JP6194235B2 - Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP6194235B2
JP6194235B2 JP2013239682A JP2013239682A JP6194235B2 JP 6194235 B2 JP6194235 B2 JP 6194235B2 JP 2013239682 A JP2013239682 A JP 2013239682A JP 2013239682 A JP2013239682 A JP 2013239682A JP 6194235 B2 JP6194235 B2 JP 6194235B2
Authority
JP
Japan
Prior art keywords
compound
lithium
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013239682A
Other languages
Japanese (ja)
Other versions
JP2015099722A (en
Inventor
智真 成橋
智真 成橋
一矢 多賀
一矢 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2013239682A priority Critical patent/JP6194235B2/en
Publication of JP2015099722A publication Critical patent/JP2015099722A/en
Application granted granted Critical
Publication of JP6194235B2 publication Critical patent/JP6194235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用正極活物質、その製造方法及びそのリチウム二次電池用正極活物質を用いるリチウム二次電池に関するものである。   The present invention relates to a positive electrode active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the positive electrode active material for the lithium secondary battery.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告がなされて以来、リチウムコバルト複合酸化物に関する研究開発が活発に進められている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. With regard to this lithium ion secondary battery, research and development on lithium cobalt composite oxide has been active since 1980 when Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries. It is advanced to.

電子機器の高機能化に伴い、更なる電池の高容量化が必要とされている。所定容積の電池を高容量化するためには、単位体積当りのエネルギー密度の高い正極活物質を正極として用いることが提案されている。   With higher functionality of electronic devices, further increase in battery capacity is required. In order to increase the capacity of a battery having a predetermined volume, it has been proposed to use a positive electrode active material having a high energy density per unit volume as a positive electrode.

単位体積当りのエネルギー密度の高い正極活物質として、例えば、特許文献1には、コバルト酸リチウム中の残留LiCOを10重量%以下とするものが提案されている。また、特許文献2には、残存している炭酸リチウムが1.5〜2.0wt%の範囲であるコバルト酸リチウムは、リチウムイオン二次電池の内部抵抗が低下し、出力密度が向上するとの記載がある。更に、特許文献3では、高容量で出力特性が良好となる正極活物質として、正極活物質の表面に平均厚み20〜50nmの炭酸リチウムや硫酸リチウムといったリチウム塩で被覆された正極活物質が提案されている。 As a positive electrode active material having a high energy density per unit volume, for example, Patent Document 1 proposes a material in which the residual Li 2 CO 3 in lithium cobaltate is 10% by weight or less. Patent Document 2 states that the lithium cobalt oxide in which the remaining lithium carbonate is in the range of 1.5 to 2.0 wt% reduces the internal resistance of the lithium ion secondary battery and improves the output density. There is a description. Furthermore, Patent Document 3 proposes a positive electrode active material in which the surface of the positive electrode active material is coated with a lithium salt such as lithium carbonate or lithium sulfate having an average thickness of 20 to 50 nm as a positive electrode active material having high capacity and excellent output characteristics. Has been.

このようにエネルギー密度の高い正極活物質を得るには、炭酸リチウム等のリチウム塩を含ませれば良いが、このリチウム塩の存在は、塗料のゲル化、電池膨れを助長するため、リチウム二次電池の安全性に問題が生ずる。これを防ぐために、例えば、特許文献4では、正極活物質中の残存リチウム塩を硫酸塩水溶液に接触させることが提案されている。   In order to obtain a positive electrode active material having such a high energy density, a lithium salt such as lithium carbonate may be included. However, the presence of this lithium salt promotes gelation of the paint and battery swelling. Problems arise with battery safety. In order to prevent this, for example, Patent Document 4 proposes that the remaining lithium salt in the positive electrode active material is brought into contact with a sulfate aqueous solution.

特開平4−56064号公報JP-A-4-56064 特開平10−40900号公報Japanese Patent Laid-Open No. 10-40900 特開2009−99462号公報JP 2009-99462 A 特開2011−124086号公報JP 2011-1224086 A

近年、リチウム二次電池の高容量化に加え、安全性にも配慮した正極活物質の開発が望まれている。   In recent years, in addition to increasing the capacity of lithium secondary batteries, it has been desired to develop positive electrode active materials in consideration of safety.

ところが、初期放電容量と平均作動電圧は、トレードオフの関係にあり、初期放電容量を維持したまま、平均作動電圧も高くすることは困難であった。また、初期放電容量を高くしようとして、リチウム量を多くすると、電池膨れが起こる等、リチウム二次電池の安全性が損なわれるという問題があった。   However, the initial discharge capacity and the average operating voltage are in a trade-off relationship, and it is difficult to increase the average operating voltage while maintaining the initial discharge capacity. Further, when the amount of lithium is increased in order to increase the initial discharge capacity, there is a problem that the safety of the lithium secondary battery is impaired, such as battery swelling.

従って、本発明の目的は、体積当たりの容量及び平均作動電圧が高く、安全性、サイクル特性及び負荷特性にも優れるリチウム二次電池を提供することにある。また、本発明の目的は、そのようなリチウム二次電池に用いられるリチウム二次電池用正極活物質及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a lithium secondary battery that has a high capacity per volume and an average operating voltage, and is excellent in safety, cycle characteristics, and load characteristics. Moreover, the objective of this invention is providing the positive electrode active material for lithium secondary batteries used for such a lithium secondary battery, and its manufacturing method.

前記目的は、以下の本発明により達成される。
すなわち、本発明(1)は、Coに対するLiの原子換算のモル比(Li/Co)が、1.03〜1.20であるリチウムコバルト複合酸化物粒子であって、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であり、
表面に存在しているアルカリ量が500〜5000ppmであるリチウムコバルト複合酸化物粒子のアルカリが、該硫黄化合物又は該リン化合物の一部で中和されたものであり、
該粒子表面に存在する残留アルカリ分が500ppm以下であること、
を特徴とするリチウム二次電池用正極活物質を提供するものである。
The object is achieved by the present invention described below.
That is, the present invention (1) is lithium cobalt composite oxide particles in which the molar ratio of Li to Co (Li / Co) is 1.03-1.20, and the particle surface is a coating compound. are coated state, and are all or part of sulfur compound or phosphorus compound of the coating compound,
The alkali of the lithium cobalt composite oxide particles having an alkali amount of 500 to 5000 ppm present on the surface is neutralized with a part of the sulfur compound or the phosphorus compound,
The residual alkali content present on the particle surface is 500 ppm or less;
The positive electrode active material for lithium secondary batteries characterized by these is provided.

また、本発明(2)は、リチウム化合物と、コバルト化合物と、を混合して、リチウム化合物と、コバルト化合物と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(A)を得るか、又はリチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)のうちの1種又は2種以上と、を混合して、リチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)のうちの1種又は2種以上と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(B)を得、次いで、該第一焼成原料混合物(A)又は該第一焼成原料混合物(B)を、800〜1100℃で焼成して、第一焼成物を得る第一工程と、
該第一焼成物に、硫酸塩又はリン酸塩と、該第一焼成物、該硫酸塩及び該リン酸塩の合計量に対して0.1〜15質量%の水と、を混合し、第二焼成原料混合物を得、次いで、該第二焼成原料混合物を、200〜1100℃で焼成して、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であるリチウムコバルト複合酸化物粒子を得る第二工程と、
を有することを特徴とするリチウム二次電池用正極活物質の製造方法を提供するものである。
Moreover, this invention (2) mixes a lithium compound and a cobalt compound, contains a lithium compound and a cobalt compound, and the mixing ratio of this lithium compound and this cobalt compound is Li to Co atoms. A first firing raw material mixture (A) having a mixing ratio of 1.06 to 1.20 in terms of atomic ratio of atoms in terms of atoms (Li / Co) is obtained, or a lithium compound, a cobalt compound, and an M element Compound (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni Or M may be contained singly or in combination of two or more), and a lithium compound, a cobalt compound, and an M element compound (M is Mg, Al, Ti, Zr, u, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, M is contained alone or in combination of two or more Or a mixture ratio of the lithium compound and the cobalt compound is a molar ratio of Li atom to Co atom in terms of atomic ratio (Li / Co). Thus, the first baking raw material mixture (B) having a mixing ratio of 1.06 to 1.20 is obtained, and then the first baking raw material mixture (A) or the first baking raw material mixture (B) is added to 800 First step of firing at ˜1100 ° C. to obtain a first fired product,
In the first fired product, sulfate or phosphate and 0.1 to 15% by mass of water with respect to the total amount of the first fired product, sulfate and phosphate are mixed, A second calcined raw material mixture is obtained, and then the second calcined raw material mixture is calcined at 200 to 1100 ° C., the particle surface is coated with a coating compound, and all or part of the coating compound is a sulfur compound or A second step of obtaining lithium cobalt composite oxide particles which are phosphorus compounds;
The manufacturing method of the positive electrode active material for lithium secondary batteries characterized by having is provided.

また、本発明()は、本発明(1)のリチウム二次電池用正極活物質が、正極活物質として用いられていることを特徴とするリチウム二次電池を提供するものである。 Moreover, this invention ( 3 ) provides the lithium secondary battery characterized by using the positive electrode active material for lithium secondary batteries of this invention (1 ) as a positive electrode active material.

