JP6207596B2 - 肺におけるエラストグラフィの肺超音波技術 - Google Patents

肺におけるエラストグラフィの肺超音波技術 Download PDF

Info

Publication number
JP6207596B2
JP6207596B2 JP2015514644A JP2015514644A JP6207596B2 JP 6207596 B2 JP6207596 B2 JP 6207596B2 JP 2015514644 A JP2015514644 A JP 2015514644A JP 2015514644 A JP2015514644 A JP 2015514644A JP 6207596 B2 JP6207596 B2 JP 6207596B2
Authority
JP
Japan
Prior art keywords
tissue
probe
lung
ultrasonic
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015514644A
Other languages
English (en)
Other versions
JP2015521077A (ja
Inventor
ラマチャンドラン,バーラト
スティーヴン ホール,クリストファー
スティーヴン ホール,クリストファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2015521077A publication Critical patent/JP2015521077A/ja
Application granted granted Critical
Publication of JP6207596B2 publication Critical patent/JP6207596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/085Measuring impedance of respiratory organs or lung elasticity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本開示は、超音波エラストグラフィに関し、より詳細には、肺におけるエラストグラフィの肺超音波技術に関する。
肺癌は、癌の中で最も侵攻性の高い形態のひとつである。肺癌の高侵攻性は予後不良をもたらし、生存率は驚くほど低い。したがって、肺癌治療の向上においては、早期診断、早急な病期診断および適時の治療が非常に重要な意味をもつ。しかしながら、肺癌の診断および治療の現在の臨床ワークフローは、複雑で時間がかかる。このようにワークフローが遅く複雑なものであると、患者に不安を抱かせるだけでなく、肺癌の診断と治療が遅れることにより、死亡率が上昇してしまう。
エラストグラフィでは、軟組織の硬さ画像またはひずみ画像を用いて、効果的かつ効率的に癌を診断する。しかしながら、エラストグラフィは、空気中における超音波固有の限界を理由に、肺癌の検出と診断には適用されていない。超音波機械は、組織のイメージングを最適に実行するために調整される。音速は空気中で大きく変化するため、肺の中の空気腔および空隙は、超音波画像では確認できない。
本原理によれば、肺エラストグラフィのシステムは、超音波探触子を有する。該超音波探触子は、特に対象の気道に挿入された場合に、信号を送信し応答を受信することによって、標的領域の組織を評価する。接触デバイスは、超音波探触子に接続されて、超音波探触子と組織との間の接触をもたらす。画像処理モジュールは、応答に従って1以上のエラストグラムを出力する。
該システム、特に接触デバイスは、組織に対して圧迫を発生させる圧迫デバイスをさらに有してよい。
本開示のこれらおよび他の目的、特徴および利点は、以下に記載する例示の実施形態の詳細な説明から明らかになるであろう。詳細な説明は、添付の図面に関連して読まれるべきものである。
本開示は、以下の図面を参照して、好ましい実施形態を以下に詳細に説明する。
一実施形態に係る超音波エラストグラフィシステムを示すブロック/フローチャートである。 一実施形態に係るエラストグラフィシステムが非侵襲的に適用された対象を示す説明断面図である。 一実施形態に係るエラストグラフィシステムが最小侵襲的に適用された対象の説明断面図である。 一実施形態に係る、バルーンを採用したエラストグラフィシステムの超音波探触子の説明図である。 一実施形態に係る、対象の気道に適用されたエラストグラフィシステムの説明図である。 一実施形態に係る超音波エラストグラフィの方法を示すブロック/フローチャートである。
本原理によれば、エラストグラフィ、特に肺エラストグラフィのシステムおよび方法が提供される。癌性組織は正常な健常組織や良性病変よりもかなり硬いことが知られているので、エラストグラフィでは、硬さに基づくイメージングを用いて癌を診断する。一実施形態において、組織は、1以上のプッシュパルスを組織に送信して超音波せん断波(shear wave)を発生させ、該せん断波の伝播速度を決定することによって、評価されてよい。せん断波は、空気腔におけるせん断の欠如を補償するために変更されてよい。伝播速度を用いて、硬さを定量化してよい。別の実施形態において、組織は、光弾性波を組織に送信し、超音波応答波を受信することによって、評価されてよい。光弾性波を用いる評価は、自然状態の組織と圧迫状態の組織とに対して実行されてよい。また、光弾性波を用いる評価は1回実行されてよく、この場合、組織は自然状態か圧迫状態のいずれかとすることができる。さらに別の実施形態において、組織は、超音波を組織に送信し、該超音波のエコーを受信することによって、評価されてよい。好ましくは、組織は、超音波信号を自然状態および圧迫状態の該組織に送信することによって、評価される。
一実施形態において、組織の圧迫は、身体運動によるものであってよい。身体運動には、呼吸運動(例えば、肺の拡張収縮や横隔膜の上下運動)等の生理的運動が含まれてよい。別の実施形態において、身体運動には、人工呼吸器を用いて発生される身体運動が含まれてよい。他の実施形態では、組織の圧迫は、圧迫デバイスによるものである。圧迫デバイスの例としては、組織に対して圧迫を発生させる拍動バルーンが挙げられる。また、圧迫を発生させる方法には、他にも考えられる。
本原理の利点として、エラストグラフィを用いた速く効率的な肺癌の診断に資することができる。結果として、肺癌の診断において生検を行う必要性が低くなり、さらにはその必要性がなくなる可能性がある。本原理により、臨床医は高い正確性と効率性をもって、被検部位が良性であるのか悪性であるのかを判定することができるだけでなく、癌の種類と病期を判定することもできる。肺癌の早期診断により、肺癌治療の成功する可能性が高まり得る。
