JP6694930B2 - 電力制御システムの制御方法、電力制御システム、及び電力制御装置 - Google Patents

電力制御システムの制御方法、電力制御システム、及び電力制御装置 Download PDF

Info

Publication number
JP6694930B2
JP6694930B2 JP2018189556A JP2018189556A JP6694930B2 JP 6694930 B2 JP6694930 B2 JP 6694930B2 JP 2018189556 A JP2018189556 A JP 2018189556A JP 2018189556 A JP2018189556 A JP 2018189556A JP 6694930 B2 JP6694930 B2 JP 6694930B2
Authority
JP
Japan
Prior art keywords
power
current
load
value
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018189556A
Other languages
English (en)
Other versions
JP2018207786A (ja
Inventor
尚伸 西海
尚伸 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2018189556A priority Critical patent/JP6694930B2/ja
Publication of JP2018207786A publication Critical patent/JP2018207786A/ja
Application granted granted Critical
Publication of JP6694930B2 publication Critical patent/JP6694930B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電力制御システムの制御方法、電力制御システム、及び電力制御装置に関するものである。
太陽光パネル等の発電設備を備える発電システムの発電パワーコンディショナとして、商用電源系統(以下、適宜、系統と略記する)に連系して交流電力を出力する系統連系運転と、系統と関わりなく交流電力を出力する自立運転とを可能としたものが知られている(例えば、特許文献1参照)。
また、系統電力によって充電される蓄電池等の蓄電設備を備える蓄電システムの蓄電パワーコンディショナとして、上記の発電パワーコンディショナと同様に、系統に連系して交流電力を出力する系統連系運転と、系統と関わりなく交流電力を出力する自立運転とを可能としたものが知られている(例えば、特許文献2参照)
特開2007−049770号公報 特開2008−253033号公報
ところで、電力制御システムにおいて、太陽電池、蓄電池、燃料電池、ガス発電機などの複数の分散電源を一元的に管理・運用することが求められている。特に、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理可能なシステムを構築することが求められる。
従って、上記のような課題に鑑みてなされた本発明の目的は、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理可能な電力制御システムの制御方法、電力制御システム、及び電力制御装置を提供することにある。
上述した諸課題を解決すべく、本発明に係る電力制御システムの制御方法は、第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置と、負荷に流れる電流を検出する第2電流センサとを備える電力制御システムの制御方法であって、前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、前記第2電流センサは前記電力制御装置と前記負荷との間に配置され、前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部と接続され、前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出する第1ステップと、前記第1ステップの後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として検出する第2ステップと、前記第2順潮流電流値を前記閾値として記憶する第3ステップとを含むことを特徴とする。
また、前記第2ステップにおける前記第2順潮流電流値を複数回測定し、それらの平均値に基づいて、前記発電装置の発電電力を設定することが好ましい。
また、前記第2順潮流電流値は、前記発電装置が前記負荷に追従したときに検出した電流値であることが好ましい。
上述した諸課題を解決すべく、本発明に係る電力制御システムは、第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置と、負荷に流れる電流を検出する第2電流センサとを備える電力制御システムであって、前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、前記第2電流センサは前記電力制御装置と前記負荷との間に配置され、前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部と接続され、前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、前記電力制御装置は、制御部と記憶部とを備え、前記制御部は、前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出し、第1順潮流電流値の検出の後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として更に検出し、前記第2順潮流電流値を前記閾値として前記記憶部に記憶することを特徴とする。