本発明によれば、体積当たりの容量及び平均作動電圧が高く、安全性、サイクル特性及び負荷特性にも優れるリチウム二次電池を提供することができる。また、本発明の目的は、そのようなリチウム二次電池に用いられるリチウム二次電池用正極活物質及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the capacity | capacitance per volume and an average operating voltage are high, and the lithium secondary battery which is excellent also in safety | security, cycling characteristics, and load characteristics can be provided. Moreover, the objective of this invention can provide the positive electrode active material for lithium secondary batteries used for such a lithium secondary battery, and its manufacturing method.

実施例1の示差熱量変化の結果である。3 is a result of a change in differential calorific value of Example 1. 実施例2の示差熱量変化の結果である。It is a result of the differential calorific value change of Example 2. 比較例3の示差熱量変化の結果である。It is a result of the differential calorie | heat amount change of the comparative example 3.

本発明のリチウム二次電池用正極活物質は、Coに対するLiの原子換算のモル比(Li/Co)が、1.03〜1.20であるリチウムコバルト複合酸化物粒子であって、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であることを特徴とするリチウム二次電池用正極活物質である。   The positive electrode active material for a lithium secondary battery of the present invention is a lithium cobalt composite oxide particle having a molar ratio of Li to Co (Li / Co) of 1.03 to 1.20, wherein the particle surface Is a positive electrode active material for a lithium secondary battery, wherein all or part of the coating compound is a sulfur compound or a phosphorus compound.

本発明のリチウム二次電池用正極活物質は、粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子であり、その被覆化合物の全部又は一部が硫黄化合物又はリン化合物である。つまり、本発明のリチウム二次電池用正極活物質は、リチウムコバルト複合酸化物粒子の粒子表面が、被覆化合物で被覆されており、リチウムコバルト複合酸化物粒子と、その粒子の表面を被覆する被覆化合物と、からなり、その被覆化合物の全部又は一部が硫黄化合物又はリン化合物である。   The positive electrode active material for a lithium secondary battery of the present invention is a lithium cobalt composite oxide particle whose particle surface is coated with a coating compound, and all or part of the coating compound is a sulfur compound or a phosphorus compound. That is, in the positive electrode active material for a lithium secondary battery of the present invention, the particle surface of the lithium cobalt composite oxide particle is coated with the coating compound, and the lithium cobalt composite oxide particle and the coating covering the particle surface And all or part of the coating compound is a sulfur compound or a phosphorus compound.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子は、リチウムとコバルトの複合酸化物である。本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子は、リチウムとコバルトからなる複合酸化物粒子であり、リチウムとコバルトのみからなる複合酸化物粒子であっても、M原子又はX原子を含有するリチウムとコバルトからなる複合酸化物粒子であってもよい。すなわち、本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子は、
(i)リチウムとコバルトのみからなる複合酸化物粒子、すなわち、LiCoで表される複合酸化物の粒子、
(ii)M原子を含有するリチウムコバルト複合酸化物粒子、
(iii)X原子を含有するリチウムコバルト複合酸化物粒子、
(iv)M原子及びX原子を含有するリチウムコバルト複合酸化物粒子、
である。
なお、本発明において、Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni及びMnのうちの1種又は2種以上であり、Xは、F、Cl、Br及びIのうちの1種又は2種以上である。
The lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention are a composite oxide of lithium and cobalt. The lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention are composite oxide particles composed of lithium and cobalt. Or the composite oxide particle which consists of lithium and cobalt containing X atom may be sufficient. That is, the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention,
(I) Composite oxide particles composed only of lithium and cobalt, that is, composite oxide particles represented by Li a Co b O 2 ,
(Ii) lithium cobalt composite oxide particles containing M atoms,
(Iii) lithium cobalt composite oxide particles containing X atoms,
(Iv) lithium cobalt composite oxide particles containing M atoms and X atoms,
It is.
In the present invention, M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K , Co, Ni and Mn, and X is one or more of F, Cl, Br and I.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子中、Coに対するLiの原子換算のモル比(Li/Co)は、1.03〜1.20、好ましくは1.04〜1.18、特に好ましくは1.04〜1.15である。リチウムコバルト複合酸化物粒子中のCoに対するLiの原子換算のモル比が、上記範囲内にあることにより、リチウム二次電池用正極活物質のエネルギー密度が高くなり、安全性が高くなるため、リチウム二次電池の体積当たりの容量が高くなる。   In the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention, the molar ratio of Li to Co in terms of atoms (Li / Co) is 1.03 to 1.20, preferably 1.04. To 1.18, particularly preferably 1.04 to 1.15. When the molar ratio of Li to Co in the lithium cobalt composite oxide particles is within the above range, the energy density of the positive electrode active material for the lithium secondary battery is increased and the safety is increased. The capacity per volume of the secondary battery is increased.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子が、M原子を含有するリチウムコバルト複合酸化物粒子の場合(上記(ii)又は(iv))、Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni及びMnのうちの1種又は2種以上であり、リチウムコバルト複合酸化物粒子は、上記のうちのいずれか1種のM原子を含有していてもよいし、2種以上のM原子を含有していてもよい。   When the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention are lithium cobalt composite oxide particles containing M atoms (above (ii) or (iv)), M is Mg, One of Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni and Mn Or it is 2 or more types, and lithium cobalt complex oxide particle | grains may contain any 1 type of M atom in the above, and may contain 2 or more types of M atom.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子において、M原子は、リチウム二次電池の種々の性能を向上させることを目的として、リチウムコバルト複合酸化物粒子に含有される。このM原子は、リチウムコバルト複合酸化物中に固溶されていてもよく、あるいは、リチウムコバルト複合酸化物粒子中にM原子を含有する化合物(M元素化合物)の形態で存在していてもよく、あるいは、リチウムコバルト複合酸化物粒子の表面に存在していてもよく、あるいは、それらの組み合わせであってもよい。M原子がリチウムコバルト複合酸化物粒子の表面に存在している場合、M原子の存在形態としては、M原子を含有する化合物(M元素化合物)の形態が挙げられる。そして、M原子がリチウムコバルト複合酸化物粒子の表面に存在している場合、M原子を含有する化合物(M元素化合物)は、リチウムコバルト複合酸化物の粒子表面を被覆している被覆化合物の一部を構成することができる。   In the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention, M atoms are contained in the lithium cobalt composite oxide particles for the purpose of improving various performances of the lithium secondary battery. The The M atom may be dissolved in the lithium cobalt composite oxide, or may exist in the form of a compound (M element compound) containing M atoms in the lithium cobalt composite oxide particles. Alternatively, it may be present on the surface of the lithium cobalt composite oxide particles, or a combination thereof. In the case where M atoms are present on the surface of the lithium cobalt composite oxide particles, the form of M atoms includes the form of a compound containing M atoms (M element compound). When M atoms are present on the surface of the lithium cobalt composite oxide particles, the compound containing M atoms (M element compound) is one of the coating compounds covering the particle surface of the lithium cobalt composite oxide. Can be configured.

本発明のリチウム二次電池用正極活物質に係るM原子を含有する化合物(M元素化合物)としては、M原子の酸化物や水酸化物、炭酸塩等が挙げられる。   Examples of the compound (M element compound) containing M atom related to the positive electrode active material for a lithium secondary battery of the present invention include an oxide, hydroxide, carbonate and the like of M atom.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子が、M原子を含有するリチウムコバルト複合酸化物粒子の場合(上記(ii)又は(iv))、本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子中、Coに対するM原子の原子換算のモル比(M/Co)は、好ましくは0.0001〜0.08、特に好ましくは0.001〜0.055である。リチウムコバルト複合酸化物粒子中のCoに対するMの原子換算のモル比が、上記範囲内にあることにより、リチウム二次電池のサイクル特性及び安全性が高くなる。また、リチウムコバルト複合酸化物粒子が、2種以上のM原子を含有する場合、M原子のモル数は、それら2種以上のM原子の合計のモル数を指す。   When the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention are lithium cobalt composite oxide particles containing M atoms ((ii) or (iv) above), In the lithium cobalt composite oxide particles relating to the positive electrode active material for a secondary battery, the molar ratio (M / Co) of M atom to Co is preferably 0.0001 to 0.08, particularly preferably 0.001 to 0.001. 0.055. When the molar ratio of M in terms of Co to lithium in the lithium cobalt composite oxide particles is within the above range, the cycle characteristics and safety of the lithium secondary battery are enhanced. When the lithium cobalt composite oxide particles contain two or more types of M atoms, the number of moles of M atoms refers to the total number of moles of these two or more types of M atoms.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子が、X原子を含有するリチウムコバルト複合酸化物粒子の場合(上記(iii)又は(iv))、Xは、F、Cl、Br及びIのうちの1種又は2種以上であり、リチウムコバルト複合酸化物粒子は、上記のうちのいずれか1種のX原子を含有していてもよいし、2種以上のX原子を含有していてもよい。   When the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention are lithium cobalt composite oxide particles containing X atoms (the above (iii) or (iv)), X is F, One or more of Cl, Br and I, and the lithium cobalt composite oxide particles may contain any one of the above-mentioned X atoms, or two or more of X It may contain atoms.

