JP6201738B2 - Drainage device for internal combustion engine - Google Patents

Drainage device for internal combustion engine Download PDF

Info

Publication number
JP6201738B2
JP6201738B2 JP2013265982A JP2013265982A JP6201738B2 JP 6201738 B2 JP6201738 B2 JP 6201738B2 JP 2013265982 A JP2013265982 A JP 2013265982A JP 2013265982 A JP2013265982 A JP 2013265982A JP 6201738 B2 JP6201738 B2 JP 6201738B2
Authority
JP
Japan
Prior art keywords
exhaust
passage
internal combustion
combustion engine
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265982A
Other languages
Japanese (ja)
Other versions
JP2015121170A (en
Inventor
雄輔 磯部
雄輔 磯部
洋之 木村
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013265982A priority Critical patent/JP6201738B2/en
Publication of JP2015121170A publication Critical patent/JP2015121170A/en
Application granted granted Critical
Publication of JP6201738B2 publication Critical patent/JP6201738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は車両の内燃機関に関し、詳しくは吸排気系に生じた凝縮水を排水する排水装置に関する。   The present invention relates to an internal combustion engine of a vehicle, and more particularly to a drainage device that drains condensed water generated in an intake and exhaust system.

ディーゼルエンジンの排気ガス浄化方法として、NOxトラップ触媒を用いたものが知られている。NOxトラップ触媒は、排気中のNOxを酸化雰囲気中で捕捉し、捕捉したNOxを還元雰囲気中で放出してN等に還元することでNOxの排出濃度を低減している。また、ディーゼルエンジン搭載車には、排気中の粒子状物質(PM)を除去するフィルタ装置が設けられており、NOxトラップ触媒はその耐熱性や配置スペースの観点から、一般的にフィルタ装置の下流側に配置されている。 As an exhaust gas purification method for a diesel engine, a method using a NOx trap catalyst is known. The NOx trap catalyst captures NOx in exhaust gas in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere, and reduces it to N 2 or the like, thereby reducing the NOx emission concentration. In addition, a diesel engine-equipped vehicle is provided with a filter device that removes particulate matter (PM) in the exhaust. The NOx trap catalyst is generally downstream of the filter device from the viewpoint of heat resistance and arrangement space. Arranged on the side.

さらに、排気の一部を吸気側に戻すことで燃焼室の燃焼温度を下げ、排気中のNOxを低減させる排気再循環(EGR)方式が知られている。EGR方式には、過給機のタービン上流側排気通路からコンプレッサ下流側吸気通路に排気を戻す高圧EGR方式と、タービン下流側で酸化触媒及びフィルタ装置下流側の排気通路からコンプレッサ上流側吸気通路に排気を戻す低圧EGR方式とがある。ここで、低圧EGR装置及びインタークーラ等の冷却手段を備えた内燃機関では、排気を含む吸気が冷却手段を通過して冷却される際に結露して凝縮水が発生する。この凝縮水が吸気と共に吸気通路から燃焼室に送られると、ウォーターハンマを引き起こす場合がある。   Furthermore, an exhaust gas recirculation (EGR) system is known in which part of the exhaust gas is returned to the intake side to lower the combustion temperature of the combustion chamber and reduce NOx in the exhaust gas. The EGR system includes a high-pressure EGR system for returning exhaust gas from the turbine upstream exhaust passage of the turbocharger to the compressor downstream intake passage, and an oxidation catalyst and filter device downstream exhaust passage downstream from the turbine to the compressor upstream intake passage. There is a low pressure EGR system that returns exhaust gas. Here, in an internal combustion engine provided with cooling means such as a low-pressure EGR device and an intercooler, condensation is generated when the intake air including exhaust gas passes through the cooling means and is cooled. When this condensed water is sent from the intake passage to the combustion chamber together with the intake air, a water hammer may be caused.

そこで「特許文献1」に開示されているように、内燃機関の排水装置がインタークーラで発生した凝縮水を貯留する貯留タンクと、凝縮水を加熱して水蒸気とする加熱装置と、貯留タンクと触媒上流側の排気通路とに接続された水蒸気供給路とを有した構成を採るとする。この場合、凝縮水を水蒸気に変えて触媒の上流側排気通路に供給している。   Therefore, as disclosed in “Patent Document 1”, a storage tank in which the drainage device of the internal combustion engine stores condensed water generated in the intercooler, a heating device that heats the condensed water to form water vapor, a storage tank, It is assumed that a configuration having a water vapor supply path connected to an exhaust passage on the upstream side of the catalyst is adopted. In this case, the condensed water is changed to water vapor and supplied to the upstream exhaust passage of the catalyst.

上述の技術では、凝縮水が燃焼室に送られてウォーターハンマを引き起こすことが防止されるが、凝縮水を加熱して水蒸気とする加熱装置が必要となり、同装置の装着によりコスト増、スペース確保等の問題が生じ易い。そこで、インタークーラで発生した凝縮水をNOxトラップ触媒の上流側排気管へ排出するために凝縮水排出通路を設置するという構成を採ることが考えられる。しかし、この場合、エンジンの低負荷域では十分な過給圧が得られないため、凝縮水排出通路を連通させた開弁時に凝縮水が吸気通路側に逆流し、排気通路へ排出できなくなってしまうという問題が生じ易い。   In the above technology, condensate is prevented from being sent to the combustion chamber and causing water hammer, but a heating device that heats the condensate and turns it into water vapor is necessary, which increases costs and secures space. Etc. are likely to occur. Therefore, it is conceivable to adopt a configuration in which a condensed water discharge passage is installed in order to discharge the condensed water generated in the intercooler to the upstream exhaust pipe of the NOx trap catalyst. However, in this case, sufficient boost pressure cannot be obtained in the low load region of the engine, so that the condensed water flows backward to the intake passage side when the condensed water discharge passage is opened, and cannot be discharged to the exhaust passage. Problem is likely to occur.

