JP6199794B2 - 電力制御システム、電力制御システムの制御方法、及び電力制御装置 - Google Patents

電力制御システム、電力制御システムの制御方法、及び電力制御装置 Download PDF

Info

Publication number
JP6199794B2
JP6199794B2 JP2014086762A JP2014086762A JP6199794B2 JP 6199794 B2 JP6199794 B2 JP 6199794B2 JP 2014086762 A JP2014086762 A JP 2014086762A JP 2014086762 A JP2014086762 A JP 2014086762A JP 6199794 B2 JP6199794 B2 JP 6199794B2
Authority
JP
Japan
Prior art keywords
power
current
pseudo
power generation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014086762A
Other languages
English (en)
Other versions
JP2015208091A (ja
Inventor
崇介 中山
崇介 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014086762A priority Critical patent/JP6199794B2/ja
Publication of JP2015208091A publication Critical patent/JP2015208091A/ja
Application granted granted Critical
Publication of JP6199794B2 publication Critical patent/JP6199794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、電力制御システム、電力制御システムの制御方法、及び電力制御装置に関するものである。
太陽光パネル等の発電設備を備える発電システムの発電パワーコンディショナとして、商用電源系統(以下、適宜、系統と略記する)に連系して交流電力を出力する系統連系運転と、系統と関わりなく交流電力を出力する自立運転とを可能としたものが知られている(例えば、特許文献1参照)。
また、系統電力によって充電される蓄電池等の蓄電設備を備える蓄電システムの蓄電パワーコンディショナとして、上記の発電パワーコンディショナと同様に、系統に連系して交流電力を出力する系統連系運転と、系統と関わりなく交流電力を出力する自立運転とを可能としたものが知られている(例えば、特許文献2参照)
特開2007−049770号公報 特開2008−253033号公報
ところで、電力制御システムにおいて、太陽電池、蓄電池、燃料電池、ガス発電機などの複数の分散電源を一元的に管理・運用することが求められている。特に、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理可能なシステムを構築することが求められる。
従って、上記のような課題に鑑みてなされた本発明の目的は、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理可能な電力制御システム、電力制御システムの制御方法、及び電力制御装置を提供することにある。
上述した諸課題を解決すべく、本発明に係る電力制御システムは、電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御装置と、前記発電装置又は前記他の分散電源の少なくとも一方からの出力により、前記電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似電流出力装置とを備え、前記出力は複数の異なる電圧を有し、前記擬似電流出力装置への供給電源を前記異なる電圧の中から選択可能としたことを特徴とする。
また、前記擬似電流出力装置は、系統から解列した自立運転時に前記擬似電流を出力可能であることが好ましい。
また、前記異なる電圧は単相3線の交流100V及び交流200Vを含むことが好ましい。
また、前記電力制御装置は、前記異なる電圧の選択制御をおこなうことが好ましい。
また、前記制御部は、前記発電装置が発電出来ない場合に、前記異なる電圧の、より高い電圧を選択することが好ましい。
また、前記他の分散電源は蓄電池を含み、前記制御部は、前記蓄電池の充電状態に応じて前記擬似電流のオン/オフ制御をおこなうことが好ましい。
また、上述した諸課題を解決すべく、本発明に係る電力制御システムの制御方法は、電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御システムの制御方法であって、前記発電装置又は前記他の分散電源の少なくとも一方からの出力であって複数の異なる電圧を有する該出力から、擬似電流への供給電源となる一の電圧を選択する電圧選択ステップと、前記電流センサに対して順潮流と同方向の電流である前記擬似電流を供給する擬似電流供給ステップを含むことを特徴とする。
また、上述した諸課題を解決すべく、本発明に係る電力制御装置は、電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御装置であって、前記発電装置又は前記他の分散電源の少なくとも一方からの出力であって複数の異なる電圧を有する該出力から、前記電流センサに対して供給される順潮流と同方向の電流である擬似電流への供給電源となる、一の電圧を選択する制御部を備えることを特徴とする。
本発明に係る電力制御システム電力制御システムの制御方法、及び電力制御装置によれば、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理することが可能となる。
