JP6198137B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP6198137B2
JP6198137B2 JP2013265697A JP2013265697A JP6198137B2 JP 6198137 B2 JP6198137 B2 JP 6198137B2 JP 2013265697 A JP2013265697 A JP 2013265697A JP 2013265697 A JP2013265697 A JP 2013265697A JP 6198137 B2 JP6198137 B2 JP 6198137B2
Authority
JP
Japan
Prior art keywords
layer
crystal
crystal grains
ticn
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265697A
Other languages
Japanese (ja)
Other versions
JP2015120224A (en
Inventor
正樹 奥出
正樹 奥出
健志 山口
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013265697A priority Critical patent/JP6198137B2/en
Priority to CN201410781432.0A priority patent/CN104726848B/en
Publication of JP2015120224A publication Critical patent/JP2015120224A/en
Application granted granted Critical
Publication of JP6198137B2 publication Critical patent/JP6198137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、長期に亘ってすぐれた耐摩耗性を示す表面被覆切削工具(以下、被覆工具という)に関する。この被覆工具では、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的負荷が作用する断続切削条件で行った場合でも、硬質被覆層がすぐれた耐剥離性と耐チッピング性を発揮する。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of time. With this coated tool, even when cutting various steels and cast irons at high speeds and under intermittent cutting conditions where intermittent and impact loads are applied to the cutting edge, the hard coating layer has excellent peeling resistance. And chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide layer (hereinafter, referred to as an Al 2 O 3 layer) having an α-type crystal structure in a state where the upper layer is chemically vapor-deposited;
A coated tool in which the hard coating layer constituted by (a) and (b) is formed by vapor deposition is known.

しかし、前述したような従来の被覆工具は、例えば、各種の鋼や鋳鉄などの連続切削ではすぐれた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題があった。
そこで、被覆層の剥離、チッピングを抑制するために、下部層、上部層に改良を加えた各種の被覆工具が提案されている。
However, the conventional coated tool as described above exhibits excellent wear resistance in continuous cutting of, for example, various steels and cast irons. However, when this is used for high-speed interrupted cutting, There was a problem that peeling and chipping were likely to occur and the tool life was shortened.
Therefore, various types of coating tools have been proposed in which the lower layer and the upper layer are improved in order to suppress peeling and chipping of the coating layer.

例えば、特許文献1には、被覆層が、TiCN層とAl層が順に積層されており、100μm領域で観察した際に、TiCN層は、平均粒子幅が3〜6μmで、各粒子の粒径分布が標準偏差σで平均粒子幅の0.3倍以下のTiCN粒子からなり、Al層は、粒径3〜6μmのAl巨大粒子が10−30面積%と、粒径0.3〜1.5μmのAl微細粒子が70−90面積%とからなることによって、すぐれた耐チッピング性と耐欠損性が得られることが開示されている。 For example, in Patent Literature 1, a TiCN layer and an Al 2 O 3 layer are sequentially laminated in a coating layer, and when observed in a 100 μm 2 region, the TiCN layer has an average particle width of 3 to 6 μm. The particle size distribution is composed of TiCN particles having a standard deviation σ and a mean particle width of 0.3 times or less, and the Al 2 O 3 layer has 10-30 area% of Al 2 O 3 giant particles having a particle size of 3 to 6 μm. In addition, it is disclosed that excellent chipping resistance and chipping resistance can be obtained when Al 2 O 3 fine particles having a particle diameter of 0.3 to 1.5 μm are composed of 70 to 90 area%.

また、特許文献2には、被覆層が、1層または幾層かの耐火物層を含んでなり、少なくとも1層は、(104)方向に集合組織化した密集微細結晶のα型Al層であることにより、すぐれた表面仕上げを示しかつ非常に改良された摩耗性と靭性特性とを示すことが開示されている。 Further, in Patent Document 2, the coating layer includes one or several refractory layers, and at least one layer is a dense microcrystalline α-type Al 2 O textured in the (104) direction. It has been disclosed that the three layers exhibit excellent surface finish and exhibit greatly improved wear and toughness characteristics.

また、特許文献3には、下部層がTi化合物層、上部層がα型Al層からなる硬質被覆層を蒸着形成してなる表面被覆切削工具であって、下部層直上のAl結晶粒の30〜70%は(11−20)配向Al結晶粒からなり、上部層の全Al結晶粒の45%以上は、(0001)配向Al結晶粒からなり、さらに好ましくは、下部層の最表面層は、500nmまでの深さ領域に亘ってのみ0.5〜3原子%の酸素を含有する酸素含有TiCN層からなり、また、下部層最表面層の酸素含有TiCN結晶粒数と、下部層と上部層の界面におけるAl結晶粒数との比の値が0.01〜0.5であることにより、硬質被覆層が高速重切削、高速断続切削ですぐれた耐剥離性、耐チッピング性を発揮することが開示されている。 Patent Document 3 discloses a surface-coated cutting tool formed by vapor-depositing a hard coating layer in which a lower layer is a Ti compound layer and an upper layer is an α-type Al 2 O 3 layer, and Al 2 directly above the lower layer. 30-70% of the O 3 crystal grains consist of (11-20) oriented Al 2 O 3 crystal grains, and 45% or more of the total Al 2 O 3 crystal grains in the upper layer consist of (0001) oriented Al 2 O 3 crystals. More preferably, the outermost surface layer of the lower layer comprises an oxygen-containing TiCN layer containing 0.5 to 3 atomic% of oxygen only over a depth region up to 500 nm, Since the value of the ratio between the number of oxygen-containing TiCN grains in the surface layer and the number of Al 2 O 3 grains at the interface between the lower layer and the upper layer is 0.01 to 0.5, the hard coating layer Excellent peeling resistance and chipping resistance in cutting and high-speed interrupted cutting Rukoto have been disclosed.

また、特許文献4には、工具基体の表面に、Ti化合物層からなる下部層とAl層からなる上部層が被覆形成された表面被覆切削工具において、上部層のAl結晶粒について、(0001)面の法線がなす傾斜角を測定し、隣接する測定点からの測定傾斜角の角度差が5度以上である場合に異なる結晶粒であるとして結晶粒を特定し、個々の結晶粒のアスペクト比を求めた場合、アスペクト比が5未満である結晶粒が面積比で10〜50%、アスペクト比が5以上である結晶粒が面積比で50〜90%を占め、また、結晶粒個々の結晶粒内平均方位差を求めた場合、アスペクト比が5未満の結晶粒の結晶粒内平均方位差の平均は5度未満、一方、前記アスペクト比が5以上である結晶粒の結晶粒内平均方位差の平均は5度以上を示すことにより、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮することが開示されている。 Further, in Patent Document 4, in a surface-coated cutting tool in which a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are formed on the surface of a tool base, an Al 2 O 3 crystal of the upper layer is formed. For the grains, measure the tilt angle formed by the normal of the (0001) plane, and identify the crystal grains as different crystal grains when the angle difference between the measured tilt angles from adjacent measurement points is 5 degrees or more, When determining the aspect ratio of individual crystal grains, crystal grains having an aspect ratio of less than 5 account for 10 to 50% by area ratio, crystal grains having an aspect ratio of 5 or more occupy 50 to 90% by area ratio, Further, when the average orientation difference in crystal grains of each crystal grain is obtained, the average crystal grain orientation difference of crystal grains having an aspect ratio of less than 5 is less than 5 degrees, while the aspect ratio is 5 or more. The average average grain orientation difference of grains is 5 degrees or more By indicating the hard coating layer to exert has excellent chipping resistance is disclosed a high speed interrupted cutting.