本発明のリチウム二次電池用正極活物質に係るリチウムコバルト複合酸化物粒子が、F、Cl、Br及びIのうちの1種又は2種以上の原子を含有することにより、リチウム二次電池の容量維持率が高くなる。このX原子は、リチウムコバルト複合酸化物粒子中に存在していてもよく、あるいは、リチウムコバルト複合酸化物粒子の表面に存在していてもよく、あるいは、それらの両方であってもよい。X原子の存在形態としては、X原子、あるいは、X元素と金属元素の塩の形態が挙げられる。そして、X原子がリチウムコバルト複合酸化物粒子の表面にX元素の塩として存在している場合は、該X元素の塩は、リチウムコバルト複合酸化物の粒子表面を被覆している被覆化合物の一部を構成することができる。   When the lithium cobalt composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention contain one or more atoms of F, Cl, Br and I, the lithium secondary battery Capacity maintenance rate becomes high. This X atom may be present in the lithium cobalt composite oxide particles, or may be present on the surface of the lithium cobalt composite oxide particles, or both of them. Examples of the form of the X atom include the form of an X atom or a salt of an X element and a metal element. When X atoms are present as the salt of the X element on the surface of the lithium cobalt composite oxide particle, the salt of the X element is one of the coating compounds covering the particle surface of the lithium cobalt composite oxide. Can be configured.

本発明のリチウム二次電池用正極活物質において、リチウムコバルト複合酸化物粒子は、一次粒子が凝集した二次粒子である。つまり、本発明のリチウム二次電池用正極活物質では、リチウムコバルト複合酸化物(一次粒子)からなる二次粒子の表面が、被覆化合物で被覆されている。   In the positive electrode active material for a lithium secondary battery of the present invention, the lithium cobalt composite oxide particles are secondary particles in which primary particles are aggregated. That is, in the positive electrode active material for a lithium secondary battery of the present invention, the surface of secondary particles made of lithium cobalt composite oxide (primary particles) is coated with the coating compound.

本発明のリチウム二次電池用正極活物質は、リチウムコバルト複合酸化物粒子の粒子表面(二次粒子の表面)が、被覆化合物で被覆されている。そして、本発明のリチウム二次電池用正極活物質では、粒子表面を被覆している被覆化合物の全部又は一部が、硫黄化合物及びリン化合物のうちの1種又は2種以上である。   In the positive electrode active material for a lithium secondary battery of the present invention, the particle surface of the lithium cobalt composite oxide particle (the surface of the secondary particle) is coated with a coating compound. And in the positive electrode active material for lithium secondary batteries of this invention, all or one part of the coating compound which coat | covers the particle | grain surface is 1 type, or 2 or more types of a sulfur compound and a phosphorus compound.

本発明のリチウム二次電池用正極活物質に係る硫黄化合物としては、硫酸リチウム、硫化リチウム、(NHSO、M元素の硫酸塩(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)、M元素の硫化物、M元素以外の元素の硫酸塩、M元素以外の元素の硫化物が挙げられる。本発明のリチウム二次電池用正極活物質に被覆されている硫黄化合物は、1種であっても2種以上であってもよい。なお、本発明において、粒子表面が硫黄化合物で被覆されていることは、X線光電子分光法(XPS)により、粒子表面に硫黄原子が存在していることで確認され、そして、得られるスペクトルのピーク面積から、S原子濃度が算出される。 Examples of the sulfur compound relating to the positive electrode active material for a lithium secondary battery of the present invention include lithium sulfate, lithium sulfide, (NH 4 ) 2 SO 4 , and M element sulfate (M is Mg, Al, Ti, Zr, Cu). Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn.), M element sulfide, Examples thereof include sulfates of elements other than elements and sulfides of elements other than M elements. The sulfur compound coated on the positive electrode active material for a lithium secondary battery of the present invention may be one type or two or more types. In the present invention, the fact that the particle surface is coated with a sulfur compound is confirmed by the presence of sulfur atoms on the particle surface by X-ray photoelectron spectroscopy (XPS), and the spectrum obtained is The S atom concentration is calculated from the peak area.

M元素の硫酸塩は、下記一般式(1):
(HSO (1)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、aは0又は1である。)
で表される硫酸塩である。なお、一般式(1)中のx及びyの値は、Mの価数により異なる。
また、M元素の硫化物は、下記一般式(2):
(2)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数である。)
で表される硫化物である。なお、一般式(2)中のx及びyの値は、Mの価数により異なる。
The M element sulfate is represented by the following general formula (1):
M x (H a SO 4 ) y (1)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers, and a is 0 or 1.)
It is a sulfate represented by In addition, the value of x and y in General formula (1) changes with valences of M.
Further, the M element sulfide is represented by the following general formula (2):
M x S y (2)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers.)
It is a sulfide represented by In addition, the value of x and y in General formula (2) changes with valences of M.

本発明のリチウム二次電池用正極活物質に係るリン化合物としては、リン酸リチウム、リン化三リチウム、(NHHPO、M元素のリン酸塩(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)、M元素のリン化物、M元素以外の元素のリン酸塩、M元素以外の元素のリン化物が挙げられる。本発明のリチウム二次電池用正極活物質に被覆されているリン化合物は、1種であっても2種以上であってもよい。なお、本発明において、粒子表面がリン化合物で被覆されていることは、X線光電子分光法(XPS)により、粒子表面にリン原子が存在していることで確認され、そして、得られるスペクトルのピーク面積から、P原子濃度が算出される。 Examples of the phosphorus compound relating to the positive electrode active material for a lithium secondary battery of the present invention include lithium phosphate, trilithium phosphide, (NH 4 ) 2 HPO 4 , M element phosphate (M is Mg, Al, Ti Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn. Examples thereof include phosphides, phosphates of elements other than M elements, and phosphides of elements other than M elements. The phosphorus compound coated on the positive electrode active material for a lithium secondary battery of the present invention may be one type or two or more types. In the present invention, the fact that the particle surface is coated with a phosphorus compound is confirmed by the presence of phosphorus atoms on the particle surface by X-ray photoelectron spectroscopy (XPS), and the spectrum obtained is The P atom concentration is calculated from the peak area.

M元素のリン酸塩は、下記一般式(3):
(HPO (3)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、bは0、1又は2である。)
で表されるリン酸塩である。なお、一般式(3)中のx及びyの値は、Mの価数により異なる。
また、M元素のリン化物は、下記一般式(4):
(4)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数である。)
で表されるリン化物である。なお、一般式(4)中のx及びyの値は、Mの価数により異なる。
The phosphate of M element has the following general formula (3):
M x (H a PO 4 ) y (3)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers, and b is 0, 1 or 2.)
It is a phosphate represented by. In addition, the value of x and y in General formula (3) changes with the valences of M.
Further, the phosphide of M element has the following general formula (4):
M x P y (4)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers.)
It is a phosphide represented by. In addition, the value of x and y in General formula (4) changes with the valences of M.

本発明のリチウム二次電池用正極活物質において、硫黄化合物、リン化合物及びX元素の塩の含有量は、硫黄化合物に由来するS原子の含有量、リン化合物に由来するP原子の含有量、X元素の塩に由来するX原子の含有量として把握される。   In the positive electrode active material for a lithium secondary battery of the present invention, the content of the sulfur compound, the phosphorus compound and the salt of the X element includes the content of S atoms derived from the sulfur compound, the content of P atoms derived from the phosphorus compound, It is grasped as the content of X atoms derived from the salt of X element.

本発明のリチウム二次電池用正極活物質では、粒子表面を被覆している被覆化合物の一部として、M原子の酸化物、水酸化物、炭酸塩等のM元素化合物、又はX元素の塩が、粒子表面に存在することができる。
つまり、本発明のリチウム二次電池用正極活物質としては、被覆化合物として、
(i)硫黄化合物及びリン化合物のうちの1種又は2種以上のみからなるもの、
(ii)硫黄化合物及びリン化合物のうちの1種又は2種以上と、M元素化合物と、を有するもの、
(iii)硫黄化合物及びリン化合物のうちの1種又は2種以上と、X元素の塩と、を有するもの、
(iv)硫黄化合物及びリン化合物のうちの1種又は2種以上と、M元素化合物と、X元素の塩と、を有するもの、
が挙げられる。
そして、本発明のリチウム二次電池用正極活物質では、粒子表面が、硫黄化合物及びリン化合物のうちの1種又は2種以上で被覆されていることにより、安全性、平均作動電圧が高くなる。また、本発明のリチウム二次電池用正極活物質では、粒子表面に、被覆化合物の一部として、M原子化合物が存在することにより、安全性、容量維持率が高くなる。また、本発明のリチウム二次電池用正極活物質では、粒子表面に、被覆化合物の一部として、X元素の塩が存在することにより、容量維持率が高くなる。なお、本発明において、粒子表面がX元素の塩で被覆されていることは、X線光電子分光法(XPS)により、粒子表面にX元素が存在していることで確認され、そして、得られるスペクトルのピーク面積から、X原子濃度が算出される。また、本発明において、粒子表面がM元素化合物で被覆されていることは、X線光電子分光法(XPS)により、粒子表面にM原子が存在していることで確認され、そして、得られるスペクトルのピーク面積から、M原子濃度が算出される。
In the positive electrode active material for a lithium secondary battery of the present invention, as part of the coating compound covering the particle surface, an M element compound such as an oxide, hydroxide or carbonate of M atom, or a salt of X element Can be present on the particle surface.
That is, as a positive electrode active material for a lithium secondary battery of the present invention, as a coating compound,
(I) one consisting of one or more of sulfur compounds and phosphorus compounds,
(Ii) one or more of sulfur compounds and phosphorus compounds and an M element compound;
(Iii) one or more of sulfur compounds and phosphorus compounds and a salt of element X,
(Iv) one or two or more of sulfur compounds and phosphorus compounds, an M element compound, and a salt of an X element;
Is mentioned.
And in the positive electrode active material for lithium secondary batteries of this invention, safety | security and an average operating voltage become high because the particle | grain surface is coat | covered with 1 type, or 2 or more types of a sulfur compound and a phosphorus compound. . Moreover, in the positive electrode active material for lithium secondary batteries of this invention, safety | security and a capacity | capacitance maintenance factor become high because M atom compound exists as a part of coating compound in the particle | grain surface. Moreover, in the positive electrode active material for lithium secondary batteries of this invention, a capacity | capacitance maintenance factor becomes high because the salt of X element exists as a part of coating compound in the particle | grain surface. In the present invention, the fact that the particle surface is coated with a salt of X element is confirmed and obtained by the presence of X element on the particle surface by X-ray photoelectron spectroscopy (XPS). The X atom concentration is calculated from the peak area of the spectrum. In the present invention, it is confirmed that the particle surface is coated with an M element compound by the presence of M atoms on the particle surface by X-ray photoelectron spectroscopy (XPS), and the obtained spectrum. From the peak area, the M atom concentration is calculated.

