JP6196074B2 - Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus - Google Patents

Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus Download PDF

Info

Publication number
JP6196074B2
JP6196074B2 JP2013129932A JP2013129932A JP6196074B2 JP 6196074 B2 JP6196074 B2 JP 6196074B2 JP 2013129932 A JP2013129932 A JP 2013129932A JP 2013129932 A JP2013129932 A JP 2013129932A JP 6196074 B2 JP6196074 B2 JP 6196074B2
Authority
JP
Japan
Prior art keywords
pipe
power generation
temperature
jig
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013129932A
Other languages
Japanese (ja)
Other versions
JP2015005615A (en
Inventor
哲司 山田
哲司 山田
真武 入部
真武 入部
英之 岡本
英之 岡本
仁 米澤
仁 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2013129932A priority Critical patent/JP6196074B2/en
Publication of JP2015005615A publication Critical patent/JP2015005615A/en
Application granted granted Critical
Publication of JP6196074B2 publication Critical patent/JP6196074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配管の表面に熱電発電素子を設置する方法に関し、さらに、該方法に用いられる熱電発電装置に関する。   The present invention relates to a method of installing a thermoelectric power generation element on the surface of a pipe, and further relates to a thermoelectric power generation apparatus used for the method.

熱電発電素子は、ゼーベック効果を利用した発電素子で、熱電発電素子の表裏に温度差をつけるだけで容易に電力を得ることができる。ここで、熱電発電素子により得られる電力(発電量)は温度差の2乗に比例するため、多くの発電量を確保するためには素子表裏の温度差を大きくすることが重要となる。   A thermoelectric power generation element is a power generation element using the Seebeck effect, and electric power can be easily obtained simply by making a temperature difference between the front and back of the thermoelectric power generation element. Here, since the electric power (power generation amount) obtained by the thermoelectric power generation element is proportional to the square of the temperature difference, it is important to increase the temperature difference between the front and back of the element in order to secure a large amount of power generation.

空調用配管は、内部に冷水や温水、蒸気など、配管周囲の空気温度(例えば機械室や屋外天井裏等の空間の気温、以降、周囲温度と記載)と異なる温度の熱媒が流れている。これらの熱媒が流れている配管には、配管用炭素鋼管やステンレス管などが用いられている。これらの配管材の熱伝導率は、配管周囲の空気の熱伝導率よりはるかに大きいため、配管表面温度は配管内を流れる熱媒に近い温度となる。結果として配管表面と周囲の空気には温度差が発生しやすくなる。そこで、配管表面に熱電発電素子を設置することで、配管表面温度と周囲温度の温度差から発電を行うことができる。例えば特許文献1には、給湯管に温度センサーとして熱電素子を設けて、温度差に比例して発生する電力の変化を検出することが開示されている。   The air conditioning pipe has a cooling medium, such as cold water, hot water, steam, etc., that has a temperature different from the air temperature around the pipe (for example, the temperature in the space such as the machine room or outdoor ceiling, hereinafter referred to as the ambient temperature). . For piping through which these heat media flow, piping carbon steel pipes, stainless steel pipes, and the like are used. Since the thermal conductivity of these piping materials is much larger than the thermal conductivity of air around the piping, the piping surface temperature is close to the heat medium flowing in the piping. As a result, a temperature difference tends to occur between the pipe surface and the surrounding air. Therefore, by installing a thermoelectric power generation element on the pipe surface, power can be generated from the temperature difference between the pipe surface temperature and the ambient temperature. For example, Patent Document 1 discloses that a thermoelectric element is provided as a temperature sensor in a hot water supply pipe to detect a change in electric power generated in proportion to a temperature difference.

一方、空調用配管は円筒形状であるのが一般的であり、その表面形状は曲面となる。それに対し熱電発電素子は平板状である場合が多く、配管表面に沿って自由に曲げることができないと、熱電発電素子を安定して配管表面に固定することができず、作業者ごとに取り付け誤差が発生しやすくなる。そこで、例えば特許文献2には、放熱部を伸縮させ、曲面を有する部位に装着できるようにした素子が開示されている。   On the other hand, the air conditioning piping is generally cylindrical, and the surface shape is a curved surface. On the other hand, thermoelectric power generation elements are often flat, and if they cannot be bent freely along the pipe surface, the thermoelectric power generation element cannot be stably fixed to the pipe surface, resulting in installation errors for each operator. Is likely to occur. Thus, for example, Patent Document 2 discloses an element in which a heat radiating portion is expanded and contracted so that it can be attached to a portion having a curved surface.

通常、空調用配管には結露防止やエネルギーロスの低減のため、グラスウールやロックウールなどの保温材が巻かれている。保温材は、内部に多数の空気層が形成されるため、配管の熱伝導率よりはるかに小さく、配管表面温度を保温材外面に伝えにくい。そのため、保温材の表面温度は周囲温度に近い温度となり、保温材表面に熱電発電素子を設置した場合、十分な温度差が得られず発電量が少なくなる。熱電発電素子を保温材の内部に埋め込むことも考えられるが、この場合、保温材の効果により配管とは逆側の面も含めて素子全体の温度が配管表面温度に近い温度で均一化するため、結果として十分な温度差は得られなくなる。また、保温材を除去して配管表面に直接熱電発電素子を設置することも考えられるが、配管内を流れる熱媒が周囲温度より低温である場合(例えば、冷水、ブラインなど)、発電素子やヒートシンクの温度が周囲温度の露点温度以下になる可能性があり、配管表面や熱電発電素子の表面で結露が発生し、熱電発電素子の故障の原因にもつながることが懸念される。   Usually, heat insulation materials such as glass wool and rock wool are wound around the air conditioning piping in order to prevent condensation and reduce energy loss. Since the heat insulating material has a large number of air layers formed therein, it is much smaller than the thermal conductivity of the pipe, and it is difficult to transmit the pipe surface temperature to the outer surface of the heat insulating material. Therefore, the surface temperature of the heat insulating material becomes a temperature close to the ambient temperature, and when a thermoelectric power generation element is installed on the surface of the heat insulating material, a sufficient temperature difference cannot be obtained and the amount of power generation is reduced. Although it is conceivable to embed the thermoelectric power generation element inside the heat insulating material, in this case, the temperature of the entire element including the surface opposite to the pipe is made uniform at a temperature close to the pipe surface temperature due to the effect of the heat insulating material. As a result, a sufficient temperature difference cannot be obtained. In addition, it is conceivable to remove the heat insulating material and install the thermoelectric generator directly on the pipe surface. However, if the heat medium flowing in the pipe is lower than the ambient temperature (for example, cold water, brine, etc.), There is a possibility that the temperature of the heat sink becomes lower than the dew point temperature of the ambient temperature, and there is a concern that dew condensation occurs on the pipe surface or the surface of the thermoelectric power generation element, leading to a failure of the thermoelectric power generation element.

そのため、例えば特許文献3には、素子を枠体で封入した構成が開示されている。この特許文献3の発明では、外部から侵入しようとする水分を撥水性のシール材層で阻止し、さらに水蒸気を水蒸気遮断シール材層で阻止することにより、枠体の内部で高い防湿効果を得ようとしている。   Therefore, for example, Patent Document 3 discloses a configuration in which an element is enclosed in a frame. In the invention of this Patent Document 3, a moisture-proof effect is obtained inside the frame body by blocking moisture that is going to enter from the outside with the water-repellent sealing material layer and further blocking water vapor with the water-vapor blocking sealing material layer. I am trying to do.

特開2006−10180号公報JP 2006-10180 A 特開平11−87786号公報Japanese Patent Laid-Open No. 11-87786 特開2010−226103号公報JP 2010-226103 A

特許文献3の発明のように、結露した水分の内部への侵入を完全に阻止するためには、シール構造が複雑になり、熱電発電素子のコストを高騰させてしまう問題がある。また、空調配管の内部を流れる熱媒の温度が熱電発電素子の耐熱温度より高温(蒸気など)である場合やブラインなどのマイナス温度の熱媒の時は、熱電発電素子の温度が耐熱温度範囲外となってしまい、これらも故障の原因となる。   As in the invention of Patent Document 3, in order to completely prevent the intrusion of condensed moisture into the inside, there is a problem that the seal structure becomes complicated and the cost of the thermoelectric power generation element increases. In addition, when the temperature of the heat medium flowing inside the air conditioning pipe is higher than the heat resistance temperature of the thermoelectric power generation element (steam, etc.), or when the heat medium has a negative temperature such as brine, the temperature of the thermoelectric power generation element is within the heat resistance temperature range. These will also be the cause of failure.

