ヒートポンプ200の必要採熱量の2/3を、外気ではなく温水から採熱した場合、蒸発温度が7〜10℃上昇して運転効率が14〜30%向上することが想定される。   Here, FIG. 8 shows an operation control example of the heating operation. FIG. 8 shows that when the outside air temperature is 7 ° C., the hot water heating is performed so that the heating water heating amount is different between Example 1 and Example 2 so that the pressure of the refrigerant at the inlet (point E) of the expansion valve 211 is 992 to 1192 kPa. This is an example in which the amount is controlled. It is assumed that the operation efficiency is improved by increasing the amount of hot water heating (increasing the opening of the water control valve 280 and increasing the flow rate of hot water). In another test, for example, when 2/3 of the required heat collection amount of the air heat source heat pump 200 is collected from hot water instead of outside air, the evaporation temperature increases by 7 to 10 ° C. and the operation efficiency is 14 to 30%. It is expected to improve.

以上、本発明の好適な実施形態を説明したが、本発明に係る空気熱源ヒートポンプ200はこれらに限らず、可能な限りこれらの組合せを含むことができる。例えば、室外機210の蒸発器213の近傍に温水コイルを設け、発電機等からの排温水を温水コイルに流して温風を発生させ、蒸発器213の霜の発生を抑制してもよい。   As mentioned above, although preferred embodiment of this invention was described, the air heat source heat pump 200 which concerns on this invention can contain these combinations as much as possible not only in these. For example, a hot water coil may be provided in the vicinity of the evaporator 213 of the outdoor unit 210, and warm air may be generated by flowing waste water from a generator or the like through the hot water coil to suppress generation of frost in the evaporator 213.

100・・・従来の空気熱源ヒートポンプ
101・・・圧縮機
102・・・3方弁
103・・・4方弁
104・・・給湯熱交換器
105・・・空気熱交換器
106・・・冷温水熱交換器
107・・・流量調整弁
200・・・空気熱源ヒートポンプ
201・・・空気熱源ヒートポンプ(比較例)
210・・・室外機
211・・・膨張弁
212・・・ファン
213・・・蒸発器(凝縮器)
214・・・圧縮機
220・・・室内機
221・・・凝縮器(蒸発器)
222・・・ファン
223・・・膨張弁
230・・・冷媒管
240・・・冷媒/水熱交換器
250・・・配管
260・・・外気温度センサ
270・・・低圧センサ
280・・・水制御弁
290・・・制御装置
DESCRIPTION OF SYMBOLS 100 ... Conventional air source heat pump 101 ... Compressor 102 ... 3-way valve 103 ... 4-way valve 104 ... Hot water supply heat exchanger 105 ... Air heat exchanger 106 ... Cold temperature Water heat exchanger 107 ... Flow rate adjustment valve 200 ... Air heat source heat pump 201 ... Air heat source heat pump (comparative example)
210: outdoor unit 211 ... expansion valve 212 ... fan 213 ... evaporator (condenser)
214 ... Compressor 220 ... Indoor unit 221 ... Condenser (evaporator)
222 ... Fan 223 ... Expansion valve 230 ... Refrigerant tube 240 ... Refrigerant / water heat exchanger 250 ... Pipe 260 ... Outside temperature sensor 270 ... Low pressure sensor 280 ... Water Control valve 290 ... control device

Claims (4)