特開2012−144766号公報JP 2012-144766 A 特開平9−507528号明細書JP-A-9-507528 特開2013−63504号公報JP 2013-63504 A 特開2013−111721号公報JP 2013-111721 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高速化すると共に、高切り込みや高送りなどの重切削、断続切削等で切刃に高負荷が作用する傾向にある。前述した従来の被覆工具を鋼や鋳鉄などの通常の条件での連続切削に用いた場合には問題はない。しかし、従来の被覆工具を、高速断続切削条件で用いた場合には、硬質被覆層を構成するTi化合物層からなる下部層とAl層からなる上部層の密着強度が不十分となる。そのため、上部層と下部層間での剥離、チッピング等の異常損傷が発生し、比較的短時間で工具寿命に至る。 In recent years, the performance of cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting. Along with this, cutting speed is further increased, and a high load tends to be applied to the cutting edge due to heavy cutting such as high cutting and high feed, and intermittent cutting. There is no problem when the above-described conventional coated tool is used for continuous cutting under normal conditions such as steel and cast iron. However, when a conventional coated tool is used under high-speed intermittent cutting conditions, the adhesion strength between the lower layer composed of the Ti compound layer and the upper layer composed of the Al 2 O 3 layer constituting the hard coating layer becomes insufficient. . Therefore, abnormal damage such as peeling and chipping between the upper layer and the lower layer occurs, and the tool life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、Ti化合物層からなる下部層とAl層からなる上部層との密着性を改善し、もって、剥離、チッピング等の異常損傷の発生を防止するとともに、工具寿命の長寿命化を図るべく鋭意研究を行った。その結果、以下の知見を得た。
(1)Ti化合物層からなる下部層とAl層からなる上部層とを被覆形成した被覆工具において、Alの微粒化を図ることにより、膜厚方向へのクラック伝搬を抑制すると共に残留応力を緩和出来ることを見出した。これらのことより、耐剥離性の向上が図られる。
(2)また、上部層のAlの微粒化を図ることにより、下部層と上部層との間に形成した酸素含有TiCN層との密着性が向上し、その結果、耐剥離性が向上することを見出した。
(3)下部層の最表面に酸素含有TiCN層からなる中間層を形成することにより、上部層のC軸配向性が高まり、高温硬さ、高温強度が向上することを見出した。
(4)Alの微粒化は、Alの形成時にHClガス分圧を増加することにより、エッチングが起こり、新たな核形成を誘発し、その結果、Alの微細化が起こることを見出した。
In view of the above, the present inventors have improved the adhesion between the lower layer made of the Ti compound layer and the upper layer made of the Al 2 O 3 layer from the viewpoints described above, and therefore, abnormal damage such as peeling and chipping has been improved. We conducted intensive research to prevent the occurrence and to increase the tool life. As a result, the following knowledge was obtained.
(1) In a coated tool in which a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are coated, crack propagation in the film thickness direction is suppressed by atomizing the Al 2 O 3. And found that the residual stress can be reduced. As a result, the peel resistance can be improved.
(2) Further, by atomizing the Al 2 O 3 in the upper layer, the adhesion with the oxygen-containing TiCN layer formed between the lower layer and the upper layer is improved. As a result, the peel resistance is improved. I found it to improve.
(3) It has been found that by forming an intermediate layer comprising an oxygen-containing TiCN layer on the outermost surface of the lower layer, the C-axis orientation of the upper layer is increased, and the high temperature hardness and high temperature strength are improved.
(4) atomization of Al 2 O 3 is, by increasing the HCl gas partial pressure during the formation of Al 2 O 3, occurs etched to induce new nucleation, resulting finely divided Al 2 O 3 It was found that chemistry occurred.

本発明は、前述した知見に基づき、研究を重ねた結果、完成したものであって、以下のような特徴を有する。   The present invention has been completed as a result of repeated research based on the aforementioned knowledge, and has the following characteristics.

「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体と該工具基体の表面に蒸着形成された硬質被覆層を備える表面被覆切削工具であって、
前記硬質被覆層は、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、
(a)前記下部層は、3〜20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成したTi化合物層からなり、
(b)前記下部層の最表面層が、少なくとも500nm以上の層厚を有するTiCN層からなり該TiCN層と前記上部層との界面から、前記TiCN層の層厚方向に最大500nmまでの深さ領域にのみ酸素が含有されており、前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の0.5〜3原子%であり、
(c)前記上部層は、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり該Al層を構成する個々の結晶粒のアスペクト比を求めた場合該アスペクト比が3未満である結晶粒が面積比で上部層全体の60-90%を占め、かつ、前記アスペクト比が3未満である結晶粒の平均粒径が0.1〜1.0μmの範囲に含まれ、
(d)前記上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上であり、
(e)前記(c)に記載された上部層全体のAl結晶粒のうち、アスペクト比が3未満である結晶粒個々の結晶粒内平均方位差が5度未満であることを特徴とする表面被覆切削工具。」
“A surface-coated cutting tool comprising a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet and a hard coating layer deposited on the surface of the tool base,
The hard coating layer has a lower layer formed on the surface of the tool base and an upper layer formed on the lower layer,
(A) The lower layer has a total average layer thickness of 3 to 20 μm, and is composed of two or more layers of TiC, TiN, TiCN, TiCO, and TiCNO, and at least one of them is composed of a TiCN layer. Consisting of a Ti compound layer,
(B) The outermost surface layer of the lower layer is a TiCN layer having a layer thickness of at least 500 nm or more, and the depth from the interface between the TiCN layer and the upper layer to a maximum thickness of 500 nm in the layer thickness direction of the TiCN layer. Oxygen is contained only in the region, and the average oxygen content contained in the depth region is 0.5 to 3 atoms of the total content of Ti, C, N, and O contained in the depth region. %
(C) The upper layer has an average layer thickness of 2 to 15 μm, and is composed of an Al 2 O 3 layer having an α-type crystal structure in the state of chemical vapor deposition. The individual crystals constituting the Al 2 O 3 layer When determining the aspect ratio of the grains, the crystal grains having the aspect ratio of less than 3 account for 60-90% of the entire upper layer in area ratio, and the average grain diameter of the grains having the aspect ratio of less than 3 is Included in the range of 0.1 to 1.0 μm,
(D) A crystal having a hexagonal crystal lattice existing in the measurement range of the cross-sectional polished surface of the Al 2 O 3 crystal grains of the entire upper layer using a field emission scanning electron microscope and an electron beam backscattering diffractometer When each particle is irradiated with an electron beam and the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the tool base surface, When the measured inclination angle within the range of 0 to 45 degrees is divided into pitches of 0.25 degrees, and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the inclination The sum of the frequencies existing in the tilt angle section of the Al 2 O 3 crystal grains having an angle in the range of 0 to 10 degrees is 60% or more of the entire frequencies in the tilt angle frequency distribution graph,
(E) Among the Al 2 O 3 crystal grains of the entire upper layer described in (c), the average orientation difference in crystal grains of crystal grains having an aspect ratio of less than 3 is less than 5 degrees. A surface-coated cutting tool. "

ここで前述した本発明の構成について詳細に説明する。
(a)下部層:
下部層を構成するTi化合物層(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)は、基本的にはAl層の下部層として存在し、自身の持つすぐれた高温強度によって、硬質被覆層に対して高温強度を与える。その他にも、Ti化合物層は、工具基体表面、Al層からなる上部層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。しかしながら、このTi化合物層の合計平均層厚が3μm未満である場合、前述した作用を十分に発揮させることができない。一方、このTi化合物層の合計平均層厚が20μmを越える場合、特に高熱発生を伴う高速重切削・高速断続切削では熱塑性変形を起し易くなり、偏摩耗の原因となる。以上から、Ti化合物層の合計平均層厚は3〜20μmと定めた。
Here, the configuration of the present invention described above will be described in detail.
(A) Lower layer:
The Ti compound layer (eg, TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer) constituting the lower layer basically exists as a lower layer of the Al 2 O 3 layer, and has an excellent high temperature. Depending on the strength, the hard coating layer is given high temperature strength. In addition, the Ti compound layer is in close contact with both the tool base surface and the upper layer composed of the Al 2 O 3 layer, and has an effect of maintaining the adhesion of the hard coating layer to the tool base. However, when the total average layer thickness of the Ti compound layer is less than 3 μm, the above-described action cannot be sufficiently exhibited. On the other hand, when the total average layer thickness of the Ti compound layer exceeds 20 μm, high-speed heavy cutting and high-speed intermittent cutting accompanied by high heat generation are likely to cause thermoplastic deformation, which causes uneven wear. From the above, the total average layer thickness of the Ti compound layer was determined to be 3 to 20 μm.