本発明の目的は、結露を発生させずに熱電発電素子を配管に装着でき、しかも、熱電発電素子が耐熱温度範囲外となることを回避できるようにすることにある。   An object of the present invention is to make it possible to attach a thermoelectric power generation element to a pipe without causing condensation, and to prevent the thermoelectric power generation element from being out of the heat resistant temperature range.

本発明によれば、配管の表面に熱電発電素子を設置する方法であって、前記配管の熱伝導率よりも低い熱伝導率を有する材質からなる治具を、前記配管の表面に装着し、前記治具を介して、前記熱電発電素子を前記配管の表面に取り付けることにより、前記配管の表面の熱を、前記治具を介して前記熱電発電素子に伝導させることを特徴とする、配管への熱電発電素子の設置方法が提供される。   According to the present invention, a method of installing a thermoelectric power generation element on the surface of a pipe, wherein a jig made of a material having a thermal conductivity lower than the thermal conductivity of the pipe is attached to the surface of the pipe, By attaching the thermoelectric power generation element to the surface of the pipe via the jig, the heat of the surface of the pipe is conducted to the thermoelectric power generation element via the jig. A method for installing the thermoelectric generator is provided.

また、本発明によれば、配管の表面に設置される熱電発電装置であって、前記配管の表面に装着される、前記配管の熱伝導率よりも低い熱伝導率を有する材質からなる治具と、前記治具を介して前記配管の表面に取り付けられる熱電発電素子を有することを特徴とする、熱電発電装置が提供される。この熱電発電装置において、前記熱電発電素子を可撓性部材に支持し、前記治具を介して前記配管の表面に前記可撓性部材を巻き付けることにより、前記熱電発電素子を取り付けるようにしても良い。   According to the present invention, there is provided a thermoelectric generator installed on the surface of a pipe, the jig made of a material having a thermal conductivity lower than that of the pipe, which is attached to the surface of the pipe. And a thermoelectric power generation device that is attached to the surface of the pipe via the jig. In this thermoelectric power generation device, the thermoelectric power generation element may be attached to the surface of the pipe by supporting the thermoelectric power generation element on a flexible member and winding the flexible member around the surface of the pipe via the jig. good.

本発明にあっては、熱電発電素子と配管との間に治具を介在させることにより、配管から熱電発電素子に伝導する熱量を調整し、熱電発電素子が耐熱温度範囲外となることを回避する。この場合、前記治具の材質、枚数、厚みのいずれかを変えることによって、前記熱電発電素子に伝導させる熱量を調整することができる。   In the present invention, by interposing a jig between the thermoelectric power generation element and the pipe, the amount of heat conducted from the pipe to the thermoelectric power generation element is adjusted, and the thermoelectric power generation element is prevented from being outside the heat resistant temperature range. To do. In this case, the amount of heat conducted to the thermoelectric generator can be adjusted by changing any of the material, number of sheets, and thickness of the jig.

本発明によれば、配管の表面の熱を治具を介して前記熱電発電素子に伝導させることにより、配管から熱電発電素子に伝導する熱量を調整し、結露の発生を防止することが可能となる。また、配管の内部を流れる熱媒の温度が熱電発電素子の耐熱温度より高温(蒸気など)である場合やブラインなどのマイナス温度の熱媒の場合でも、熱電発電素子の温度が耐熱温度範囲外の温度になってしまうことを回避でき、熱電発電素子の故障を防止できる。また、治具を介在させることにより、熱電発電素子の耐熱温度範囲外での使用が可能となる。   According to the present invention, it is possible to adjust the amount of heat conducted from the pipe to the thermoelectric power generation element by conducting heat on the surface of the pipe to the thermoelectric power generation element via a jig, and to prevent the occurrence of condensation. Become. In addition, even when the temperature of the heat medium flowing inside the piping is higher than the heat resistance temperature of the thermoelectric power generation element (steam, etc.) or in the case of a negative temperature heat medium such as brine, the temperature of the thermoelectric power generation element is outside the heat resistance temperature range. Therefore, it is possible to prevent the thermoelectric power generation element from failing. Further, by interposing the jig, the thermoelectric generator can be used outside the heat resistant temperature range.

本発明の実施の形態にかかる熱電発電装置の説明図である。It is explanatory drawing of the thermoelectric power generating apparatus concerning embodiment of this invention. 治具の枚数を変えることによって、熱電発電素子に伝導させる熱量が調整される、本発明の実施の形態に係る熱電発電装置の説明図である。It is explanatory drawing of the thermoelectric power generating apparatus which concerns on embodiment of this invention by which the quantity of heat conducted to a thermoelectric power generating element is adjusted by changing the number of jigs. 治具の厚みを変えることによって、熱電発電素子に伝導させる熱量が調整される、本発明の実施の形態に係る熱電発電装置の説明図である。It is explanatory drawing of the thermoelectric power generating apparatus which concerns on embodiment of this invention by which the calorie | heat amount conducted to a thermoelectric power generating element is adjusted by changing the thickness of a jig | tool. 可撓性部材に支持された熱電発電素子の平面図である。It is a top view of the thermoelectric power generation element supported by the flexible member. 可撓性部材に支持された熱電発電素子の側面図である。It is a side view of the thermoelectric power generation element supported by the flexible member. 図5、6に示す熱電発電素子を配管に取り付けた状態を示す、本発明の別の実施の形態に係る熱電発電装置の説明図である。It is explanatory drawing of the thermoelectric power generating apparatus which concerns on another embodiment of this invention which shows the state which attached the thermoelectric power generating element shown to FIG. 5, 6 to piping.

以下、本発明の実施の形態にかかる熱電発電装置1を図面を参照にして説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, a thermoelectric generator 1 according to an embodiment of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に示すように、本発明の実施の形態にかかる熱電発電装置1は、配管2の外表面に装着される治具3と、治具3を介して配管2の外表面に取り付けられる熱電発電素子4を有している。配管2は例えば空調用配管であり、配管用炭素鋼管やステンレス管などといった中空の円管が用いられる。配管2の内部には、冷水や温水、蒸気などといった、配管2の周囲の空気温度(以降、周囲温度と記載)と異なる温度の熱媒が流れている。このため、配管2の表面温度は配管2内を流れる熱媒に近い温度をとなる。結果として配管2の表面と周囲の空気には温度差が発生している。   As shown in FIG. 1, a thermoelectric generator 1 according to an embodiment of the present invention includes a jig 3 attached to the outer surface of a pipe 2 and a thermoelectric attached to the outer surface of the pipe 2 via the jig 3. A power generation element 4 is provided. The pipe 2 is an air conditioning pipe, for example, and a hollow circular pipe such as a carbon steel pipe for piping or a stainless pipe is used. Inside the pipe 2, a heat medium having a temperature different from the air temperature around the pipe 2 (hereinafter referred to as ambient temperature) such as cold water, hot water, and steam flows. For this reason, the surface temperature of the pipe 2 becomes a temperature close to the heat medium flowing in the pipe 2. As a result, a temperature difference is generated between the surface of the pipe 2 and the surrounding air.