なお、本発明は医療機器の観点から説明されるが、本発明の教示はより広範であり、組織の圧迫を発生させるあらゆる機器に適用可能である。一部の実施形態では、本原理は、複雑な生物システムや機械システムのイメージングまたは分析に採用される。図面に示される要素は、ハードウェアとソフトウェアとの様々な組合わせで実施されてよく、要素により提供される機能は、単一の要素または複数の要素において組み合わされてよい。
図面に示される各種要素の機能は、専用のハードウェアだけでなく、適切なソフトウェアに関連付けられるソフトウェアを実行可能なハードウェアを用いて提供することができる。機能は、プロセッサにより提供される場合、単一の専用プロセッサ、単一の共有プロセッサまたは複数のプロセッサにより提供することができ、複数のプロセッサのうち一部を共有することもできる。さらに、用語「プロセッサ」または「コントローラ」が明示的に用いられる場合、ソフトウェアを実行可能なハードウェアのみを指すものと解釈されるべきではなく、例えばデジタル信号プロセッサ(Digital Signal Processor:DSP)ハードウェア、ソフトウェアを格納するROM(Read Only Memory)、ランダムアクセスメモリ(RAM)、不揮発性記憶装置等が非明示的に包含される。
本発明の原理、態様および実施形態ならびにそれらの具体例を記載する本明細書の記述はすべて、それらの構造的均等物と機能的均等物との両方を包含するものである。さらに、そのような均等物は、現在既知の均等物と将来開発される均等物との両方(すなわち、構造に関係なく、同じ機能を果たすよう開発される任意の要素)を包含するものである。よって、当業者には当然ながら、例えば本明細書に示されるブロック図は、本発明の原理を具体化する例示的なシステムの構成要素および/または回路構成の概念図を表すものである。同様に、当然ながら、任意のフローチャート等は、コンピューター可読記憶媒体において実質的に表現されコンピューターまたはプロセッサにより実行され得る様々なプロセスを表し、そのようなコンピューターまたはプロセッサが明示的に示されているか否かは問わない。
本発明の実施形態は、コンピューター可用記憶媒体またはコンピューター可読記憶媒体からアクセス可能なコンピュータープログラムプロダクトの形態をとることができ、コンピューター可用記憶媒体またはコンピューター可読記憶媒体は、コンピューター等の命令実行システムに用いられるかまたは関連付けられるプログラムコードを提供することができる。本明細書において、コンピューター可用記憶媒体またはコンピューター可読記憶媒体は任意の装置とすることができ、命令実行システム、装置またはデバイスに用いられるかまたは関連付けられるプログラムを有してもよく、格納してもよく、通信してもよく、伝搬してもよく、輸送してもよい。該媒体は、電気的、磁気的、光学的、電磁気的、赤外線または半導体のシステム(または装置またはデバイス)とすることができ、或いは、伝搬媒体とすることができる。コンピューター可読媒体の例としては、半導体メモリもしくは固体メモリ、磁気テープ、着脱式フロッピー(登録商標)ディスク、ランダムアクセスメモリ(RAM)、ROM(Read Only Memory)、磁気ハードディスク、光ディスク等が挙げられる。現在の光ディスクの例としては、CD−ROM(Compact Disk-Read Only Memory)、CD−RW(Compact Disc-ReWritable)、Blue−ray(登録商標)、DVD等が挙げられる。
ここで図面を参照する。図面中、同じ参照符号は同じであるか同様の要素を示す。まず、図1は、一実施形態に係る超音波エラストグラフィのシステム100の説明図である。エラストグラフィは、硬さまたはひずみを用いて軟組織に対してイメージングを行う技術である。エラストグラフィの動作は、機械的圧迫または変位が加えられる場合に、比較的硬い組織は、その周辺の正常な健常組織に比べてあまり変形しないという原理に基づく。癌性組織は健常組織と比べても、さらには良性病変と比べてもかなり硬いことが知られているので、エラストグラフィは、癌の診断に特に効果的である。
本原理は、肺癌の診断および治療に適用されることが好ましい。しかしながら、本原理の教示は、肺のイメージングおよび癌の診断に限定されず、むしろより広範に及ぶものであり、多くの様々な適用に関する様々な分野に適用されてよい。例えば、一実施形態において、本原理は、配管工事において管内の障害物を検出し特定するために適用されてよい。本原理の範囲内では、他の適用も考えられる。
システム100は、ワークステーションまたはコンソール102を含んでよい。ワークステーション102から、手順(例えばエラストグラフィ)が監督され管理される。ワークステーション102は、1以上のプロセッサ116と、プログラムおよびアプリケーションを格納するメモリ104とを有することが好ましい。なお、システム100の機能および構成要素は、1以上のワークステーションまたはシステムに統合されてもよい。
メモリ104はまた、探触子120等の1以上の超音波センサーから得られるエラストグラム等の画像106を格納してもよい。ワークステーション102はまた、1以上の画面112を有してよい。画面112は、探触子120からの画像106またはデータを見るために用いられてもよいし、診断結果をユーザー(例えば臨床医)に示すために用いられてもよい。また、画面112により、ユーザーがワークステーション102ならびにその構成要素および機能とインタラクションを行えるようにしてよい。このようなインタラクションは、ユーザーインターフェース114によりさらに容易になる。ユーザーインターフェース114の例としては、キーボード、マウス、ジョイスティック等の、ワークステーション102とのユーザーインタラクションを可能にする任意の周辺機器または制御装置が挙げられる。
探触子120は、配線122を介してワークステーション102に接続される。配線122には、適宜電気接続や器具の使用が含まれてよい。探触子120には、送受信機、変換器、受信機等の機器のうち1以上が含まれてよい。好ましい実施形態では、探触子120は超音波探触子である。なお、探触子120は超音波探触子に限定されず、任意の撮像デバイスまたは機器が含まれてよい。探触子120は、評価対象の標的領域の場所によって、例えばラジアル型の探触子であってもよいし、コンベックス型の探触子であってもよい。
探触子120は、対象118(例えば患者)の評価に用いられてよい。例えば、探触子120は、対象118の肺領域の内部、周辺および外部を評価してよい。肺領域の例としては、肺、気道、リンパ節、胸腔等が挙げられる。