外気温度を検知する外気温度検知部と、
室外機の入口における冷媒の圧力を検知する圧力検知部と、
前記室外機と室内機との間の冷媒管に設けられ、冷媒管を流れる冷媒と熱交換する冷媒/水熱交換器に供給される排温水が流れる配管と、
前記配管に設けられ、前記冷媒/水熱交換器に供給される排温水の流量を調整する制御弁と、
前記圧力検知部で検知された、前記室外機の入口における冷媒の圧力が、前記外気温度検知部で検知された外気温度から算出される外気の飽和圧力よりも高くなるように前記制御弁を制御する制御部と、を備える空気熱源ヒートポンプ。
An outside temperature detector for detecting outside temperature;
A pressure detector for detecting the pressure of the refrigerant at the inlet of the outdoor unit;
A pipe through which exhausted hot water supplied to a refrigerant / water heat exchanger provided in a refrigerant pipe between the outdoor unit and the indoor unit and exchanges heat with the refrigerant flowing through the refrigerant pipe;
A control valve that is provided in the pipe and adjusts the flow rate of the exhaust hot water supplied to the refrigerant / water heat exchanger;
The control valve is controlled so that the pressure of the refrigerant detected by the pressure detection unit at the inlet of the outdoor unit is higher than the saturation pressure of the outside air calculated from the outside air temperature detected by the outside air temperature detection unit. An air heat source heat pump.
外気と熱交換する外気用熱交換器を含む前記室外機と、
室内空気と熱交換する室内用熱交換器を含む前記室内機と、
前記室外機と前記室内機と接続され、冷媒が流れる冷媒管と、
前記室外機と前記室内機との間の冷媒管に設けられ、前記冷媒管を流れる冷媒と熱交換する前記冷媒/水熱交換器と、を更に備え、
暖房運転時、前記冷媒/水熱交換器には、50〜90℃の排温水が供給される、請求項1に記載の空気熱源ヒートポンプ。
The outdoor unit including an outside air heat exchanger for exchanging heat with outside air;
The indoor unit including an indoor heat exchanger for exchanging heat with indoor air;
A refrigerant pipe connected to the outdoor unit and the indoor unit, through which a refrigerant flows;
The refrigerant / water heat exchanger provided in a refrigerant pipe between the outdoor unit and the indoor unit and exchanging heat with the refrigerant flowing through the refrigerant pipe;
2. The air heat source heat pump according to claim 1, wherein the refrigerant / water heat exchanger is supplied with exhaust hot water of 50 to 90 ° C. during heating operation.
冷房運転時、前記冷媒/水熱交換器には、排温水を冷凍機に供給することで得た5〜30℃の冷水が供給される、請求項1に記載の空気熱源ヒートポンプ。   2. The air heat source heat pump according to claim 1, wherein during the cooling operation, the refrigerant / water heat exchanger is supplied with cold water of 5 to 30 ° C. obtained by supplying waste hot water to the refrigerator. 外気温度を検知し、室外機の入口における冷媒の圧力を検知し、前記室外機の入口における冷媒の圧力が、外気温度から算出される外気の飽和圧力よりも高くなるように、前記室外機と室内機との間の冷媒管に設けられ、冷媒管を流れる冷媒と熱交換する冷媒/水熱交換器に供給される排温水の流量を調整する、空調方法。   Detecting the outside air temperature, detecting the pressure of the refrigerant at the inlet of the outdoor unit, and adjusting the pressure of the refrigerant at the inlet of the outdoor unit to be higher than the saturation pressure of the outside air calculated from the outside air temperature. An air conditioning method for adjusting a flow rate of exhaust hot water supplied to a refrigerant / water heat exchanger that is provided in a refrigerant pipe between the indoor unit and exchanges heat with a refrigerant flowing through the refrigerant pipe.
JP2013193196A 2013-09-18 2013-09-18 Air heat source heat pump and air conditioning method Active JP6208506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013193196A JP6208506B2 (en) 2013-09-18 2013-09-18 Air heat source heat pump and air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013193196A JP6208506B2 (en) 2013-09-18 2013-09-18 Air heat source heat pump and air conditioning method

Publications (2)

Publication Number Publication Date
JP2015059686A JP2015059686A (en) 2015-03-30
JP6208506B2 true JP6208506B2 (en) 2017-10-04

Family

ID=52817361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013193196A Active JP6208506B2 (en) 2013-09-18 2013-09-18 Air heat source heat pump and air conditioning method

Country Status (1)

Country Link
JP (1) JP6208506B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887068U (en) * 1981-12-07 1983-06-13 シャープ株式会社 Heat pump air conditioner
JP4273493B2 (en) * 2004-02-16 2009-06-03 三菱電機株式会社 Refrigeration air conditioner
JP5398296B2 (en) * 2009-02-19 2014-01-29 三菱重工業株式会社 Engine driven air conditioner

Also Published As

Publication number Publication date
JP2015059686A (en) 2015-03-30

Similar Documents

Publication Publication Date Title
CN104704303B (en) Heat pump assembly
JP5297968B2 (en) Air conditioner
JP2009243793A (en) Heat pump type hot water supply outdoor unit
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP2014169854A (en) Refrigeration cycle device and hot water generation device including the same
JP6528078B2 (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
JP2008164237A (en) Heat pump system
CN102829588A (en) Defroster used for air conditioning system and circulation energy source central air conditioning hot water system
JP4229881B2 (en) Heat pump system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
KR101171763B1 (en) Gas driven heatpump system with the combined heat source
JP2012013350A (en) Hot-water heater
WO2018163347A1 (en) Geothermal heat pump device
CN104697245A (en) Coupled heat pump system
JP6208506B2 (en) Air heat source heat pump and air conditioning method
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
KR101649447B1 (en) Geothermal heat pump system using gas
JP2007178008A (en) Air conditioner other function adding device
JP2017172901A (en) Ventilation device
JP2012215353A (en) Dual refrigeration cycle device
JP2007147133A (en) Air conditioner
CN214891942U (en) Air conditioning system with chassis hot air heating function
KR101123254B1 (en) Combined regeneration heating and cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150