治具3は、熱伝導を制御する治具本体10の下面に、配管側支持部11を配置し、上面に熱電発電素子4を配置した構成を有している。治具本体10は、均一な熱抵抗を持っており、熱伝導率が配管2または配管支持部11より低く、配管2内部を流れる流体の熱により変形や変質を起こさず、かつ、多少の圧力では変形を起こさない材質あるいは使用時において用法に従う取扱いによっては変形しない(例えば人の片手の力によっては変形しない)厚みや構造であることが望ましく、例えば、材質は硬質ウレタン、シリコン、アルミ、銅、鉄などからなる。配管側支持部11は、配管2の表面の熱を治具本体10に伝え、かつ、治具本体10から熱電発電素子4へ熱を伝えることができるように、優れた熱伝導性を有する材料からなる。また、配管側支持部11の内面(配管2に対向する面)は、曲面である配管2の外表面に密着できるように湾曲面になっている。なお、設計時に結露防止しかつ耐熱温度範囲内となるように治具本体10の厚み(枚数、材質)を算出して設置しても、変形を起こすと治具本体10自体の熱抵抗が変化してしまい、当初の計算通りとはならずに十分な温度差が得られなかったり、あるいは結露が発生したり耐熱温度範囲外となる恐れがある。即ち、設置したときの形を維持できることが望ましい。   The jig 3 has a configuration in which the pipe-side support portion 11 is arranged on the lower surface of the jig main body 10 that controls heat conduction, and the thermoelectric generator element 4 is arranged on the upper surface. The jig body 10 has a uniform thermal resistance, has a thermal conductivity lower than that of the pipe 2 or the pipe support 11, does not cause deformation or alteration due to the heat of the fluid flowing in the pipe 2, and has a certain pressure. However, it is desirable that the material does not deform or does not deform by handling according to usage in use (for example, it does not deform by the force of one person's hand). For example, the material is rigid urethane, silicon, aluminum, copper Made of iron. The pipe-side support portion 11 is a material having excellent thermal conductivity so that heat on the surface of the pipe 2 can be transferred to the jig body 10 and heat can be transferred from the jig body 10 to the thermoelectric generator element 4. Consists of. Moreover, the inner surface (surface facing the pipe 2) of the pipe side support part 11 is a curved surface so that it can adhere to the outer surface of the pipe 2 which is a curved surface. In addition, even if the thickness (number of sheets, material) of the jig body 10 is calculated and installed so as to prevent condensation at the time of design and be within the heat resistant temperature range, the thermal resistance of the jig body 10 itself changes when it is deformed. As a result, the temperature may not be as originally calculated, and a sufficient temperature difference may not be obtained, or condensation may occur or the temperature may be outside the heat resistant temperature range. That is, it is desirable to maintain the shape when installed.

熱電発電素子4は、ゼーベック効果を利用して発電を行う素子本体12と、素子本体12の外面に取り付けられた放熱板15と、放熱板15の外面に取り付けられた複数の放熱フィン16を有している。熱電発電素子4では、素子本体12の内面(治具3に対向する面)に、配管2の表面の熱が治具3を介して伝導され、一方で、素子本体12の外面では放熱板15および放熱フィン16による放熱が行われる。   The thermoelectric power generation element 4 includes an element body 12 that generates power using the Seebeck effect, a heat radiating plate 15 attached to the outer surface of the element main body 12, and a plurality of heat radiating fins 16 attached to the outer surface of the heat radiating plate 15. doing. In the thermoelectric generator 4, the heat of the surface of the pipe 2 is conducted to the inner surface of the element body 12 (the surface facing the jig 3) through the jig 3, while the heat radiating plate 15 is disposed on the outer surface of the element body 12. Further, heat radiation is performed by the heat radiation fins 16.

このように構成された熱電発電装置1において、上述のように、熱電発電素子4の素子本体12の内面には配管2の表面の熱が治具3を介して伝導され、一方で、素子本体12の外面では放熱板15および放熱フィン16による放熱が行われる。こうして、熱電発電素子4(素子本体12)の表裏に温度差が形成されて、発電が行われる。   In the thermoelectric generator 1 configured as described above, as described above, the heat of the surface of the pipe 2 is conducted to the inner surface of the element body 12 of the thermoelectric power generation element 4 via the jig 3. On the outer surface of 12, heat radiation by the heat radiating plate 15 and the heat radiating fins 16 is performed. In this way, a temperature difference is formed between the front and back of the thermoelectric power generation element 4 (element body 12), and power generation is performed.

ここで、本発明の実施の形態にかかる熱電発電装置1にあっては、熱電発電素子4と配管2との間に配管2の熱伝導率よりも低い熱伝導率を有する材質からなる治具3が介在していることにより、配管2から熱電発電素子4に伝導される熱量が治具3によって低減される。こうして熱量が調整されることにより、熱電発電素子4における結露の発生を防止することが可能となる。また、配管2の内部を流れる熱媒の温度が熱電発電素子4の耐熱温度より高温(蒸気など)である場合やブラインなどのマイナス温度の熱媒の場合でも、熱電発電素子4の温度が耐熱温度範囲外の温度になってしまうことを回避でき、熱電発電素子4の故障を防止できる。また、治具3が介在していることにより、熱電発電素子4の耐熱温度範囲外での使用も可能となる。   Here, in the thermoelectric power generation apparatus 1 according to the embodiment of the present invention, a jig made of a material having a thermal conductivity lower than that of the pipe 2 between the thermoelectric power generation element 4 and the pipe 2. 3 is interposed, the amount of heat conducted from the pipe 2 to the thermoelectric generator 4 is reduced by the jig 3. By adjusting the amount of heat in this way, it becomes possible to prevent the occurrence of condensation in the thermoelectric power generation element 4. Further, even when the temperature of the heat medium flowing inside the pipe 2 is higher than the heat resistant temperature of the thermoelectric power generation element 4 (steam, etc.) or in the case of a heat medium having a negative temperature such as brine, the temperature of the thermoelectric power generation element 4 is heat resistant. It can be avoided that the temperature is outside the temperature range, and failure of the thermoelectric generator 4 can be prevented. Further, since the jig 3 is interposed, the thermoelectric generator 4 can be used outside the heat resistant temperature range.

ここで、例えば空調用配管は、配管系統(冷水系統、ブライン系統、往配管、還配管など)や負荷側での消費熱量、さらには冷凍機の設定温度により配管2内の熱媒温度が変化する。そのため、一定の熱抵抗を持った治具3を用いたのでは、所定の条件では、耐熱温度範囲外の温度になってしまうことの回避や結露防止をしつつ、熱電発電素子4の表裏での温度差も大きくとることが可能となる反面、異なる条件の配管2では、熱抵抗が足りずに熱電発電素子4にて結露等が発生する、もしくは熱抵抗が大きすぎるために熱電発電素子4の表裏で温度差が小さくなり、結果として発電量が減少する、といった不具合が生じることになる。   Here, for example, in the air conditioning piping, the heat medium temperature in the piping 2 varies depending on the piping system (cold water system, brine system, forward piping, return piping, etc.), the amount of heat consumed on the load side, and the set temperature of the refrigerator. To do. Therefore, if the jig 3 having a certain thermal resistance is used, under the predetermined conditions, the thermoelectric power generation element 4 can be prevented from becoming a temperature outside the heat-resistant temperature range and preventing condensation. However, in the pipe 2 under different conditions, the thermoelectric power generation element 4 has insufficient thermal resistance, causing condensation or the like in the thermoelectric power generation element 4, or the thermal resistance is too large. The temperature difference between the front and back becomes smaller, resulting in a problem that the amount of power generation decreases.

そこで、本発明では、治具3の材質、枚数、厚みのいずれかを変えることによって、熱電発電素子4に伝導させる熱量を調整し、異なる条件の配管2についても、結露等を回避しつつ、熱電発電素子4の表裏での温度差も大きくとることを可能にする。次に、治具3の材質、枚数、厚みを変える場合を、それぞれ分けて説明する。   Therefore, in the present invention, the amount of heat conducted to the thermoelectric power generation element 4 is adjusted by changing any of the material, the number of sheets, and the thickness of the jig 3, while avoiding condensation and the like for the pipe 2 under different conditions, The temperature difference between the front and back sides of the thermoelectric generator 4 can be increased. Next, the case of changing the material, number of sheets, and thickness of the jig 3 will be described separately.