本発明の一実施形態に係る電力制御システムのブロック図である。 本発明の一実施形態に係る電力制御システムの擬似電流出力装置に関する配線を示す図である。 本発明の一実施形態に係る電力制御システムにおける、電流センサと系統及び擬似電流出力装置との配線を示す図である。 本発明の一実施形態に係る電力制御システムの連系運転時の制御例を示す図である。 擬似電流の初期設定のための制御フローを示す。 発電時における擬似電流切り替えのための制御フローを示す。 本発明の一実施形態に係る電力制御システムの自立運転時(充電時)の制御例を示す図である。 本発明の一実施形態に係る電力制御システムの自立運転時(放電時)の制御例を示す図である。
以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。
本発明の一実施形態に係る電力制御システムについて説明する。本実施形態に係る電力制御システムは、系統(商用電源系統)から供給される電力の他に、売電可能な電力を供給する分散電源及び/又は売電不可能な電力を供給する分散電源を備える。売電可能な電力を供給する分散電源は、例えば太陽光発電などによって電力を供給するシステムである。一方売電不可能な電力を供給する分散電源は、例えば電力を充放電することができる蓄電池システム、SOFC(Solid Oxide Fuel Cell)などの燃料電池を含む燃料電池システム、及びガス燃料により発電するガス発電システムなどである。本実施の形態においては、売電可能な電力を供給する分散電源として太陽電池、及び売電不可能な電力を供給する分散電源として蓄電池と、燃料電池又はガス発電機である発電装置とを備える例を示す。
図1は、本発明の一実施形態に係る電力制御システム100の概略構成を示すブロック図である。本実施形態に係る電力制御システム100は、パワーコンディショナ20(電力制御装置)と、電流センサ40と、擬似電流出力装置50とを備える。また、電力制御システム100と接続して使用される、太陽電池11、蓄電池12、分電盤31、負荷32及び発電装置33を図1にあわせて示す。ここで、発電装置33は、燃料電池又はガス発電機により構成されるものである。電力制御システム100は、通常は系統との連系運転を行い、系統から供給される電力と、各分散電源(太陽電池11、蓄電池12、発電装置33)からの電力とを負荷32に供給する。また、電力制御システム100は、停電時など系統からの電力供給がない場合は自立運転を行い、各分散電源(太陽電池11、蓄電池12、発電装置33)からの電力を各負荷(負荷32、擬似電流負荷51)に供給する。電力制御システム100が自立運転を行う場合には、各分散電源(太陽電池11、蓄電池12、発電装置33)は系統から解列した状態であり、電力制御システム100が連系運転を行う場合には、各分散電源(太陽電池11、蓄電池12、発電装置33)は系統と並列した状態となる。
図1において、各機能ブロックを結ぶ実線は電力の流れる配線を表し、各機能ブロックを結ぶ破線は、制御信号又は通信される情報の流れを表す。当該破線が示す通信は有線通信としてもよいし、無線通信としてもよい。制御信号及び情報の通信には、各階層含め、様々な方式を採用可能である。例えば、ZigBee(登録商標)などの近距離通信方式による通信を採用することができる。また、赤外線通信、電力線搬送通信(PLC:Power Line Communication)など、様々な伝送メディアを使用することができる。またそれぞれの通信に適した物理層を含む下位の層の上で、各種プロトコル、例えばZigBee SEP2.0(Smart Energy Profile2.0)、ECHONET Lite(登録商標)などのような論理層だけ規定される通信プロトコルを動作させてもよい。
太陽電池11は、太陽光のエネルギーを直流の電力に変換するものである。太陽電池11は、例えば光電変換セルを有する発電部がマトリクス状に接続され、所定の短絡電流(たとえば10A)を出力するように構成される。太陽電池11は、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、又はCIGS等薄膜系太陽電池等、光電変換可能なものであればその種類は制限されない。
蓄電池12は、リチウムイオン電池又はニッケル水素電池等の蓄電池から構成される。蓄電池12は、充電された電力を放電することにより、電力を供給可能である。また、蓄電池12は、系統、太陽電池11から供給される電力に加え、後述の通り、発電装置33から供給される電力を充電可能である。
パワーコンディショナ20(電力制御装置)は、太陽電池11及び蓄電池12から供給される直流の電力と、系統及び発電装置33から供給される交流の電力との変換を行うとともに、連系運転及び自立運転の切り替え制御を行うものである。パワーコンディショナ20は、インバータ21と、連系運転スイッチ22、23と、自立運転スイッチ24と、パワーコンディショナ20全体を制御する制御部25とを備える。連系運転スイッチ23は、パワーコンディショナ20外に出すよう構成しても良い。
インバータ21は、双方向インバータであって、太陽電池11及び蓄電池12から供給される直流の電力を交流の電力に変換し、また、系統及び発電装置33から供給される交流の電力を直流の電力に変換する。インバータ21の前段に、太陽電池11及び蓄電池12からの直流電力を一定の電圧まで昇圧するコンバータを設けてもよい。