引き続き図1を参照しながら、図2を参照する。図2は、一実施形態に係る肺エラストグラフィシステムが非侵襲的に適用された対象200の説明断面図である。探触子120は外部から対象118に適用され、例えば、対象118の体表面上に適用される。探触子120と対象118の表面との間には、物質が塗布されることが好ましい。該物質の例としては、ゲル物質等の、音響結合に資する任意の物質が挙げられる。探触子120は、胸腔204内の病変のエラストグラムを生成する際には、肋骨202の間に当てられてよい。合理的に探触子120を位置付けし正しい向きに当てることで、探触子120は、空気腔を介することなく肺の標的領域を評価することができる。これは、肺周辺の癌性組織の他にも、胸腔、胸壁等に見られる癌性組織を特定するのに特に有用である。このような部位の癌性組織は、最小侵襲エラストグラフィでは容易に接近できない場合があり、また、経皮的な生検を要することが多い。
引き続き図1を参照しながら、図3を参照する。図3は、一実施形態に係る肺エラストグラフィシステムが最小侵襲的に適用された対象300の説明断面図である。探触子120は、口腔302から食道304を通って、対象118内に挿入されてよい。本原理の範囲内では、他の挿入点および評価箇所も考えられる。探触子120は、配線122を介してワークステーション102に接続される。食道304からの挿入により、肺308表面に形成された被検病変306のような、胸部とその周辺の気道付近の被検病変に容易に接近することができる。
一実施形態において、探触子120は、対象の組織を評価する接触デバイス126を有する。音速は空気中で大きく変化するため、例えば肺領域内の空気腔および空隙は、超音波画像では確認できない。接触デバイス126が探触子120に接続されることにより、探触子120は、例えば肺領域内の対象の組織との接触を効果的に維持することができ、空気中での超音波の限界を克服できる。接触デバイス126は、組織に対して摩耗性の低い接触をもたらしてよい。接触デバイス126はまた、接触面積を大きくするために、組織の形状に沿ってよい。接触デバイス126は、対象118の標的領域内の組織との接触を維持する任意のデバイスを有してよい。特に有用な実施形態では、接触デバイス126は、可膨張性バルーンやばね装置等の拡張可能ボリュームを有する。接触デバイス126の実施形態は、他にも考えられる。
引き続き図1を参照しながら、図4を参照する。図4は、一実施形態に係る、バルーン410を採用したエラストグラフィシステムの探触子の説明図である。探触子400は、電源コード等の配線122を介してワークステーション102に接続される。探触子400は、基材404を有する絶縁体402と、圧電材料406と、電極408と、バルーン410とを有する。バルーン410は、対象の組織との接触を維持する。ある実施形態では、バルーン410は、探触子400の端部(例えば先端)に接続されてよい。別の実施形態において、バルーン410は、探触子400の本体周辺に位置する。バルーン410の位置は、他にも考えられる。別の実施形態において、バルーン410は、例えば水や生理食塩水のような、対象118の体内で安全に使用することができ音響結合に資する物質で充填される。システム100はまた、充填されるバルーン410の圧力を調整する制御デバイスを含んでよい。制御デバイスの例としてはつまみ、スイッチ等が挙げられ、例えば組織の形状に沿うように、バルーン410の圧力を増減させる。圧力の増減の例としては、充填物質の追加または放出が挙げられる。他の実施形態では、バルーン410は充填されない。
再び図1を参照する。肺エラストグラフィシステム100は、1以上のプッシュパルスを送信してせん断波を発生させ、該せん断波の伝播速度を決定することによって、肺エラストグラフィを実行してもよいし、光弾性波を送信して超音波応答を受信することによって実行してもよいし、超音波を送信してエコーを受信することによって実行してもよい。本原理の範囲内では、肺エラストグラフィシステムの他の実現形式も考えられる。
一実施形態によれば、肺エラストグラフィシステム100は、せん断波の伝播速度を決定することによって組織を評価する。探触子120は、1以上の超音波プッシュパルスを標的領域の組織に送信し、これにより、プッシュパルスの方向に振動が生じ、送信方向に対して垂直なせん断波が生じる。せん断波は、空気腔を補償するために変更されてよい。例えば、プッシュパルスの周波数が変更されてもよいし、プッシュパルスの結合特性が変更されてもよい。他の変更も考えられる。せん断波は標的領域を通って伝搬するので、第2の探触子120(例えば超音波スキャナ)は伝播速度を測定することができる。伝播速度に基づいて、組織の硬さが定量化されてよい。
別の実施形態によれば、肺エラストグラフィシステム100は、光弾性波を標的領域の組織に送信し超音波を受信することによって、組織を評価する。光弾性波の例としては、光波(例えば非電離レーザー)が挙げられる。標的領域の組織により、光弾性波からのエネルギーの一部が吸収され、熱へ変換され、超音波の放射につながる。利点として、光弾性波は空気の影響を受けないので、空気による音響結合の限界を克服することができる。一部の実施形態では、標的領域の組織は、該組織が自然状態にあるときと、圧迫状態にあるときとに評価されてよい。他の実施形態では、標的領域の組織は、1回評価されてよい。組織は、圧迫されてもされなくてもよい。評価される組織は、基準値と比較されてよい。該基準値の例としては、過去のトレールの結果を例えば平均化したものが挙げられる。他の基準測定値も考えられる。
さらに別の実施形態によれば、肺エラストグラフィシステム100は、(例えば超音波)信号を送信し該信号のエコーを受信することによって、組織を評価する。好ましくは、組織は、自然状態で1回と圧迫状態で1回評価される。
上述のように、肺エラストグラフィシステム100の一部の実施形態には、圧迫状態である組織の評価が含まれてよい。
一実施形態において、探触子120は、対象118の身体運動により圧迫された標的領域内の組織を評価してよい。例えば、身体運動は、対象118の生理的運動によるものであってよい。生理的運動の例としては、呼吸運動(肺308の拡張収縮、横隔膜310の上下運動等(図3参照))や、内臓の運動(心臓の拍動等)が挙げられる。対象118の生理的運動による圧迫源は、他にも考えられる。他の実施形態では、身体運動は、身体運動をもたらすデバイスによるものであってよい。例えば、人工呼吸器を、十分な自発呼吸ができない対象118の呼吸機構としてよい。人工呼吸器により、肺308(図3)の拡張収縮と横隔膜310(図3)の上下運動とを引き起こしてよい。身体運動による圧迫源は、他にも考えられる。
他の実施形態では、標的領域の組織に対する圧迫は、圧迫デバイス124により発生される。一部の実施形態では、圧迫デバイス124は、全体として探触子120と一体化されてもよいし、部分的に一体化されてもよい。他の実施形態では、圧迫デバイス124と探触子120は、独立した個別のものである。圧迫デバイス124の例としては、対象118の標的領域内の組織に対して圧迫または変位を発生させる任意のデバイスが挙げられる。