(b)下部層の最表面層:
本発明における下部層の最表面層は、例えば、以下のようにして形成する。
即ち、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成(なお、TiCN層のみを蒸着形成することも勿論可能である)する。その後、同じく通常の化学蒸着装置を使用して、
反応ガス組成(容量%):TiCl 2〜10%、CHCN 0.5〜1.0%、N 25〜60%、残部H
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で化学蒸着して、下部層の最表面層として、酸素を含有するTiCN(以下、酸素含有TiCNという)層を形成する。
この際、所定層厚を得るに必要とされる蒸着時間終了前の5分から30分の間は、全反応ガス量に対して1〜5容量%となるようにCOガスを添加して化学蒸着を行うことにより、層厚方向に最大500nmまでの深さ領域にのみ該深さ領域に含有されるTi、C、N、Oの合計含有量の0.5〜3原子%の平均酸素含有量の酸素を含有する酸素含有TiCN層を蒸着形成する。
(B) The outermost surface layer of the lower layer:
The outermost surface layer of the lower layer in the present invention is formed, for example, as follows.
That is, first, using a normal chemical vapor deposition apparatus, various Ti compound layers consisting of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer are formed by vapor deposition (in addition, Of course, it is possible to form only the TiCN layer by vapor deposition). Then, using the same chemical vapor deposition equipment,
Reaction gas composition (volume%): TiCl 4 2 to 10%, CH 3 CN 0.5 to 1.0%, N 2 25 to 60%, balance H 2 ,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
The TiCN containing oxygen (hereinafter referred to as oxygen-containing TiCN) layer is formed as the outermost surface layer of the lower layer by chemical vapor deposition under the conditions described above.
At this time, during 5 to 30 minutes before the end of the deposition time required to obtain the predetermined layer thickness, the chemical vapor deposition is performed by adding CO gas so as to be 1 to 5% by volume with respect to the total reaction gas amount. The average oxygen content of 0.5 to 3 atomic% of the total content of Ti, C, N, and O contained in the depth region only in the depth region up to a maximum of 500 nm in the layer thickness direction An oxygen-containing TiCN layer containing the oxygen is formed by vapor deposition.

酸素含有TiCN層からなる前記下部層の最表面層は、例えば、その上に、好ましいAl結晶粒を形成するためには(後記(c)参照)、少なくとも500nm以上の層厚として形成するとともに、さらに、この酸素含有TiCN層と上部層との界面から、層厚方向に最大500nmまでの深さ領域にのみ該深さ領域に含有されるTi、C、N、Oの合計含有量の0.5から3原子%の酸素を含有させ、最大500nmまでの深さ領域にのみ酸素を含有させる。
ここで、酸素含有TiCN層の深さ領域を前述のように限定したのは、500nmより深い領域において酸素が含有されていると、TiCN最表面の組織形態が柱状組織から粒状組織に変化するとともに、下部層の最表面層直上のAl結晶粒の傾斜角度数分布を所望のものとできなくなるためである。
ただ、深さ領域500nmまでの平均酸素含有量が0.5原子%未満では、上部層と下部層TiCNの付着強度の向上を望むことはできないばかりか、下部層の最表面層直上のAl結晶粒の傾斜角度数分布を満足させることはできない。一方、この深さ領域における平均酸素含有量が3原子%を超えると、界面直上の上部層Alにおいて、(0001)配向Al結晶粒(なお、(0001)配向Al結晶粒については、後述する。)の占める面積割合が、上部層全体のAlの全面積に対して60面積%未満となり、上部層の高温強度が低下する。
ここで、平均酸素含有量は、下部層の最表面層を構成する前記TiCN層と上部層との界面から、このTiCN層の層厚方向に500nmまでの深さ領域におけるチタン(Ti),炭素(C),窒素(N)及び酸素(O)の合計含有量に占める酸素(O)含有量を原子%(=O/(Ti+C+N+O)×100)で表したものをいう。
The outermost surface layer of the lower layer composed of the oxygen-containing TiCN layer is formed as a layer thickness of at least 500 nm or more, for example, in order to form preferable Al 2 O 3 crystal grains thereon (see (c) below). Furthermore, the total content of Ti, C, N, and O contained in the depth region only from the interface between the oxygen-containing TiCN layer and the upper layer to a depth region up to 500 nm in the layer thickness direction. 0.5 to 3 atomic% of oxygen is contained, and oxygen is contained only in a depth region up to a maximum of 500 nm.
Here, the reason why the depth region of the oxygen-containing TiCN layer is limited as described above is that when oxygen is contained in a region deeper than 500 nm, the structure of the TiCN outermost surface changes from a columnar structure to a granular structure. This is because the inclination angle number distribution of the Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer cannot be made desired.
However, if the average oxygen content up to a depth region of 500 nm is less than 0.5 atomic%, it is not only possible to improve the adhesion strength between the upper layer and the lower layer TiCN, but also Al 2 directly above the outermost surface layer of the lower layer. The tilt angle number distribution of the O 3 crystal grains cannot be satisfied. On the other hand, when the average oxygen content in this depth region exceeds 3 atomic%, in the upper layer Al 2 O 3 immediately above the interface, (0001) oriented Al 2 O 3 crystal grains (note that (0001) oriented Al 2 O The area ratio of the three crystal grains will be described later.) Is less than 60% by area with respect to the total area of Al 2 O 3 in the entire upper layer, and the high temperature strength of the upper layer is lowered.
Here, the average oxygen content is determined from titanium (Ti) and carbon in the depth region up to 500 nm in the thickness direction of the TiCN layer from the interface between the TiCN layer and the upper layer constituting the outermost surface layer of the lower layer. The oxygen (O) content in the total content of (C), nitrogen (N) and oxygen (O) is expressed in atomic% (= O / (Ti + C + N + O) × 100).