上述した諸課題を解決すべく、本発明に係る電力制御装置は、第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置であって、前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、負荷に流れる電流を検出する第2電流センサが前記電力制御装置と負荷との間に配置され、前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部に接続され、前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、前記電力制御装置は、制御部と記憶部とを備え、前記制御部は、前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出し、第1順潮流電流値の検出の後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として更に検出し、前記第2順潮流電流値を前記閾値として前記記憶部に記憶することを特徴とする。
本発明に係る電力制御システムの制御方法、電力制御システム、及び電力制御装置によれば、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理することが可能となる。
本発明の一実施形態に係る電力制御システムのブロック図である。 本発明の一実施形態に係る電力制御システムにおける、擬似出力部に関する配線を示す図である。 本発明の一実施形態に係る電力制御システムの連系運転時の制御例を示す図である。 擬似電流決定モードにおける制御フローを示す図である。 負荷に流れる電流が増加した時の、パワーコンディショナ及び発電装置からの供給電流の変化を示す図である。 本発明の一実施形態に係る電力制御システムの自立運転時(放電時)の制御例を示す図である。 本発明の一実施形態に係る電力制御システムの自立運転時(充電時)の制御例を示す図である。
以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。
(実施の形態)
まず、本発明の一実施形態に係る電力制御システムについて説明する。本実施形態に係る電力制御システム100は、系統(商用電源系統)から供給される電力の他に、売電可能な電力を供給する分散電源及び/又は売電不可能な電力を供給する分散電源を接続して用いる。売電可能な電力を供給する分散電源は、例えば太陽光発電などによって電力を供給するシステムである。一方売電不可能な電力を供給する分散電源は、例えば電力を充放電することができる蓄電池システム、SOFC(Solid Oxide Fuel Cell)などの燃料電池を含む燃料電池システム、およびガス燃料により発電するガス発電機システムなどである。本実施の形態においては、売電可能な電力を供給する分散電源として太陽電池、及び売電不可能な電力を供給する分散電源として蓄電池と、燃料電池又はガス発電機である発電装置とを備える例を示す。
図1は、本発明の一実施形態に係る電力制御システム100の概略構成を示すブロック図である。本実施形態に係る電力制御システム100は、パワーコンディショナ20(電力制御装置)と、第1電流センサ40と、擬似出力部50と、発電装置33とを備える。また、電力制御システム100と接続して使用される、太陽電池11、蓄電池12、分電盤31、負荷32、第2電流センサ70及び第3電流センサ71を図1にあわせて示す。ここで、発電装置33は、燃料電池又はガス発電機により構成されるものである。電力制御システム100は、通常は系統との連系運転を行い、系統から供給される電力と、各分散電源(太陽電池11、蓄電池12、発電装置33)からの電力とを負荷32に供給する。また、電力制御システム100は、停電時など系統からの電力供給がない場合は自立運転を行い、各分散電源(太陽電池11、蓄電池12、発電装置33)からの電力を各負荷(負荷32、擬似電流負荷51)に供給する。なお、電力制御システム100が自立運転を行う場合には、各分散電源(太陽電池11、蓄電池12、発電装置33)は系統から解列した状態であり、電力制御システム100が連系運転を行う場合には、各分散電源(太陽電池11、蓄電池12、発電装置33)は系統と並列した状態となる。
図1において、各機能ブロックを結ぶ実線は電力の流れる配線を表し、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを表す。当該破線が示す通信は有線通信としてもよいし、無線通信としてもよい。制御信号および情報の通信には、各階層含め、様々な方式を採用可能である。例えば、ZigBee(登録商標)などの近距離通信方式による通信を採用することができる。また、赤外線通信、電力線搬送通信(PLC:Power Line Communication)など、様々な伝送メディアを使用することができる。またそれぞれの通信に適した物理層を含む下位の層の上で、各種プロトコル、例えばZigBee SEP2.0(Smart Energy Profile2.0)、ECHONET Lite(登録商標)などのような論理層だけ規定される通信プロトコルを動作させてもよい。
太陽電池11は、太陽光のエネルギーを直流の電力に変換するものである。太陽電池11は、例えば光電変換セルを有する発電部がマトリクス状に接続され、所定の短絡電流(たとえば10A)を出力するように構成される。太陽電池11は、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、又はCIGS等薄膜系太陽電池等、光電変換可能なものであればその種類は制限されない。
蓄電池12は、リチウムイオン電池やニッケル水素電池等の蓄電池から構成される。蓄電池12は、充電された電力を放電することにより、電力を供給可能である。また、蓄電池12は、系統、太陽電池11から供給される電力に加え、後述の通り、発電装置33から供給される電力を充電可能である。
パワーコンディショナ20(電力制御装置)は、太陽電池11および蓄電池12から供給される直流の電力と、系統および発電装置33から供給される交流の電力との変換を行うとともに、連系運転及び自立運転の切り替え制御を行うものである。パワーコンディショナ20は、DC/DCコンバータ13,14と、インバータ21と、連系運転スイッチ22、23と、自立運転スイッチ24と、パワーコンディショナ20全体を制御する制御部25と、記憶部26とを備える。パワーコンディショナ20は、太陽電池11及び蓄電池12からの電力を直流のまま接続して電力制御を行う、いわゆるマルチDCリンクシステムを構成する。なお、連系運転スイッチ23は、パワーコンディショナ20外に出すよう構成しても良い。
DC/DCコンバータ13,14は、それぞれ太陽電池11及び蓄電池12からの直流電力を所定の電圧まで昇圧又は降圧する。DC/DCコンバータ13,14における昇圧比は、あらかじめ設定された固定値を用いてもよいし、制御部25により適宜制御を行っても良い。DC/DCコンバータ13は、太陽電池11からの発電電力に対してMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、且つ所定の電圧まで昇圧又は降圧を行う、太陽電池発電に適したDC/DCコンバータである。なお、本実施形態では、太陽電池11及び蓄電池12からの直流電力はDCリンクされているので、同一の電圧まで昇圧又は降圧する必要がある。また、DC/DCコンバータ14は双方向DCコンバータであり、系統、発電装置33及び太陽電池11からの電力を電圧変換して蓄電池12に充電することができる。