1. 配管2の表面温度に合わせ、治具3の材質を変化させる。すなわち、配管2内を流れる熱媒の温度や周囲の温湿度(露点温度)、熱電発電素子4の耐熱温度によって治具3の材質を決定する。この決定は、後述のように本発明治具の初期設置前の設定時点でもよいし、設置後(運用後)の環境変化に対応する改修等の時点でもよい。
(1) 配管2の表面温度が設置期間中において常時、周囲温度の露点温度以上で、かつ、熱電発電素子4の耐熱温度範囲内である場合は、治具3全体の熱伝導率を高くして、配管2の表面から熱電発電素子4に効率よく伝導させる。この場合、例えば、治具本体10の材質に熱伝導率の高い材料(アルミ、銅、鉄など)を使用するか、もしくは、治具本体10を省略し、配管2の表面の熱を配管側支持部11を介して熱電発電素子4に直接伝導させる。
(2) 次に、設置期間中において、配管2の表面温度が周囲温度の露点温度に対しわずかに低い温度、もしくは、熱電発電素子4の耐熱温度範囲に対してわずかに外れる温度となることがある場合は、治具3全体の熱伝導率を比較的低くして、配管2の表面から熱電発電素子4に伝導する熱量を低減させる。この場合、例えば、治具本体10の材質に熱伝導率の比較的低い材料(シリコンなど)を使用する。
(3) さらに、設置期間中において、配管2の表面温度が周囲温度の露点温度に対し極めて低い温度、もしくは、熱電発電素子4の耐熱温度範囲に対して極めて高い(低い)温度となることがある場合は、治具3全体の熱伝導率を相当に低くして、配管2の表面から熱電発電素子4に伝導する熱量をさらに低減させる。この場合、例えば、治具本体10の材質に熱伝導率の相当に低い材料(硬質ウレタン、グラスウール板、ロックウール板、海綿状のものなど)を使用する。
1. The material of the jig 3 is changed according to the surface temperature of the pipe 2. That is, the material of the jig 3 is determined by the temperature of the heat medium flowing through the pipe 2, the ambient temperature and humidity (dew point temperature), and the heat resistance temperature of the thermoelectric power generation element 4. As will be described later, this determination may be performed at the time of setting before the initial installation of the jig of the present invention, or at the time of repair or the like corresponding to the environmental change after installation (after operation).
(1) When the surface temperature of the pipe 2 is always above the dew point of the ambient temperature and within the heat resistance temperature range of the thermoelectric generator 4 during the installation period, the thermal conductivity of the entire jig 3 is increased. Thus, the heat is efficiently conducted from the surface of the pipe 2 to the thermoelectric generator 4. In this case, for example, a material having high thermal conductivity (aluminum, copper, iron, etc.) is used as the material of the jig body 10, or the jig body 10 is omitted and the heat of the surface of the pipe 2 is transferred to the pipe side. The heat is directly conducted to the thermoelectric power generation element 4 through the support portion 11.
(2) Next, during the installation period, the surface temperature of the pipe 2 may be a temperature slightly lower than the dew point temperature of the ambient temperature or a temperature slightly deviating from the heat resistance temperature range of the thermoelectric power generation element 4. In some cases, the heat conductivity of the entire jig 3 is made relatively low, and the amount of heat conducted from the surface of the pipe 2 to the thermoelectric generator 4 is reduced. In this case, for example, a material having a relatively low thermal conductivity (such as silicon) is used as the material of the jig body 10.
(3) Further, during the installation period, the surface temperature of the pipe 2 may be extremely low with respect to the dew point temperature of the ambient temperature, or may be extremely high (low) with respect to the heat resistant temperature range of the thermoelectric power generation element 4. In some cases, the heat conductivity of the entire jig 3 is considerably reduced, and the amount of heat conducted from the surface of the pipe 2 to the thermoelectric generator 4 is further reduced. In this case, for example, a material having a considerably low thermal conductivity (hard urethane, glass wool plate, rock wool plate, sponge-like material, etc.) is used as the material of the jig body 10.

2. 配管2の表面温度に合わせ、治具3の枚数を変化させる。すなわち、図2に示すように、配管側支持部11と素子本体12の間に配置される治具本体10を、複数枚の治具本体部分10aに分割し、配管2内を流れる熱媒の温度や周囲の温湿度(露点温度)、熱電発電素子4の耐熱温度によって、使用する治具本体部分10aの枚数を決定する。
(1) 配管2の表面温度が周囲温度の露点温度以上、もしくは、熱電発電素子4の耐熱温度範囲内である場合は、治具3全体の熱伝導率を高くして、配管2の表面から熱電発電素子4に効率よく伝導させる。この場合、治具本体10に用いる治具本体部分10aを最小枚数(例えば1枚)とするか、もしくは、治具本体10を省略し(治具本体部分10aを0枚とし)、配管2の表面の熱を配管側支持部11を介して熱電発電素子4に直接伝導させる。
(2) 次に、配管2の表面温度が周囲温度の露点温度に対しわずかに低い温度、もしくは、熱電発電素子4の耐熱温度範囲に対してわずかに外れる温度である場合は、治具3全体の熱伝導率を比較的低くして、配管2の表面から熱電発電素子4に熱量を低減させる。この場合、例えば、治具本体10に用いる治具本体部分10aの枚数を例えば2〜4枚程度として、配管2の表面から熱電発電素子4に伝導する熱量を低減させる。
(3) さらに、配管2の表面温度が周囲温度の露点温度に対し極めて低い温度、もしくは、熱電発電素子4の耐熱温度範囲に対して極めて高い(低い)温度である場合は、治具3全体の熱伝導率を相当に低くして、配管2の表面から熱電発電素子4に伝導する熱量をさらに低減させる。この場合、治具本体10に用いる治具本体部分10aの枚数をさらに増やして、配管2の表面から熱電発電素子4に伝導する熱量をさらに低減させる。
このように、治具本体部分10aを予め何枚か用意しておき、熱媒の温度に合わせて適当な枚数の治具本体部分10aを重ね合わせることで、配管2の表面から熱電発電素子4までの間の熱抵抗を調整する方法である。この方法によれば、取付配管の熱媒温度が想定していた温度と異なるような場合でも、容易に現地にて調整しやすくなるといった利点もある。
2. The number of jigs 3 is changed in accordance with the surface temperature of the pipe 2. That is, as shown in FIG. 2, the jig body 10 disposed between the pipe-side support portion 11 and the element body 12 is divided into a plurality of jig body portions 10 a and the heat medium flowing through the pipe 2 is divided. The number of jig main body portions 10a to be used is determined according to the temperature, ambient temperature and humidity (dew point temperature), and the heat-resistant temperature of the thermoelectric generator element 4.
(1) When the surface temperature of the pipe 2 is equal to or higher than the dew point temperature of the ambient temperature or within the heat-resistant temperature range of the thermoelectric power generation element 4, the thermal conductivity of the entire jig 3 is increased so that the surface of the pipe 2 Efficiently conduct to the thermoelectric generator 4. In this case, the jig main body portion 10a used for the jig main body 10 is set to the minimum number (for example, one), or the jig main body 10 is omitted (the jig main body portion 10a is zero), and the pipe 2 The heat of the surface is directly conducted to the thermoelectric power generation element 4 through the pipe side support portion 11.
(2) Next, when the surface temperature of the pipe 2 is slightly lower than the dew point temperature of the ambient temperature or slightly deviating from the heat-resistant temperature range of the thermoelectric generator 4, the entire jig 3 The heat conductivity is reduced to a relatively low level to reduce the amount of heat from the surface of the pipe 2 to the thermoelectric generator 4. In this case, for example, the number of jig main body portions 10a used for the jig main body 10 is about 2 to 4, for example, and the amount of heat conducted from the surface of the pipe 2 to the thermoelectric power generation element 4 is reduced.
(3) Furthermore, when the surface temperature of the pipe 2 is extremely low with respect to the dew point temperature of the ambient temperature or extremely high (low) with respect to the heat resistant temperature range of the thermoelectric power generation element 4, the entire jig 3 The heat conductivity of the pipe 2 is considerably reduced, and the amount of heat conducted from the surface of the pipe 2 to the thermoelectric generator 4 is further reduced. In this case, the number of jig main body portions 10 a used for the jig main body 10 is further increased to further reduce the amount of heat conducted from the surface of the pipe 2 to the thermoelectric power generation element 4.
In this way, several pieces of jig main body portions 10a are prepared in advance, and an appropriate number of jig main body portions 10a are superposed in accordance with the temperature of the heat medium, so that the thermoelectric power generation element 4 is formed from the surface of the pipe 2. It is a method of adjusting the thermal resistance during the time. According to this method, there is an advantage that even if the temperature of the heat medium of the attachment pipe is different from the assumed temperature, it can be easily adjusted on site.