ある実施形態では、圧迫デバイス124は、可膨張性バルーン410(図4)等の拡張可能ボリュームを有してよい。バルーン410は、探触子400に接続されてよい。バルーン410は、対象118の体内で安全に使用することができ音響結合に資する物質(水、生理食塩水等)で充填されてよい。特に有用な実施形態では、バルーン410は、標的領域の組織に対して圧力を発生させる際に、制御デバイスによって特定の振幅および周波数で拍動されてよい。振幅および周波数は、一定であっても変動してもよい。また、振幅および周波数は、既知であってもランダムであってもよい。拍動は、制御デバイスを用いて手動で行われてもよい。拍動の例としては、充填物質の追加または放出によるバルーン410の圧力の増減が挙げられる。引き続き図1を参照しながら、図5を参照する。一実施形態によれば、肺エラストグラフィシステムは、気道500において実行される。探触子120は、気道502を通って被検病変504を検出し特定する。被検病変504は、完全に気道502内に位置してもよいし、完全に気道502外に位置してもよいし、部分的に気道502の中または外に位置してもよい。被検病変502の位置は、他にも考えられる。探触子120は、気道502の組織との接触を維持するために、バルーン506を有してよい。好ましくは、バルーン506は、被検病変504の組織に対して圧力を発生させるために、拍動される。
別の実施形態において、圧迫デバイス124は探触子120を有する。探触子120は、ユーザー(例えば医者)により圧力を加えられ標的領域の組織に押し込まれることで、圧迫を発生してよい。他の実施形態では、対象118の表面、内部および周辺で動作している探触子120の動きにより、標的領域の組織に対する圧迫または変位が発生する。当該技術分野において既知のトラッキング技術を用いて、健常組織がさらに変位することと、癌性組織がさらなる変位を起こさないこととを観察することができる。
さらに別の実施形態において、圧迫デバイス124は、対象118の組織に対して機械的圧迫および振動を発生させる機械装置を有してよい。機械装置の例としては、電動機構、動力駆動デバイス等が挙げられる。
さらに別の実施形態において、圧迫デバイス124は、同じ方向の超音波を用いて、対象118の標的領域に音波プッシュを印加してよい。音波プッシュの印加は、ビームフォーミングを伴っても伴わなくてもよい。
ワークステーション102のメモリ104には、コンピューターに実行されるプログラム108が格納される。プログラムには、様々な機能を実行する1以上のモジュールが含まれてよい。なお、該モジュールは、ハードウェアとソフトウェアとの様々な組合わせにおいて実装されてよい。
プログラム108は、画像処理モジュール110を含んでよい。画像処理モジュール110は、探触子120から受信されたデータを処理して、エラストグラム(組織ひずみの画像)を生成する。一実施形態において、画像処理モジュール110は、せん断波の伝播速度を受信する。伝播速度に基づいて、組織のひずみ特性を定量化して、エラストグラムを出力してよい。他の実施形態では、画像処理モジュール110は、探触子120から、標的領域の組織からの超音波応答信号を受信する。超音波応答信号は、例えば、送信された超音波のエコーから得られてもよいし、光弾性波の結果から得られてもよい。画像処理モジュール110は、当該技術分野において既知のようにエラストグラムを生成する。
一実施形態において、画像処理モジュール110は弾性画像を出力する。他の実施形態では、画像処理モジュール110は、組織の絶対ひずみ特性を表すエラストグラムを出力する。画像処理モジュール110はまた、エラストグラムを組織のひずみに従う色と並置してよい。画像処理モジュール110は、エラストグラムをリアルタイムで出力してもよいし、遡及的に出力してもよい。該出力には、1以上の画面112およびユーザーインターフェース114が関与してよい。
本原理の利点として、例えば肺癌の診断、分類、病期診断および治療を目的として、患者の肺領域に超音波エラストグラフィを適用する。本原理により、空気中での超音波の限界を克服でき、また、ユーザーが高確度で標的が良性であるか悪性であるかを判断することができるだけでなく、癌の正確な種類と病期を判定することが可能になる。さらに、肺癌の診断を生検不要で行うことができ、医者による手作業の誤りを低減することもできる。本原理により、肺癌の侵攻性の高さを考えると患者にとって非常にある診断時間は短縮され、ワークフローは単純化される。
図6を参照する。図6は、一実施形態に係る超音波肺エラストグラフィの方法を示すブロック/フローチャートである。ブロック602において、対象の標的領域の組織が、超音波を用いて評価される。
一実施形態において、空気中における超音波の限界を克服するために、標的領域を評価するステップは、接触デバイスを超音波探触子と接続して該標的領域(肺等)の組織との接触を維持するステップを含んでよい。接触デバイスは、探触子の端部(例えば先端)に位置してよい。他の実施形態では、接触デバイスは、探触子の本体周囲に位置する。他の位置も考えられる。接触デバイスは、組織に対して摩耗性の低い接触をもたらしてよく、また、接触面積を大きくするために組織の形状に沿ってよい。特に有用な実施形態では、接触デバイスは可膨張性バルーン等の拡張可能ボリュームを有する。しかしながら、接触デバイス実施形態は、他にも考えられる。バルーンは、対象の体内で安全に使用することができ音響結合に資する物質(水、生理食塩水等)で充填されてよい。バルーンの圧力は、例えば組織の形状に沿うようにバルーンの圧力を増減させる制御デバイスを用いて制御されてよい。圧力の増減の例としては、充填物質の追加または放出が挙げられる。別の実施形態において、バルーンは充填されない。
対象の標的領域の組織は、非侵襲的に評価されてもよい。探触子は、胸部表面等の、対象の体の外部から適用されてよい。好ましくは、超音波探触子と対象表面との間に物質が塗布される。該物質の例としては、ゲル物質等の、音響結合に資する任意の物質が挙げられる。さらに別の実施形態において、対象の肺領域を評価する際に、超音波探触子は対象の胸部表面に当てられ、第1の肋骨と第2の肋骨との間に方向づけられる。肺領域には、肺、気道、リンパ節、胸腔等が含まれる。対象の肺領域を非侵襲的に評価することは、最小侵襲アプローチでは接近できない場合がある肺、胸腔および胸壁の周辺の病変を特定する際に特に効果的である。
対象の標的領域の組織は、最小侵襲的に評価されてよい。探触子は対象の内部に適用されてよい。例えば探触子は、食道の内部および周辺の病変を評価するために、対象の口腔を通って挿入されてよい。これにより、胸部とその周辺の気道付近の被検病変への接近が可能となる。肺の標的領域を評価する際の対象の挿入点は、他にも考えられる。