特開2013−180757号公報JP 2013-180757 A

そこで、凝縮水が吸気通路側に逆流することなく、確実に凝縮水を排気通路へ排出するために、凝縮水排出通路の出口に負圧を生じさせるような構成を採ることが望まれている。   Therefore, in order to reliably discharge the condensed water to the exhaust passage without causing the condensed water to flow back to the intake passage side, it is desired to adopt a configuration that generates a negative pressure at the outlet of the condensed water discharge passage. .

本発明は上述の問題を解決するもので目的とするのは、コスト増を抑制した上で、ベンチュリー効果を利用した排水路構成を用いて、吸排気系の凝縮水を容易に排水できることを特徴とする内燃機関の排水装置を提供することにある。   The present invention solves the above-mentioned problems, and the object of the present invention is to be able to easily drain the condensed water of the intake / exhaust system using a drainage channel configuration utilizing the venturi effect while suppressing an increase in cost. It is providing the drainage device of the internal combustion engine.

請求項1記載の発明は、一端が内燃機関の排気通路の拡径部に接続されて、他端が前記一端の接続された排気通路よりも上流側の管径の小さい排気通路に接続されたバイパス路と、
前記内燃機関の吸気通路または前記バイパス路の接続位置より上流側の排気通路に一端が、前記バイパス路に他端がそれぞれ接続されて前記吸気通路内または前記排気通路内で結露した凝縮水を前記バイパス路に排出する排水路と、を有することを特徴とする。
According to the first aspect of the present invention, one end is connected to the enlarged diameter portion of the exhaust passage of the internal combustion engine, and the other end is connected to an exhaust passage having a smaller pipe diameter upstream than the exhaust passage to which the one end is connected. A bypass,
One end in the exhaust passage upstream of the connecting position of the intake passage or the bypass passage of the internal combustion engine, the condensed water and the other end is condensed by each of the intake passage is connected or the exhaust passage to the bypass passage And a drainage channel that discharges to the bypass channel.

請求項2記載の発明は、請求項1記載の内燃機関の排水装置において、前記バイパス路は前記一端から他端に向かって管径を縮小する絞りが形成されて、前記排水路の他端が前記絞りの下流側のバイパス路に接続される、ことを特徴とする。 According to a second aspect of the present invention, in the drainage device for an internal combustion engine according to the first aspect, the bypass passage is formed with a throttle for reducing the pipe diameter from the one end toward the other end, and the other end of the drainage passage is connected to the downstream side bypass path of said aperture, characterized in that.

請求項3記載の発明は、請求項1又は2記載の内燃機関の排水装置において、前記排気通路上に配置されて、該排気通路の上流側と下流側の排気管に拡径部を介して接続された排気後処理手段を備えた内燃機関において、前記バイパス路の一端が前記拡径部に接続され、前記バイパス路の他端が前記拡径部の上流側の排気管と接続されることを特徴とする。 According to a third aspect of the invention, in the drainage device for an internal combustion engine according to the first or second aspect, the exhaust device is disposed on the exhaust passage, and the exhaust pipes on the upstream side and the downstream side of the exhaust passage are provided with an enlarged diameter portion. in an internal combustion engine provided with a connected exhaust aftertreatment device, the one end of the bypass passage is connected to the enlarged diameter portion, the other end of the bypass passage is connected to the upstream side of the exhaust pipe of the enlarged diameter portion It is characterized by that.

請求項4記載の発明は、請求項1〜3のいずれか1つに記載の内燃機関の排水装置において、前記吸気通路に配置されたインタークーラ、を有し、前記排水路の一端が前記インタークーラ下流側の吸気通路に接続されることを特徴とする。   According to a fourth aspect of the present invention, in the internal combustion engine drainage device according to any one of the first to third aspects, the intercooler is disposed in the intake passage, and one end of the drainage channel is the intercooler. It is connected to the intake passage on the downstream side of the cooler.

請求項1の発明は、コスト増を抑制できる上に、排水路によって吸気通路または排気通路内で生じた凝縮水を排気管下流側に確実に排出できる。つまり、バイパス路の一端が排気通路に接続されて、他端が前記一端の接続された排気通路よりも管径の小さい排気通路に接続されることによって、バイパス路内にはベンチュリー効果によって一端から他端に向かう流れが生じる。このバイパス路に排水路の下流側端部を接続することによって、バイパス路内の流れに伴って、排水路内に負圧が発生し、排水路内の凝縮水を迅速にバイパス路に排出させることができる。さらに、凝縮水はバイパス路内であらかじめ排気と攪拌され微粒化が促進されるため、排気通路内に排出される際に排気通路内に滞留することなく速やかに排気通路下流に流すことができる。 According to the first aspect of the present invention, it is possible to suppress an increase in cost and reliably discharge the condensed water generated in the intake passage or the exhaust passage by the drainage channel to the exhaust pipe downstream side. That is, one end of the bypass passage is connected to the exhaust passage, and the other end is connected to the exhaust passage having a smaller diameter than the exhaust passage to which the one end is connected. A flow toward the other end occurs. By connecting the downstream end of the drainage channel to this bypass channel, negative pressure is generated in the drainage channel along with the flow in the bypass channel, and the condensed water in the drainage channel is quickly discharged to the bypass channel. be able to. Further, condensed water can flow quickly to the exhaust passage downstream without staying in order to be promoted in advance exhausted and stirred atomized by bypass passage, the exhaust passage when it is discharged into the exhaust passage .

請求項2の発明は、バイパス路内の排気流れに沿って絞りを形成することで、さらに
絞りによる排気流れの速度が向上する。絞りの下流側に排水路の下流側端部を接続するこ
とによって、排水路内の負圧化が絞りのベンチュリー効果で加速され、排気流れによって
さらに大きくなる。従って、吸気通路の水の排気路への排出を容易化できる。
A second aspect of the present invention, by forming the diaphragm along the exhaust gas flow of the bypass passage, thereby improving the speed of the exhaust gas flow by further squeezing. By connecting the downstream end of the drainage channel to the downstream side of the throttle, the negative pressure in the drainage channel is accelerated by the venturi effect of the throttle and further increased by the exhaust flow. Therefore, it is possible to facilitate the discharge of water from the intake passage to the exhaust passage.