3. 配管2の表面温度に合わせ、治具3の厚みを変化させる。すなわち、図3(a)、(b)に示すように、配管側支持部11と素子本体12の間に配置される治具本体10の厚みを、配管2内を流れる熱媒の温度や周囲の温湿度(露点温度)、熱電発電素子4の耐熱温度によって決定する。
(1) 例えば、配管2内を流れる熱媒が冷水や高温水など、配管2の表面温度が周囲温度の露点温度以上か、露点温度に対しわずかに低い程度であり、もしくは、熱電発電素子4の耐熱温度範囲内か、耐熱温度範囲に対してわずかに外れる程度である場合は、図3(a)に示すように、治具本体10を厚みを薄くして治具3全体の熱伝導率を高くし、配管2の表面から熱電発電素子4に熱量を効率よく伝導させる。
(2) 一方、例えば、配管2内を流れる熱媒がブラインや蒸気など、配管2の表面温度が周囲温度の露点温度に対し極めて低い温度、もしくは、熱電発電素子4の耐熱温度範囲に対して極めて高い(低い)温度である場合は、図3(b)に示すように、治具本体10を厚みを厚くして治具3全体の熱伝導率を低くし、配管2の表面から熱電発電素子4に伝導する熱量を低減させる。
この方法は、予め治具本体10の厚みが異なる数種類の治具3を用意しておき、熱媒の温度に合わせて使用する治具3を選択する方法である。各治具3における治具本体10の厚みは、配管2内の熱媒温度(配管系統や水温の設定温度など)と周囲温度の露点温度、熱電発電素子4の耐熱温度、熱電発電素子4自体の熱抵抗、などの関係に基づいて決定し、条件が厳しいほど治具本体10の厚みがある治具3を使用する。
3. The thickness of the jig 3 is changed according to the surface temperature of the pipe 2. That is, as shown in FIGS. 3A and 3B, the thickness of the jig main body 10 disposed between the pipe-side support portion 11 and the element main body 12 is set to the temperature of the heat medium flowing in the pipe 2 and the surroundings. The temperature and humidity (dew point temperature) and the heat-resistant temperature of the thermoelectric generator 4 are determined.
(1) For example, the heat medium flowing in the pipe 2 is cold water or high-temperature water, and the surface temperature of the pipe 2 is higher than the dew point temperature of the ambient temperature or slightly lower than the dew point temperature, or the thermoelectric generator 4 If the temperature is within the heat-resistant temperature range or slightly outside the heat-resistant temperature range, as shown in FIG. The amount of heat is efficiently conducted from the surface of the pipe 2 to the thermoelectric generator 4.
(2) On the other hand, for example, the heat medium flowing in the pipe 2 is brine or steam, etc., where the surface temperature of the pipe 2 is extremely low with respect to the dew point temperature of the ambient temperature, or the heat resistance temperature range of the thermoelectric generator 4 When the temperature is extremely high (low), as shown in FIG. 3B, the jig body 10 is thickened to lower the overall thermal conductivity of the jig 3, and thermoelectric power generation starts from the surface of the pipe 2. The amount of heat conducted to the element 4 is reduced.
In this method, several kinds of jigs 3 having different thicknesses of the jig body 10 are prepared in advance, and the jig 3 to be used is selected in accordance with the temperature of the heat medium. The thickness of the jig body 10 in each jig 3 is such that the heat medium temperature in the pipe 2 (pipe system, set temperature of the water temperature, etc.), the dew point temperature of the ambient temperature, the heat resistance temperature of the thermoelectric generator element 4, the thermoelectric generator element 4 itself The jig 3 having a thickness of the jig body 10 is used as the condition becomes severer.

このように、治具3の材質、枚数、厚みのいずれかを変えることによって、熱電発電素子4に伝導させる熱量を調整することにより、結露の発生や熱電発電素子4が耐熱温度範囲外となることを回避しつつ、熱電発電素子4の表裏での温度差も大きくして、効率の良い発電を行うことが可能となる。また、治具3を介在させたことにより、熱電発電素子4の耐熱温度範囲外での使用が可能となる。例えば特許第4949081号に記載された温度計に必要な電力をまかなうことができ、電源不要の計測システムを構築することができるようになる。
なお、熱電発電素子4を設置する期間における配管2内の流体温度(配管2の表面温度)と周囲露点温度とを予測しておき、予測されたあらゆる温度条件下で、熱電発電素子4が耐熱温度範囲内となり、かつ、結露が発生しないように、治具本体10の材質、枚数、厚みを予め設定することもできる。また、夏期冬期の運転切替時や、負荷側の消費熱量が変わる場合(レイアウト変更等)など、設置個所における配管2内の流体温度が当初設計時から変化する場合には、配管2内の流体温度(配管2の表面温度)と周囲露点温度の予測値を見直して、治具本体10の材質、枚数、厚みを再度設定し変更することもできる。
In this way, by adjusting the amount of heat conducted to the thermoelectric power generation element 4 by changing any of the material, the number of sheets, and the thickness of the jig 3, the occurrence of condensation or the thermoelectric power generation element 4 is out of the heat resistant temperature range. While avoiding this, the temperature difference between the front and back of the thermoelectric power generation element 4 is also increased, and efficient power generation can be performed. In addition, since the jig 3 is interposed, the thermoelectric generator 4 can be used outside the heat resistant temperature range. For example, the electric power necessary for the thermometer described in Japanese Patent No. 4949081 can be provided, and a measurement system that does not require a power source can be constructed.
Note that the fluid temperature in the pipe 2 (surface temperature of the pipe 2) and the ambient dew point temperature during the period in which the thermoelectric generator element 4 is installed are predicted, and the thermoelectric generator element 4 is heat resistant under all predicted temperature conditions. The material, the number of sheets, and the thickness of the jig body 10 can be set in advance so that the temperature is within the range and no condensation occurs. In addition, when the fluid temperature in the pipe 2 at the installation location changes from the initial design, such as when the operation is switched in summer and winter, or when the heat consumption on the load side changes (layout change, etc.), the fluid in the pipe 2 The predicted values of the temperature (surface temperature of the pipe 2) and the ambient dew point temperature are reviewed, and the material, number and thickness of the jig body 10 can be set and changed again.

次に、本発明の別の実施の形態にかかる熱電発電装置1’について説明する。図4、5に示すように、この熱電発電装置1’では、熱電発電素子4が可撓性部材20に一体的に支持されている。可撓性部材20は、断熱性、可撓性、弾性を有する材質や厚み(例えばシリコンゴムなどのゴム材)からなる帯状の可撓性部材本体21の両端に、適当な硬さを有する素材(例えばアクリル板など)からなる支持部22を接着剤などにより固定し、支持部22にフックなどの係止具23を取り付けた構成である。可撓性部材本体21の中央には、熱電発電素子4の素子本体15と同サイズの穴が開いており、その穴に熱電発電素子4の素子本体15が嵌め込まれることにより、熱電発電素子4は可撓性部材20に一体的に支持されている。なお、熱電発電素子4の複数の放熱フィン16は、可撓性部材20の外側に突出した状態になっている。   Next, a thermoelectric generator 1 'according to another embodiment of the present invention will be described. As shown in FIGS. 4 and 5, in this thermoelectric generator 1 ′, the thermoelectric generator element 4 is integrally supported by the flexible member 20. The flexible member 20 is a material having appropriate hardness at both ends of a band-shaped flexible member main body 21 made of a heat-insulating, flexible, elastic material or a thickness (for example, a rubber material such as silicon rubber). A support portion 22 made of (for example, an acrylic plate) is fixed with an adhesive or the like, and a locking tool 23 such as a hook is attached to the support portion 22. A hole having the same size as the element main body 15 of the thermoelectric power generation element 4 is opened in the center of the flexible member main body 21, and the element main body 15 of the thermoelectric power generation element 4 is fitted into the hole, whereby the thermoelectric power generation element 4. Is integrally supported by the flexible member 20. The plurality of heat radiation fins 16 of the thermoelectric power generation element 4 are in a state of protruding to the outside of the flexible member 20.