ブロック604において、組織は、超音波せん断波を組織に送信し該せん断波の伝播速度を決定することによって、評価されてよい。1以上の超音波プッシュパルスが、標的領域の組織に送信されてよい。プッシュパルスは、波の方向に加えられる振動と、送信方向に垂直なせん断波とを含む。好ましくは、せん断波は、空気腔を補償するために変更されてよい。例示的な一実施形態では、プッシュパルス波の周波数が変更されてもよいし、プッシュパルス波の結合特性が変更されてもよい。他の変更も考えられる。せん断波は標的領域を通って伝搬するので、伝播速度を用いて組織の硬さを定量化する。
ブロック606において、組織は、光弾性波を組織に送信し超音波応答波を受信することによって、評価されてよい。光弾性波の例としては、光波等が挙げられる。光弾性波のエネルギーの一部は、標的領域の組織に吸収される。吸収されたエネルギーは熱へ変換され、超音波が放射される。光弾性波は空気の影響を受けないので、空気中の音響結合の限界を克服することができる。一実施形態において、組織は自然状態と圧迫状態とで評価される。他の実施形態では、組織は1回評価される。組織は圧迫されてもされなくてもよい。
ブロック608において、組織は、超音波を組織に送信し該超音波のエコーを受信することによって、評価されてよい。好ましくは、組織は自然状態と圧迫状態とで評価される。
上述のように、ブロック606およびブロック608の実施形態では特に、組織は圧迫状態で評価されてよい。
一実施形態において、標的領域の組織は、対象の身体運動による圧迫状態で評価されてよい。例えば身体運動は、呼吸運動(例えば、肺の拡張収縮や横隔膜の上下運動)や内臓の運動(例えば心臓の拍動)等の、生理的運動によるものであってよい。生理的運動による圧迫源は、他にも考えられる。他の実施形態では、身体運動は、身体運動をもたらすデバイスによるものであってよい。例えば人工呼吸器を、十分な自発呼吸ができない対象に対する呼吸機構としてよい。人工呼吸器により、肺の拡張収縮と横隔膜の上下運動と発生させてよい。身体運動による圧迫源は、他にも考えられる。
別の実施形態において、圧迫状態の組織を評価するステップは、該組織に対して圧迫を発生させるステップを含んでよい。例えば、圧迫を発生させるステップは、超音波探触子を標的領域の組織に手動で押し付けて、圧迫を発生させるステップを含んでよい。
他の実施形態では、圧迫を発生させるステップは、探触子を対象の表面、内部または周辺で操作するステップを含む。当該技術分野で既知のトラッキング技術を適用して、健常組織がさらに変位することと、癌性組織ではさらなる変位が生じないこととを観察してよい。
さらに別の実施形態において、圧迫を発生させるステップは、対象の標的領域に音波プッシュを印加するステップを含んでよい。音波プッシュを印加するステップは、同じ方向に超音波を印加するステップを含んでよい。音波プッシュの印加は、ビームフォーミングを伴っても伴わなくてもよい。
さらに別の実施形態において、圧迫を発生させるステップは、圧迫デバイスを採用するステップを含んでよい。圧迫デバイスは、全体として超音波探触子と一体化されてもよいし、部分的に一体化されてもよい。また、圧迫デバイスと超音波探触子は、独立した個別のものであってよい。圧迫デバイスの例としては、組織に対して圧迫を発生させる任意のデバイスが挙げられる。
ある実施形態では、圧迫デバイスは、可膨張性バルーン等の、超音波探触子に接続される拡張可能ボリュームを有してよい。バルーンは、体内で安全に使用することができ音響結合に資する物質(水、生理食塩水等)で充填されてよい。バルーンは、特定の振幅および周波数で拍動してよい。拍動の振幅および周波数は、一定の周波数となるように制御されてもよいし、様々な周波数となるように制御されてもよい。拍動は、既知の振幅および周波数で行われてもよいし、ランダムに行われてもよい。拍動は、制御デバイスを用いて手動で制御されてもよい。拍動の例としては、充填物質の追加または放出によるバルーンの圧力の増減が挙げられる。
他の実施形態では、圧迫デバイスには、機械的圧迫を発生させる機械装置が含まれてよい。機械装置の例としては、電動機構、動力駆動デバイス等が挙げられる。
ブロック610において、受信された応答に従って、1以上のエラストグラムが出力される。一実施形態において、せん断波の伝播速度(例えばブロック604)に従って、1以上のエラストグラムが出力される。伝播速度に基づいて、組織のひずみ特性が定量化されてよい。他の実施形態では、標的領域の組織から受信される超音波応答信号に従って、1以上のエラストグラムが出力される。超音波応答信号は、例えば、送信された超音波のエコー(例えばブロック608)から得られてもよいし、光弾性波(例えばブロック606)の結果から得られてもよい。エラストグラムの生成は、当該技術分野において既知のように実行される。
1以上のエラストグラムを出力するステップは、弾性画像を出力するステップを含んでよい。他の実施形態では、エラストグラムは、組織の絶対ひずみ特性を表すものであってよい。別の実施形態において、エラストグラムは、組織のひずみに従う色と並置されてよい。エラストグラムは、リアルタイムで出力されてもよいし、遡及的に出力されてもよい。
添付の特許請求の範囲を解釈する際には、以下の点に留意されたい。
a)「備える」という表現は、所定の請求項に列挙されるもの以外の要素またはステップの存在を除外するものではない。
b)要素が単数形で記載される場合でも、該要素が複数存在する場合を除外するものではない。
c)特許請求の範囲に記載の任意の参照符号は、その範囲を限定するものではない。
d)一部の「手段」は、同じ項目またはハードウェアまたはソフトウェアに実装される構造または機能として表される場合がある。
e)ステップは、特に指示されない限りは、特定の順序に限定されるものではない。
なお、肺におけるエラストグラフィの肺超音波技術の好ましい実施形態(例示であり、限定ではない)を記載したが、当業者が上記教示を鑑みて変更および変形を行うことが可能である。したがって、当然ながら、開示された特定の実施形態において変更を行ってよく、そのような変更は、添付の特許請求の範囲に要約されるような本明細書に開示の実施形態の範囲に包含される。上記のとおり特許法の求める詳細および特徴を記載したが、権利要求し特許権による保護を求める内容は、特許請求の範囲に記載する。
いくつかの態様を記載しておく。
〔態様1〕
信号を送信し応答を受信することによって、標的領域の組織を評価する超音波探触子と、
前記超音波探触子に接続されて、前記超音波探触子と前記組織との間の接触をもたらす接触デバイスと、
前記応答に従って、1以上のエラストグラムを出力する画像処理モジュールと、