請求項3の発明は、バイパス路の一端が排気の後処理手段と排気管を接続する拡径部に接続され、他端が拡径部より上流側の排気管に接続されることで、排気通路に新たな拡径部を形成することなくバイパス路内にベンチュリー効果による排気流れを作ることができる。また、凝縮水はバイパス路を経由して排気後処理手段の上流側の排気通路に排出されるため、凝縮水を含んだ排気が排気後処理手段で浄化することが出来る。 The invention of claim 3 is connected to the enlarged diameter portion to which one end of the bypass passage connects the exhaust pipe and the exhaust aftertreatment unit, at the other end is connected to the exhaust pipe upstream of the expanded diameter portion, exhaust flow by the venturi effect in the bypass passage without forming a new enlarged diameter portion in the exhaust passage can be made. Further, condensed water to be discharged to the upstream side of the exhaust passage of the exhaust aftertreatment unit via the bypass passage can be contained condensate exhaust gas is purified by the exhaust aftertreatment unit.

請求項4の発明は、インタークーラで結露した凝縮水を排水路とバイパス路を通して排気通路に流入させるので、吸気通路の腐食を抑制でき、エンジンがウォーターハンマを引き起こすことを防止できる。   Since the condensed water condensed by the intercooler flows into the exhaust passage through the drainage passage and the bypass passage, corrosion of the intake passage can be suppressed and the engine can be prevented from causing water hammer.

本発明の一実施形態の内燃機関の排水装置を搭載する車載用ディーゼルエンジンの吸排気系の全体構成図である。1 is an overall configuration diagram of an intake / exhaust system of a vehicle-mounted diesel engine equipped with a drainage device for an internal combustion engine according to an embodiment of the present invention. 図1の内燃機関の排水装置で用いる触媒コンバーターを示し、(a)は前部のバイパス路の拡大部分切欠断面図、(b)は(a)中のバイパス路の他端側の要部拡大断面図である。1 shows a catalytic converter used in the drainage device of the internal combustion engine of FIG. 1, (a) is an enlarged partial cutaway sectional view of a front bypass path, and (b) is an enlarged main part on the other end side of the bypass path in (a). It is sectional drawing.

本発明を適用した内燃機関の排水装置徴について、以下の図面を用いて解説する。
本発明は、要するに、吸気通路に生じた凝縮水を排気通路の触媒装置の上流側に排水させる際に触媒装置が破損することを防止できる排水分散構成を特徴とする。
ここでは、本発明の内燃機関の排水装置を車載用ディーゼルエンジンの給排気系に適用した場合を実施形態1として説明する。
A drainage device for an internal combustion engine to which the present invention is applied will be described with reference to the following drawings.
In short, the present invention is characterized by a drainage dispersion configuration that can prevent the catalytic device from being damaged when draining the condensed water generated in the intake passage to the upstream side of the catalytic device in the exhaust passage.
Here, the case where the drainage device for an internal combustion engine of the present invention is applied to an air supply / exhaust system of a vehicle-mounted diesel engine will be described as a first embodiment.

実施形態1の内燃機関の排水装置が搭載された車載用ディーゼルエンジン(以下エンジンという)1は本体中央部を成すシリンダブロック2を備え、その上部にシリンダヘッド3を設ける。シリンダヘッド3の吸気側には吸気通路IRを構成する吸気管4が、排気側には排気通路ERを構成する排気管5がそれぞれ接続されている。シリンダヘッド3には、コモンレール13を介して燃料噴射ポンプ14が接続されている。更に、シリンダヘッド3には、一端をエアフィルタ6よりも下流側の吸気管4に接続されたブローバイガスを排出するブローバイガス通路21の他端が接続されている。   A vehicle-mounted diesel engine (hereinafter referred to as an engine) 1 on which a drainage device for an internal combustion engine according to the first embodiment is mounted includes a cylinder block 2 that forms a central portion of a main body, and a cylinder head 3 is provided on the cylinder block 2. An intake pipe 4 constituting an intake passage IR is connected to the intake side of the cylinder head 3 and an exhaust pipe 5 constituting an exhaust passage ER is connected to the exhaust side. A fuel injection pump 14 is connected to the cylinder head 3 via a common rail 13. Further, the cylinder head 3 is connected to the other end of a blow-by gas passage 21 for discharging blow-by gas having one end connected to the intake pipe 4 on the downstream side of the air filter 6.

吸気管4には、吸気通路IRの上流側からエアフィルタ6、低圧スロットル弁7、低圧EGRバルブ8、過給機であるターボチャージャ9の図示しないコンプレッサ、インタークーラ10、高圧スロットル弁11、高圧EGRバルブ12等が設けられている。
排気管5には、シリンダブロック2側である排気通路の上流側からターボチャージャ9の図示しないタービン、酸化触媒15及び排気フィルタとしてのフィルタ装置16が設けられている。
The intake pipe 4 includes an air filter 6, a low pressure throttle valve 7, a low pressure EGR valve 8, a turbocharger 9 (not shown), an intercooler 10, a high pressure throttle valve 11, a high pressure from the upstream side of the intake passage IR. An EGR valve 12 and the like are provided.
The exhaust pipe 5 is provided with a turbine (not shown) of the turbocharger 9, an oxidation catalyst 15, and a filter device 16 as an exhaust filter from the upstream side of the exhaust passage on the cylinder block 2 side.