連系運転スイッチ22、23、自立運転スイッチ24は、それぞれリレー、トランジスタなどにより構成され、オン/オフ制御される。図示の通り、自立運転スイッチ24は、発電装置33と蓄電池12との間に配される。連系運転スイッチ22、23、と自立運転スイッチ24とは、双方が同時にオン(又はオフ)とならないように、同期して切り替えられる。より詳しくは、連系運転スイッチ22、23がオンとなるとき、自立運転スイッチ24は同期してオフとなり、連系運転スイッチ22、23がオフとなるとき、自立運転スイッチ24は同期してオンとなる。連系運転スイッチ22、23及び自立運転スイッチ24の同期制御は、連系運転スイッチ22、23への制御信号の配線を自立運転スイッチ24に分岐させることによりハードウェア的に実現される。スイッチ毎に同一の制御信号に対するオンとオフの状態を区別して設定可能なことはいうまでもない。また、連系運転スイッチ22、23及び自立運転スイッチ24の同期制御は、制御部25によりソフトウェア的に実現することも可能である。ただし、上記制御の例外として、パワーコンディショナ20がオフの状態においては、連系運転スイッチ23のみをオンとして、連系運転スイッチ22及び自立運転スイッチ24をいずれもオフとすることにより系統から分電盤31への電力供給のみをおこなう。
制御部25は、例えばマイクロコンピュータで構成され、系統電圧の上昇又は停電の状態等に基づいて、インバータ21、連系運転スイッチ22、23、自立運転スイッチ24等の各部の動作を制御する。制御部25は、連系運転時には、連系運転スイッチ22、23をオン、自立運転スイッチ24をオフに切り替える。また、制御部25は、自立運転時には、連系運転スイッチ22、23をオフ、自立運転スイッチ24をオンに切り替える。
分電盤31は、連系運転時に系統より供給される電力を複数の支幹に分岐させて負荷32に分配する。また、分電盤31は、自立運転時に複数の分散電源(太陽電池11、蓄電池12、発電装置33)から供給される電力を、複数の支幹に分岐させて負荷32に分配する。ここで、負荷32とは、電力を消費する電力負荷であり、たとえば家庭内で使用されるエアコン、電子レンジ、テレビ等の各種電器製品又は、商工業施設で使用される空調機若しくは照明器具などの機械、照明設備等である。
発電装置33は、燃料電池又はガス発電機により構成される。燃料電池は、水素を用いて空気中の酸素との化学反応により直流の電力を発電するセルと、発電された直流電力を100Vあるいは200Vの交流電力に変換するインバータと、その他補機類とを備える。ここで、発電装置33としての燃料電池は、パワーコンディショナ20を介さずとも負荷32に対する交流電力の供給を可能とするシステムであり、必ずしもパワーコンディショナ20との接続を想定して設計されたものではなく、汎用性を有するシステムであってよい。また、ガス発電機は、所定のガスなどを燃料とするガスエンジンで発電するものである。
発電装置33は、対応する電流センサ40が順潮流(買電方向の電流)を検出する間発電を行うものであり、発電時には負荷32の消費電力に追従する負荷追従運転又は所定の定格電力値による定格運転を行う。負荷追従運転時の追従範囲は、例えば200〜700Wであり、定格運転時の定格電力値は、例えば700Wである。発電装置33は、連系運転時は負荷32の消費電力に追従する負荷追従運転を行い、自立運転時に、定格電力値による定格運転を行うものとしてもよい。
電流センサ40は、系統及び発電装置33の間を流れる電流を検出するものである。日本では、発電装置33が発電する電力は売電不可と規定されているため、電流センサ40が系統側への逆潮流(売電方向の電流)を検出した場合、発電装置33は発電を停止する。電流センサ40が順潮流を検出する間、発電装置33は負荷32に自身から電力を供給できるものとして負荷追従運転又は定格運転での発電を実行する。後述の通り、消費電力の観点から、電流センサ40は、パワーコンディショナ20において自立運転時に発電装置33の発電による電流が流れない箇所に配置されることが好ましい。
ここで、本実施形態における電力制御システム100は、発電装置33と蓄電池12とが系統から解列した状態で、擬似電流出力装置50を通じて電流センサ40に擬似的な順潮流と同方向の電流(擬似電流)を流す。これにより、発電装置33を定格運転させ、発電装置33が発電する電力を蓄電池12に蓄電することが可能となる。以下、擬似電流出力装置50を通じた擬似電流による発電及び蓄電について詳述する。
擬似電流出力装置50は、電流センサ40に対して順潮流と同方向の電流である擬似電流を供給可能なものである。擬似電流出力装置50は、パワーコンディショナ20又は発電装置33から電力供給を受ける系であって、擬似電流負荷51と、同期スイッチ52と、第1擬似電流制御スイッチ53と、第2擬似電流制御スイッチ54とを備える。図2は、擬似電流出力装置50に関する配線を示す図である。図2において、系統及びインバータ21の系統側出力は、200Vの単相3線としている。そして、この単相3線200Vから擬似電流出力装置50に対する電力供給は、電圧線の双方が接続されて交流200Vが供給される場合と、電圧線の一方と中性線とが接続されて交流100Vが供給される場合とが選択可能に構成されている。すなわち、図2において、同期スイッチ52及び第1擬似電流制御スイッチ53をオンとし、第2擬似電流制御スイッチ54をオフとすると、擬似電流負荷51には、交流200Vが印加される。一方、同期スイッチ52及び第2擬似電流制御スイッチ54をオンとし、第1擬似電流制御スイッチ53をオフとすると、擬似電流負荷51には、交流100Vが印加される。そして図示の通り、擬似電流出力装置50への接続線は、2本の電圧線それぞれに設置された電流センサ40を通るように配線される。本実施形態において、擬似電流出力装置50は、パワーコンディショナ20とは独立した構成としているが、パワーコンディショナ20と一体的に構成してもよい。
なお、擬似電流負荷51として、擬似電流出力装置50の外部の負荷を用いてもよい。同期スイッチ52は、パワーコンディショナ20又は発電装置33から擬似電流出力装置50に供給された電力の一部を順潮流と同方向の擬似電流として電流センサ40に供給するためのものである。第1擬似電流制御スイッチ53及び第2擬似電流制御スイッチ54は、擬似電流出力装置50への供給電圧の変更及び擬似電流による不要な発電を防ぐために設けられたものである。同期スイッチ52、第1擬似電流制御スイッチ53及び第2擬似電流制御スイッチ54は、それぞれ独立したリレー、トランジスタなどにより構成され、パワーコンディショナ20の制御部25により、それぞれ独立にオン/オフ制御される。そして、第1擬似電流制御スイッチ53と、第2擬似電流制御スイッチ54とは、同時にオン状態とならないように制御される。