そして、本発明のリチウム二次電池用正極活物質において、リチウムコバルト複合酸化物粒子の内部及び表面のいずれにもX原子を含有しない場合、本発明のリチウム二次電池用正極活物質を構成するリチウムコバルト複合酸化物粒子中のCo原子に対するS原子及びP原子の割合は、原子換算のモル比(((S+P)/Co)×100)で、好ましくは0.01〜5.5モル%、特に好ましくは0.1〜4.0モル%である。なお、リチウムコバルト複合酸化物粒子が硫黄化合物のみを含有する場合、S原子及P原子の含有割合とは、S原子の含有割合を指し、リチウムコバルト複合酸化物粒子がリン化合物のみを含有する場合、S原子及びP原子の含有割合とは、P原子の含有割合を指し、リチウムコバルト複合酸化物粒子が硫黄化合物及びリン化合物を含有する場合、S原子及P原子の含有割合とは、S原子とP原子の合計の含有割合を指す。   And in the positive electrode active material for lithium secondary batteries of this invention, when neither X inside nor the surface of lithium cobalt complex oxide particle contains X atom, the positive electrode active material for lithium secondary batteries of this invention is comprised. The ratio of S atoms and P atoms to Co atoms in the lithium cobalt composite oxide particles is an atomic conversion molar ratio (((S + P) / Co) × 100), preferably 0.01 to 5.5 mol%. Most preferably, it is 0.1-4.0 mol%. In addition, when lithium cobalt complex oxide particle contains only a sulfur compound, the content rate of S atom and P atom refers to the content rate of S atom, and when lithium cobalt complex oxide particle contains only a phosphorus compound The content ratio of S atoms and P atoms refers to the content ratio of P atoms, and when the lithium cobalt composite oxide particles contain a sulfur compound and a phosphorus compound, the content ratio of S atoms and P atoms means S atoms. And the total content of P atoms.

また、本発明のリチウム二次電池用正極活物質において、リチウムコバルト複合酸化物粒子の内部及び表面のいずれか又は両方にX原子を含有する場合、本発明のリチウム二次電池用正極活物質を構成するリチウムコバルト複合酸化物粒子中のCo原子に対するS原子及びP原子の割合は、原子換算のモル比(((S+P)/Co)×100)で、好ましくは0.005〜3.0モル%、特に好ましくは0.05〜2.0モル%である。なお、リチウムコバルト複合酸化物粒子が硫黄化合物のみを含有する場合、S原子及P原子の含有割合とは、S原子の含有割合を指し、リチウムコバルト複合酸化物粒子がリン化合物のみを含有する場合、S原子及びP原子の含有割合とは、P原子の含有割合を指し、リチウムコバルト複合酸化物粒子が硫黄化合物及びリン化合物を含有する場合、S原子及P原子の含有割合とは、S原子とP原子の合計の含有割合を指す。   In addition, in the positive electrode active material for a lithium secondary battery of the present invention, when X atom is contained in either or both of the inside and the surface of the lithium cobalt composite oxide particles, the positive electrode active material for a lithium secondary battery of the present invention is used. The ratio of the S atom and the P atom to the Co atom in the lithium cobalt composite oxide particles is preferably an atomic conversion molar ratio (((S + P) / Co) × 100), preferably 0.005 to 3.0 mol. %, Particularly preferably 0.05 to 2.0 mol%. In addition, when lithium cobalt complex oxide particle contains only a sulfur compound, the content rate of S atom and P atom refers to the content rate of S atom, and when lithium cobalt complex oxide particle contains only a phosphorus compound The content ratio of S atoms and P atoms refers to the content ratio of P atoms, and when the lithium cobalt composite oxide particles contain a sulfur compound and a phosphorus compound, the content ratio of S atoms and P atoms means S atoms. And the total content of P atoms.

また、本発明のリチウム二次電池用正極活物質において、リチウムコバルト複合酸化物粒子の内部及び表面のいずれか又は両方にX原子を含有する場合、本発明のリチウム二次電池用正極活物質を構成するリチウムコバルト複合酸化物粒子中のCo原子に対するX原子の割合は、原子換算のモル比((X/Co)×100)で、好ましくは0.005〜2.5モル%、特に好ましくは0.05〜2.0モル%である。このとき、本発明のリチウム二次電池用正極活物質を構成するリチウムコバルト複合酸化物粒子中のCo原子に対するS原子、Pの原子及びX原子の合計の割合は、原子換算のモル比(((S+P+X)/Co)×100)で、好ましくは0.01〜5.5モル%、特に好ましくは0.1〜4.0モル%である。なお、本発明のリチウム二次電池用正極活物質に対するX原子の割合とは、リチウムコバルト複合酸化物粒子の表面及び内部に存在するX原子の合計の含有割合を指す。また、本発明のリチウム二次電池用正極活物質が2種以上のX原子を含有する場合、X原子の割合とは、それら2種以上のX原子の合計の割合を指す。   In addition, in the positive electrode active material for a lithium secondary battery of the present invention, when X atom is contained in either or both of the inside and the surface of the lithium cobalt composite oxide particles, the positive electrode active material for a lithium secondary battery of the present invention is used. The ratio of the X atom to the Co atom in the lithium cobalt composite oxide particles is preferably an atomic conversion molar ratio ((X / Co) × 100), preferably 0.005 to 2.5 mol%, particularly preferably. 0.05 to 2.0 mol%. At this time, the ratio of the sum of S atoms, P atoms, and X atoms to Co atoms in the lithium cobalt composite oxide particles constituting the positive electrode active material for a lithium secondary battery of the present invention is an atomic conversion molar ratio (( (S + P + X) / Co) × 100), preferably 0.01 to 5.5 mol%, particularly preferably 0.1 to 4.0 mol%. In addition, the ratio of X atoms with respect to the positive electrode active material for a lithium secondary battery of the present invention refers to the total content ratio of X atoms present on the surface and inside of the lithium cobalt composite oxide particles. Moreover, when the positive electrode active material for lithium secondary batteries of this invention contains 2 or more types of X atoms, the ratio of X atoms refers to the total ratio of these 2 or more types of X atoms.

本発明において、本発明のリチウム二次電池用正極活物質中のCo原子の含有量はキレート滴定法、Li原子、M原子、S原子、P原子及びX原子の含有量は、ICP発光分析法により測定される。   In the present invention, the content of Co atom in the positive electrode active material for lithium secondary battery of the present invention is a chelate titration method, and the content of Li atom, M atom, S atom, P atom and X atom is ICP emission spectrometry. Measured by

本発明のリチウム二次電池用正極活物質のタップ密度は、好ましくは2.50g/ml以上、特に好ましくは2.6〜3.1g/mlである。本発明のリチウム二次電池用正極活物質のタップ密度が上記範囲にあることにより、充填密度が高くなり、リチウム二次電池の体積当たりの容量が高くなる。なお、本発明において、タップ密度は、正極活物質試料が、特に加圧されることなく自然に混合している状態における充填特性を示すものであり、試料50〜70gをメスシリンダーに入れ、メスシリンダーを自動T.D測定装置にセットし、測定条件としてタッピング回数500回、タッピング高さ3.2mm、タッピングペース200回/分として求められる(ASTM:B527−93,85に準拠)。   The tap density of the positive electrode active material for a lithium secondary battery of the present invention is preferably 2.50 g / ml or more, particularly preferably 2.6 to 3.1 g / ml. When the tap density of the positive electrode active material for a lithium secondary battery of the present invention is in the above range, the packing density is increased, and the capacity per volume of the lithium secondary battery is increased. In the present invention, the tap density indicates a filling characteristic in a state where the positive electrode active material sample is naturally mixed without being pressurized, and 50 to 70 g of the sample is placed in a graduated cylinder. Automatic T. cylinder. It is set in the D measuring device, and the measurement conditions are determined as 500 times tapping, 3.2 mm tapping height, and 200 times / minute tapping pace (according to ASTM: B527-93, 85).

本発明のリチウム二次電池用正極活物質の平均粒径は、好ましくは5〜30μm、特に好ましくは8〜25μm、更に好ましくは10〜22μmである。本発明のリチウム二次電池用正極活物質の平均粒径が、上記範囲にあることにより、正極活物質としての充填性、リチウム二次電池の容量、サイクル特性、レート特性、安全性、更には正極活物質を塗料化したときのスラリー安定性のが高くなる。なお、本発明において、リチウム二次電池用正極活物質の平均粒径は、レーザー光回折・散乱法で求められる平均粒径であり、粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子(二次粒子)の平均粒径である。   The average particle diameter of the positive electrode active material for a lithium secondary battery of the present invention is preferably 5 to 30 μm, particularly preferably 8 to 25 μm, and further preferably 10 to 22 μm. When the average particle diameter of the positive electrode active material for lithium secondary batteries of the present invention is in the above range, the filling property as the positive electrode active material, the capacity of the lithium secondary battery, the cycle characteristics, the rate characteristics, the safety, Slurry stability is increased when the positive electrode active material is made into a paint. In the present invention, the average particle diameter of the positive electrode active material for a lithium secondary battery is an average particle diameter determined by a laser diffraction / scattering method, and the lithium cobalt composite oxide whose particle surface is coated with a coating compound It is an average particle diameter of particles (secondary particles).