酸化触媒15は、例えば白金のような貴金属触媒を担持しており、排気中のNOをNOに転換する作用と、排気中のHCやCO等の有害成分を酸化させる作用とを有している。NOはNOよりも酸化作用が強く、NOによってフィルタ装置16に捕獲された粒子状物質(ディーゼル・パティキュレート)の酸化反応が促進される。また、このNOは後述するNOxトラップ触媒18で還元除去される。フィルタ装置16は排気中の粒子状物質を捕獲するフィルタ装置(ディーゼル・パティキュレート・フィルタ)であり、捕獲された粒子状物質はNOの強力な酸化作用で燃焼除去される。 The oxidation catalyst 15 carries a noble metal catalyst such as platinum, and has an action of converting NO in the exhaust into NO 2 and an action of oxidizing harmful components such as HC and CO in the exhaust. Yes. NO 2 has a stronger oxidizing action than NO, and the oxidation reaction of particulate matter (diesel particulates) captured by the filter device 16 by NO 2 is promoted. The NO 2 is reduced and removed by a NOx trap catalyst 18 described later. The filter device 16 is a filter device (diesel particulate filter) that captures particulate matter in exhaust gas, and the captured particulate matter is burned and removed by the strong oxidizing action of NO 2 .

フィルタ装置16の下流側には、排気中の酸素濃度量を検知する酸素濃度センサ(LAFS)17が設けられており、その下流側に触媒であるNOxトラップ触媒18を内蔵した触媒コンバーター19が、さらにその下流側に酸素濃度センサ20が設けられている。排気通路ER上に配置される排気後処理手段であるNOxトラップ触媒18は、酸化雰囲気においてNOxを捕捉し、捕捉したNOxを例えばHCやCO等を含む還元雰囲気中で放出して窒素(N)に還元する機能を有する浄化装置である。つまり、酸化触媒15で生成されたNO及び酸化触媒15で酸化されずに排気ガス中に残存するNOを捕捉し、窒素(N)に還元して放出する。 An oxygen concentration sensor (LAFS) 17 that detects the amount of oxygen concentration in the exhaust gas is provided on the downstream side of the filter device 16, and a catalytic converter 19 that incorporates a NOx trap catalyst 18 that is a catalyst on the downstream side thereof, Further, an oxygen concentration sensor 20 is provided on the downstream side. The NOx trap catalyst 18 as exhaust aftertreatment means disposed on the exhaust passage ER captures NOx in an oxidizing atmosphere, releases the trapped NOx in a reducing atmosphere containing, for example, HC, CO, and the like (N 2 ) Is a purifying device having a function of reducing to. That is, NO 2 generated by the oxidation catalyst 15 and NO remaining in the exhaust gas without being oxidized by the oxidation catalyst 15 are captured, reduced to nitrogen (N 2 ), and released.

高圧EGRバルブ12の下方には、高圧EGR管23と高圧EGRクーラ24とを有する高圧EGR装置22が配設されている。高圧EGR管23は、その一端を高圧スロットル弁11とシリンダヘッド3との間の吸気管4に、その他端をシリンダヘッド3とターボチャージャ9のタービンとの間の排気管5にそれぞれ接続されており、その途中には高圧EGRクーラ24が設けられている。高圧EGR管23の一端は、高圧EGRバルブ12によって開閉される。   A high pressure EGR device 22 having a high pressure EGR pipe 23 and a high pressure EGR cooler 24 is disposed below the high pressure EGR valve 12. One end of the high-pressure EGR pipe 23 is connected to the intake pipe 4 between the high-pressure throttle valve 11 and the cylinder head 3, and the other end is connected to the exhaust pipe 5 between the cylinder head 3 and the turbine of the turbocharger 9. A high-pressure EGR cooler 24 is provided in the middle. One end of the high pressure EGR pipe 23 is opened and closed by the high pressure EGR valve 12.

低圧EGRバルブ8の下方には、低圧EGR管26と低圧EGRクーラ27とを有する排気再循環装置としての低圧EGR装置25が配設されている。低圧EGR管26は、その一端を低圧スロットル弁7とターボチャージャ9のコンプレッサとの間の吸気管4に、その他端をフィルタ装置16とNOxトラップ触媒18との間の排気管5にそれぞれ接続されており、その途中に低圧EGRクーラ27が設けられている。低圧EGR管26の一端は、低圧EGRバルブ8によって開閉される。   Below the low pressure EGR valve 8, a low pressure EGR device 25 is disposed as an exhaust gas recirculation device having a low pressure EGR pipe 26 and a low pressure EGR cooler 27. One end of the low-pressure EGR pipe 26 is connected to the intake pipe 4 between the low-pressure throttle valve 7 and the compressor of the turbocharger 9, and the other end is connected to the exhaust pipe 5 between the filter device 16 and the NOx trap catalyst 18. A low pressure EGR cooler 27 is provided in the middle. One end of the low pressure EGR pipe 26 is opened and closed by the low pressure EGR valve 8.

次に、吸気通路IR内に生じた凝縮水を排水路wrを通して排気通路ER内に流出させる本発明の実施形態1に係る内燃機関の排水装置M1を説明する。
ここでの排水路wrを成す排水管28はその一端の流入口281がインタークーラ下流側であってインタークーラ10と高圧スロットル弁11との間の吸気管4に接続され、排気後処理手段であるNOxトラップ触媒18の排気路上流側に他端の排水口282が接続される。なお、この排水管28とその接続部位の構成は後述する。
排水管28の途中には開閉弁29が配設され、開閉弁29にはこの開閉弁の開閉制御を行なう制御手段31が接続される。
Next, a drainage device M1 for an internal combustion engine according to Embodiment 1 of the present invention that causes condensed water generated in the intake passage IR to flow into the exhaust passage ER through the drainage passage wr will be described.
The drain pipe 28 forming the drain channel wr here has an inlet 281 at one end thereof downstream of the intercooler and connected to the intake pipe 4 between the intercooler 10 and the high-pressure throttle valve 11, and is an exhaust aftertreatment means. A drain port 282 at the other end is connected to the upstream side of the exhaust passage of a certain NOx trap catalyst 18. The configuration of the drain pipe 28 and its connecting portion will be described later.
An on-off valve 29 is provided in the middle of the drain pipe 28, and a control means 31 that controls opening / closing of the on-off valve is connected to the on-off valve 29.