インバータ21は、双方向インバータであって、太陽電池11および蓄電池12から供給される直流の電力を交流の電力に変換し、また、系統および発電装置33から供給される交流の電力を直流の電力に変換する。なお、パワーコンディショナ20は、インバータ21が出力する電流を検出する機能を有する。
連系運転スイッチ22、23、自立運転スイッチ24は、それぞれリレー、トランジスタなどにより構成され、オン/オフ制御される。図示の通り、自立運転スイッチ24は、発電装置33と蓄電池12との間に配される。連系運転スイッチ22、23と自立運転スイッチ24とは、同時にオンとならないように、双方がオフの状態を経由して切り替えられる。より詳しくは、自立運転から連系運転へ切り替える際は、自立運転スイッチ24をオフ状態とした後に、連系運転スイッチ22、23をオン状態へと制御する。また、連系運転から自立運転へ切り替える際は、連系運転スイッチ22、23をオフ状態とした後に、自立運転スイッチ24をオン状態へと制御する。連系運転スイッチ22、23および自立運転スイッチ24の上記制御は、例えば、制御部25によりソフトウェア的に実現することが可能である。ただし、上記制御の例外として、各分散電源からの電力供給がオフの状態においては、連系運転スイッチ23のみをオンとして、連系運転スイッチ22及び自立運転スイッチ24をいずれもオフとすることにより系統から分電盤31への電力供給のみをおこなう。
制御部25は、例えばマイクロコンピュータで構成され、系統電圧の上昇や停電等の状態等に基づいて、インバータ21、連系運転スイッチ22、23、自立運転スイッチ24等の各部の動作を制御する。制御部25は、連系運転時には、連系運転スイッチ22、23をオン、自立運転スイッチ24をオフに切り替える。また、制御部25は、自立運転時には、連系運転スイッチ22、23をオフ、自立運転スイッチ24をオンに切り替える。
記憶部26は、制御部25が実行する各種プログラムの他、後述するように各処理における電流検出結果等を記憶する役割を果たす。
分電盤31は、連系運転時に系統より供給される電力を複数の支幹に分岐させて負荷32に分配する。また、分電盤31は、複数の分散電源(太陽電池11、蓄電池12、発電装置33)から供給される電力を、複数の支幹に分岐させて負荷32に分配する。ここで、負荷32とは、電力を消費する電力負荷であり、たとえば家庭内で使用されるエアコン、電子レンジ、テレビ等の各種電器製品や、商工業施設で使用される空調機や照明器具などの機械、照明設備等である。
発電装置33は、燃料電池又はガス発電機により構成される。燃料電池は、水素を用いて空気中の酸素との化学反応により直流の電力を発電するセルと、発電された直流電力を100Vあるいは200Vの交流電力に変換するインバータと、その他補機類とを備える。ここで、発電装置33としての燃料電池は、パワーコンディショナ20を介さずとも負荷32に対する交流電力の供給を可能とするシステムであり、必ずしもパワーコンディショナ20との接続を想定して設計されたものではなく、汎用性を有するシステムであってよい。また、ガス発電機は、所定のガスなどを燃料とするガスエンジンで発電するものである。
発電装置33は、対応する第1電流センサ40が順潮流(買電方向の電流)を検出する間発電を行うものであり、発電時には負荷32の消費電力に追従する負荷追従運転又は所定の定格電力値による定格運転を行う。負荷追従運転時の追従範囲は、例えば200〜700Wであり、定格運転時の定格電力値は、例えば700Wである。なお、発電装置33は、連系運転時は負荷32の消費電力に追従する負荷追従運転を行い、自立運転時に、負荷追従運転又は定格電力値による定格運転を行うものとしてもよい。
第1電流センサ40は、系統と発電装置33との間を流れる電流を検出するものである。日本では、発電装置33が発電する電力は売電不可能と規定されているため、第1電流センサ40が系統側への逆潮流(売電方向の電流)を検出した場合、発電装置33は発電を停止する。第1電流センサ40が所定の閾値以上の順潮流を検出する間、発電装置33は負荷32に自身から電力を供給できるものとして負荷追従運転又は定格運転での発電を実行する。なお、第1電流センサ40は、系統と発電装置33との間を流れる電流および発電装置33と蓄電池12との間を流れる電流を検出可能なように、図1において、自立運転スイッチ24と、分電盤31との間に配置している。
なお、本実施形態の第1電流センサ40はリング状の形状を有し、中央を系統および分散電源からの電力線が貫き、擬似出力部50からの擬似出力線が所定のターン数だけ巻回される。この擬似出力線を第1電流センサ40に多く巻きつけるほど、微小な電流で、順潮流方向のより大きな擬似電流を検出することができる。
第2電流センサ70は、パワーコンディショナ20又は発電装置33から負荷32へと流れる電流を検出するために設けられたセンサであり、本実施形態では、分電盤31と負荷32との間に配置される。
第3電流センサ71は、系統から負荷32へと流れる電流を検出するために設けられたセンサであり、本実施形態では、系統とパワーコンディショナ20との間に配置される。
ここで、本実施形態における電力制御システム100は、発電装置33と蓄電池12とが系統から解列した状態で、擬似出力部50を通じて第1電流センサ40に擬似的な順潮流と同方向の電流(擬似電流)を流すように制御をおこなう。これにより、発電装置33を定格運転させ、発電装置33が発電する電力を蓄電池12に蓄電することが可能となる。以下、擬似出力部50を通じた擬似電流による蓄電について詳述する。
擬似出力部50は、第1電流センサ40に対して順潮流と同方向の電流である擬似電流を供給可能なものである。擬似出力部50は、パワーコンディショナ20又は発電装置33から電力供給を受ける系であって、擬似電流負荷51と、同期スイッチ52と、擬似電流制御スイッチ53と、トランス60とを備える。図2は、擬似出力部50に関する配線を示す図である。図2において、系統は、200Vの単相3線としている。この場合、擬似出力部50に対しては、電圧線の一方と中性線とがトランス60を介して接続される。図示の通り、擬似出力部50の接続線は、2本の電圧線それぞれに設置された第1電流センサ40を通るように配線される。なお、擬似出力部50は、パワーコンディショナ20と一体的に構成してもよいし、パワーコンディショナ20とは独立した構成としても良い。なお、図2のケースにおいて、トランス60には電圧線の一方と中性線とが接続されているが、電圧線の双方を接続するよう構成してもよい。