を含む、肺エラストグラフィのシステム。
〔態様2〕
前記接触デバイスは拡張可能ボリュームを有する、
態様1に記載のシステム。
〔態様3〕
前記超音波探触子は、圧迫を受けている前記組織を評価する、
態様1に記載のシステム。
〔態様4〕
前記組織に対して前記圧迫を発生させる圧迫デバイス、
をさらに含む、態様3に記載のシステム。
〔態様5〕
前記圧迫デバイスは、前記圧迫を発生させるバルーンを含む、
態様4に記載のシステム。
〔態様6〕
前記バルーンは、拍動して前記圧迫を発生させる、
態様5に記載のシステム。
〔態様7〕
前記バルーンは、充填物質を追加または放出することにより拍動する、
態様6に記載のシステム。
〔態様8〕
前記バルーンは、既知の周波数および振幅で拍動する、
態様6に記載のシステム。
〔態様9〕
前記超音波探触子は、身体運動による圧迫を受けている前記組織を評価する、
態様3に記載のシステム。
〔態様10〕
前記身体運動は生理的運動を含み、前記生理的運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
態様9に記載のシステム。
〔態様11〕
前記身体運動を発生させる人工呼吸器、
をさらに含み、
前記身体運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
態様9に記載のシステム。
〔態様12〕
前記超音波探触子は、超音波信号を前記組織へ送信し、前記超音波信号のエコーを受信する、
態様1に記載のシステム。
〔態様13〕
前記超音波探触子は、光弾性波を前記組織へ送信し、超音波応答を受信する、
態様1に記載のシステム。
〔態様14〕
前記超音波探触子は、1以上のプッシュパルスを送信して超音波せん断波を発生させ、前記超音波せん断波の伝播速度を決定し、
前記超音波せん断波は、空気腔におけるせん断の欠如を補償するために変更される、
態様1に記載のシステム。
〔態様15〕
信号を送信し応答を受信することによって、標的領域の組織を評価する超音波探触子と、
前記組織に対する圧迫を発生させる圧迫デバイスと、
前記応答に従って、1以上のエラストグラムを出力する画像処理モジュールと、
を備え、
前記圧迫デバイスはさらに、前記超音波探触子に接続されて、前記超音波探触子と前記組織との間の接触をもたらす拡張可能ボリュームを有する、
肺エラストグラフィのシステム。
〔態様16〕
前記拡張可能ボリュームは、拍動して前記圧迫を発生させるバルーンを有する、
態様15に記載のシステム。
〔態様17〕
前記超音波探触子は、超音波信号を前記組織へ送信し、前記超音波信号のエコーを受信する、
態様15に記載のシステム。
〔態様18〕
前記超音波探触子は、光弾性波を前記組織へ送信し、超音波応答を受信する、
態様15に記載のシステム。
〔態様19〕
前記超音波探触子は、1以上のプッシュパルスを送信して超音波せん断波を発生させ、前記超音波せん断波の伝播速度を決定し、
前記超音波せん断波は、空気腔におけるせん断の欠如を補償するために変更される、
態様15に記載のシステム。
〔態様20〕
超音波探触子により、信号を送信し応答を受信することによって、標的領域の組織を評価するステップと、
前記超音波探触子に接続されて、前記超音波探触子と前記組織との間の接触をもたらす接触デバイスを採用するステップと、
前記応答に従って、1以上のエラストグラムを出力するステップと、
を含む、肺エラストグラフィを実行する方法。
〔態様21〕
前記評価するステップは、圧迫を受けている前記組織を評価するステップを含む、
態様20に記載の方法。
〔態様22〕
前記圧迫は身体の生理的運動によるものであり、前記生理的運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
態様21に記載の方法。
〔態様23〕
前記圧迫を生じる身体運動を発生させる人工呼吸器を採用するステップ、
をさらに含み、
前記身体運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
態様21に記載の方法。
〔態様24〕
前記圧迫を発生させるステップ、
をさらに含む、態様21に記載の方法。
〔態様25〕
前記圧迫を発生させるステップは、可膨張性ボリュームを拍動させるステップを含む、
態様24に記載の方法。
〔態様26〕
前記可膨張性ボリュームを拍動させる前記ステップは、既知の周波数および振幅でバルーンを拍動させるステップを含む、
態様25に記載の方法。
〔態様27〕
前記評価するステップは、超音波信号を前記組織へ送信し前記超音波信号のエコーを受信することによって、前記組織を評価するステップを含む、
態様20に記載の方法。
〔態様28〕
前記評価するステップは、光弾性波を前記組織へ送信し超音波応答を受信することによって、前記組織を評価するステップを含む、
態様20に記載の方法。
〔態様29〕
前記評価するステップは、1以上のプッシュパルスを送信して超音波せん断波を発生させ、前記超音波せん断波の伝播速度を決定することによって、前記組織を評価するステップを含み、
前記超音波せん断波は、空気腔におけるせん断の欠如を補償するために変更される、
態様20に記載の方法。
〔態様30〕
前記評価するステップは、前記超音波探触子を、対象の第1の肋骨と第2の肋骨との間の表面に位置付けるステップを含む、
態様20に記載の方法。
〔態様31〕
前記評価するステップは、前記超音波探触子を対象の空洞内に位置付けるステップを含む、
態様20に記載の方法。

Claims (15)

  1. 対象の気道に挿入され、前記気道に関連する標的領域の組織を、該標的領域に1以上のプッシュパルスを送信して超音波せん断波を発生させることによって評価するよう構成された探触子と、
    記探触子に結合されて、前記探触子と前記組織との間の接触をもたらす接触デバイスと、
    前記超音波せん断波の伝播速度を測定するよう構成された追加的な探触子と、
    前記追加的な探触子による前記超音波せん断波の伝播速度の測定に従って、1以上のエラストグラムを出力するよう構成された画像処理モジュールと、
    を含む、肺エラストグラフィのシステム。
  2. 前記接触デバイスは拡張可能ボリュームを有する、
    請求項1に記載のシステム。
  3. 記探触子は、圧迫を受けている前記組織を評価する、
    請求項1に記載のシステム。
  4. 前記組織に対して前記圧迫を発生させる圧迫デバイス、
    をさらに含む、請求項3に記載のシステム。
  5. 前記圧迫デバイスは、前記圧迫を発生させるバルーンを含む、
    請求項4に記載のシステム。
  6. 前記バルーンは、拍動して前記圧迫を発生させる、
    請求項5に記載のシステム。