制御手段31は、上述したように、排水管28内に貯留された凝縮水の量が一定量に達したり、エンジン1の運転時間や走行距離が一定値に達した場合に開閉弁29を開弁し、排水管28内の凝縮水を触媒コンバーター19を介して車外に排出する機能を備える。更に、制御手段31は排水管28から凝縮水が抜けて酸素濃度センサ20が排水管28を通じて漏出する吸気ガス内の酸素濃度を検出して、これがリーン側の所定値に達すると、排水管28から凝縮水が完全に抜けたと判断し、開閉弁29を閉弁させる機能を備える。この制御手段31の制御により排水管28からの凝縮水排出が完了後に吸気ガスが該排水管から排出され、エンジン1のトルク低下や出力低下を引き起こしてしまうことを防止している。   As described above, the control means 31 opens the on-off valve 29 when the amount of condensed water stored in the drain pipe 28 reaches a certain amount, or when the operation time or travel distance of the engine 1 reaches a certain value. And has a function of discharging the condensed water in the drain pipe 28 through the catalytic converter 19 to the outside of the vehicle. Further, the control means 31 detects the oxygen concentration in the intake gas leaked from the drain pipe 28 and the oxygen concentration sensor 20 leaks through the drain pipe 28, and when this reaches a predetermined value on the lean side, the drain pipe 28. Therefore, it is determined that the condensed water has been completely removed from the valve, and the on-off valve 29 is closed. Control of the control means 31 prevents intake gas from being discharged from the drain pipe after completion of drain of condensed water from the drain pipe 28, thereby causing a reduction in torque and a reduction in output of the engine 1.

次に、図1に示すように、排気通路ERを成す上流側排気管501の後端にNOxトラップ触媒(排気後処理手段)18を有する触媒コンバーター19が接続される。この触媒コンバーター19は、排気通路ERの拡径部を成す筒状の容器本体(シエル)を備える。容器本体はNOxトラップ触媒18を収容保持する主部191と、主部191に連続形成された排気通路ER前側の拡径部である拡径前部192と、排気通路ER後側の拡径後部193とを有する。   Next, as shown in FIG. 1, a catalytic converter 19 having a NOx trap catalyst (exhaust aftertreatment means) 18 is connected to the rear end of the upstream side exhaust pipe 501 forming the exhaust passage ER. The catalytic converter 19 includes a cylindrical container body (shell) that forms an enlarged diameter portion of the exhaust passage ER. The container main body includes a main portion 191 that houses and holds the NOx trap catalyst 18, a diameter expansion front portion 192 that is a diameter expansion portion on the front side of the exhaust passage ER continuously formed in the main portion 191, and a diameter expansion rear portion on the rear side of the exhaust passage ER. 193.

拡径前部192は排気路下流に向けて排気路径を徐々に拡大するコーン形状の傾斜部(フロントコーン)を成し、その前端が排気通路上流側の上流側排気管501に接続される。拡径後部193は下流に向けて排気路径を徐々に縮小するコーン形状の傾斜部を成し、その後端が排気通路下流側の下流側排気管502に接続される。
図2(a)に示すように、上流側排気管501の後端部は拡径前部192の前端に重なり互いに溶着される位置まで排気路断面a1が比較的小さく、拡径前部192内では排気路方向Xで後方に進むほど排気路断面a2が徐々に増し、主部191で最大値となってNOxトラップ触媒18を収容保持する。
The enlarged diameter front portion 192 forms a cone-shaped inclined portion (front cone) that gradually increases the diameter of the exhaust passage toward the downstream of the exhaust passage, and its front end is connected to the upstream exhaust pipe 501 upstream of the exhaust passage. The enlarged diameter rear portion 193 forms a cone-shaped inclined portion that gradually reduces the exhaust passage diameter toward the downstream, and the rear end thereof is connected to the downstream exhaust pipe 502 on the downstream side of the exhaust passage.
As shown in FIG. 2A, the rear end portion of the upstream side exhaust pipe 501 overlaps the front end of the enlarged diameter front portion 192 and has a relatively small exhaust passage cross section a1 up to a position where they are welded to each other. Then, the exhaust passage cross section a2 gradually increases as it moves backward in the exhaust passage direction X, and the NOx trap catalyst 18 is accommodated and held at the main portion 191 with a maximum value.

このような拡径部を成す容器本体(シエル)に達する直前の上流側排気管501の後端部は排気ガスの流速v1が大きくガス圧Pa1は小さい。拡径前部192内では後方に進むほど排気ガスの流速v2が小さくなり、その分ガス圧Pa2は大きくなる。更に、主部191の前端近傍では排気ガスの流速v3がより小さくなり、その分ガス圧Pa3は更に大きくなる。しかも主部191の前端近傍ではNOxトラップ触媒18の担持体前面f1に沿った拡径方向の速度が増加し、担持体前面f1の全域に分散して排気ガスがNOxトラップ触媒18の担持体に流入し、排気路方向Xに流出する。   The rear end portion of the upstream exhaust pipe 501 immediately before reaching the container main body (shell) forming such a diameter-expanded portion has a large exhaust gas flow velocity v1 and a small gas pressure Pa1. In the enlarged diameter front part 192, the exhaust gas flow velocity v2 decreases as it advances rearward, and the gas pressure Pa2 increases accordingly. Further, in the vicinity of the front end of the main portion 191, the exhaust gas flow velocity v3 becomes smaller, and the gas pressure Pa3 further increases accordingly. Moreover, in the vicinity of the front end of the main portion 191, the speed of the NOx trap catalyst 18 in the diameter increasing direction along the front surface f1 of the carrier increases, and the exhaust gas is dispersed over the entire front surface f1 of the carrier and the exhaust gas reaches the carrier of the NOx trap catalyst 18. It flows in and flows out in the exhaust path direction X.