擬似電流負荷51は、擬似出力部50内の電流調整のため設けられる負荷である。本実施形態では、擬似電流負荷51には、例えば、制御部25により抵抗値の制御が可能な可変抵抗デバイスを用いることができる。なお、擬似電流負荷51として、擬似出力部50の外部の負荷を用いてもよい。同期スイッチ52は、パワーコンディショナ20又は発電装置33から擬似出力部50に供給された電力の一部を順潮流と同方向の擬似電流として第1電流センサ40に供給するためのものである。擬似電流制御スイッチ53は、擬似電流による不要な発電を防ぐためのものである。同期スイッチ52及び擬似電流制御スイッチ53は、それぞれ独立したリレー、トランジスタなどにより構成され、パワーコンディショナ20の制御部25により、それぞれ独立にオン/オフ制御される。
図1および図2に示すように、擬似電流負荷51と擬似電流制御スイッチ53は直列接続されており、同期スイッチ52及び擬似電流制御スイッチ53の双方がオンされると、擬似電流負荷51に擬似電流が流れる。
トランス60は、パワーコンディショナ20又は発電装置33からの電力を降圧する役割を果たす。本実施形態において、トランス60の巻数比は20であり、パワーコンディショナ20又は発電装置33からの交流100Vの電力を交流5Vに降圧してから擬似電流負荷51に供給する。このようにトランス60で降圧してから擬似電流負荷51に電力供給することにより、擬似電流負荷51における消費電力を低減させることができるため、擬似電流負荷51の小型化が可能となる。またスイッチ52,53にかかる電圧を低く抑えることができるため、スイッチ52,53に対してより安価な製品を使用することができる。また、擬似電流負荷51における消費電力を同一とした場合に、より多くの擬似電流を流すことができる。
同期スイッチ52は、パワーコンディショナ20の自立運転スイッチ24と同期してオン/オフ制御される。すなわち、同期スイッチ52は、自立運転スイッチ24と同様に、連系運転時にはオフとなり、自立運転時にはオンとなる。より詳しくは、同期スイッチ52は、系統との解列/並列の切り替えと切り替えタイミングが同期するスイッチであって、解列時に擬似電流を流し、並列時に擬似電流を流さないように制御される。自立運転スイッチ24及び同期スイッチ52の同期制御は、自立運転スイッチ24への制御信号の配線を同期スイッチ52に分岐させることによりハードウェア的に実現される。なお、自立運転スイッチ24及び同期スイッチ52の同期制御は、制御部25によりソフトウェア的に実現することも可能である。
擬似電流制御スイッチ53は、蓄電池12の充電が完了した場合にオフとなり、充電が完了していない場合にオンとなる。ここで、蓄電池12の充電が完了した場合とは、蓄電池12に所定値以上の電力が充電されている場合を示すものである。なお、制御部25は、蓄電池12との通信によって充電が完了しているか否かを判定するよう構成してもよい。自立運転時に蓄電池12の充電が完了し擬似電流制御スイッチ53がオフになると、第1電流センサ40に擬似電流が流れなくなるため、発電装置33による不要な発電を停止させることができる。また、擬似電流制御スイッチ53は、後述する擬似電流決定モードに移行したときにも、オフに制御される。
ここで、本実施形態における擬似電流値の設定について説明する。本実施形態の電力制御システム100における発電装置33は、例えば定格電力値を700Wとすることができる。ところが、図1および図2において、発電装置33が700Wの電力を出力すると、第1電流センサ40は、出力電力700Wに相当する逆潮流方向の電流を検出することになり、発電装置33は自らの発電を停止してしまう。
そこで、本実施形態においては、パワーコンディショナ20又は発電装置33から擬似出力部50に電力を供給し、第1電流センサ40で検出される逆潮流方向の電流を打ち消すための擬似電流を流すように構成する。例えば、発電装置33が700Wの逆潮流方向の電力を出力している場合において、第1電流センサ40における電流検出が50Wの順潮流検出となるためには、出力電力750W相当の擬似電流が流れるように擬似出力部50を構成する必要がある。
ここでは、第1電流センサ40に出力電力750W相当の擬似電流を発生させる場合を考える。分散電源の出力電圧は交流200Vであり、第1電流センサ40に巻回される擬似出力線のターン数を5とすると、擬似出力部50で生成されるべき擬似電流値Iは次の計算により求められる。
=750/200/5=0.75[A] 式(1)
次に上記Iを生成するための擬似電流負荷51の抵抗値Rの決定方法について説明する。図2に示すように、擬似出力部50に対しては、電圧線の一方と中性線とが接続される。そして、交流100Vの電圧がトランス60において交流5Vに降圧された後に擬似出力部50に対して電力提供される。従って、上記Iを生成するための抵抗値Rは次の計算により求められる。
=5/0.75=6.7[Ω] 式(2)
上記計算により求められた擬似電流値I及び抵抗値Rは一実施形態に過ぎず、擬似出力線のターン数、第1電流センサ40に供給すべき擬似電流値(相当する出力電力値)等に依存して様々なパラメータの選択が可能である。
これ以降、本実施形態に係る電力制御システム100における制御例を図面により詳述する。
(連系運転時の制御)
図3は、連系運転時の電力制御システム100の制御例を示す図である。この場合、パワーコンディショナ20の各スイッチは、連系運転スイッチ22、23がオン、自立運転スイッチ24がオフに制御される。また、擬似出力部50の各スイッチは、同期スイッチ52はオフ、擬似電流制御スイッチ53は蓄電池12の充電量に応じてオン又はオフに制御される。
連系運転時には、太線矢印で示すように、系統より交流100V(あるいは200V)が供給されて、負荷32に給電される。パワーコンディショナ20は、蓄電池12の充電が完了していない場合、系統からの交流電力を直流電力に変換して蓄電池12を充電する。また、パワーコンディショナ20は、太陽電池11の発電電力を交流電力に変換して系統に逆潮流したり、余剰電力を売電したりすることができる。また、パワーコンディショナ20は、系統からの電力及び分散電源(太陽電池11、蓄電池12)の電力を擬似出力部50に出力可能な構成を有するが、連系運転時には同期スイッチ52はオフであるため、第1電流センサ40への擬似電流の供給が行われない。第1電流センサ40には、系統から順潮流(買電方向の電流)が流れるため、発電装置33は負荷追従運転を行い、分電盤31を経て負荷32に電力を供給することができる。