このように、第1擬似電流制御スイッチ53と第2擬似電流制御スイッチ54のいずれをオン状態とするかによって擬似電流出力装置50に供給する電圧を交流200Vと交流100Vとの間で切り替えることができる。これにより、例えば、擬似電流負荷51を4.0×10[Ω]とした場合、擬似電流出力装置50が出力する擬似電流を0.05[A]と0.025[A]との間で切り替えて設定することができる。なお、2値の擬似電流値は、後述するように発電装置33の発電状態等に応じて切り換えられる。
同期スイッチ52は、パワーコンディショナ20の自立運転スイッチ24と同期してオン/オフ制御される。すなわち、同期スイッチ52は、自立運転スイッチ24と同様に、連系運転時にはオフとなり、自立運転時にはオンとなる。より詳しくは、同期スイッチ52は、系統との解列/並列の切り替えと切り替えタイミングが同期するスイッチであって、解列時に擬似電流を流し、並列時に擬似電流を流さないものである。自立運転スイッチ24及び同期スイッチ52の同期制御は、自立運転スイッチ24への制御信号の配線を同期スイッチ52に分岐させることによりハードウェア的に実現される。また、自立運転スイッチ24及び同期スイッチ52の同期制御は、制御部25によりソフトウェア的に実現することも可能である。
図3は、電流センサ40と系統及び擬似電流出力装置50との接続を示す図である。リング状の電流センサ40は、中央部を系統からの系統電力線60が貫き、擬似電流出力装置50からの擬似出力配線61が所定のターン数だけ巻回される。この擬似出力配線61を電流センサ40に多く巻きつけるほど、微小な擬似電流で、順潮流方向のより大きな電流を検出することができる。電流センサ40におけるターン数は、例えば10ターンとすることができる。
ここで、擬似電流値の大きさについて説明する。本実施形態の電力制御システム100における発電装置33には、例えば定格電力値が700Wの燃料電池を用いることができる。そして、発電装置33は、例えば順潮流方向の電力の制御目標値を35Wとして、電流センサ40において35Wよりも大きい順潮流を検出できれば発電を開始するように構成することができる。ここでは、先述の2値の擬似電流値のうち、小さい方の擬似電流値が、35Wよりも大きい50W相当の順潮流となるように擬似電流値の設定をおこなう。
電流センサ40を貫通する電力線は交流200Vであるため、50W相当の順潮流が流れたときに電流センサ40を貫通する電流は、50/200=0.25[A]である。一方、先述の擬似出力配線61を流れる2値の擬似電流値のうち、小さい方の擬似電流値は0.025[A]である。そこで、電流センサ40に対して0.25/0.025=10[ターン]だけ擬似出力配線61を巻きつけることにより、低い方の擬似電流を選択した場合に、50W相当の擬似電流を流すことができる。
ところが、電流センサ40において何W相当以上の順潮流を検出した場合に発電装置33に発電を開始させるかは、発電装置33の構成次第という側面がある。従って、50W相当の順潮流検出では発電装置33が発電を開始しない場合に、制御部25は、第2擬似電流制御スイッチ54をオフ、第1擬似電流制御スイッチ53をオンとして、擬似電流を2倍の100W相当に増加させることができる。
上述の構成により、自立運転時において、第1擬似電流制御スイッチ53又は第2擬似電流制御スイッチ54のどちらか一方のみをオンすることにより、35W相当以上の所定の擬似電流を電流センサ40に流すことができる。これにより発電装置33は、発電を開始し、電流センサ40が制御目標値である35W相当の電流を検出するように動作する。すなわち、汎用の発電装置33である燃料電池は、順潮流を維持しつつなるべく系統からの供給電力を減らし、発電装置33自身の発電で負荷32への供給をまかなうように動作する。ところが自立運転時において電流センサ40に流れるのは擬似電流のみであり、発電装置33は、いくら発電電力を増加させても電流センサ40における検出電流は減少しない。この結果、発電装置33は、自身で発電可能な最大電力である700Wでの定格運転をおこなうことになる。
なお、本実施形態において決定した50W相当及び100W相当の擬似電流は、あくまで一実施形態に過ぎず、他の擬似電流値を選択可能である。また、これらの擬似電流値を実現するための擬似電流負荷51及び擬似出力配線61のターン数についてもさまざまな選択が可能である。例えば、擬似電流負荷51を2倍の8.0×10[Ω]として擬似出力配線61に流れる電流を半分にすると共に、擬似出力配線61のターン数を2倍の20ターンとして、同じ50W相当及び100W相当の擬似電流を確保するように構成してもよい。
これ以降、本実施形態に係る電力制御システム100における制御例を図面により詳述する。
(連系運転時の制御例)
図4は、連系運転時の電力制御システム100の制御例を示す図である。この場合、パワーコンディショナ20の各スイッチは、連系運転スイッチ22、23がオン、自立運転スイッチ24がオフに制御される。また、擬似電流出力装置50の各スイッチは、同期スイッチ52、第1擬似電流制御スイッチ53及び第2擬似電流制御スイッチ54は、いずれもオフに制御される。
連系運転時には、太線矢印で示すように、系統より交流100V(あるいは200V)が供給されて、負荷32に給電される。また、パワーコンディショナ20は、蓄電池12の充電が完了していない場合、系統からの交流電力を直流電力に変換して蓄電池12を充電する。また、パワーコンディショナ20は、太陽電池11の発電電力を交流電力に変換して系統に逆潮流したり、余剰電力を売電したりすることができる。また、パワーコンディショナ20は、系統からの電力及び分散電源(太陽電池11、蓄電池12)の電力を擬似電流出力装置50に出力可能な構成を有するが、連系運転時には同期スイッチ52はオフであるため、電流センサ40への擬似電流の供給が行われない。電流センサ40には、系統から順潮流(買電方向の電流)が流れるため、発電装置33は発電を行い、太線矢印で示すように分電盤31を経て負荷32に電力を供給する。