(c)上部層のAl結晶粒:
下部層の最表面層に前記(b)の酸素含有TiCN層を蒸着形成した後、上部層のAl層を以下の条件で形成する。
即ち、前記(b)で形成した酸素含有TiCN層の表面を、
反応ガス組成(容量%):CO 3〜10%、CO 3〜10%、残部H
雰囲気温度:950〜1000℃、
雰囲気圧力:5〜15kPa、
処理時間:1〜5min、の条件で処理した後、
<Al初期成長>
反応ガス組成(容量%):AlCl 1〜3%、CO 1〜5%、HCl 0.3〜1.0%、残部H
雰囲気温度:950〜1000℃、
雰囲気圧力:5〜15kPa、
処理時間:5〜30min、の条件で蒸着後、
<Al上層形成>
反応ガス組成(容量%):AlCl 1.5〜5.0%、CO 2〜8%、HCl 3〜8%、HS 0.5〜1.0%、残部H
反応雰囲気温度:950〜1000℃、
反応雰囲気圧力:5〜15kPa、
処理時間:(目標とする上部層層厚になるまで)
という条件で蒸着することにより、所定の傾斜角度数分布を有する(0001)配向のα型の結晶構造を有する微細な粒状Al結晶粒からなる上部層が形成される。この時、Al上層形成時の他の反応ガスと比較してHClガス分圧を相対的に高く設定していることにより、結晶粒表面をエッチングし成膜中の二次核形成を誘発することにより、Al層を構成する結晶粒の微細化を図っている。
なお、上部層全体の層厚が、2μm未満であると長期の使用に亘ってすぐれた高温強度および高温硬さを発揮することができず、一方、15μmを越えると、チッピングが発生し易くなることから、上部層の層厚は2〜15μmと定めた。
さらに、上部層を構成するα型の結晶構造を有する微細な粒状Al結晶粒について、詳細に解析したところ、粒状の程度としては、アスペクト比が3未満の結晶粒が上部層全体に対して面積比で60〜90%であることが好ましく、微細化の程度としては、平均粒径が0.1〜1.0μmの範囲に含まれていることが好ましい。
その理由としては、アスペクト比が3未満のものが面積比で上部層全体の60%未満になると相対的にアスペクト比が3以上の結晶粒の割合が増え、クラック伝搬を抑制する効果が低下するため好ましくない。一方、アスペクト比が3未満のものが面積比で上部層全体の90%を超えると、結果として(0001)配向Al結晶粒の割合が少なくなり、高温強度および高温硬さが低下するため好ましくない。そのため、アスペクト比が3未満の結晶粒は、上部層全体に対して面積比で60〜90%と定めた。また、アスペクト比が3未満の結晶粒の平均粒径が、0.1μm未満であると、長期の使用に亘っての耐摩耗性を確保できず、一方、1.0μmを超えると、粒子の粗大化によりクラック伝搬の抑制効果が低下する。そのため、アスペクト比が3未満の結晶粒の粒径は、0.1〜1.0μmと定めた。なお、結晶粒の粒径の制御は、蒸着条件を調整することによって行うことが出来る。
(C) Al 2 O 3 crystal grains in the upper layer:
After the oxygen-containing TiCN layer (b) is deposited on the outermost surface layer of the lower layer, the upper Al 2 O 3 layer is formed under the following conditions.
That is, the surface of the oxygen-containing TiCN layer formed in (b) is
Reaction gas composition (volume%): CO 3 to 10%, CO 2 3 to 10%, balance H 2 ,
Atmospheric temperature: 950 to 1000 ° C.
Atmospheric pressure: 5-15 kPa,
After processing under conditions of processing time: 1-5 min,
<Al 2 O 3 initial growth>
Reaction gas composition (volume%): AlCl 3 1-3%, CO 2 1-5%, HCl 0.3-1.0%, balance H 2
Atmospheric temperature: 950 to 1000 ° C.
Atmospheric pressure: 5-15 kPa,
Processing time: After vapor deposition under conditions of 5 to 30 min,
<Al 2 O 3 upper layer formation>
Reaction gas composition (volume%): AlCl 3 1.5-5.0%, CO 2 2-8%, HCl 3-8%, H 2 S 0.5-1.0%, balance H 2
Reaction atmosphere temperature: 950 to 1000 ° C.
Reaction atmosphere pressure: 5 to 15 kPa,
Processing time: (until the target upper layer thickness is reached)
Thus, an upper layer made of fine granular Al 2 O 3 crystal grains having a (0001) -oriented α-type crystal structure having a predetermined tilt angle number distribution is formed. At this time, by setting the HCl gas partial pressure relatively high compared to other reaction gases when forming the Al 2 O 3 upper layer, the crystal grain surface is etched to form secondary nuclei during film formation. By inducing, the crystal grains constituting the Al 2 O 3 layer are miniaturized.
If the thickness of the entire upper layer is less than 2 μm, excellent high-temperature strength and high-temperature hardness cannot be exhibited over a long period of use, while if it exceeds 15 μm, chipping tends to occur. Therefore, the layer thickness of the upper layer was determined to be 2 to 15 μm.
Further, when the fine granular Al 2 O 3 crystal grains having an α-type crystal structure constituting the upper layer were analyzed in detail, the degree of granularity was such that crystal grains having an aspect ratio of less than 3 were found throughout the upper layer. On the other hand, the area ratio is preferably 60 to 90%, and the degree of refinement is preferably in the range of 0.1 to 1.0 μm in average particle size.
The reason is that when the area ratio is less than 3 and the area ratio is less than 60% of the entire upper layer, the proportion of crystal grains having an aspect ratio of 3 or more is relatively increased, and the effect of suppressing crack propagation is reduced. Therefore, it is not preferable. On the other hand, when the area ratio is less than 3 and the area ratio exceeds 90% of the entire upper layer, the ratio of (0001) oriented Al 2 O 3 crystal grains decreases, resulting in a decrease in high-temperature strength and high-temperature hardness. Therefore, it is not preferable. Therefore, the crystal grain having an aspect ratio of less than 3 is determined to be 60 to 90% by area ratio with respect to the entire upper layer. Further, if the average grain size of the crystal grains having an aspect ratio of less than 3 is less than 0.1 μm, it is impossible to ensure wear resistance over a long period of use, while if the average grain size exceeds 1.0 μm, The effect of suppressing crack propagation is reduced by coarsening. Therefore, the grain size of the crystal grains having an aspect ratio of less than 3 is determined to be 0.1 to 1.0 μm. Note that the grain size of the crystal grains can be controlled by adjusting the deposition conditions.

(d)上部層の(0001)面配向Al結晶粒の傾斜角度数分布:
工具基体表面の法線に対して、上部層の六方晶結晶格子を有するAl結晶粒の結晶面である(0001)面の法線がなす傾斜角(図2を参照)は、以下の手順で測定することができる。
まず、本実施形態の表面被覆工具基体に対して垂直な工具断面研磨面を調製する(図1参照)。次に、下部層の最表面層直上(上部層と下部層の界面直上)に形成された前記(c)のAl結晶粒を測定対象として、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、前記Al結晶粒の配向性に関わるデータを得る。そして、このデータを基に、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角(図2参照)を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わす。そして、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体に占める面積割合を測定する。
前述の手順で得られるAl結晶粒の(0001)面の法線がなす傾斜角は、前記蒸着条件のうちの、AlClガス量に対するCOガス量やHSガス量の比を相対的に多くすることによって、傾斜角度数分布グラフにおける0〜10度の傾斜角区分に存在する度数割合が度数全体の60%以上という値を得ることができる。(0001)配向Al結晶粒、即ち、(0001)面の法線がなす傾斜角が0〜10度の傾斜角区分に存在するAl結晶粒、が傾斜角度数分布グラフにおける度数全体の60%未満であると、高温強度および高温硬さが低下する。
したがって、上部層と下部層との界面直上における上部層のAl結晶粒について、工具基体表面の法線に対して、Al結晶粒の(0001)面の法線の傾斜角が0〜10度の範囲内にある結晶粒の度数の合計は、傾斜角度数分布グラフにおける度数全体の60%以上と定めた。
(D) Tilt angle number distribution of (0001) plane-oriented Al 2 O 3 crystal grains in the upper layer:
The inclination angle (see FIG. 2) formed by the normal of the (0001) plane, which is the crystal plane of the Al 2 O 3 crystal grains having the hexagonal crystal lattice of the upper layer, with respect to the normal of the tool base surface is as follows: It can be measured by the procedure.
First, a tool cross-section polishing surface perpendicular to the surface-coated tool base of this embodiment is prepared (see FIG. 1). Next, using the Al 2 O 3 crystal grains of (c) formed immediately above the outermost surface layer of the lower layer (immediately above the interface between the upper layer and the lower layer), using a field emission scanning electron microscope, Each crystal grain having a hexagonal crystal lattice existing within the measurement range of the tool cross-section polished surface is irradiated with an electron beam to obtain data relating to the orientation of the Al 2 O 3 crystal grains. And based on this data, when the inclination angle (see FIG. 2) formed by the normal of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the normal of the tool base surface, the measurement The measured inclination angle within the range of 0 to 45 degrees of the inclination angles is divided for each pitch of 0.25 degrees, and the inclination angle number distribution graph is formed by counting the frequencies existing in each division. Then, the sum of the frequencies of the inclination angle is present in the tilt angle sections of Al 2 O 3 grains in the range of 0 degrees, measuring the area percentage of the total power in the inclination angle frequency distribution graph.
The inclination angle formed by the normal line of the (0001) plane of the Al 2 O 3 crystal grains obtained by the above-described procedure is the ratio of the CO 2 gas amount and the H 2 S gas amount to the AlCl 3 gas amount in the vapor deposition conditions. By relatively increasing the value, it is possible to obtain a value in which the power ratio existing in the tilt angle section of 0 to 10 degrees in the tilt angle distribution graph is 60% or more of the entire power. (0001) oriented Al 2 O 3 crystal grains, that is, Al 2 O 3 crystal grains present in the tilt angle section with the tilt angle of 0 to 10 degrees formed by the normal line of the (0001) plane, are shown in the tilt angle number distribution graph. When it is less than 60% of the entire frequency, the high temperature strength and the high temperature hardness are lowered.
Therefore, with respect to the Al 2 O 3 crystal grains of the upper layer immediately above the interface between the upper layer and the lower layer, the inclination angle of the normal line of the (0001) plane of the Al 2 O 3 crystal grains with respect to the normal line of the tool base surface Is defined as 60% or more of the total frequency in the gradient angle distribution graph.