  7. 前記バルーンは、充填物質を追加または放出することにより拍動する、
    請求項6に記載のシステム。
  8. 前記バルーンは、既知の周波数および振幅で拍動する、
    請求項6に記載のシステム。
  9. 記探触子は、身体運動による圧迫を受けている前記組織を評価する、
    請求項3に記載のシステム。
  10. 前記身体運動は生理的運動を含み、前記生理的運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
    請求項9に記載のシステム。
  11. 前記身体運動を発生させる人工呼吸器、
    をさらに含み、
    前記身体運動は、肺の拡張収縮と、横隔膜の上下運動とのうち少なくとも1つを含む、
    請求項9に記載のシステム。
  12. 記探触子は、超音波信号を前記組織へ送信し、前記超音波信号のエコーを受信する、
    請求項1に記載のシステム。
  13. 音響波を前記組織へ送信する手段をさらに有し
    前記探触子は、前記光音響波に対する前記組織の超音波応答を受信する、
    請求項1に記載のシステム。
  14. 肺エラストグラフィのシステムであって、
    対象の気道に挿入され、信号を送信し応答を受信することによって、前記気道に関連する標的領域の組織を評価する超音波探触子と、
    前記超音波探触子に接続されて、前記超音波探触子と前記気道に挿入されている前記超音波探触子に応答する前記組織との間の接触をもたらす接触デバイスと、
    前記応答に従って、1以上のエラストグラムを出力する画像処理モジュールと、
    を含み、
    前記超音波探触子は、1以上のプッシュパルスを送信して超音波せん断波を発生させ、前記超音波せん断波の伝播速度を決定し、
    前記超音波せん断波は、空気腔におけるせん断の欠如を補償するために変更される、
    ステム。
  15. 前記接触デバイスは、前記探触子に接続されて、前記探触子と前記組織との間の接触をもたらす拡張可能ボリュームを有する、
    請求項1に記載のシステム。
JP2015514644A 2012-05-29 2013-05-27 肺におけるエラストグラフィの肺超音波技術 Active JP6207596B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261652352P 2012-05-29 2012-05-29
US61/652,352 2012-05-29
PCT/IB2013/054362 WO2013179203A1 (en) 2012-05-29 2013-05-27 Pulmonary ultrasound techniques for elastography in lungs

Publications (2)

Publication Number Publication Date
JP2015521077A JP2015521077A (ja) 2015-07-27
JP6207596B2 true JP6207596B2 (ja) 2017-10-04

Family

ID=48793330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015514644A Active JP6207596B2 (ja) 2012-05-29 2013-05-27 肺におけるエラストグラフィの肺超音波技術

Country Status (5)

Country Link
US (1) US9844361B2 (ja)
EP (1) EP2854651B1 (ja)
JP (1) JP6207596B2 (ja)
CN (1) CN104470444B (ja)
WO (1) WO2013179203A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179203A1 (en) 2012-05-29 2013-12-05 Koninklijke Philips N.V. Pulmonary ultrasound techniques for elastography in lungs
JP6293578B2 (ja) * 2014-05-28 2018-03-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びプログラム
DE102014214754A1 (de) 2014-07-28 2016-01-28 Digital Endoscopy Gmbh Endoskopische Vorrichtung
KR102262167B1 (ko) * 2015-05-20 2021-06-08 서강대학교산학협력단 초음파 변환자의 성능 평가 장치 및 방법
CN105305886B (zh) * 2015-11-02 2017-10-31 无锡海斯凯尔医学技术有限公司 用于弹性检测设备的热能处理装置
US11986352B2 (en) 2019-02-05 2024-05-21 Regents Of The University Of Michigan Ultrasound speckle decorrelation estimation of lung motion and ventilation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146042A (ja) 1989-11-02 1991-06-21 Olympus Optical Co Ltd 超音波診断装置
US5810731A (en) * 1995-11-13 1998-09-22 Artann Laboratories Method and apparatus for elasticity imaging using remotely induced shear wave
FR2778838A1 (fr) * 1998-05-19 1999-11-26 Koninkl Philips Electronics Nv Procede de detection de variations d'elasticite et appareil echographique pour mettre en oeuvre ce procede
CN1240123A (zh) * 1998-05-19 2000-01-05 皇家菲利浦电子有限公司 检测弹性变化的方法和用于实施该方法的回波探测装置
US7094206B2 (en) * 1999-04-23 2006-08-22 The Trustees Of Tufts College System for measuring respiratory function
JP5075830B2 (ja) 2006-09-01 2012-11-21 株式会社日立メディコ 超音波診断装置