次に、図5乃至図8により自立運転時の電力制御システム100の制御例を説明する。
(自立運転時の初期設定)
先述のように、発電装置33が発電を開始するためにどの程度の順潮流電力の検出が必要であるかは、発電装置33の構成に依存する。そこで、本実施形態では、事前に発電装置33を試験的に動作させて、大小どちらの擬似電流を使用するかを決定し、初期設定をおこなうことができる。
図5は、自立運転時における擬似電流の初期設定をおこなうための制御フローを示す。まず、パワーコンディショナ20は、第2擬似電流制御スイッチ54をオン、第1擬似電流制御スイッチ53をオフとして、擬似電流出力装置50に交流100Vが供給されるように制御をおこなう(ステップS501)。なお、自立運転時には、自立運転スイッチ24と連動して同期スイッチ52がオンとなっているため、第2擬似電流制御スイッチ54がオンされると同時に、擬似出力配線61には擬似電流が流れる。
次に、パワーコンディショナ20は、発電装置33が発電を開始したか否かを判定する(ステップS502)。この発電動作を開始したか否かの判定は、例えば、発電装置33としての燃料電池に供給されるガス流量の計測、発電装置33が出力するステータス信号、又は発電装置33が出力する電流の流れる向き及び大きさ等によりおこなうことができる。
パワーコンディショナ20は、ステップS502において、発電装置33が発電を開始したと判定すると、交流100Vを擬似電流出力装置50に供給する電源として選定する(ステップS503)。すなわち、パワーコンディショナ20は、第2擬似電流制御スイッチ54をオンし、第1擬似電流制御スイッチ53をオフしている状態を保存する。
一方、パワーコンディショナ20は、ステップS502において、発電装置33が発電を開始していないと判定すると、交流200Vを擬似電流出力装置50に供給する電源として選定する(ステップS504)。すなわち、パワーコンディショナ20は、第2擬似電流制御スイッチ54をオフし、第1擬似電流制御スイッチ53をオンする状態を保存する。以上により、パワーコンディショナ20は、自立運転時における擬似電流の初期設定を終了する。
なお、図5の初期設定により選定した供給電源を、以降の全ての擬似電流印加時に使用してもよいし、以降の制御フローにおいて適宜選定を見直すように構成してもよい。
(自立運転時の発電動作)
次に、自立運転時における発電装置33の発電動作の一例を説明する。図6は、自立運転時において、発電装置33が発電動作をおこなうための制御フローを示す。なお、この制御フローの開始時において、蓄電池12の充電は完了していないものとする。
まず、パワーコンディショナ20は、第2擬似電流制御スイッチ54をオフ、第1擬似電流制御スイッチ53をオンとして、擬似電流出力装置50に交流200Vが供給されるように制御をおこなう(ステップS601)。なお、自立運転時には、自立運転スイッチ24と連動して同期スイッチ52がオンとなっているため、第1擬似電流制御スイッチ53がオンされると同時に、擬似出力配線61に擬似電流が流れ、発電装置33は発電を開始する。
次に、パワーコンディショナ20は、所定の一定時間が経過するまで同じ状態を維持して、発電装置33に発電動作を継続させる(ステップS602)。汎用の発電装置の中には、発電開始から定格発電に至るまでの所定時間は、より大きな順潮流を検出させるタイプの装置が存在する。ステップS602は、そのような発電装置を接続した場合においても、擬似電流によって発電装置に継続して発電させるための制御ステップである。
パワーコンディショナ20は、ステップS602により一定時間が経過すると、第2擬似電流制御スイッチ54をオン、第1擬似電流制御スイッチ53をオフとして、擬似電流出力装置50に交流100Vが供給されるように制御をおこなう(ステップS603)。発電装置33が発電を開始してから所定時間経過後は、検出すべき順潮流が少なくなることを前提とした制御ステップであり、このステップS603により、擬似電流負荷51における不必要な消費電力を抑えることができる。
ステップS603により、擬似電流が小さくなるように設定した後、パワーコンディショナ20は、蓄電池12が満充電状態にあるか否かを判定する(ステップS604)。そして、満充電であると判定した場合には、パワーコンディショナ20は、第2擬似電流制御スイッチ54をオフにして、擬似電流をオフさせる(ステップS605)。
ステップS605における擬似電流のオフにより、発電装置33は発電を停止し、本制御フローは終了する。
なお、図6における発電時の制御フローは、図5の初期設定時の制御フローとは独立したものとして説明したが、図5の制御フローと図6の制御フローを一連のものとして動作させてもよい。
すなわち、図5における初期設定のステップS503において、交流100Vを擬似電流出力装置50に供給する電源として選定した場合には、図6の制御フローのステップS601において、擬似電流出力装置50に交流200Vが供給されるように制御をおこなう代わりに、当初から交流100Vが供給されるように制御をおこなってもよい。
また、図5における初期設定のステップS504において、交流200Vを擬似電流出力装置50に供給する電源として選定した場合には、図6の制御フローのステップS603において、擬似電流出力装置50に交流100Vが供給されるように設定変更する代わりに、継続して交流200Vが供給されるように制御をおこなってもよい。
また、図6のステップS602において、所定の一定時間が経過するまで擬似電流が大きい状態を維持して、発電装置33に発電動作を継続させるように構成したが、発電装置33の状態又は動作履歴等を考慮して、この一定時間を適宜見直すように構成してもよい。また、一定時間経過させる代わりに、発電装置33における発電電力が所定の電力に達した後に、擬似電流を低い値に設定するように構成してもよい。