本発明のリチウム二次電池用正極活物質のBET比表面積は、好ましくは0.02〜1.5m/g、特に好ましくは0.05〜0.5m/g、更に好ましくは0.10〜0.30m/gである。本発明のリチウム二次電池用正極活物質のBET比表面積が、上記範囲内にあることにより、リチウム二次電池の安全性、サイクル特性、レート特性、更には正極活物質を塗料化したときのスラリー安定性が高くなる。 BET specific surface area of the positive active material for a lithium secondary battery of the present invention is preferably 0.02~1.5m 2 / g, particularly preferably 0.05-0.5 M 2 / g, more preferably 0.10 -0.30 m < 2 > / g. When the BET specific surface area of the positive electrode active material for a lithium secondary battery of the present invention is within the above range, the safety, cycle characteristics, rate characteristics of the lithium secondary battery, and further when the positive electrode active material is made into a paint Increases slurry stability.

本発明のリチウム二次電池用正極活物質は、粒子表面に存在する残留アルカリ分が、好ましくは500ppm以下、特に好ましくは400ppm以下である。本発明のリチウム二次電池用正極活物質の残留アルカリ分が、上記範囲にあることにより、リチウム二次電池のサイクル特性、更には正極活物質を塗料化したときのスラリー安定性が高くなる。   In the positive electrode active material for a lithium secondary battery of the present invention, the residual alkali content present on the particle surface is preferably 500 ppm or less, particularly preferably 400 ppm or less. When the residual alkali content of the positive electrode active material for a lithium secondary battery of the present invention is in the above range, the cycle characteristics of the lithium secondary battery, and further, the slurry stability when the positive electrode active material is made into a paint are increased.

なお、本発明において、リチウム二次電池用正極活物質の粒子表面に存在する残留アルカリ分とは、正極活物質を25℃の水に撹拌分散させたときに、水に溶出される成分を指す。このような成分としては、炭酸リチウム(LiCO)、水酸化リチウム(LiOH)等が挙げられる。そして、正極活物質の粒子表面に存在している残留アルカリ量は、正極活物質5g及び超純水100gをビーカーに計り取り、25℃でマグネティックスターラーで5分間分散させ、次いで、この分散液をろ過し、得られるろ液中に存在するアルカリの量を中和滴定することによって求められる。なお、残留アルカリ量は、滴定によりリチウム量を測定して炭酸リチウム(LiCO)に換算した値である。 In the present invention, the residual alkali content present on the particle surface of the positive electrode active material for lithium secondary batteries refers to a component that is eluted in water when the positive electrode active material is stirred and dispersed in 25 ° C. water. . Examples of such components include lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (LiOH). The amount of residual alkali present on the particle surface of the positive electrode active material was measured by measuring 5 g of the positive electrode active material and 100 g of ultrapure water in a beaker and dispersing it with a magnetic stirrer at 25 ° C. for 5 minutes. It is obtained by filtering and neutralizing titrating the amount of alkali present in the resulting filtrate. The residual alkali amount is a value obtained by measuring the amount of lithium by titration and converting it to lithium carbonate (Li 2 CO 3 ).

本発明のリチウム二次電池用正極活物質では、Coに対するLiの原子換算のモル比が1.03〜1.20とリチウムモル比が高いリチウムコバルト複合酸化物の粒子の表面が、被覆化合物で被覆されたものであり、その被覆化合物の全部又は一部が硫黄化合物又はリン化合物であることにより、体積当たりの容量及び平均作動電圧が高く、安全性、サイクル特性及び負荷特性にも優れるという効果が高くなる。   In the positive electrode active material for a lithium secondary battery of the present invention, the surface of lithium cobalt composite oxide particles having a high lithium molar ratio of 1.03-1.20 in terms of atomic ratio of Li to Co is a coating compound. The effect that the capacity per unit volume and the average operating voltage are high and the safety, cycle characteristics, and load characteristics are excellent because all or part of the coating compound is a sulfur compound or a phosphorus compound. Becomes higher.

本発明のリチウム二次電池用正極活物質は、以下に示す本発明のリチウム二次電池用正極活物質の製造方法により、好適に製造される。   The positive electrode active material for a lithium secondary battery of the present invention is preferably produced by the following method for producing a positive electrode active material for a lithium secondary battery of the present invention.

本発明のリチウム二次電池用正極活物質の製造方法は、リチウム化合物と、コバルト化合物と、を混合して、リチウム化合物と、コバルト化合物と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(A)を得るか、又はリチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)の1種又は2種以上と、を混合して、リチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)の1種又は2種以上と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(B)を得、次いで、800〜1100℃で焼成して、第一焼成物を得る第一工程と、
該第一焼成物に、硫酸塩又はリン酸塩と、該第一焼成物、該硫酸塩及び該リン酸塩の合計量に対して0.1〜15質量%の水と、を混合し、第二焼成原料混合物を得、次いで、該第二焼成原料混合物を、200〜1100℃で焼成して、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であるリチウムコバルト複合酸化物粒子を得る第二工程と、
を有することを特徴とするリチウム二次電池用正極活物質の製造方法である。
The method for producing a positive electrode active material for a lithium secondary battery according to the present invention comprises mixing a lithium compound and a cobalt compound, containing a lithium compound and a cobalt compound, and mixing the lithium compound and the cobalt compound. Obtain a first firing raw material mixture (A) whose ratio is a mixing ratio of 1.06-1.20 in terms of a molar ratio of Li atoms to Co atoms (Li / Co), or a lithium compound and , Cobalt compounds and M element compounds (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn, and M may be contained alone or in combination of two or more thereof, and a lithium compound, a cobalt compound, and M Elemental compounds (M is M Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn, and M May be contained singly or in combination of two or more), and the mixing ratio of the lithium compound and the cobalt compound is a molar ratio of Li atoms to Co atoms in terms of atoms. (Li / Co) is used to obtain a first fired raw material mixture (B) having a mixing ratio of 1.06 to 1.20, and then fired at 800 to 1100 ° C. to obtain a first fired product. Process,
In the first fired product, sulfate or phosphate and 0.1 to 15% by mass of water with respect to the total amount of the first fired product, sulfate and phosphate are mixed, A second calcined raw material mixture is obtained, and then the second calcined raw material mixture is calcined at 200 to 1100 ° C., the particle surface is coated with a coating compound, and all or part of the coating compound is a sulfur compound or A second step of obtaining lithium cobalt composite oxide particles which are phosphorus compounds;
It is a manufacturing method of the positive electrode active material for lithium secondary batteries characterized by having.

本発明のリチウム二次電池用正極活物質の製造方法に係る第一工程は、リチウム化合物とコバルト化合物とを混合して、第一焼成原料混合物(A)を得るか、又はリチウム化合物とコバルト化合物とM元素化合物の1種又は2種以上とを混合して、第一焼成原料混合物(B)を得、次いで、第一焼成原料混合物(A)又は第一焼成原料混合物(B)を、800〜1100℃で焼成して、第一焼成物を得る工程である。   In the first step according to the method for producing a positive electrode active material for a lithium secondary battery of the present invention, a lithium compound and a cobalt compound are mixed to obtain a first firing raw material mixture (A), or a lithium compound and a cobalt compound And one or more of the M element compounds are mixed to obtain the first baking raw material mixture (B), and then the first baking raw material mixture (A) or the first baking raw material mixture (B) is added to 800 It is a step of firing at ˜1100 ° C. to obtain a first fired product.

第一工程に係る第一焼成原料混合物(A)は、リチウム化合物と、コバルト化合物と、を混合して得られる原料混合物であり、リチウム化合物と、コバルト化合物と、を含有し、また、第一焼成原料混合物(B)は、リチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)の1種又は2種以上と、を混合して得られる原料混合物であり、リチウム化合物と、コバルト化合物と、M元素化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、Mは単独又は2種以上含有していてもよい。)の1種又は2種以上と、を含有する。つまり、第一焼成原料混合物(A)と第一焼成原料混合物(B)との差異は、M元素化合物を含有するか否かであり、それ以外については、両者は同様である。   The 1st baking raw material mixture (A) which concerns on a 1st process is a raw material mixture obtained by mixing a lithium compound and a cobalt compound, contains a lithium compound and a cobalt compound, The firing raw material mixture (B) is composed of a lithium compound, a cobalt compound, and an M element compound (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn). , Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn, and M may be contained alone or in combination of two or more thereof. A lithium compound, a cobalt compound, and an M element compound (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn) , Ga, Ge, Sn, Ba, W, Na K, Co, and Ni or Mn, M contains, and one or more may be contained singly or two or more.). That is, the difference between the first calcined raw material mixture (A) and the first calcined raw material mixture (B) is whether or not it contains an M element compound, and the other is the same.