可撓性部材本体21の熱抵抗は、熱電発電素子4の素子本体15の熱抵抗よりも大きい(熱電発電素子4の素子本体15よりも可撓性部材本体21の断熱性が高い)ことが望ましい。可撓性部材本体21の熱抵抗が、熱電発電素子4の素子本体15の熱抵抗よりも大きければ、可撓性部材本体21自体の表面においても、結露等を防止できるからである。また、素子本体12の側面と接する可撓性部材本体21の高さ(厚さ)は、熱電発電素子4の素子本体15の高さ(厚さ)と同等であることが望ましい。可撓性部材本体21の高さが素子本体15の高さよりも低いと、素子本体15の側面が可撓性部材本体21からはみ出て露出してしまい、素子本体15の側面から周囲温度の影響を受け、得られる温度差が小さくなってしまう。逆に、可撓性部材本体21の高さが素子本体15の高さよりも高いと、素子本体15が可撓性部材本体21に埋没してしまい、凹んだ部分に空気が滞留し放熱が十分にできなくなるため、その場合も素子本体15の表裏で温度差を得難くなる。   The thermal resistance of the flexible member main body 21 is larger than the thermal resistance of the element main body 15 of the thermoelectric power generation element 4 (the heat insulation of the flexible member main body 21 is higher than that of the element main body 15 of the thermoelectric power generation element 4). desirable. This is because, if the thermal resistance of the flexible member main body 21 is larger than the thermal resistance of the element main body 15 of the thermoelectric power generation element 4, condensation or the like can be prevented even on the surface of the flexible member main body 21 itself. Further, the height (thickness) of the flexible member main body 21 in contact with the side surface of the element main body 12 is preferably equal to the height (thickness) of the element main body 15 of the thermoelectric power generation element 4. If the height of the flexible member main body 21 is lower than the height of the element main body 15, the side surface of the element main body 15 protrudes from the flexible member main body 21 and is exposed, and the influence of the ambient temperature from the side surface of the element main body 15. As a result, the temperature difference obtained is reduced. On the contrary, if the height of the flexible member main body 21 is higher than the height of the element main body 15, the element main body 15 is buried in the flexible member main body 21, and air stays in the recessed portion, so that heat dissipation is sufficient. In this case, it is difficult to obtain a temperature difference between the front and back of the element body 15.

この実施の形態にかかる熱電発電装置1’では、図6に示すように、配管2の外表面に治具3を密着させて装着し、さらに治具3の外側から可撓性部材20を巻き付ける。こうして、可撓性部材20に一体的に支持されている熱電発電素子4を、治具3を介して配管2の表面に取り付ける。この場合、図6に示すように、可撓性部材本体21の両端(支持部22)を引っ張り、治具3を介して可撓性部材本体21を配管2の表面に覆い被せる。そして、支持部22に取り付けられた係止具23同士を、例えばチェーン25等を用いて連結する。これにより、可撓性部材20に一体的に支持されている熱電発電素子4を治具3の外側に密着させて、治具3を介して配管2の表面に熱電発電素子4をしっかりと取り付けることができる。なお、例えばチェーン25等にバネなどを介在させ、バネなどの力によって熱電発電素子4を配管2側(治具3)に確実に密着させることもできる。この場合、バネなどの張力を利用することができるため、可撓性部材20は断熱性と可撓性があればよく、弾性は備えていなくてもよい。なお、係止具23がアクリル板などの硬い素材からなる支持部22で固定されているので、係止具23同士をチェーン25等で連結する際、係止具23で引っ張られる力を支持部22を介して可撓性部材本体21全体に均等に伝えることができる。(支持部22がないと、係止具23がある部分だけで可撓性部材本体21が強く引っ張られる形となり、局所的に大きな負荷がかかり可撓性部材本体21が切れてしまう可能性がある。また、熱電発電素子4にも均等に力が加わりにくくなり、取り付け誤差が発生する原因となる。)   In the thermoelectric generator 1 ′ according to this embodiment, as shown in FIG. 6, the jig 3 is attached in close contact with the outer surface of the pipe 2, and the flexible member 20 is wound from the outside of the jig 3. . In this way, the thermoelectric power generation element 4 that is integrally supported by the flexible member 20 is attached to the surface of the pipe 2 via the jig 3. In this case, as shown in FIG. 6, both ends (support portions 22) of the flexible member main body 21 are pulled, and the flexible member main body 21 is covered on the surface of the pipe 2 via the jig 3. And the locking tools 23 attached to the support part 22 are connected using the chain 25 grade | etc., For example. As a result, the thermoelectric power generation element 4 integrally supported by the flexible member 20 is brought into close contact with the outside of the jig 3, and the thermoelectric power generation element 4 is firmly attached to the surface of the pipe 2 via the jig 3. be able to. In addition, for example, a spring or the like is interposed in the chain 25 or the like, and the thermoelectric power generation element 4 can be reliably brought into close contact with the pipe 2 side (the jig 3) by the force of the spring or the like. In this case, since tension such as a spring can be used, the flexible member 20 only needs to have heat insulation and flexibility, and may not have elasticity. In addition, since the locking tool 23 is being fixed with the support part 22 which consists of hard materials, such as an acrylic board, when connecting the locking tools 23 with the chain 25 etc., the force pulled with the locking tool 23 is a support part. It is possible to evenly transmit to the entire flexible member main body 21 via 22. (Without the support portion 22, the flexible member main body 21 is strongly pulled only at the portion where the locking tool 23 is present, and there is a possibility that the flexible member main body 21 may be broken by applying a large load locally. In addition, it becomes difficult to apply a force equally to the thermoelectric power generation element 4, which causes an installation error.)

また、この実施の形態にかかる熱電発電装置1’においても、熱電発電素子4と配管2との間に治具3が介在していることにより、配管2から熱電発電素子4に伝導される熱量が治具3によって調整され、熱電発電素子4における結露の発生を防止することが可能となる。また、配管2の内部を流れる熱媒の温度が熱電発電素子4の耐熱温度より高温(蒸気など)である場合やブラインなどのマイナス温度の熱媒の場合でも、熱電発電素子4の温度が耐熱温度範囲外の温度になってしまうことを回避でき、熱電発電素子4の故障を防止できる。また、治具3が介在していることにより、熱電発電素子4の耐熱温度範囲外での使用も可能となる。   Also in the thermoelectric generator 1 ′ according to this embodiment, the amount of heat conducted from the pipe 2 to the thermoelectric generator element 4 due to the jig 3 interposed between the thermoelectric generator element 4 and the pipe 2. Is adjusted by the jig 3, and it becomes possible to prevent the occurrence of condensation in the thermoelectric power generation element 4. Further, even when the temperature of the heat medium flowing inside the pipe 2 is higher than the heat resistant temperature of the thermoelectric power generation element 4 (steam, etc.) or in the case of a heat medium having a negative temperature such as brine, the temperature of the thermoelectric power generation element 4 is heat resistant. It can be avoided that the temperature is outside the temperature range, and failure of the thermoelectric generator 4 can be prevented. Further, since the jig 3 is interposed, the thermoelectric generator 4 can be used outside the heat resistant temperature range.