(e)上部層のアスペクト比が3未満の結晶粒の結晶粒内平均方位差:
まず、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、隣接するピクセル間で5°以上の方位差がある場合に、相互に隣接するピクセルの境界を結晶粒界であるとし、結晶粒界に囲まれ、他の結晶粒界に分断されない範囲を1つの結晶粒と定義する。ここで1ピクセルとは、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、試料に電子線を照射した際に観察される画像を解析ソフトにて解析する際の、画像内の結晶粒像を構成する最小単位である。
そして、結晶粒内のあるピクセルと、同結晶粒内の他のすべてのピクセル間で方位差を計算し、それを平均化したものを結晶粒内平均方位差と定義する。これらの測定を電子線後方散乱回折装置を用いて観察されたAl結晶粒間について行った。
本発明の上部層のアスペクト比が3未満の結晶粒の結晶粒内平均方位差は、5度未満であり、すなわち、アスペクト比の低い粒状組織を選択的に(0001)配向させることで、すぐれた耐摩耗性を創出している。
(E) In-grain average orientation difference of crystal grains having an upper layer aspect ratio of less than 3:
First, using a field emission scanning electron microscope and an electron beam backscatter diffractometer, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, and the method of the tool base surface When the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured with respect to the line, and there is an orientation difference of 5 ° or more between adjacent pixels, the boundary between adjacent pixels is determined. Assuming that it is a crystal grain boundary, a range surrounded by crystal grain boundaries and not divided by other crystal grain boundaries is defined as one crystal grain. Here, one pixel means a crystal in an image when an image observed when the sample is irradiated with an electron beam is analyzed with analysis software using a field emission scanning electron microscope and an electron beam backscatter diffraction device. It is the smallest unit constituting a grain image.
Then, an orientation difference is calculated between a certain pixel in the crystal grain and all other pixels in the crystal grain, and an average of the difference is defined as an intra-grain average orientation difference. These measurements were performed between the Al 2 O 3 crystal grains observed using an electron beam backscattering diffractometer.
The average grain orientation difference of the grains having an aspect ratio of less than 3 in the present invention is less than 5 degrees, that is, excellent by selectively (0001) orientation of a grain structure having a low aspect ratio. Creates wear resistance.

本発明の被覆工具によれば、硬質被覆層が、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、(a)下部層は、3〜20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成したTi化合物層からなり、(b)下部層の最表面層が、少なくとも500nm以上の層厚を有するTiCN層からなり該TiCN層と前記上部層との界面から、TiCN層の層厚方向に最大500nmまでの深さ領域にのみ酸素が含有されており該深さ領域に含有される平均酸素含有量は、深さ領域に含有されるTi,C,N,Oの合計含有量の0.5〜3原子%であり、(c)上部層は、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり、該Al層を構成する個々の結晶粒のアスペクト比を求めた場合、該アスペクト比が3未満である結晶粒が面積比で上部層全体の60-90%を占め、かつ、前記アスペクト比が3未満である結晶粒の平均粒径が0.1〜1.0μmの範囲に含まれ、(d)上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上であり、(e)前記(c)に記載された上部層全体のAl結晶粒のうち、アスペクト比が3未満である結晶粒個々の結晶粒内平均方位差が5度未満であるという本発明に特有の構成を有することにより、耐剥離性および耐摩耗性の向上という本発明に特有の効果を奏する。そのため、各種の鋼や鋳鉄などの切削加工を高速で、かつ切れ刃に対して高負荷・衝撃的負荷が作用する高速重切削条件、高速断続切削条件で行っても、すぐれた高温強度と高温硬さを示し、硬質被覆層の剥離・チッピングの発生もなく、長期の使用に亘ってすぐれた切削性能を発揮する。 According to the coated tool of the present invention, the hard coating layer has a lower layer formed on the surface of the tool base and an upper layer formed on the lower layer, and (a) the lower layer is 3 to 20 μm. A total average layer thickness of TiC, TiN, TiCN, TiCO, and TiCNO, at least one of which is a Ti compound layer composed of a TiCN layer, and (b) a lower layer The outermost surface layer is composed of a TiCN layer having a layer thickness of at least 500 nm, and oxygen is contained only in a depth region up to 500 nm in the thickness direction of the TiCN layer from the interface between the TiCN layer and the upper layer. The average oxygen content contained in the depth region is 0.5 to 3 atomic% of the total content of Ti, C, N, and O contained in the depth region, and (c) the upper layer Has an average layer thickness of 2-15 μm and is chemically vapor-deposited Consists the Al 2 O 3 layer having a α-type crystal structure in the state, if the determined aspect ratio of individual crystal grains constituting the the Al 2 O 3 layer, crystal grains the aspect ratio is less than 3 area The average grain size of the crystal grains that occupy 60-90% of the entire upper layer and the aspect ratio is less than 3 is included in the range of 0.1 to 1.0 μm, and (d) the entire upper layer For Al 2 O 3 crystal grains, a field emission scanning electron microscope and an electron beam backscatter diffraction apparatus were used to irradiate each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface with an electron beam. When the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the tool base surface, it is within the range of 0 to 45 degrees of the measurement inclination angle. In addition to dividing the measured inclination angle at 0.25 degree pitch, When expressed in formed by aggregating the frequencies present in the classification inclination angle frequency distribution graph, the frequency of the inclination angle is present in the tilt angle sections of Al 2 O 3 grains in the range of 0 degrees The total is 60% or more of the whole frequency in the tilt angle number distribution graph, and (e) a crystal having an aspect ratio of less than 3 among the Al 2 O 3 crystal grains of the entire upper layer described in (c) above By having a configuration unique to the present invention in which the average orientation difference within a crystal grain of each grain is less than 5 degrees, there is an effect unique to the present invention of improving peeling resistance and wear resistance. For this reason, excellent high-temperature strength and high temperature can be achieved even when cutting various steels and cast irons at high speeds, high-speed heavy cutting conditions where high loads / impact loads are applied to the cutting edge, and high-speed intermittent cutting conditions. It exhibits hardness and exhibits excellent cutting performance over a long period of use without the occurrence of peeling or chipping of the hard coating layer.