図7は、自立運転時に発電装置33が発電をおこなっている場合の電力制御システム100の動作状態を示したものである。パワーコンディショナ20の各スイッチは、連系運転スイッチ22、23がオフ、自立運転スイッチ24がオンに制御されている。また、擬似電流出力装置50の各スイッチは、同期スイッチ52はオンに制御される。第1擬似電流制御スイッチ53及び第2擬似電流制御スイッチ54はいずれか一方のみがオンとなるように制御される。図7は、ステップ603等において、擬似電流が小さく設定されている場合の制御例を示しており、第1擬似電流制御スイッチ53がオフ、第2擬似電流制御スイッチ54がオンに制御される。
図7に示す通り、自立運転時に発電装置33が発電を行う場合、発電装置33により擬似電流出力装置50に電力が供給される。そして、擬似電流出力装置50に供給された電力の一部は擬似電流として電流センサ40に供給される。このとき、電流センサ40は順潮流(買電方向の電流)を検出するため、発電装置33は定格運転での発電を実行する。分電盤31は、発電装置33が発電した電力を負荷32に供給するとともに、負荷32の消費電力を上回る余剰電力については、パワーコンディショナ20に供給する。余剰電力は、パワーコンディショナ20において、自立運転スイッチ24を経てインバータ21により直流電力に変換され、蓄電池12へと給電される。
なお、自立運転時に発電装置33が発電を行う場合、発電装置33から擬似電流出力装置50に電力供給する代わりに、太陽電池11又は蓄電池12から擬似電流出力装置50に電力供給をおこなってもよい。
図8は、図6のステップS605において、蓄電池12への充電が完了して擬似電流をオフにした後の電力制御システム100の動作状態を示す。擬似電流がオフされることにより、発電装置33は発電を停止する。そして、発電装置33に代わって、蓄電池12が放電を開始し、放電された電力がインバータ21により交流電力に変換され、自立運転スイッチ24及び分電盤31を経て負荷32へと給電される。なお、蓄電池12から負荷32に電力が供給される代わりに、太陽電池11から負荷32に電力供給されるように構成してもよい。
図8に示す動作により蓄電池12から負荷32へと電力が給電され、蓄電池12における充電量がある所定の閾値を下回った場合には、再度擬似電流がオンされ、発電装置33は発電を再開する。
このように、本実施形態によれば、パワーコンディショナ20は、発電装置33と他の分散電源(太陽電池11、蓄電池12)とを系統から解列し、自立運転スイッチ24をオンした状態で、発電装置33又は他の分散電源からの電力を供給可能な擬似電流出力装置50を有し、擬似電流出力装置50からの出力により、電流センサ40に対して順潮流と同方向の電流である擬似電流を供給可能である。これにより、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理することが可能となる。より詳しくは、自立運転時に、電流センサ40に擬似電流を流すことによって、発電装置33に発電させることが可能となる。また、電流センサ40への擬似電流を利用して発電装置33の発電を制御するため、発電装置33自体に特別な変更を加える必要がなく、汎用の燃料電池システム及びガス発電システムが流用できるという利点がある。
また、本実施形態によれば、同期スイッチ52は、系統との解列/並列の切り替えと切り替えタイミングが同期するスイッチであって、解列時に擬似電流を流し、並列時に擬似電流を流さない。これにより、系統と解列している自立運転時に電流センサ40に擬似電流が流れる一方、系統と並列している連系運転時に電流センサ40に擬似電流が流れることはなく、誤って発電装置33からの逆潮流が発生することはない。
また、本実施形態によれば、自立運転スイッチ24は、連系運転時にオフになり分散電源による自立運転時にオンになり、発電装置33と他の分散電源(太陽電池11、蓄電池12)との間に配される。これにより、自立運転時に、自立運転スイッチ24を通じて、発電装置33が発電する電力を他の分散電源側に供給することが可能となる。
また、蓄電池12は、自立運転スイッチ24がオンされているときに発電装置33からの電力を充電可能である。これにより、自立運転時に、発電装置33が発電する電力であって、例えば、負荷32の消費電力を上回る余剰電力を蓄電池12に蓄電することが可能となる。
本実施形態によれば、擬似電流出力装置50に供給される電圧を切り替えることができる。この構成により擬似電流の大きさを切り替えることが可能となるため、順潮流の検出が十分におこなわれないことに起因して発電装置33による発電がおこなわれないという事態を回避することができる。
また、本実施形態によれば、発電装置33又は他の分散電源の単相3線の電力線から得られる交流200V及び交流100Vを擬似電流出力装置50に供給する。この構成により、新たな電源を用いることなく、簡易な構成で擬似電流の切り替えが可能となる。
また、本実施形態によれば、発電装置33が発電を開始しない場合に交流200Vを選択して擬似電流を増加させる。この構成により、必要なときにのみ擬似電流を増加させるので、擬似電流負荷51における消費電力を抑えることができる。
本発明を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本発明の範囲に含まれることに留意されたい。例えば、各部材、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
11 太陽電池
12 蓄電池
20 パワーコンディショナ(電力制御装置)
21 インバータ
22、23 連系運転スイッチ
24 自立運転スイッチ
25 制御部
31 分電盤
32 負荷
33 発電装置
40 電流センサ
50 擬似電流出力装置
51 擬似電流負荷
52 同期スイッチ
53 第1擬似電流制御スイッチ
54 第2擬似電流制御スイッチ
60 系統電力線
61 擬似出力配線
100 電力制御システム