第一工程に係るリチウム化合物は、Li原子を有する化合物であり、Li原子を有する化合物であれば、特に制限されず、例えば、酸化リチウムや水酸化リチウム、他には、炭酸リチウム、硝酸リチウムのような無機酸のリチウム塩、酢酸リチウム、乳酸リチウム、クエン酸リチウム、リン酸リチウム、シュウ酸リチウムのような有機酸のリチウム塩等のリチウム塩が挙げられる。これらのうち、リチウム化合物としては、酸化リチウム、水酸化リチウム、炭酸リチウムが好ましい。リチウム化合物は、1種であっても、2種以上の組み合わせであってもよい。リチウム化合物の平均粒径は、反応性が良好になる点で、好ましくは0.1〜200μm、特に好ましくは2〜50μmである。   The lithium compound according to the first step is a compound having a Li atom, and is not particularly limited as long as it is a compound having a Li atom. For example, lithium oxide or lithium hydroxide, other than lithium carbonate, lithium nitrate Examples thereof include lithium salts of inorganic acids, lithium salts such as lithium salts of organic acids such as lithium acetate, lithium lactate, lithium citrate, lithium phosphate, and lithium oxalate. Among these, as a lithium compound, lithium oxide, lithium hydroxide, and lithium carbonate are preferable. The lithium compound may be one type or a combination of two or more types. The average particle size of the lithium compound is preferably from 0.1 to 200 μm, particularly preferably from 2 to 50 μm, from the viewpoint that the reactivity is improved.

第一工程に係るコバルト化合物は、Co原子を有する化合物であり、Co原子を有する化合物であれば、特に制限されず、例えば、酸化コバルトや、水酸化コバルト、オキシ水酸化コバルト、他には、炭酸コバルト、硝酸コバルトのような無機酸のコバルト塩、酢酸コバルト、シュウ酸コバルト、クエン酸コバルト、グルコン酸コバルトのような有機酸のコバルト塩等のコバルト塩が挙げられる。これらのうち、コバルト化合物としては、酸化コバルト、水酸化コバルト、炭酸コバルト、オキシ水酸化コバルトが好ましい。コバルト化合物は、1種であっても、2種以上の組み合わせであってもよい。コバルト化合物の平均粒径は、反応性が良好になる点で、好ましくは0.5〜40.0μm、特に好ましくは2.0〜35.0μmである。   The cobalt compound according to the first step is a compound having a Co atom and is not particularly limited as long as it is a compound having a Co atom. For example, cobalt oxide, cobalt hydroxide, cobalt oxyhydroxide, Examples include cobalt salts of inorganic acids such as cobalt carbonate and cobalt nitrate, and cobalt salts of organic acids such as cobalt acetate, cobalt oxalate, cobalt citrate, and cobalt gluconate. Among these, as the cobalt compound, cobalt oxide, cobalt hydroxide, cobalt carbonate, and cobalt oxyhydroxide are preferable. The cobalt compound may be one type or a combination of two or more types. The average particle diameter of the cobalt compound is preferably 0.5 to 40.0 μm, particularly preferably 2.0 to 35.0 μm, in view of improving the reactivity.

第一工程に係るM元素化合物は、M原子を有する化合物であり、M原子を有する化合物であれば、特に制限されず、例えば、M原子の酸化物や、M元素の水酸化物、オキシ水酸化物、他には、M元素の炭酸塩、硝酸塩、硫酸塩、リン酸塩のような無機酸のM元素塩、M元素の酢酸塩、シュウ酸塩、クエン酸塩のような有機酸のM元素塩等のM元素の塩が挙げられる。これらのうち、M元素化合物としては、M元素の酸化物、M元素の水酸化物、M元素の炭酸塩が好ましい。M元素化合物は、1種であっても、2種以上の組み合わせであってもよい。M元素化合物の平均粒径は、反応性が良好になる点で、好ましくは0.01〜150μm、特に好ましくは0.1〜100μmである。   The M element compound according to the first step is a compound having M atoms, and is not particularly limited as long as it is a compound having M atoms. For example, an oxide of M atom, a hydroxide of M element, oxy water Oxides, M elemental salts of inorganic acids such as M element carbonates, nitrates, sulfates, phosphates, organic acids such as M element acetates, oxalates, citrates M element salts such as M element salts can be mentioned. Among these, the M element compound is preferably an M element oxide, an M element hydroxide, or an M element carbonate. The M element compound may be one kind or a combination of two or more kinds. The average particle size of the M element compound is preferably 0.01 to 150 μm, particularly preferably 0.1 to 100 μm, in terms of good reactivity.

第一焼成原料混合物(A)又は第一焼成原料混合物(B)中、リチウム化合物とコバルト化合物の混合割合は、原子換算のモル比で、Li/Coが、1.06〜1.20、好ましくは1.06〜1.18、特に好ましくは1.06〜1.15となる混合割合である。   In the first firing raw material mixture (A) or the first firing raw material mixture (B), the mixing ratio of the lithium compound and the cobalt compound is a molar ratio in terms of atoms, and Li / Co is 1.06 to 1.20, preferably Is a mixing ratio of 1.06 to 1.18, particularly preferably 1.06 to 1.15.

第一焼成原料混合物(B)中、M元素化合物の混合割合は、原子換算のモル比で、M/Coが、0.0001〜0.08、好ましくは0.001〜0.055となる混合割合である。第一焼成原料混合物(B)中のM元素化合物の混合割合が、上記範囲内にあることにより、リチウム二次電池のサイクル特性及び安全性が高くなる。   In the first firing raw material mixture (B), the mixing ratio of the M element compound is a molar ratio in terms of atoms, and M / Co is 0.0001 to 0.08, preferably 0.001 to 0.055. It is a ratio. When the mixing ratio of the M element compound in the first firing raw material mixture (B) is within the above range, the cycle characteristics and safety of the lithium secondary battery are enhanced.

第一工程では、リチウム化合物とコバルト化合物(第一焼成原料混合物(A))と共に、又はリチウム化合物とコバルト化合物とM元素化合物(第一焼成原料混合物(B))と共に、X元素化合物(Xは、F、Cl、Br又はIである。)のうちの1種又は2種以上を混合することができる。つまり、第一焼成原料混合物(A)又は第一焼成原料混合物(B)は、X元素化合物(Xは、F、Cl、Br又はIである。)のうちの1種又は2種以上を含有してもよい。X元素化合物は、X原子を有する化合物であり、X原子を有する化合物であれば、特に制限されず、X元素の水素化物、酸化物、オキソ酸、有機化物、M元素との塩が挙げられ、更に具体的には、例えば、HF、HCl、HBr、HI、OF、O、O、ClO、ClO、BrO、BrO、IO、HOF、HOCl、HOBr、HOI、CHF、CH、CHF、MgF、AlF、LiF、MgCl、AlCl、LiCl、MgBr、AlBr、LiBr、MgI、AlI、LiI、TiF、ZrF等が挙げられる。これらのうちX元素化合物としては、リチウム二次電池の容量維持率が高くなる点で、MgF、AlF、LiFが好ましく、MgF、AlFが特に好ましい。X元素化合物は、1種であっても、2種以上の組み合わせであってもよい。X元素化合物の平均粒径は、反応性が良好になる点で、好ましくは0.01〜150μm、特に好ましくは0.1〜100μmである。 In the first step, together with a lithium compound and a cobalt compound (first firing raw material mixture (A)) or with a lithium compound, a cobalt compound and an M element compound (first firing raw material mixture (B)), an X element compound (X is , F, Cl, Br, or I) can be mixed. That is, the first firing raw material mixture (A) or the first firing raw material mixture (B) contains one or more of X element compounds (X is F, Cl, Br, or I). May be. The X element compound is a compound having an X atom, and is not particularly limited as long as it is a compound having an X atom, and examples thereof include a hydride, an oxide, an oxo acid, an organic compound, and a salt with an M element of the X element. More specifically, for example, HF, HCl, HBr, HI, OF 2 , O 2 F 2 , O 3 F 2 , Cl 2 O, ClO 2 , Br 2 O, BrO 2 , I 2 O, HOF, HOCl, HOBr, HOI, CH 3 F, CH 2 F 2, CH 3 F, MgF 2, AlF 3, LiF, MgCl 2, AlCl 3, LiCl, MgBr 2, AlBr 3, LiBr, MgI 2, AlI 3, LiI , TiF 4 , ZrF 4 and the like. Among these, as the X element compound, MgF 2 , AlF 3 , and LiF are preferable, and MgF 2 and AlF 3 are particularly preferable in that the capacity retention rate of the lithium secondary battery is increased. The X element compound may be one type or a combination of two or more types. The average particle size of the X element compound is preferably from 0.01 to 150 μm, particularly preferably from 0.1 to 100 μm, from the viewpoint of good reactivity.

第一焼成原料混合物(A)又は第一焼成原料混合物(B)が、X元素化合物を含有する場合、第一焼成原料混合物(A)又は第一焼成原料混合物(B)中、X元素化合物の混合割合は、第一焼成原料混合物(A)又は第一焼成原料混合物(B)中のCo原子に対するX原子の原子換算のモル比((X/Co)×100)で、2.0モル%以下となる量が好ましく、1.5モル%以下となる量が特に好ましい。この理由は、X元素化合物の混合割合が2.0モル%となる量より大きくなると、リチウム二次電池の容量が低下する傾向があるためである。なお、X元素化合物はリチウム二次電池の種々の性能を勘案して任意で使用されるので、混合割合の下限は特に限定されない。そして、2種以上のX元素を含有させる場合には、X元素化合物の混合割合は、全X原子の合計の割合を指す。   When the first firing raw material mixture (A) or the first firing raw material mixture (B) contains an X element compound, the first firing raw material mixture (A) or the first firing raw material mixture (B) contains the X element compound. The mixing ratio is 2.0 mol% in terms of the atomic ratio of X atoms to Co atoms in the first firing raw material mixture (A) or the first firing raw material mixture (B) ((X / Co) × 100). The amount of the following is preferable, and the amount of 1.5 mol% or less is particularly preferable. This is because the capacity of the lithium secondary battery tends to decrease when the mixing ratio of the X element compound is larger than the amount of 2.0 mol%. In addition, since the X element compound is arbitrarily used in consideration of various performances of the lithium secondary battery, the lower limit of the mixing ratio is not particularly limited. When two or more kinds of X elements are contained, the mixing ratio of the X element compounds indicates the total ratio of all X atoms.