このような排気ガスの流動が成されている触媒コンバーター19と上流側排気管501にわたり、図1,2に示すような、バイパス路brを成すバイパス管32が連結される。
ここで、バイパス管32の一端が排気通路ERの前側の拡径部である拡径前部192に接続され、他端が一端の接続された排気通路ER上の位置よりも上流側となる管径の小さい上流側排気管501に接続される。
図2(a)に示すように、バイパス管32の一端は拡径前部192の直近の主部191の前端に溶着された一端側ボス33にフレアナット35を締結することで接続される。一端側ボス33には貫通孔331が形成され、貫通孔331の下端の一端側連通口36が主部191の前端近傍で内室に連通する。
A bypass pipe 32 forming a bypass passage br as shown in FIGS. 1 and 2 is connected between the catalytic converter 19 in which such a flow of exhaust gas is formed and the upstream exhaust pipe 501.
Here, one end of the bypass pipe 32 is connected to the enlarged diameter front part 192 which is an enlarged diameter part on the front side of the exhaust passage ER, and the other end is located upstream of the position on the exhaust passage ER to which one end is connected. It is connected to the upstream exhaust pipe 501 having a small diameter.
As shown in FIG. 2A, one end of the bypass pipe 32 is connected by fastening a flare nut 35 to one end-side boss 33 welded to the front end of the main portion 191 immediately adjacent to the enlarged diameter front portion 192. A through hole 331 is formed in the one end boss 33, and the one end side communication port 36 at the lower end of the through hole 331 communicates with the inner chamber in the vicinity of the front end of the main portion 191.

バイパス管32の他端は排気通路ER上の一端側の位置よりも上流側となる管径の小さい上流側排気管501に溶着された他端側ボス34に接続される。この他端側ボス34にフレアナット35を締結することでバイパス管32の他端が他端側ボス34に締結される。
図2(a),(b)に示すように、他端側ボス34は中央に貫通孔341が形成され、貫通孔341の下端の他端側連通口37が上流側排気管501の排気路ERの後端近傍に連通している。
The other end of the bypass pipe 32 is connected to the other end boss 34 welded to the upstream exhaust pipe 501 having a smaller pipe diameter on the upstream side than the position on the one end side on the exhaust passage ER. By fastening the flare nut 35 to the other end boss 34, the other end of the bypass pipe 32 is fastened to the other end boss 34.
2A and 2B, the other end boss 34 has a through hole 341 formed in the center, and the other end communication port 37 at the lower end of the through hole 341 is an exhaust path of the upstream exhaust pipe 501. It communicates with the vicinity of the rear end of ER.

図2(b)に示すように、端側ボス34は中央の貫通孔341が上部h1より下部h2が拡径され、その段差部に絞り342が形成される。この絞り342の下側で下部h2の上端に流出穴343が形成され、同流出穴343には他端側ボス34にフレアナット35で締結され、排水管28の下端側の排水口282が連結される。
ここで、排気ガスが絞り342より下部h2側に流動することで、バイパス管32を流動する排気流れefに沿って絞り342を形成するので、絞り342による排気流れefの速度が大きくなる。絞り342の下流側となる下部h2に負圧増加域ehが生じ、ここに排水路wrの下流側端部を接続することによって、排水路wr内の流れは排気流れefが絞り342のベンチュリー効果で増加されることで、さらに大きな流れfrとなって合流する。
As shown in FIG. 2B, the end boss 34 has a central through hole 341 whose diameter is lower at the lower part h2 than at the upper part h1, and a diaphragm 342 is formed at the stepped part. An outflow hole 343 is formed at the upper end of the lower part h2 below the throttle 342. The outflow hole 343 is fastened to the other end boss 34 by a flare nut 35, and a drain outlet 282 on the lower end side of the drain pipe 28 is connected. Is done.
Here, since the exhaust gas flows from the throttle 342 to the lower part h2 side, the throttle 342 is formed along the exhaust flow ef flowing through the bypass pipe 32, so that the speed of the exhaust flow ef by the throttle 342 increases. A negative pressure increase region eh is generated in the lower part h2 on the downstream side of the throttle 342. By connecting the downstream end of the drainage channel wr here, the flow in the drainage channel wr becomes the venturi effect of the throttle 342. Is increased to a larger flow fr and merges.

このような内燃機関の排水装置Mの作動を説明する。
エンジン1の運転中、特に低圧EGR装置25使用時にはインタークーラ10の出口部に多量の凝縮水が発生する。発生した凝縮水は、排水路wrを通ってNOxトラップ触媒18の上流側近傍に位置するバイパス管32を経て上流側排気管501内に送られる。
ここで、上流側排気管501より拡径前部192、主部191を経てNOxトラップ触媒18に排気ガスが流動する。この際、図2(a)に示すように、主部191のガス圧Pa3が大きく、上流側排気管501の後端部のガス圧Pa1は小さいことより、その差圧に応じて、排気ガスが一端側連通口36からバイパス管32を排気流れefとなって通り、他端側連通口37へと流動する。
The operation of the drainage device M of such an internal combustion engine will be described.
During operation of the engine 1, particularly when the low-pressure EGR device 25 is used, a large amount of condensed water is generated at the outlet of the intercooler 10. The generated condensed water passes through the drainage wr and is sent into the upstream exhaust pipe 501 through the bypass pipe 32 located in the vicinity of the upstream side of the NOx trap catalyst 18.
Here, the exhaust gas flows from the upstream side exhaust pipe 501 to the NOx trap catalyst 18 through the enlarged diameter front portion 192 and the main portion 191. At this time, as shown in FIG. 2A, since the gas pressure Pa3 of the main portion 191 is large and the gas pressure Pa1 of the rear end portion of the upstream side exhaust pipe 501 is small, the exhaust gas depends on the differential pressure. Passes through the bypass pipe 32 from the one end side communication port 36 as an exhaust flow ef and flows to the other end side communication port 37.