Claims (8)

  1. 電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御装置と、
    前記発電装置又は前記他の分散電源の少なくとも一方からの出力により、前記電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似電流出力装置と
    を備え、
    前記出力は複数の異なる電圧を有し、前記擬似電流出力装置への供給電源を前記異なる電圧の中から選択可能としたことを特徴とする電力制御システム。
  2. 前記擬似電流出力装置は、系統から解列した自立運転時に前記擬似電流を出力可能である、請求項1に記載の電力制御システム。
  3. 前記異なる電圧は単相3線の交流100V及び交流200Vを含むことを特徴とする請求項1又は2に記載の電力制御システム。
  4. 前記電力制御装置は、前記異なる電圧の選択制御をおこなう制御部を備える、請求項1から3のいずれか一項に記載の電力制御システム。
  5. 前記制御部は、前記発電装置が発電出来ない場合に、前記異なる電圧の、より高い電圧を選択する、請求項4に記載の電力制御システム。
  6. 前記他の分散電源は蓄電池を含み、前記制御部は、前記蓄電池の充電状態に応じて前記擬似電流のオン/オフ制御をおこなう、請求項4または5に記載の電力制御システム。
  7. 電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御システムの制御方法であって、
    前記発電装置又は前記他の分散電源の少なくとも一方からの出力であって複数の異なる電圧を有する該出力から、擬似電流への供給電源となる一の電圧を選択する電圧選択ステップと、
    前記電流センサに対して順潮流と同方向の電流である前記擬似電流を供給する擬似電流供給ステップを含むことを特徴とする電力制御システムの制御方法。
  8. 電流センサが順潮流を検出する間発電を行う発電装置と他の分散電源との制御を行う電力制御装置であって、
    前記発電装置又は前記他の分散電源の少なくとも一方からの出力であって複数の異なる電圧を有する該出力から、前記電流センサに対して供給される順潮流と同方向の電流である擬似電流への供給電源となる、一の電圧を選択する制御部を備えることを特徴とする電力制御装置。
JP2014086762A 2014-04-18 2014-04-18 電力制御システム、電力制御システムの制御方法、及び電力制御装置 Active JP6199794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086762A JP6199794B2 (ja) 2014-04-18 2014-04-18 電力制御システム、電力制御システムの制御方法、及び電力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086762A JP6199794B2 (ja) 2014-04-18 2014-04-18 電力制御システム、電力制御システムの制御方法、及び電力制御装置