そして、第一工程では、第一焼成原料混合物(A)又は第一焼成原料混合物(B)を、800〜1100℃で焼成して、第一焼成物を得る。   And in a 1st process, a 1st baking raw material mixture (A) or a 1st baking raw material mixture (B) is baked at 800-1100 degreeC, and a 1st baking material is obtained.

第一工程における焼成条件については、焼成温度は、800〜1100℃、好ましくは1000〜1080℃であり、焼成時間は、好ましくは1〜30時間、特に好ましくは5〜20時間であり、焼成雰囲気は、空気、酸素ガス等の酸化性雰囲気である。また、第一工程における焼成温度は、800℃以下とすることもある。   Regarding the firing conditions in the first step, the firing temperature is 800 to 1100 ° C., preferably 1000 to 1080 ° C., the firing time is preferably 1 to 30 hours, particularly preferably 5 to 20 hours, and the firing atmosphere. Is an oxidizing atmosphere such as air or oxygen gas. Moreover, the firing temperature in the first step may be 800 ° C. or lower.

本発明のリチウム二次電池用正極活物質に係る第二工程は、第一焼成物に、硫酸塩又はリン酸塩と、水と、必要に応じてX元素化合物又はM元素化合物と、を混合して、第二焼成原料混合物を得、次いで、得られる第二焼成原料混合物を、200〜1100℃で焼成して、粒子表面が硫酸塩又はリン酸塩で被覆されているリチウムコバルト複合酸化物粒子を得る工程である。   In the second step according to the positive electrode active material for a lithium secondary battery of the present invention, the first fired product is mixed with sulfate or phosphate, water, and optionally X element compound or M element compound. Then, the second calcined raw material mixture is obtained, and then the obtained second calcined raw material mixture is calcined at 200 to 1100 ° C., and the lithium cobalt composite oxide whose particle surface is coated with sulfate or phosphate This is a step of obtaining particles.

第二工程に係る硫酸塩は、(NHSO、NHHSO、(NHH(SO、(NH)H(SO、M元素の硫酸塩(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)、M元素以外の元素の硫酸塩が挙げられる。これらのうち、第二工程に係る硫酸塩としては、MgSO、Al(SO、ZrSO、CoSO、NiSO、CaSO、MnSO、(NHSOが好ましい。第二工程に係る硫酸塩は、1種であっても2種以上であってもよい。また、第二工程に係る硫酸塩は、無水物であっても、水和物であってもよい。第二工程に係る硫酸塩の平均粒径は、好ましくは0.01〜1000μm、特に好ましくは0.1〜500μmである。 The sulfates according to the second step are (NH 4 ) 2 SO 4 , NH 4 HSO 4 , (NH 4 ) 3 H (SO 4 ) 2 , (NH 4 ) H 3 (SO 4 ) 2 , sulfuric acid of M element Salt (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni Or Mn.), And sulfates of elements other than the M element. Among these, as the sulfate according to the second step, MgSO 4 , Al 2 (SO 4 ) 3 , ZrSO 4 , CoSO 4 , NiSO 4 , CaSO 4 , MnSO 4 , (NH 4 ) 2 SO 4 are preferable. The sulfate according to the second step may be one type or two or more types. The sulfate according to the second step may be an anhydride or a hydrate. The average particle diameter of the sulfate according to the second step is preferably 0.01 to 1000 μm, particularly preferably 0.1 to 500 μm.

第二工程に係るM元素の硫酸塩は、下記一般式(1):
(HSO (1)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、aは0又は1である。)
で表される硫酸塩である。なお、一般式(1)中のx及びyの値は、Mの価数により異なる。
The M element sulfate according to the second step is represented by the following general formula (1):
M x (H a SO 4 ) y (1)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers, and a is 0 or 1.)
It is a sulfate represented by In addition, the value of x and y in General formula (1) changes with valences of M.

第二工程に係るリン酸塩としては、(NHHPO、NHPO、M元素のリン酸塩(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)、M元素以外の元素のリン酸塩が挙げられる。これらのリン酸塩のうち、第二工程に係るリン酸塩としては、Mg(PO、(NHHPO、AlPOが好ましい。第二工程に係るリン酸塩は、1種であっても2種以上であってもよい。また、第二工程に係るリン酸塩は、無水物であっても、水和物であってもよい。第二工程に係るリン酸塩の平均粒径は、好ましくは0.01〜1000μm、特に好ましくは0.1〜500μmである。 As the phosphate according to the second step, (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , phosphate of M element (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, And Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn.), And phosphates of elements other than the M element. . Among these phosphates, Mg 3 (PO 4 ) 2 , (NH 4 ) 2 HPO 4 , and AlPO 4 are preferable as the phosphates in the second step. 1 type or 2 types or more may be sufficient as the phosphate which concerns on a 2nd process. The phosphate according to the second step may be an anhydride or a hydrate. The average particle diameter of the phosphate according to the second step is preferably 0.01 to 1000 μm, particularly preferably 0.1 to 500 μm.

第二工程に係るM元素のリン酸塩は、下記一般式(3):
(HPO (3)
(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、bは0、1又は2である。)
で表されるリン酸塩である。なお、一般式(3)中のx及びyの値は、Mの価数により異なる。
The M element phosphate according to the second step is represented by the following general formula (3):
M x (H b PO 4 ) y (3)
(M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, x and y are integers, and b is 0, 1 or 2.)
It is a phosphate represented by. In addition, the value of x and y in General formula (3) changes with the valences of M.

第二工程では、第一焼成物に、硫酸塩又はリン酸塩及び水と共に、X元素化合物(Xは、F、Cl、Br又はIである。)のうちの1種又は2種以上を混合することができる。第二工程において、必要に応じて混合されるX元素化合物(Xは、F、Cl、Br又はIである。)は、X原子を有する化合物であり、X原子を有する化合物であれば、特に制限されず、X元素の水素化物、酸化物、オキソ酸、有機化物、M元素との塩が挙げられ、更に具体的には、例えば、HF、HCl、HBr、HI、OF、O、O、ClO、ClO、BrO、BrO、IO、HOF、HOCl、HOBr、HOI、CHF、CH、CHF、MgF、AlF、LiF、MgCl、AlCl、LiCl、MgBr、AlBr、LiBr、MgI、AlI、LiI、TiF、ZrF等が挙げられる。これらのうちX元素化合物としては、リチウム二次電池の容量維持率が高くなる点で、MgF、AlF、LiFが好ましく、MgF、AlFが特に好ましい。X元素化合物は、1種であっても、2種以上の組み合わせであってもよい。X元素化合物の平均粒径は、反応性が良好になる点で、好ましくは0.01〜150μm、特に好ましくは0.1〜100μmである。 In the second step, one or more of X element compounds (X is F, Cl, Br or I) are mixed with the first fired product together with sulfate or phosphate and water. can do. In the second step, the X element compound (X is F, Cl, Br or I) mixed as necessary is a compound having an X atom, and if it is a compound having an X atom, Without limitation, hydrides of element X, oxides, oxoacids, organic compounds, salts with element M, and more specifically, for example, HF, HCl, HBr, HI, OF 2 , O 2 F 2 , O 3 F 2 , Cl 2 O, ClO 2 , Br 2 O, BrO 2 , I 2 O, HOF, HOCl, HOBr, HOI, CH 3 F, CH 2 F 2 , CH 3 F, MgF 2 , AlF 3 , LiF, MgCl 2 , AlCl 3 , LiCl, MgBr 2 , AlBr 3 , LiBr, MgI 2 , AlI 3 , LiI, TiF 4 , ZrF 4 and the like. Among these, as the X element compound, MgF 2 , AlF 3 , and LiF are preferable, and MgF 2 and AlF 3 are particularly preferable in that the capacity retention rate of the lithium secondary battery is increased. The X element compound may be one type or a combination of two or more types. The average particle size of the X element compound is preferably from 0.01 to 150 μm, particularly preferably from 0.1 to 100 μm, from the viewpoint of good reactivity.

そして、第一工程及び第二工程のいずれでも、X元素化合物を混合しない場合、第二工程における硫酸塩及びリン酸塩の混合量は、第一焼成原料混合物(A)又は第一焼成原料混合物(B)中のCo原子に対するS原子及びP原子の原子換算の合計モルのモル比(((S+P)/Co)×100)で、好ましくは0.01〜5.5モル%、特に好ましくは0.1〜4.0モル%となる量である。   In both the first step and the second step, when the X element compound is not mixed, the mixed amount of the sulfate and phosphate in the second step is the first firing raw material mixture (A) or the first firing raw material mixture. In the molar ratio of the total moles of S atoms and P atoms converted to Co atoms in (B) (((S + P) / Co) × 100), preferably 0.01 to 5.5 mol%, particularly preferably. The amount is 0.1 to 4.0 mol%.