本発明の実施形態の表面被覆工具における、工具基体表面に垂直方向の断面の模式図である。It is a schematic diagram of the cross section perpendicular | vertical to the tool base | substrate surface in the surface coating tool of embodiment of this invention. 本発明の実施形態の表面被覆工具における、工具基体表面の法線と上部層のAl結晶粒の結晶面である(0001)面の法線とがなす傾斜角を示す図であり、(a)は傾斜角0度を示し、(b)は傾斜角45度を示す。In the surface-coated tool of the embodiment of the present invention, it is a diagram showing an inclination angle formed by the normal of the tool base surface and the normal of the (0001) plane which is the crystal plane of the Al 2 O 3 crystal grains of the upper layer, (A) shows an inclination angle of 0 degrees, and (b) shows an inclination angle of 45 degrees. 本発明の実施形態の表面被覆工具における、工具基体表面の法線と上部層のAl結晶粒の結晶面である(0001)面の法線とがなす傾斜角の傾斜角度数分布グラフである。In the surface-coated tool according to the embodiment of the present invention, the inclination angle number distribution graph of the inclination angle formed by the normal line of the tool base surface and the normal line of the (0001) plane which is the crystal plane of the Al 2 O 3 crystal grains of the upper layer It is.

本発明の被覆工具の実施形態について、実施例に基づいて具体的に説明する。特に、本発明の被覆工具の硬質被覆層を構成する各層について、詳細に説明する。   Embodiment of the coated tool of this invention is described concretely based on an Example. In particular, each layer constituting the hard coating layer of the coated tool of the present invention will be described in detail.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. WC based cemented carbide tool having an ISO standard CNMG120408 insert shape after being sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. Substrates A to E were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、ZrC粉末、TaC粉末、NbC粉末、Mo2C粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜eを作製した。 Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, ZrC powder, TaC powder, NbC powder, Mo 2 C powder, WC powder each having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa, This green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base a to TiCN-based cermet having an insert shape of ISO standard CNMG120212 was obtained. e was produced.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、以下の手順で本発明被覆工具1〜13をそれぞれ製造した。
(a)まず、表3に示される条件にて、表7に示される目標層厚の下部層としてのTi化合物層を蒸着形成した。
(b)次に、表4に示される条件にて、下部層の最表面層としての酸素含有TiCN層(即ち、該層の表面から500nmまでの深さ領域にのみ、0.5から3原子%(O/(Ti+C+N+O)×100)の酸素が含有される)を表7に示される目標層厚で形成した。
(c)次に、表5に示される条件にて、下部層の最表面のTiCN層にCOとCOの混合ガスによる酸化処理(下部層表面処理)を行った。
(d)次に、表6に示される初期成長条件にて、Alの初期成長を行ったのに、同じく表6に示される上層形成条件による蒸着を表7に示される目標層厚となるまで行うことにより、本発明被覆工具1〜13をそれぞれ製造した。
Subsequently, each of the tool bases A to E and the tool bases a to e was charged into a normal chemical vapor deposition apparatus, and the inventive coated tools 1 to 13 were manufactured according to the following procedure.
(A) First, under the conditions shown in Table 3, a Ti compound layer as a lower layer having a target layer thickness shown in Table 7 was formed by vapor deposition.
(B) Next, under the conditions shown in Table 4, the oxygen-containing TiCN layer as the outermost surface layer of the lower layer (ie, 0.5 to 3 atoms only in the depth region from the surface of the layer to 500 nm) % (Containing oxygen of O / (Ti + C + N + O) × 100) was formed with the target layer thickness shown in Table 7.
(C) Next, under the conditions shown in Table 5, the uppermost TiCN layer of the lower layer was subjected to oxidation treatment (lower surface treatment) with a mixed gas of CO and CO 2 .
(D) Next, although the initial growth of Al 2 O 3 was carried out under the initial growth conditions shown in Table 6, vapor deposition under the upper layer formation conditions shown in Table 6 was also performed. By carrying out until it becomes, this invention coated tool 1-13 was manufactured, respectively.

また、比較の目的で、前記本発明被覆工具1〜13の前記工程(b)を行わない、および/または、工程(d)の条件を表6に示される上層形成条件で行うことにより、表8に示す比較被覆工具1〜13をそれぞれ製造した。   For comparison purposes, the step (b) of the inventive coated tools 1 to 13 is not performed, and / or the conditions of the step (d) are performed under the upper layer forming conditions shown in Table 6, so that Comparative coated tools 1 to 13 shown in FIG.

ついで、本発明被覆工具1〜13と比較被覆工具1〜13については、下部層の最表面層を構成するTiCN層について、このTiCN層の層厚方向に500nmまでの深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)、さらに、500nmを超える深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)を、オージェ電子分光分析器を用い、被覆工具の断面研磨面に下部層Ti炭窒化物層の最表面からTi炭化物層の膜厚相当の距離の範囲に直径10nmの電子線を照射させていき、Ti、C、N、Oのオージェピークの強度を測定し、それらのピーク強度の総和からOのオージェピーク強度の割合を算出して求めた。   Next, for the inventive coated tools 1 to 13 and comparative coated tools 1 to 13, with respect to the TiCN layer constituting the outermost surface layer of the lower layer, the average oxygen content in the depth region up to 500 nm in the layer thickness direction of this TiCN layer The amount (= O / (Ti + C + N + O) × 100), and the average oxygen content (= O / (Ti + C + N + O) × 100) in a depth region exceeding 500 nm were determined by cross-sectional polishing of the coated tool using an Auger electron spectrometer. The surface is irradiated with an electron beam having a diameter of 10 nm from the outermost surface of the lower Ti carbonitride layer to a distance corresponding to the thickness of the Ti carbide layer, and the intensity of the Auger peaks of Ti, C, N, and O is measured. The ratio of the Auger peak intensity of O was calculated from the sum of the peak intensities.

また、TiCN層に不可避的に含有する酸素含有量を求めるため、別途炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
反応ガス組成(容量%):TiCl 2〜10%、CHCN 0.5〜1.0%、N 25〜60%、残部H
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜10kPa、
の条件で化学蒸着して、酸素を意図的に含有させないTiCN(以下、不可避酸素含有TiCNという)層を3μm以上の層厚で形成した。この不可避酸素含有TiCN層の表面から層厚方向に100nmより深い領域に不可避的に含まれる酸素含有量を、オージェ電子分光分析器を用いて前記深さ領域に含有されるTi、C、N、Oの合計含有量に対する割合から求め、オージェ電子分光分析器の精度の範囲内で求められる不可避酸素含有量を0.5原子%と定めた。
In addition, in order to determine the oxygen content inevitably contained in the TiCN layer, on the surface of the tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet separately,
Reaction gas composition (volume%): TiCl 4 2 to 10%, CH 3 CN 0.5 to 1.0%, N 2 25 to 60%, balance H 2 ,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
The TiCN (hereinafter referred to as inevitable oxygen-containing TiCN) layer that does not intentionally contain oxygen was formed with a layer thickness of 3 μm or more by chemical vapor deposition under the following conditions. The oxygen content inevitably contained in the region deeper than 100 nm in the layer thickness direction from the surface of the inevitable oxygen-containing TiCN layer is Ti, C, N, contained in the depth region using an Auger electron spectrometer. The inevitable oxygen content obtained from the ratio of the total content of O and determined within the accuracy range of the Auger electron spectroscopic analyzer was determined to be 0.5 atomic%.

前述の平均酸素含有量から、不可避酸素含有量を差し引いた値を下部層の最表面層を構成するTiCN層の平均酸素含有量として求めた。
表7、8にこれらの値を示す。
A value obtained by subtracting the inevitable oxygen content from the above-mentioned average oxygen content was determined as the average oxygen content of the TiCN layer constituting the outermost surface layer of the lower layer.
Tables 7 and 8 show these values.