次に、連系運転時における擬似電流決定モードの動作について説明する。先に、第1電流センサ40に50W相当の順潮流方向の電流を流すための擬似電流値について説明した。しかし、第1電流センサ40が何W相当の順潮流を検出した場合に発電装置33が発電を開始するかは、発電装置33の設計、仕様等に依存する。そこで、本実施形態では、実際に発電装置33が発電を開始する擬似電流値を計測により求める手法を採用する。
図4は、連系運転時の擬似電流決定モードにおける制御フローを示す。
図3のような連系運転時において、制御部25は、擬似電流値を決定するための擬似電流決定モードに移行する。まず、制御部25は、第2電流センサ70の出力を監視し、負荷32に流れる電流iloadの増加があったか否かを判定する(ステップS102)。負荷32に流れる電流iloadが増加した場合の電流波形は、例えば図5(a)の時刻tのようになる。制御部25は、負荷32に流れる電流が増加したと判定すると、パワーコンディショナ20の出力電流及び電流センサ71の出力をモニターして、パワーコンディショナ20からの供給電流imdc及び系統からの供給電流igridの増減の監視を行う(ステップS103)。なお、パワーコンディショナ20は、第1電流センサ40の検出電流を直接読み出すことができないため、パワーコンディショナ20の出力電流値に第3電流センサ71の検出電流を加算することにより、第1電流センサ40の検出電流に相当する値を算出している。発電装置33は、第1電流センサ40における検出電流が増加すると、なるべく系統及びパワーコンディショナ20からの電力供給が少なくなるように自らの発電電力を増加させる。しかし、燃料電池等の発電装置33は、負荷32に追従して電流iFCを増加させる際の追従性が十分ではなく、図5(c)に示すように負荷32に流れる電流iloadに対して一定の遅れ時間をもって追従する。一方、系統及びパワーコンディショナ20は、図5(b)に示すように負荷32に流れる電流iloadの増加に瞬時に対応して供給電流を増加させることができる。なお、iload=(imdc+igrid)+iFCの関係を有する。
図5(b)及び(c)に示すように、発電装置33の出力電流iFCが、時刻tにおいて負荷32の電流iloadに追従し始めると、パワーコンディショナ20及び系統からの供給電流(imdc+igrid)は減少し始め、時刻tにおいて所定の定常値に収束する。制御部25は、負荷32の電流iloadが増加する前後における、パワーコンディショナ20及び系統からの供給電流(imdc+igrid)をそれぞれ第1順潮流電流値及び第2順潮流電流値として(図5(b)に示す)記憶部26に記憶する(ステップS104)。
制御部25は、ステップS102からステップS104までの処理をあらかじめ決められた所定回数行う(ステップS101)。その所定回数は例えば10回とすることができる。そして、制御部25は、記憶部26に記憶された所定回数分の第2順潮流電流値から平均値を算出する(ステップS105)。制御部25は、ステップS105で算出した第2順潮流電流値の平均値を順潮流電流値の閾値として決定し(ステップS106)、処理を終了する。すなわち、制御部25は、自立運転時において、ステップS105で算出した第2順潮流電流値の平均値に等しい順潮流電流が第1電流センサ40に流れるように、擬似出力部50における擬似電流負荷51の抵抗値の調整等をおこなう。
このように、ステップS105で算出した第2順潮流電流値の平均値は、発電装置33が発電を開始するのに必要な順潮流電流閾値又はそれを上回る値となるため、以降の動作において第1電流センサ40における検出電流がこの第2順潮流電流値の平均値となるように擬似電流を調整すればよい。なお、本実施形態では、所定回数の第2順潮流電流値の平均値を用いたが、所定回数の第2順潮流電流値の最小値を用いるように構成してもよく、これにより消費電流を更に抑えることが可能となる。なお、制御部25は、上記の擬似電流を流して発電装置33に発電を開始させた後に、発電装置33が所定の出力電力で発電を行うように、あらかじめ決められた電流値だけ擬似電流を更に増加させてもよい。
次に、自立運転時において、ステップS106で決定した順潮流電流が第1電流センサ40に流れるようにするための計算手順について説明する。
ここでは、発電装置33に700Wで発電させ、その内500Wを負荷32にて消費させる場合について説明する。分散電源の出力電圧は交流200Vであるため、発電装置33が発電することにより第1電流センサ40に流れる逆潮流電流Iは下記の数式(3)により求められる。
=(700−500)/200=1.0[A] 式(3)
ステップS106で決定した順潮流電流が0.15[A]であると仮定すると、第1電流センサ40に検出させるべき擬似電流Iは下記の数式(3)により求められる。
=1.0+0.15=1.15[A] 式(4)
第1電流センサ40に巻回される擬似出力線のターン数を5とすると、擬似出力部50で生成されるべき電流Ia1は次の数式(5)により求められる。
a1=1.15/5=0.23[A] 式(5)
先に述べたように擬似出力部50で供給される電圧は5Vに降圧されているので、上記の電流Ia1を生成するために設定されるべき擬似電流負荷51の値Ra1は、以下の数式(6)により求められる。
a1=5/0.23=22[Ω] 式(6)
従って、制御部25は、後述する自立運転時において、上記の擬似電流負荷51の抵抗値Ra1となるように設定を行った後に、擬似電流制御スイッチ53をオンするとよい。これにより第1電流センサ40はステップS106で決定した順潮流電流を検出するため、発電装置33から負荷32に電力供給を行いつつ、蓄電池12への充電を行うことが可能となる。なお、制御部25は、上記制御を開始した後も常に第1電流センサ40における電流出力に相当する電流値をモニターし、所定の順潮流電流からのずれがある場合には、擬似電流負荷51の値を適宜調整することが好ましい。
(自立運転時の制御)
次に、図6により自立運転時の電力制御システム100の制御例を説明する。この場合、パワーコンディショナ20の各スイッチは、連系運転スイッチ22、23がオフ、自立運転スイッチ24がオンに制御される。また、擬似出力部50の各スイッチは、同期スイッチ52はオン、擬似電流制御スイッチ53はオフに制御される。なお、図6において、蓄電池12の充電は完了しているものとする。