EP2455036B1 (en) * 2006-10-18 2015-07-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8460195B2 (en) * 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
FR2928077B1 (fr) 2008-02-29 2011-03-25 Echosens Dispositif et procede de micro-elastographie.
CA2732334C (en) 2008-07-30 2017-05-23 Centre Hospitalier De L'universite De Montreal A system and method for detection, characterization and imaging of heterogeneity using shear wave induced resonance
JP2010082337A (ja) 2008-10-01 2010-04-15 Hitachi Medical Corp 超音波診断装置
US8468637B2 (en) * 2009-02-06 2013-06-25 Endoclear Llc Mechanically-actuated endotracheal tube cleaning device
JP5559788B2 (ja) * 2009-07-07 2014-07-23 株式会社日立メディコ 超音波診断装置
CN102359989B (zh) 2011-07-18 2013-06-19 上海上计群力分析仪器有限公司 一种多功能催化剂反应评价表征装置及其应用
WO2013179203A1 (en) 2012-05-29 2013-12-05 Koninklijke Philips N.V. Pulmonary ultrasound techniques for elastography in lungs

Also Published As

Publication number Publication date
EP2854651B1 (en) 2018-07-18
US20150150536A1 (en) 2015-06-04
JP2015521077A (ja) 2015-07-27
EP2854651A1 (en) 2015-04-08
CN104470444B (zh) 2017-08-01
CN104470444A (zh) 2015-03-25
US9844361B2 (en) 2017-12-19
WO2013179203A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP6207596B2 (ja) 肺におけるエラストグラフィの肺超音波技術
JP6010050B2 (ja) 経胸腔的な心肺モニター
JP6054743B2 (ja) 経胸壁肺ドップラー超音波
JP6203197B2 (ja) 肺振動中の経胸郭肺ドップラー超音波を使用した肺疾患の診断
US9949723B2 (en) Image processing apparatus, medical image apparatus and image fusion method for the medical image
JP6148620B2 (ja) 経胸郭肺ドップラー超音波を使用した肺血圧測定
JPWO2006043528A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2005532097A (ja) 心組織およびパラメータの非侵襲的評価システムおよび方法
JP2017217495A (ja) リアルタイムの内蔵の機械機能を評価するための形状検出する装置
JP2017504435A (ja) 異方性柔軟媒体を特性評価するための方法及び超音波デバイス、並びにそのような特性評価デバイス用の超音波プローブのセット
US20200187909A1 (en) Ultrasonic diagnostic device and method for evaluating physical properties of biological tissue
JP7171558B2 (ja) 心臓における心臓電気生理学信号のリアルタイム作成のためのシステム及び方法
WO2006124192A2 (en) Method and system for generating an image from high and low frequency sound waves
Soler López et al. Application of ultrasound in medicine Part II: the ultrasonic transducer and its associated electronics
Doğanay et al. Lung and cardiac ultrasonography in intensive care
US20230240646A1 (en) Ultrasound measurement device
US20240188932A1 (en) Ultrasound on-probe vibration systems, methods and devices for elastographic and viscoelastographic medical imaging
US20240057968A1 (en) System and method for measuring total blood volume with ultrasound
Jiao et al. A shear wave endoscopic elasticity imaging approach with micro focused piezoelectric transducer
WO2023184024A1 (en) Systems, devices and methods for ultrasound detection of vascular hemodynamic measures
WO2023164403A1 (en) Determining heart rate based on a sequence of ultrasound images
CN114667101A (zh) 心脏装置
Akman Aydin et al. Recent Patents on Ultrasound Thickness Measurements in Medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250