このように、バイパス管32の一端がNOxトラップ触媒18(排気の後処理手段)と上流側排気管501を接続する拡径部である触媒コンバーター19に接続され、他端が拡径部より上流側の上流側排気管501に接続される。このため、排気通路ERに新たな拡径部を形成することなくバイパス通路内にベンチュリー効果による排気流れefを作ることができ、この点でコスト増を抑制できる。
また、凝縮水はバイパス通路を経由してNOxトラップ触媒18の上流側の上流側排気管501に排出されるため、凝縮水を含んだ排気をNOxトラップ触媒18(排気後処理手段)で浄化することが出来る。
In this manner, one end of the bypass pipe 32 is connected to the catalytic converter 19 which is a diameter-expanded part that connects the NOx trap catalyst 18 (exhaust aftertreatment means) and the upstream side exhaust pipe 501, and the other end is upstream from the diameter-expanded part. Side upstream exhaust pipe 501. For this reason, it is possible to create the exhaust flow ef due to the venturi effect in the bypass passage without forming a new enlarged portion in the exhaust passage ER. In this respect, it is possible to suppress an increase in cost.
Further, since the condensed water is discharged to the upstream exhaust pipe 501 on the upstream side of the NOx trap catalyst 18 via the bypass passage, the exhaust gas containing the condensed water is purified by the NOx trap catalyst 18 (exhaust aftertreatment means). I can do it.

更に、排気流れefはその速度が絞り342deにより大きくなり、その直下の下部h2に低圧域ehを生じ、排水路wr内の負圧化が絞り342のベンチュリー効果で加速する。このため、排水路wr内の凝縮水は下部h2での排気流れefに気化して流入する比率が増加し、さらに増速され、他端側連通口37より上流側排気管501に排出される。従って、吸気通路IRの水の排気路ERへの排出を容易化でき、排気通路に排出されるため、凝縮水を含んだ排気が排気後処理手段で浄化することが出来る。   Further, the speed of the exhaust flow ef is increased by the throttle 342de, a low pressure region eh is generated in the lower portion h2 immediately below the exhaust flow ef, and the negative pressure in the drainage channel wr is accelerated by the venturi effect of the throttle 342. For this reason, the ratio that the condensed water in the drainage channel wr is vaporized and flows into the exhaust flow ef in the lower portion h2 is increased, the speed is further increased, and the condensed water is discharged to the upstream exhaust pipe 501 from the other end side communication port 37. . Accordingly, it is possible to facilitate the discharge of water from the intake passage IR to the exhaust passage ER and to the exhaust passage, so that the exhaust gas containing condensed water can be purified by the exhaust post-processing means.

更に、インタークーラ10で結露した凝縮水を排水路wrとバイパス路brを通して排気通路ERに流入させるので、吸気通路IRの腐食を抑制でき、エンジン1がウォーターハンマを引き起こすことを防止できる。   Furthermore, since the condensed water condensed in the intercooler 10 flows into the exhaust passage ER through the drain passage wr and the bypass passage br, corrosion of the intake passage IR can be suppressed, and the engine 1 can be prevented from causing water hammer.

上述のところにおいて、実施形態1の内燃機関の排水装置における排水路wrはインタークーラ10で結露した凝縮水をバイパス路brに導き、排気通路ERに流入させていたが、場合により、図1に2点鎖線で示すように排水路wrを成す排水管28aの一端の流入口281aをエンジン本体の上流の排気管5’内の排気路ERに連通させた他の実施形態を構成してもよい。
この場合、エンジン1のアイドル状態において、燃焼室下流の排気管510内に凝縮水が生じる場合があり、この凝縮水の排除を行うことが、耐久性確保の上で好ましいし、排気再循環装置(低圧EGR装置)25への凝縮水の流入を防止できる。
In the above description, the drainage wr in the drainage device for the internal combustion engine according to the first embodiment has led the condensed water condensed by the intercooler 10 to the bypass br and flowed into the exhaust passage ER. As shown by a two-dot chain line, another embodiment in which the inlet 281a at one end of the drain pipe 28a forming the drain wr is communicated with the exhaust path ER in the exhaust pipe 5 ′ upstream of the engine body may be configured. .
In this case, when the engine 1 is in an idle state, condensed water may be generated in the exhaust pipe 510 downstream of the combustion chamber. It is preferable to eliminate the condensed water in terms of ensuring durability, and the exhaust gas recirculation device. Inflow of condensed water to the (low pressure EGR device) 25 can be prevented.

上述のところにおいて、内燃機関の排水装置は車載用ディーゼルエンジンに搭載されるとしたが、場合により定置式ディーゼルエンジンに搭載されてもよく、更に、ガソリンエンジンに搭載されてもよく、これらの場合もほぼ同様の効果が得られる。   In the above description, the drainage device of the internal combustion engine is mounted on the on-board diesel engine. However, it may be mounted on a stationary diesel engine depending on the case, and may be further mounted on a gasoline engine. Almost the same effect can be obtained.