ついで、硬質被覆層の上部層のAlについて、Al結晶粒の(0001)面の法線がなす傾斜角の度数分布を、以下の手順で電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて測定した。
まず、本発明被覆工具1〜13、比較被覆工具1〜13の下部層と上部層との界面から上部層の深さ方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットした。次に、前記断面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、0.3×50μmの測定領域を0.1μm/stepの間隔で、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した。そして、測定された傾斜角(以下、「測定傾斜角」という)のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした。図3に本発明被覆工具10の傾斜角度数分布グラフを示す。そして、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計の傾斜角度数分布グラフにおける度数全体に占める面積割合を求めた。
また、アスペクト比の算出方法は、上記に記載された電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いた測定にて、個々の結晶格子間の方位差(回転角)を個々の結晶格子のオイラー角の差から測定し、隣接する測定点の結晶格子間の方位差(回転角)が5度以上である場合に、相互に隣接する測定点の境界は結晶粒界であるとし、結晶粒界に囲まれ、他の結晶粒界に分断されていない範囲を同一の結晶粒として特定し、さらに、特定した結晶粒各々について、工具基体表面方向と垂直な方向を長軸、工具基体表面方向と平行な方向を短軸とし、長軸および短軸の長さを求め、それらの比からアスペクト比を求めた。そのアスペクト比が3未満である結晶粒の面積割合は、鏡面研磨加工した断面を、電子線後方散乱回折装置を用いて観察倍率2,000倍で横方向:50μm×縦方向:上部層の膜厚相当の領域を測定することで算出した。
また、アスペクト比が3未満であるAl層を構成する個々の結晶粒の平均粒径は、Al層を構成する結晶粒に、工具基体表面方向と平行に直線を引き、粒界で区分される線分10個所の長さの測定値の平均から求めた。
表7、表8にこれらの値を示す。
Next, the Al 2 O 3 top layer of the hard coating layer, Al 2 O 3 crystal grains (0001) plane of a frequency distribution of inclination angle normal forms, field emission scanning electron microscope and an electron by the following steps It measured using the backscattering diffraction image apparatus.
First, cross-sectional polishing of 0.3 μm in the depth direction of the upper layer from the interface between the lower layer and the upper layer of the inventive coated tools 1 to 13 and comparative coated tools 1 to 13 and 50 μm in the direction parallel to the tool base surface. The surface measurement range (0.3 μm × 50 μm) was set in the column of a field emission scanning electron microscope. Next, each crystal grain having a hexagonal crystal lattice existing in the measurement range of each of the cross-sectional polished surfaces is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the cross-sectional polished surface with an irradiation current of 1 nA. And the measurement area of 0.3 × 50 μm at an interval of 0.1 μm / step at the crystal plane of the crystal grain with respect to the normal of the tool base surface. The inclination angle formed by the normal line of a certain (0001) plane was measured. In addition, the measured inclination angles within the range of 0 to 45 degrees of the measured inclination angles (hereinafter referred to as “measurement inclination angles”) are divided into pitches of 0.25 degrees and exist in each division. This is represented by an inclination angle frequency distribution graph obtained by summing up the frequencies. FIG. 3 shows an inclination angle number distribution graph of the coated tool 10 of the present invention. Then, the inclination angle is determined and the area percentage of the total power in the total inclination angle frequency distribution graph of the power present in the Al 2 O 3 grains of the tilt angle sections is in the range of 0 degrees.
In addition, the aspect ratio is calculated by measuring the orientation difference (rotation angle) between individual crystal lattices by measuring using the field emission scanning electron microscope and electron backscatter diffraction image apparatus described above. Measured from the difference in Euler angles of the lattice, when the orientation difference (rotation angle) between the crystal lattices of adjacent measurement points is 5 degrees or more, the boundary between the measurement points adjacent to each other is a grain boundary, A range surrounded by crystal grain boundaries and not divided by other crystal grain boundaries is specified as the same crystal grain, and for each of the specified crystal grains, the direction perpendicular to the tool base surface direction is the long axis, and the tool base The direction parallel to the surface direction was taken as the short axis, the length of the long axis and the short axis were determined, and the aspect ratio was determined from these ratios. The area ratio of the crystal grains having an aspect ratio of less than 3 is obtained by measuring the mirror-polished cross-section with an electron beam backscattering diffractometer at an observation magnification of 2,000 times in the horizontal direction: 50 μm × vertical direction: upper layer film. It calculated by measuring the area | region equivalent to thickness.
Further, the average grain size of the individual crystal grains constituting the Al 2 O 3 layer having an aspect ratio of less than 3 draws a straight line parallel to the tool base surface direction on the crystal grains constituting the Al 2 O 3 layer, It calculated | required from the average of the measured value of the length of ten line segments divided by a grain boundary.
Tables 7 and 8 show these values.

さらに、電子線後方散乱回折装置を用いて上部層を構成するアスペクト比が3未満である個々の結晶粒の結晶方位を縦断面方向から解析し、結晶粒内平均方位差が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0〜10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、個々の結晶粒の結晶粒内平均方位差は5度未満であることを確認した。   Furthermore, the crystal orientation of each crystal grain having an aspect ratio of less than 3 constituting the upper layer is analyzed from the longitudinal section direction using an electron beam backscattering diffraction apparatus, and the average orientation difference in the crystal grain is 0 degree or more and 1 degree. Less than, 1 degree or more, less than 2 degree, 2 degree or more, less than 3 degree, 3 degree or more, less than 4 degree,... From the mapping diagram, it was confirmed that the average orientation difference within each crystal grain was less than 5 degrees.

また、本発明被覆工具1〜13、比較被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of each structural layer of the hard coating layer of this invention coated tool 1-13 and comparative coating tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all are target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、本発明被覆工具1〜13、比較被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り、
切削速度:400m/min、
切り込み:2mm、
送り:0.4mm/rev、
切削時間:5分、
の条件(切削条件Aという)でのクロムモリブデン合金鋼の乾式高速断続切削試験(通常の切削速度は、それぞれ、300m/min、)、
被削材:JIS・SNCM439の丸棒、
切削速度:120m/min、
切り込み:1.5mm、
送り:1.0mm/rev、
切削時間:3分、
の条件(切削条件Bという)でのニッケルクロムモリブデン合金鋼の乾式高送り切削試験(通常の切削速度および送り量は、それぞれ、250m/min、0.3mm/rev.)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り、
切削速度:400m/min、
切り込み:2.5mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件(切削条件Cという)での鋳鉄の乾式高速高切込切削試験(通常の切削速度および切込量はそれぞれ350m/min、1.5mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
表9にこの測定結果を示した。
Next, for the various coated tools of the present invention coated tools 1-13 and comparative coated tools 1-13, all are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM440 lengthwise equidistant 4 flutes,
Cutting speed: 400 m / min,
Cutting depth: 2mm,
Feed: 0.4mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test (normal cutting speed is 300 m / min, respectively)
Work material: JIS / SNCM439 round bar,
Cutting speed: 120 m / min,
Incision: 1.5mm,
Feed: 1.0mm / rev,
Cutting time: 3 minutes
Dry high feed cutting test of nickel chrome molybdenum alloy steel under the conditions (cutting condition B) (normal cutting speed and feed rate are 250 m / min and 0.3 mm / rev., Respectively),
Work material: JIS / FC300 longitudinally equidistantly 4 vertical grooves,
Cutting speed: 400 m / min,
Incision: 2.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
A dry high-speed high-cut cutting test of cast iron under the above conditions (referred to as cutting condition C) (normal cutting speed and cutting amount are 350 m / min and 1.5 mm, respectively),
In each cutting test, the flank wear width of the cutting edge was measured.
Table 9 shows the measurement results.