Publications (2)

Publication Number Publication Date
JP2015208091A JP2015208091A (ja) 2015-11-19
JP6199794B2 true JP6199794B2 (ja) 2017-09-20

Family

ID=54604522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086762A Active JP6199794B2 (ja) 2014-04-18 2014-04-18 電力制御システム、電力制御システムの制御方法、及び電力制御装置

Country Status (1)

Country Link
JP (1) JP6199794B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268973B2 (ja) * 2010-03-08 2013-08-21 株式会社正興電機製作所 電力供給システム、電力供給方法及び制御装置
JP5878393B2 (ja) * 2012-02-17 2016-03-08 大和ハウス工業株式会社 電力供給システム

Also Published As

Publication number Publication date
JP2015208091A (ja) 2015-11-19

Similar Documents

Publication Publication Date Title
JP6480096B2 (ja) 電力制御システム、電力制御装置、電力制御システムの制御方法
JP6227885B2 (ja) 電力制御システム、電力制御装置、電力制御システムの制御方法
JP5475387B2 (ja) 電力供給システムの電源最適化装置
JP2016092850A (ja) 電力供給システムの制御方法、電力供給機器及び電力供給システム
JP6204259B2 (ja) 電力制御システム、電力制御装置、および電力制御方法
JP6216066B2 (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP6475945B2 (ja) 電力供給機器、電力供給方法、及び電力供給システム
JP6199804B2 (ja) 電力制御システム、電力制御システムの制御方法、及び電力制御装置
JP6582113B2 (ja) 電力制御装置、電力制御システムおよび電力制御システムの制御方法
JP6704479B2 (ja) 電力供給システム、電力供給機器及び電力供給システムの制御方法
JP6208335B2 (ja) 電力制御装置、電力制御方法及び電力制御システム
JP6694930B2 (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP6199794B2 (ja) 電力制御システム、電力制御システムの制御方法、及び電力制御装置
JP6410567B2 (ja) 電力供給システム、起動制御装置及び電力供給システムの制御方法
JP2016086594A (ja) 電力供給システム、電力供給機器及び電力供給システムの制御方法
JP6475286B2 (ja) 電力制御装置、電力制御システムおよび電力制御システムの制御方法
JP2016025797A (ja) 電力制御装置及び蓄電装置
JP6258774B2 (ja) 電力制御システム、電力制御装置、および電力制御システムの制御方法
WO2017073076A1 (ja) 電力制御システム及び電力制御システムの制御方法
JP6208617B2 (ja) 電力制御システム、電力制御装置、および電力制御システムの制御方法
JP2017050931A (ja) 制御装置及び分散電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6199794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150