1 内燃機関(エンジン)
4 吸気管
5 排気管
501 上流側排気管
10 インタークーラ
18 NOxトラップ触媒(排気後処理手段)
19 触媒コンバーター(拡径部)
191 主部
192 拡径前部
25 排気再循環装置(低圧EGR装置)
28 排水管
31 制御手段
32 バイパス管
33 一端側ボス
331 貫通孔
34 他端側ボス
341 貫通孔
36 一端側連通口
37 他端側連通口
br バイパス路
wr 排水路
IR 吸気通路
ER 排気通路
M 内燃機関の排水装置
X 排気路方向
1 Internal combustion engine
4 Intake pipe 5 Exhaust pipe 501 Upstream exhaust pipe 10 Intercooler 18 NOx trap catalyst (exhaust aftertreatment means)
19 Catalytic converter (expanded part)
191 Main part 192 Diameter expansion front part 25 Exhaust gas recirculation device (low pressure EGR device)
28 Drain pipe 31 Control means 32 Bypass pipe 33 One end side boss 331 Through hole 34 Other end side boss 341 Through hole 36 One end side communication port 37 Other end side communication port br Bypass path wr Drainage path IR Intake path ER Exhaust path M Internal combustion engine Drainage device X Exhaust direction

Claims (4)

一端が内燃機関の排気通路の拡径部に接続されて、他端が前記一端の接続された排気通路よりも上流側の管径の小さい排気通路に接続されたバイパス路と、
前記内燃機関の吸気通路または前記バイパス路の接続位置より上流側の排気通路に一端が、前記バイパス路に他端がそれぞれ接続されて前記吸気通路内または前記排気通路内で結露した凝縮水を前記バイパス路に排出する排水路と、を有することを特徴とする内燃機関の排水装置。
A bypass path having one end connected to an enlarged diameter portion of the exhaust passage of the internal combustion engine and the other end connected to an exhaust passage having a smaller pipe diameter upstream of the exhaust path to which the one end is connected;
One end in the exhaust passage upstream of the connecting position of the intake passage or the bypass passage of the internal combustion engine, the condensed water and the other end is condensed by each of the intake passage is connected or the exhaust passage to the bypass passage A drainage device for an internal combustion engine, comprising: a drainage channel that discharges to the bypass channel.
前記バイパス路は前記一端から他端に向かって管径を縮小する絞りが形成されて、前記排水路の他端が前記絞りの下流側のバイパス路に接続される、
ことを特徴とする請求項1記載の内燃機関の排水装置。
The bypass passage is formed aperture to reduce the pipe diameter toward the other end from the one end, the other end of the drain passage is connected to the bypass passage downstream of the throttle above,
2. The drainage device for an internal combustion engine according to claim 1.
前記排気通路上に配置されて、該排気通路の上流側と下流側の排気管に拡径部を介して接続された排気後処理手段を備えた内燃機関であって、
前記バイパス路の一端が前記拡径部に接続され、前記バイパス路の他端が前記拡径部の上流側の排気管と接続される、
ことを特徴とする請求項1又は2記載の内燃機関の排水装置。
An internal combustion engine comprising exhaust aftertreatment means disposed on the exhaust passage and connected to exhaust pipes on the upstream side and downstream side of the exhaust passage via an enlarged diameter portion,
One end of the bypass passage is connected to the enlarged diameter portion, the other end of the bypass passage is connected to the upstream side of the exhaust pipe of the enlarged diameter portion,
The drainage device for an internal combustion engine according to claim 1 or 2, characterized in that
前記吸気通路に配置されたインタークーラ、を有し、前記排水路の一端が前記インタークーラ下流側の吸気通路に接続される、
ことを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の排水装置。
An intercooler disposed in the intake passage, and one end of the drainage channel is connected to the intake passage on the downstream side of the intercooler,
The drainage device for an internal combustion engine according to claim 1, wherein the drainage device is an internal combustion engine.
JP2013265982A 2013-12-24 2013-12-24 Drainage device for internal combustion engine Active JP6201738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265982A JP6201738B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265982A JP6201738B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015121170A JP2015121170A (en) 2015-07-02
JP6201738B2 true JP6201738B2 (en) 2017-09-27

Family

ID=53532997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265982A Active JP6201738B2 (en) 2013-12-24 2013-12-24 Drainage device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6201738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105298628B (en) * 2015-11-13 2018-01-12 广西玉柴机器股份有限公司 The self-draining arrangement of engine intercooler condensed water
CN106870118B (en) * 2017-01-22 2022-12-09 东风商用车有限公司 Water removal system of automobile intercooler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310062U (en) * 1989-06-19 1991-01-30
JP2006037768A (en) * 2004-07-23 2006-02-09 Hino Motors Ltd Exhaust emission control device
JP4672567B2 (en) * 2006-02-08 2011-04-20 愛三工業株式会社 Exhaust gas purification device for internal combustion engine
JP2008075466A (en) * 2006-09-19 2008-04-03 Toyota Motor Corp Exhaust gas device
JP2008280882A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP5494528B2 (en) * 2011-02-28 2014-05-14 三菱自動車工業株式会社 Condensate drain device
JP5804376B2 (en) * 2011-12-13 2015-11-04 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2015121170A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
US8117833B2 (en) Method and system using a reduction catalyst to reduce nitrate oxide
JP4730336B2 (en) Exhaust gas recirculation control device for internal combustion engine
US20090241515A1 (en) Exhaust condensation separator
JP2006291739A (en) Egr device
JP5448310B2 (en) Exhaust purification device
JP2009091982A (en) Exhaust emission control device
JP2013142363A (en) Exhaust emission control device of diesel engine
JP2009275673A (en) Egr system and controlling method of egr system
US9790829B2 (en) System for injecting fuel into exhaust pipe
JP2012102684A (en) Exhaust emission control device for engine
JP6589365B2 (en) Exhaust gas purification system
JP6201738B2 (en) Drainage device for internal combustion engine
CN111485978A (en) System and method for exhaust gas aftertreatment
JP2011208575A (en) Exhaust gas recirculation device
JP2009091983A (en) Exhaust emission control device
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
JP6201737B2 (en) Drainage device for internal combustion engine
JP4595926B2 (en) Exhaust gas purification device for internal combustion engine
JP2008127997A (en) Exhaust emission control device of internal combustion engine
JP2010031717A (en) Exhaust emission control device
JP6201740B2 (en) Drainage device for internal combustion engine
JP6187243B2 (en) Drainage device for internal combustion engine
JP6241265B2 (en) Drainage device for internal combustion engine
JP2011038458A (en) Exhaust emission control device of engine
JP6201739B2 (en) Drainage device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R151 Written notification of patent or utility model registration

Ref document number: 6201738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350