図6における太線は、自立運転時の分散電源による電力供給の一例を示す。この例では、パワーコンディショナ20により、自立運転スイッチ24を介して分散電源(太陽電池11、蓄電池12)の電力が負荷32に出力される。また、第1電流センサ40は分散電源からの順潮流方向の電流を検出するため、発電装置33は負荷追従運転を行うことができる。
なお、自立運転時における擬似電流決定モードの動作については、連系運転時とほぼ同一である。より具体的には、自立運転時には系統から電力供給を受けないため、図4のステップS103、S104、S105においてパワーコンディショナ20及び系統からの供給電流を監視し、第2順潮流電流値の平均値を記憶する代わりに、パワーコンディショナ20のみからの供給電流を監視し、第2順潮流電流値の平均値を記憶するように構成すればよい。なお、制御部25は連系運転時及び自立運転時のいずれにおいても、パワーコンディショナ20の出力電流値及び第3電流センサ71の検出電流を用いて供給電流の監視及び第2順潮流電流値の平均値の記憶を行うため、制御部25の実質的な動作において差異は無い。
次に、発電装置33から蓄電池12へ充電を行う場合について説明する。
図7は、自立運転時の擬似電流により発電装置33が発電している場合の制御例を示す図である。図7に示す通り、自立運転時に発電装置33が発電を行う場合、パワーコンディショナ20により擬似出力部50に電力が供給される。そして、擬似出力部50に供給された電力は、トランス60を経由して擬似出力線に流れ、擬似電流として第1電流センサ40により検出される。このとき、第1電流センサ40が順潮流(買電方向の電流)を検出するように擬似出力部50が動作するため、発電装置33は発電を実行する。分電盤31は、発電装置33が発電した電力を負荷32に供給するとともに、負荷32の消費電力を上回る余剰電力については、パワーコンディショナ20に供給する。余剰電力は、パワーコンディショナ20において、自立運転スイッチ24を経てインバータ21により直流電力に変換され、蓄電池12へと給電される。
なお、制御部25は、発電装置33が発電を開始した後も、第1電流センサ40における検出電流に相当する電流を継続して監視して、順潮流電流が常に検出されるように擬似電流負荷51の調整を行うことが好ましい。負荷32における消費電力、又は発電装置33からの発電電力に変動が生じた場合に、第1電流センサ40が逆潮流を検出すると、発電装置33は発電を停止してしまうからである。
なお、本実施形態において、負荷32は、利用者が使用する各種機器等の他、擬似電流を決定するための既知の負荷を有する擬似負荷であってもよい。
また、本実施形態において、負荷32に流れる電流を検出する手段としては、第2電流センサ70単体のみならず、電流センサを内蔵した分電盤等を用いてもよい。
また、本実施形態において、擬似電流の調整は、擬似電流負荷51の抵抗値を調整して行うように構成したが、この態様には限定されない。擬似電流負荷51の抵抗値は固定として、擬似出力部50に供給する電圧を調整可能に構成してもよい。
また、本実施形態において、擬似出力部50への電源供給は、パワーコンディショナ20から行うように構成したが、この態様には限定されない。パワーコンディショナ20と同期が取れた他の電源から擬似出力部50に電力を供給するように構成してもよい。
このように、本実施形態によれば、電力制御システム100は、発電装置33と他の分散電源(太陽電池11、蓄電池12)とを系統から解列した状態で、発電装置33又は他の分散電源からの電力を供給可能な擬似出力部50を有し、擬似出力部50からの出力により、第1電流センサ40に対して順潮流と同方向の電流である擬似電流を供給可能である。これにより、複数の分散電源の間での効率的な運転制御を、分散電源側の汎用性を崩すことなく管理することが可能となる。より詳しくは、自立運転時に、第1電流センサ40に擬似電流を流すことによって、意図的に発電装置33に発電させることが可能となる。また、第1電流センサ40への擬似電流を利用して発電装置33の発電を制御するため、発電装置33自体に特別な変更を加える必要がなく、汎用の燃料電池システム及びガス発電システムが流用できるという利点がある。
また、本実施形態によれば、同期スイッチ52は、系統との解列/並列の切り替えと切り替えタイミングが同期するスイッチであって、解列時に擬似電流を流し、並列時に擬似電流を流さない。これにより、系統と解列している自立運転時に第1電流センサ40に擬似電流が流れる。系統と並列している連系運転時に第1電流センサ40に擬似電流が流れることはなく、誤って発電装置33からの逆潮流が発生することはない。
また、本実施形態によれば、自立運転スイッチ24は、連系運転時にオフになり分散電源による自立運転時にオンになり、発電装置33と他の分散電源(太陽電池11、蓄電池12)との間に配される。これにより、自立運転時に、自立運転スイッチ24を通じて、発電装置33が発電する電力を他の分散電源側に供給することが可能となる。
また、本実施形態によれば、蓄電池12は、自立運転スイッチ24がオンされているときに発電装置33からの電力を充電可能である。これにより、自立運転時に、発電装置33が発電する電力であって、例えば、負荷32の消費電力を上回る余剰電力を蓄電池12に蓄電することが可能となる。
また、本実施形態では、擬似電流決定モードを設け、発電装置33に発電を開始させるのに必要な擬似電流値を測定により決定し、その決定値に調整できるようにした。この構成により、擬似電流を、発電装置33が発電状態を維持するために必要なレベルに抑えることができるため、擬似電流負荷51における不要な電力消費を抑えることができる。
また、本実施形態では、必要な擬似電流値の測定を複数回行い、平均値又は最小値を採用するようにした。この構成により、擬似電流を更に抑えることができ、擬似電流負荷51における不要な電力消費を更に抑えることができる。
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各部材、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段やステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
11 太陽電池
12 蓄電池
13,14 DC/DCコンバータ
20 パワーコンディショナ(電力制御装置)
21 インバータ
22、23 連系運転スイッチ
24 自立運転スイッチ
25 制御部
26 記憶部
31 分電盤
32 負荷
33 発電装置
40 第1電流センサ
50 擬似出力部
51 擬似電流負荷
52 同期スイッチ
53 擬似電流制御スイッチ
60 トランス