なお、この実施の形態にかかる熱電発電装置1’においても、同様に、治具3(治具本体10)の材質、枚数、厚みのいずれかを変えることによって、熱電発電素子4に伝導させる熱量を調整することができ、異なる条件の配管2についても、結露等を回避しつつ、熱電発電素子4の表裏での温度差も大きくとることが可能となる。また、治具3を介在させたことにより、熱電発電素子4の耐熱温度範囲外での使用が可能となる。例えば特許第4949081号に記載された温度計に必要な電力をまかなうことができ、電源不要の計測システムを構築することができるようになる。   In the thermoelectric generator 1 ′ according to this embodiment, similarly, the amount of heat conducted to the thermoelectric generator 4 by changing any of the material, number, and thickness of the jig 3 (the jig body 10). It is possible to adjust the temperature difference between the front and back of the thermoelectric power generation element 4 while avoiding condensation and the like for the pipes 2 having different conditions. In addition, since the jig 3 is interposed, the thermoelectric generator 4 can be used outside the heat resistant temperature range. For example, the electric power necessary for the thermometer described in Japanese Patent No. 4949081 can be provided, and a measurement system that does not require a power source can be constructed.

以上、本発明の実施の形態の一例について説明したが、本発明はここに示した形態に限定されない。例えば、配管2と治具3との間や、治具3と熱電発電素子4との間には熱伝導性の高いグリス等を塗布し、空気層の発生を排除することが望ましい。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form shown here. For example, it is desirable to apply grease or the like having high thermal conductivity between the pipe 2 and the jig 3 or between the jig 3 and the thermoelectric generator 4 to eliminate the generation of an air layer.

また、通常、周囲温度より低い温度の熱媒が流れる配管2には保温材が被覆施工されている。図1〜3で説明した熱電発電装置1を既設の配管に装着する場合、保温材の一部を切り取って、治具3と熱電発電素子4の素子本体15を丁度挿入できる大きさの開口部を形成し、当該開口部に治具3と熱電発電素子4の素子本体15を挿入して配管2に熱電発電装置1を装着すると良い。その場合、熱電発電素子4の放熱フィン16は、保温材よりも外側に突出させる。   In general, the heat insulating material is coated on the pipe 2 through which the heat medium having a temperature lower than the ambient temperature flows. When the thermoelectric generator 1 described with reference to FIGS. 1 to 3 is mounted on an existing pipe, an opening having a size that allows the jig 3 and the element body 15 of the thermoelectric generator 4 to be inserted just by cutting a part of the heat insulating material. The jig 3 and the element body 15 of the thermoelectric generator 4 are inserted into the opening, and the thermoelectric generator 1 is attached to the pipe 2. In that case, the radiation fins 16 of the thermoelectric power generation element 4 are projected outward from the heat insulating material.

また、図4〜6で説明した熱電発電装置1’を装着する場合、保温材の一部を切り取って、治具3と可撓性部材20を丁度挿入できる大きさの開口部を形成し、当該開口部に治具3と可撓性部材20を挿入して配管2に熱電発電装置1’を装着すると良い。その場合、(新設の場合にも同様であるが)可撓性部材20と保温材との継ぎ目は、保温材を可撓性部材20の周縁部に重ねるように施工することで、切れ目における結露も防止することができる。   In addition, when the thermoelectric generator 1 ′ described in FIGS. 4 to 6 is mounted, a part of the heat insulating material is cut out to form an opening having a size that allows the jig 3 and the flexible member 20 to be just inserted, It is preferable to insert the jig 3 and the flexible member 20 into the opening and attach the thermoelectric generator 1 ′ to the pipe 2. In that case, the seam between the flexible member 20 and the heat insulating material (as in the case of newly installed) is constructed so that the heat insulating material is stacked on the peripheral edge of the flexible member 20, so that dew condensation at the break Can also be prevented.

熱電発電素子を取付ける配管が設置された空間(例えば機械室内)の条件として、温度:30℃、湿度:50%と設定した場合、結露が発生する限界表面温度は19.5℃となる。そこで、熱電発電素子の表面温度が19.6℃以上となるように治具の厚み、枚数、材質を設定するシミュレーションを行った。   When the temperature (30 ° C.) and the humidity (50%) are set as the conditions of the space (for example, the machine room) where the pipe for attaching the thermoelectric generator is installed, the limit surface temperature at which condensation occurs is 19.5 ° C. Therefore, a simulation was performed in which the thickness, number, and material of the jigs were set so that the surface temperature of the thermoelectric power generation element was 19.6 ° C. or higher.

(1)状況に応じて治具の厚みを変える場合
治具に使用する材質を硬質ウレタン(熱伝導率:0.029W/m・K)とすると、配管内流体温度が7℃のとき、硬質ウレタンの厚みは3.8mmとすれば熱電発電素子の表面温度は19.6℃となり、配管内流体温度が12℃のとき、硬質ウレタンの厚みは2.3mmとすれば熱電発電素子の表面温度は19.6℃となる。
(1) When changing the thickness of the jig according to the situation If the material used for the jig is hard urethane (thermal conductivity: 0.029 W / m · K), it is hard when the fluid temperature in the pipe is 7 ° C. If the thickness of the urethane is 3.8 mm, the surface temperature of the thermoelectric generator is 19.6 ° C. When the fluid temperature in the pipe is 12 ° C., the surface temperature of the thermoelectric generator is 2.3 mm if the thickness of the hard urethane is 2.3 mm. Is 19.6 ° C.

(2)状況に応じて一定の厚みを有した治具の枚数を変える場合

治具に使用する材質をシリコンゴム(熱伝導率:0.158W/m・K)、治具の厚みを1mmと規定すれば、配管内流体温度が7℃のとき、挿入する治具の枚数を19枚とすれば熱電発電素子の表面温度は19.8℃となる。また、配管内流体温度が12℃のとき、挿入する治具の枚数を12枚とすれば熱電発電素子の表面温度は19.7℃となる。
(2) When changing the number of jigs with a certain thickness according to the situation

If the material used for the jig is silicon rubber (thermal conductivity: 0.158 W / m · K) and the thickness of the jig is 1 mm, the number of jigs to be inserted when the fluid temperature in the pipe is 7 ° C If the number is 19 sheets, the surface temperature of the thermoelectric generator is 19.8 ° C. Further, when the fluid temperature in the pipe is 12 ° C., if the number of jigs to be inserted is 12, the surface temperature of the thermoelectric power generation element becomes 19.7 ° C.

また、治具に使用する材質を硬質ウレタン(熱伝導率:0.029W/m・K)、治具の厚みを1mmとすると、配管内流体温度が7℃のとき、挿入する治具の枚数を4枚とすれば熱電発電素子の表面温度は20.0℃となる。また、配管内流体温度が12℃のとき、挿入する治具の枚数を3枚とすれば表面温度は熱電発電素子の表面温度は20.7℃となる。   Also, if the material used for the jig is hard urethane (thermal conductivity: 0.029 W / m · K) and the thickness of the jig is 1 mm, the number of jigs to be inserted when the fluid temperature in the pipe is 7 ° C If the number is four, the surface temperature of the thermoelectric power generation element is 20.0 ° C. If the number of jigs to be inserted is 3 when the fluid temperature in the pipe is 12 ° C., the surface temperature becomes 20.7 ° C ..

熱伝導率が比較的高いシリコンゴムのみを用いると治具の使用枚数が多くなり、硬質ウレタンのみを用いると表面温度の目標値に近づけにくくなるため、これらの部材からなる治具を適宜組み合わせて用いてもよい。その場合、シリコンゴムからなる治具の枚数で微調整する。   If only silicon rubber with relatively high thermal conductivity is used, the number of jigs used will increase, and if only hard urethane is used, it will be difficult to approach the target value of the surface temperature. It may be used. In that case, fine adjustment is made by the number of jigs made of silicon rubber.