表9に示される結果から、本発明被覆工具1〜13は、いずれも、上部層のAlの微粒化を図ったことにより、膜厚方向へのクラック伝搬を抑制し、すぐれた、耐剥離性および耐チッピング性を示した。
これに対して、比較被覆工具1〜13では、高速重切削加工、高速断続切削加工においては、硬質被覆層の剥離発生、チッピング発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 9, all of the coated tools 1 to 13 of the present invention were excellent in suppressing the propagation of cracks in the film thickness direction by achieving atomization of Al 2 O 3 in the upper layer. Exfoliation resistance and chipping resistance were exhibited.
On the other hand, it is clear that the comparative coated tools 1 to 13 reach the service life in a relatively short time due to the occurrence of peeling of the hard coating layer and the occurrence of chipping in high-speed heavy cutting and high-speed intermittent cutting. .

前述のように、本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に高負荷、断続的・衝撃的負荷が作用する高速重切削、高速断続切削という厳しい切削条件下でも、硬質被覆層の剥離、チッピングが発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, the coated tool of the present invention is not limited to continuous cutting and intermittent cutting under normal conditions such as various types of steel and cast iron, but also high-speed heavy load in which a heavy load, intermittent / impact load acts on the cutting blade. Even under severe cutting conditions such as cutting and high-speed interrupted cutting, the hard coating layer does not peel and chipping occurs, and it exhibits excellent cutting performance over a long period of use. In addition, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体と該工具基体の表面に蒸着形成された硬質被覆層を備える表面被覆切削工具であって、
前記硬質被覆層は、工具基体の表面に形成された下部層と該下部層上に形成された上部層とを有し、
(a)前記下部層は、3〜20μmの合計平均層厚を有し、TiC、TiN、TiCN、TiCO、TiCNOのうちの2層以上からなり、その内の少なくとも1層はTiCN層で構成したTi化合物層からなり、
(b)前記下部層の最表面層が、少なくとも500nm以上の層厚を有するTiCN層からなり該TiCN層と前記上部層との界面から、前記TiCN層の層厚方向に最大500nmまでの深さ領域にのみ酸素が含有されており、前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の0.5〜3原子%であり、
(c)前記上部層は、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり該Al層を構成する個々の結晶粒のアスペクト比を求めた場合該アスペクト比が3未満である結晶粒が面積比で上部層全体の60-90%を占め、かつ、前記アスペクト比が3未満である結晶粒の平均粒径が0.1〜1.0μmの範囲に含まれ、
(d)前記上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用い、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、その傾斜角が0〜10度の範囲内にあるAl結晶粒の該傾斜角区分に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上であり、
(e)前記(c)に記載された上部層全体のAl結晶粒のうち、アスペクト比が3未満である結晶粒個々の結晶粒内平均方位差が5度未満であることを特徴とする表面被覆切削工具。
A surface-coated cutting tool comprising a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet, and a hard coating layer deposited on the surface of the tool base,
The hard coating layer has a lower layer formed on the surface of the tool base and an upper layer formed on the lower layer,
(A) The lower layer has a total average layer thickness of 3 to 20 μm, and is composed of two or more layers of TiC, TiN, TiCN, TiCO, and TiCNO, and at least one of them is composed of a TiCN layer. Consisting of a Ti compound layer,
(B) The outermost surface layer of the lower layer is a TiCN layer having a layer thickness of at least 500 nm or more, and the depth from the interface between the TiCN layer and the upper layer to a maximum thickness of 500 nm in the layer thickness direction of the TiCN layer. Oxygen is contained only in the region, and the average oxygen content contained in the depth region is 0.5 to 3 atoms of the total content of Ti, C, N, and O contained in the depth region. %
(C) The upper layer has an average layer thickness of 2 to 15 μm, and is composed of an Al 2 O 3 layer having an α-type crystal structure in the state of chemical vapor deposition. The individual crystals constituting the Al 2 O 3 layer When determining the aspect ratio of the grains, the crystal grains having the aspect ratio of less than 3 account for 60-90% of the entire upper layer in area ratio, and the average grain diameter of the grains having the aspect ratio of less than 3 is Included in the range of 0.1 to 1.0 μm,
(D) A crystal having a hexagonal crystal lattice existing in the measurement range of the cross-sectional polished surface of the Al 2 O 3 crystal grains of the entire upper layer using a field emission scanning electron microscope and an electron beam backscattering diffractometer When each particle is irradiated with an electron beam and the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the tool base surface, When the measured inclination angle within the range of 0 to 45 degrees is divided into pitches of 0.25 degrees, and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the inclination The sum of the frequencies existing in the tilt angle section of the Al 2 O 3 crystal grains having an angle in the range of 0 to 10 degrees is 60% or more of the entire frequencies in the tilt angle frequency distribution graph,
(E) Among the Al 2 O 3 crystal grains of the entire upper layer described in (c), the average orientation difference in crystal grains of crystal grains having an aspect ratio of less than 3 is less than 5 degrees. A surface-coated cutting tool.
JP2013265697A 2013-12-24 2013-12-24 Surface coated cutting tool Active JP6198137B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013265697A JP6198137B2 (en) 2013-12-24 2013-12-24 Surface coated cutting tool
CN201410781432.0A CN104726848B (en) 2013-12-24 2014-12-16 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265697A JP6198137B2 (en) 2013-12-24 2013-12-24 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2015120224A JP2015120224A (en) 2015-07-02
JP6198137B2 true JP6198137B2 (en) 2017-09-20

Family

ID=53451250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265697A Active JP6198137B2 (en) 2013-12-24 2013-12-24 Surface coated cutting tool

Country Status (2)

Country Link
JP (1) JP6198137B2 (en)
CN (1) CN104726848B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635340B2 (en) * 2016-08-24 2020-01-22 住友電工ハードメタル株式会社 Surface coated cutting tool and method of manufacturing the same
JP7016462B2 (en) * 2016-09-30 2022-02-07 三菱マテリアル株式会社 Surface covering cutting tool
WO2018061856A1 (en) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 Surface-coated cutting tool
WO2019181792A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
EP3851230B1 (en) * 2019-02-19 2023-01-25 Sumitomo Electric Hardmetal Corp. Cutting tool

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526392B2 (en) * 1997-05-15 2004-05-10 日立金属株式会社 Hard film coated tool, hard film coated roll, and hard film coated mold
EP1788124B1 (en) * 2005-11-18 2008-09-24 Mitsubishi Materials Corporation Surface coated cutting tool made of cermet having property-modified alpha type Al2O3 layer of hard coating layer
SE529200C2 (en) * 2005-11-21 2007-05-29 Sandvik Intellectual Property Coated cutting, method of making and use
JP2011031319A (en) * 2009-07-30 2011-02-17 Mitsubishi Materials Corp Surface coated cutting tool
JP2012144766A (en) * 2011-01-11 2012-08-02 Kyocera Corp Coated member
JP5257535B2 (en) * 2011-08-31 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool
JP5748125B2 (en) * 2011-08-31 2015-07-15 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5817998B2 (en) * 2011-11-30 2015-11-18 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6139058B2 (en) * 2012-01-04 2017-05-31 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5490158B2 (en) * 2012-02-03 2014-05-14 三菱重工業株式会社 Surface coating material and cutting tool and machine tool using the same

Also Published As

Publication number Publication date
CN104726848B (en) 2018-07-31
CN104726848A (en) 2015-06-24
JP2015120224A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5257535B2 (en) Surface coated cutting tool
JP5483110B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6198176B2 (en) Surface coated cutting tool
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2017013223A (en) Surface coating and cutting tool
JP6657594B2 (en) Surface coated cutting tool
JP6519952B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6198137B2 (en) Surface coated cutting tool
JP2013188833A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP5838789B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP7205709B2 (en) surface coated cutting tools
JP6555514B2 (en) Surface coated cutting tool
JP2013049119A (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting work
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP2006334754A (en) Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting
JP5892380B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2018058200A (en) Surface-coated cutting tool
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6198137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250