70 第2電流センサ
71 第3電流センサ
100 電力制御システム

Claims (5)

  1. 第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置と、負荷に流れる電流を検出する第2電流センサとを備える電力制御システムの制御方法であって、
    前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、
    前記第2電流センサは前記電力制御装置と前記負荷との間に配置され、
    前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部と接続され、
    前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、
    前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、
    前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、
    前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出する第1ステップと、
    前記第1ステップの後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として検出する第2ステップと、
    前記第2順潮流電流値を前記閾値として記憶する第3ステップと
    を含む、電力制御システムの制御方法。
  2. 前記第2ステップにおける前記第2順潮流電流値を複数回測定し、それらの平均値に基づいて、前記発電装置の発電電力を設定する、請求項1に記載の電力制御システムの制御方法。
  3. 前記第2順潮流電流値は、前記発電装置が前記負荷に追従したときに検出した電流値である、請求項1又は2に記載の電力制御システムの制御方法。
  4. 第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置と、負荷に流れる電流を検出する第2電流センサとを備える電力制御システムであって、
    前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、
    前記第2電流センサは前記電力制御装置と前記負荷との間に配置され、
    前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部と接続され、
    前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、
    前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、
    前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、
    前記電力制御装置は、制御部と記憶部とを備え、
    前記制御部は、前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出し、
    第1順潮流電流値の検出の後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として更に検出し、
    前記第2順潮流電流値を前記閾値として前記記憶部に記憶することを特徴とする電力制御システム。
  5. 第1電流センサが閾値以上の順潮流を検出する間、当該第1電流センサにて検出している値に応じた発電を行う発電装置と、該発電装置を含む分散電源の制御を行う電力制御装置であって、
    前記第1電流センサは前記電力制御装置と前記発電装置との間に配置され、
    負荷に流れる電流を検出する第2電流センサが前記電力制御装置と前記負荷との間に配置され、
    前記電力制御装置は、前記第1電流センサに対して順潮流と同方向の電流である擬似電流を供給可能な擬似出力部に接続され、
    前記電力制御装置には、系統及び前記発電装置以外の他の分散電源が並列接続されると共に、1本の出力配線の先に分岐部を介して前記負荷及び前記発電装置が並列接続され、
    前記第1電流センサは前記出力配線に設けられ、前記第2電流センサは前記分岐部と前記負荷の間に設けられ、
    前記擬似電流は、前記発電装置及び前記他の分散電源が系統から解列した状態において、前記第1電流センサに供給するように制御することで前記発電装置を運転させるための電流であり、
    前記電力制御装置は、制御部と記憶部とを備え、
    前記制御部は、前記擬似電流が停止している状態で、系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値を第1順潮流電流値として検出し、
    第1順潮流電流値の検出の後、前記第2電流センサが検出する電流が増加した場合において、前記系統及び前記電力制御装置の少なくともいずれか一方から前記負荷に流れる電流値が増加し、その後定常値になったときの電流値を第2順潮流電流値として更に検出し、
    前記第2順潮流電流値を前記閾値として前記記憶部に記憶することを特徴とする電力制御装置。
JP2018189556A 2014-07-29 2018-10-04 電力制御システムの制御方法、電力制御システム、及び電力制御装置 Active JP6694930B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189556A JP6694930B2 (ja) 2014-07-29 2018-10-04 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154335A JP6416533B2 (ja) 2014-07-29 2014-07-29 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP2018189556A JP6694930B2 (ja) 2014-07-29 2018-10-04 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014154335A Division JP6416533B2 (ja) 2014-07-29 2014-07-29 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Publications (2)

Publication Number Publication Date