(3)材質の異なる治具を用意しておき、状況に応じて使用する材質(治具)を選択する場合
何れも厚み8mmの複数種類の材質からなる治具を用意しておく。配管内流体温度が−9℃(例えばブラインの往管など)の場合、硬質ウレタン(熱伝導率:0.029W/m・K)製の治具を用いれば熱電発電素子の表面温度は19.7℃となる。また、配管内流体温度が15℃(例えば冷水の還管など)の場合、シリコンゴム(熱伝導率:0.158W/m・K)製の治具を用いれば熱電発電素子の表面温度は19.9℃となる。
(3) When jigs made of different materials are prepared and a material (jig) to be used is selected according to the situation, jigs made of a plurality of types of materials each having a thickness of 8 mm are prepared. When the fluid temperature in the pipe is −9 ° C. (for example, the outgoing pipe of brine, etc.), the surface temperature of the thermoelectric power generation element is 19. using a jig made of hard urethane (thermal conductivity: 0.029 W / m · K). 7 ° C. When the fluid temperature in the pipe is 15 ° C. (for example, a cold water return pipe), the surface temperature of the thermoelectric generator is 19 if a jig made of silicon rubber (thermal conductivity: 0.158 W / m · K) is used. 9 ° C.

1、1’ 熱電発電装置
2 配管
3 治具
4 熱電発電素子
10 治具本体
10a 治具本体部分
11 配管側支持部
12 素子本体
15 放熱板
16 放熱フィン
20 可撓性部材
21 可撓性部材本体
22 支持部
23 係止具
25 チェーン
DESCRIPTION OF SYMBOLS 1, 1 'Thermoelectric power generation apparatus 2 Piping 3 Jig 4 Thermoelectric power generation element 10 Jig main body 10a Jig main body part 11 Piping side support part 12 Element main body 15 Radiation plate 16 Radiation fin 20 Flexible member 21 Flexible member main body 22 Support part 23 Locking tool 25 Chain

Claims (4)

配管の表面に熱電発電素子を設置する方法であって、
前記配管の熱伝導率よりも低い熱伝導率を有する材質からなる治具を、前記配管の表面に装着し、
前記治具を介して、前記熱電発電素子を前記配管の表面に取り付けることにより、前記配管の表面の熱を、前記治具を介して前記熱電発電素子に伝導させることを特徴とする、配管への熱電発電素子の設置方法。
A method of installing a thermoelectric generator on the surface of a pipe,
A jig made of a material having a thermal conductivity lower than the thermal conductivity of the pipe is attached to the surface of the pipe,
By attaching the thermoelectric power generation element to the surface of the pipe via the jig, the heat of the surface of the pipe is conducted to the thermoelectric power generation element via the jig. How to install the thermoelectric power generation element.
前記治具の材質、枚数、厚みのいずれかを変えることによって、前記熱電発電素子に伝導させる熱量が調整されることを特徴とする、請求項1に記載の配管への熱電発電素子の設置方法。   2. The method of installing a thermoelectric power generation element in a pipe according to claim 1, wherein the amount of heat conducted to the thermoelectric power generation element is adjusted by changing any of the material, number of sheets, and thickness of the jig. . 配管の表面に設置される熱電発電装置であって、
前記配管の表面に装着される、前記配管の熱伝導率よりも低い熱伝導率を有する材質からなる治具と、
前記治具を介して前記配管の表面に取り付けられる熱電発電素子を有することを特徴とする、熱電発電装置。
A thermoelectric generator installed on the surface of a pipe,
A jig made of a material having a thermal conductivity lower than the thermal conductivity of the pipe, which is attached to the surface of the pipe,
A thermoelectric generator having a thermoelectric generator attached to the surface of the pipe via the jig.
前記熱電発電素子を可撓性部材に支持し、
前記治具を介して前記配管の表面に前記可撓性部材を巻き付けることにより、前記熱電発電素子を取り付けることを特徴とする、請求項3に記載の熱電発電装置。
Supporting the thermoelectric generator on a flexible member;
The thermoelectric power generation apparatus according to claim 3, wherein the thermoelectric power generation element is attached by winding the flexible member around the surface of the pipe via the jig.
JP2013129932A 2013-06-20 2013-06-20 Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus Active JP6196074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129932A JP6196074B2 (en) 2013-06-20 2013-06-20 Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129932A JP6196074B2 (en) 2013-06-20 2013-06-20 Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus

Publications (2)

Publication Number Publication Date
JP2015005615A JP2015005615A (en) 2015-01-08
JP6196074B2 true JP6196074B2 (en) 2017-09-13

Family

ID=52301283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129932A Active JP6196074B2 (en) 2013-06-20 2013-06-20 Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus

Country Status (1)

Country Link
JP (1) JP6196074B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475774B2 (en) * 2017-04-25 2019-02-27 三菱電機エンジニアリング株式会社 Thermoelectric generator
JP2019075881A (en) * 2017-10-16 2019-05-16 三井E&S造船株式会社 Power generation system for floating body structure, power generation method in floating body structure, and piping for power generation
SE543610C2 (en) * 2018-05-22 2021-04-20 Arne Jensen Ab Method and device for producing electric energy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243670A (en) * 1997-02-24 1998-09-11 Central Res Inst Of Electric Power Ind Thermoelectric transducing system
JP2002238272A (en) * 2001-02-06 2002-08-23 Tokyo Gas Co Ltd Generating station utilizing high-temperature exhaust heat
JP2003009557A (en) * 2001-06-20 2003-01-10 Hitachi Eng Co Ltd Thermoelectric conversion system
US8188359B2 (en) * 2006-09-28 2012-05-29 Rosemount Inc. Thermoelectric generator assembly for field process devices
US7765811B2 (en) * 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
JP4637200B2 (en) * 2008-04-04 2011-02-23 株式会社日立製作所 Engine system
FR2932924B1 (en) * 2008-06-24 2011-03-04 Valeo Systemes Thermiques DEVICE FOR GENERATING ELECTRIC ENERGY, HEAT EXCHANGE BEAM COMPRISING SUCH DEVICE AND HEAT EXCHANGER COMPRISING SUCH BEAM
JP2012522176A (en) * 2009-03-31 2012-09-20 ルノー・トラックス Energy recovery system for an internal combustion engine device comprising a thermoelectric device
DE102010004200A1 (en) * 2010-01-08 2011-07-14 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Device for generating electrical energy from a thermally conductive material
JP5673426B2 (en) * 2011-08-08 2015-02-18 トヨタ自動車株式会社 Thermoelectric generator

Also Published As

Publication number Publication date
JP2015005615A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
AU2017200901A1 (en) Passive fire resistant system for filling a space or gap confined by construction elements and a prefabricated multilayered structure of such a system
JP6196074B2 (en) Method of installing thermoelectric power generation element in piping and thermoelectric power generation apparatus
US9894803B1 (en) Thermal sink with an embedded heat pipe
KR101456813B1 (en) Heating device
WO2015002044A1 (en) Temperature detection device
US20090293865A1 (en) Solar heat powered system comprising a circuit for a heat transfer medium
JP5726427B2 (en) Insulation protection element for piping
JP5149659B2 (en) Liquefied gas vaporizer
JP2009247050A (en) Thermoelectric generator
JP2009257956A (en) Dew condensation suppression device, and environmental testing device equipped therewith
JP2019213402A (en) Temperature difference power generator and measurement system
JP4764435B2 (en) Water heater
JP4770813B2 (en) Floor heating panel, floor heating system and floor heating panel construction method
JP4759445B2 (en) Piping unit for water supply pump
FR2980558B1 (en) VENTILO-CONVECTOR HEATING DEVICE AND HEATING PLANT COMPRISING SUCH A DEVICE
JP2010098063A (en) In-building cooling mechanism
JP2016071694A (en) Data center
JP6248057B2 (en) High temperature piping cooling jig, cooling device and installation method thereof, and high temperature piping and cooling device installation method thereof
CN202747871U (en) Heat pipe radiator
JP6027955B2 (en) Hygrometer component, hygrometer, and environmental test device
CN108120002A (en) Electric cabinet and air conditioner
JP6236597B2 (en) Air conditioner
JP2009097596A (en) Heat containment structure
CN107388875B (en) A kind of tubular type radiating fin sliding radiator
JP2007333270A (en) Heat-pump heat source equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170817

R150 Certificate of patent or registration of utility model

Ref document number: 6196074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150