JP2018207786A JP2018207786A (ja) 2018-12-27
JP6694930B2 true JP6694930B2 (ja) 2020-05-20

Family

ID=55442480

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014154335A Active JP6416533B2 (ja) 2014-07-29 2014-07-29 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP2018189556A Active JP6694930B2 (ja) 2014-07-29 2018-10-04 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014154335A Active JP6416533B2 (ja) 2014-07-29 2014-07-29 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Country Status (1)

Country Link
JP (2) JP6416533B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416533B2 (ja) * 2014-07-29 2018-10-31 京セラ株式会社 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109498A (ja) * 1984-10-31 1986-05-27 Kawasaki Heavy Ind Ltd エンジン駆動発電機の周波数制御装置
JP3271771B2 (ja) * 1991-07-26 2002-04-08 大阪瓦斯株式会社 内部改質型燃料電池の電源装置
JPH0951638A (ja) * 1995-08-03 1997-02-18 Japan Storage Battery Co Ltd 分散形電源装置
JP3726265B2 (ja) * 2002-12-25 2005-12-14 中国電力株式会社 直流連系による家庭用分散型電源装置及びその制御方法
JP4311969B2 (ja) * 2003-04-23 2009-08-12 日東工業株式会社 分電盤システム
JP2007049770A (ja) * 2005-08-05 2007-02-22 Toshiba Kyaria Kk 電源装置
JP4979435B2 (ja) * 2007-03-30 2012-07-18 新電元工業株式会社 電力貯蔵装置
JP5268973B2 (ja) * 2010-03-08 2013-08-21 株式会社正興電機製作所 電力供給システム、電力供給方法及び制御装置
US8355265B2 (en) * 2010-03-14 2013-01-15 Mechanical Electrical Systems, Inc. DC-to-DC power conversion
JP5592772B2 (ja) * 2010-12-14 2014-09-17 パナソニック株式会社 電力供給制御装置及びそれを用いた電力供給システム
JP2014045527A (ja) * 2010-12-28 2014-03-13 Sanyo Electric Co Ltd 電力制御装置
JP2012249486A (ja) * 2011-05-31 2012-12-13 Noritz Corp 発電システム
JP5914821B2 (ja) * 2011-12-15 2016-05-11 パナソニックIpマネジメント株式会社 電力供給システム
JP6114988B2 (ja) * 2013-02-07 2017-04-19 パナソニックIpマネジメント株式会社 点灯装置および、これを用いた照明器具
JP6416533B2 (ja) * 2014-07-29 2018-10-31 京セラ株式会社 電力制御システムの制御方法、電力制御システム、及び電力制御装置

Also Published As

Publication number Publication date
JP2018207786A (ja) 2018-12-27
JP2016032378A (ja) 2016-03-07
JP6416533B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6227885B2 (ja) 電力制御システム、電力制御装置、電力制御システムの制御方法
JP6496039B2 (ja) 電力制御装置、電力制御装置の制御方法、電力制御システム及び電力制御システムの制御方法
JP6475945B2 (ja) 電力供給機器、電力供給方法、及び電力供給システム
JP6216066B2 (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP2016092850A (ja) 電力供給システムの制御方法、電力供給機器及び電力供給システム
JP6694930B2 (ja) 電力制御システムの制御方法、電力制御システム、及び電力制御装置
JP6204259B2 (ja) 電力制御システム、電力制御装置、および電力制御方法
JP6208335B2 (ja) 電力制御装置、電力制御方法及び電力制御システム
JP6582113B2 (ja) 電力制御装置、電力制御システムおよび電力制御システムの制御方法
JP6704479B2 (ja) 電力供給システム、電力供給機器及び電力供給システムの制御方法
JP6731417B2 (ja) 電力制御システム及び電力制御システムの制御方法
JP2016086594A (ja) 電力供給システム、電力供給機器及び電力供給システムの制御方法
JP6258774B2 (ja) 電力制御システム、電力制御装置、および電力制御システムの制御方法
JP6475286B2 (ja) 電力制御装置、電力制御システムおよび電力制御システムの制御方法
JP6208617B2 (ja) 電力制御システム、電力制御装置、および電力制御システムの制御方法
JP6199794B2 (ja) 電力制御システム、電力制御システムの制御方法、及び電力制御装置
JP6204258B2 (ja) 電力制御システムの制御方法、電力制御装置、および電力制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6694930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150