また、第一工程及び第二工程のいずれか又は両方で、X元素化合物を混合する場合、第二工程における硫酸塩及びリン酸塩の混合量は、第一焼成原料混合物(A)又は第一焼成原料混合物(B)中のCo原子に対するS原子及びP原子の原子換算の合計モルのモル比(((S+P)/Co)×100)で、好ましくは0.005〜3.0モル%、特に好ましくは0.05〜2.0モル%となる量である。   In addition, when the X element compound is mixed in one or both of the first step and the second step, the mixing amount of the sulfate and phosphate in the second step is the first firing raw material mixture (A) or the first step. The molar ratio of the total moles of S atoms and P atoms in terms of atoms to Co atoms in the firing raw material mixture (B) (((S + P) / Co) × 100), preferably 0.005 to 3.0 mol%, The amount is particularly preferably 0.05 to 2.0 mol%.

また、第一工程及び第二工程のいずれか又は両方で、X元素化合物を混合する場合、第一工程及び第二工程におけるX元素化合物の混合量は、第一焼成原料混合物(A)又は第一焼成原料混合物(B)中のCo原子に対するX原子の原子換算のモル比((X/Co)×100)で、好ましくは0.005〜0.05モル%、特に好ましくは0.05〜2.0モル%となる量である。   In addition, when the X element compound is mixed in one or both of the first step and the second step, the mixing amount of the X element compound in the first step and the second step is the first firing raw material mixture (A) or the second step. The molar ratio (X / Co) × 100 of the X atom with respect to the Co atom in one firing raw material mixture (B), preferably 0.005 to 0.05 mol%, particularly preferably 0.05 to The amount is 2.0 mol%.

第二工程では、第一焼成物に、硫酸塩又はリン酸塩及び水と共に、M元素化合物を混合することもできる。このM元素化合物は第一工程で説明したものと特に変わりなく、例えば、M原子の酸化物や、M元素の水酸化物、オキシ水酸化物、他には、M元素の炭酸塩、硝酸塩のような無機酸のM元素塩、M元素の酢酸塩、シュウ酸塩、クエン酸塩のような有機酸のM元素塩等のM元素の塩が挙げられる。第二工程で混合するM元素化合物は、1種であっても、2種以上の組み合わせであってもよい。第二工程でのM元素化合物の混合量は、第一工程でのM元素化合物の混合量との合計で、第一焼成原料混合物(A)又は第二焼成原料混合物(B)中のCo原子に対するM原子の原子換算のモル比(M/Co)が、0.0001〜0.08、好ましくは0.001〜0.055となる混合割合である。M元素化合物の平均粒径は、反応性が良好になる点で、好ましくは0.01〜150μm、特に好ましくは0.1〜100μmである。   In the second step, the M element compound can be mixed with the sulfate or phosphate and water in the first fired product. This M element compound is not particularly different from that described in the first step. For example, M atom oxide, M element hydroxide, oxyhydroxide, M element carbonate, nitrate M element salts such as M element salts of inorganic acids, acetates of M elements, oxalates, and M element salts of organic acids such as citrate. The M element compound to be mixed in the second step may be one type or a combination of two or more types. The mixing amount of the M element compound in the second step is the sum of the mixing amount of the M element compound in the first step, and Co atoms in the first baking raw material mixture (A) or the second baking raw material mixture (B). The mixing ratio is such that the molar ratio (M / Co) of M atom to Mn is 0.0001 to 0.08, preferably 0.001 to 0.055. The average particle size of the M element compound is preferably 0.01 to 150 μm, particularly preferably 0.1 to 100 μm, in terms of good reactivity.

第二工程では、第一焼成物に、硫酸塩又はリン酸塩と水とを混合するか、又は第一焼成物に、硫酸塩又はリン酸塩とX元素化合物又はM元素化合物と水とを混合する。第二工程に係る水としては、純水、イオン交換水、工業用水、水道水、蒸留水等が挙げられる。第二工程に係る水は、不純物が少ないほど好ましい。   In the second step, the first baked product is mixed with sulfate or phosphate and water, or the first baked product is mixed with sulfate or phosphate and X element compound or M element compound and water. Mix. Examples of the water related to the second step include pure water, ion exchange water, industrial water, tap water, and distilled water. The water which concerns on a 2nd process is so preferable that there are few impurities.

第一焼成物に、硫酸塩又はリン酸塩と水とを混合する場合、第二工程における水の混合量は、第一焼成物、硫酸塩及びリン酸塩の合計量に対して、0.1〜15質量%、好ましくは1.0〜13質量%、特に好ましくは1.0〜10質量%である。また、第一焼成物に、硫酸塩又はリン酸塩とX元素化合物又はM元素化合物と水とを混合する場合、第二工程における水の混合量は、第一焼成物、硫酸塩、リン酸塩、X元素化合物及びM元素化合物の合計量に対して、0.1〜15質量%、好ましくは1.0〜13質量%、特に好ましくは1.0〜10質量%である。第二工程における水の混合量が、上記範囲内にあることにより、適度な反応場が提供され、後述する焼成において効率良く反応させることができる。   When the sulfate or phosphate and water are mixed in the first baked product, the amount of water in the second step is set to be 0.00 with respect to the total amount of the first baked product, sulfate and phosphate. 1-15 mass%, Preferably it is 1.0-13 mass%, Most preferably, it is 1.0-10 mass%. In addition, when the sulfate or phosphate and the X element compound or M element compound and water are mixed in the first baked product, the amount of water mixed in the second step is the first baked product, sulfate or phosphoric acid. It is 0.1-15 mass% with respect to the total amount of a salt, X element compound, and M element compound, Preferably it is 1.0-13 mass%, Most preferably, it is 1.0-10 mass%. When the mixing amount of water in the second step is within the above range, an appropriate reaction field is provided, and the reaction can be efficiently performed in the firing described later.

そして、第二工程では、第二焼成原料混合物を、200〜1100℃で焼成して、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であるリチウムコバルト複合酸化物粒子を得る。   In the second step, the second firing raw material mixture is fired at 200 to 1100 ° C., the particle surface is coated with a coating compound, and all or part of the coating compound is a sulfur compound or a phosphorus compound. Lithium cobalt composite oxide particles are obtained.

第二工程における焼成条件については、焼成温度は、200〜1100℃、好ましくは400〜1000℃であり、焼成時間は、好ましくは0.1〜30時間、特に好ましくは1〜10時間であり、焼成雰囲気は、空気、酸素ガス等の酸化性雰囲気である。   Regarding the firing conditions in the second step, the firing temperature is 200 to 1100 ° C., preferably 400 to 1000 ° C., and the firing time is preferably 0.1 to 30 hours, particularly preferably 1 to 10 hours, The firing atmosphere is an oxidizing atmosphere such as air or oxygen gas.

第二工程において第二焼成原料混合物を焼成することにより、第一焼成物であるリチウムコバルト複合酸化物粒子の粒子表面に存在しているアルカリが、硫酸塩、リン酸塩又はX元素化合物の一部で中和されて、リチウムの硫酸塩、リチウムの硫化物、リチウムのリン酸塩、リチウムのリン化物又はX元素のリチウム塩となり、また、硫酸塩、リン酸塩、X元素化合物の一部がそのまま、リチウムコバルト複合酸化物粒子の粒子表面に付着する。   By firing the second firing raw material mixture in the second step, the alkali present on the surface of the lithium cobalt composite oxide particles that are the first fired product is one of sulfate, phosphate, or X element compound. Is neutralized in part to become lithium sulfate, lithium sulfide, lithium phosphate, lithium phosphide or lithium of X element, and also part of sulfate, phosphate, X element compound As it is, it adheres to the particle surface of the lithium cobalt composite oxide particles.

このようにして、本発明のリチウム二次電池用正極活物質の製造方法を行うことにより、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であるリチウムコバルト複合酸化物粒子が得られる。   Thus, by performing the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention, the particle | grain surface is coat | covered with the coating compound, and all or one part of this coating compound is a sulfur compound or a phosphorus compound. Certain lithium cobalt composite oxide particles are obtained.

本発明のリチウム二次電池用正極活物質の製造方法では、第一工程を行い得られる第一焼成物の粒子表面に存在しているアルカリ量は、LiとCo及びMとのモル比、焼成温度等により異なるが、硫黄化合物又はリン化合物の被覆量を多くすることができる点で、第一焼成物の表面に存在しているアルカリ量が、500〜5000ppmであることが好ましく、750〜4000ppmであることが特に好ましく、1000〜3000ppmであることが更に好ましい。   In the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, the amount of alkali present on the particle surface of the first fired product obtained by performing the first step is determined by the molar ratio of Li, Co, and M, firing. Although it depends on the temperature or the like, the amount of alkali present on the surface of the first fired product is preferably 500 to 5000 ppm in terms of being able to increase the coating amount of the sulfur compound or phosphorus compound, and is preferably 750 to 4000 ppm. It is particularly preferable that it is 1000 to 3000 ppm.

また、第二工程において、粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子(第二工程での焼成後のもの)の表面に存在しているアルカリ量が、第一焼成物(第一工程での焼成後のもの)の表面に存在しているアルカリ量の好ましくは60質量%以下、特に好ましくは50質量%以下、更に好ましくは40質量%以下となるように、第一焼成物に、硫酸塩又はリン酸塩と、必要に応じてX元素化合物又はM元素化合物を混合する。ここで、第一焼成物の表面に存在しているアルカリ量と、粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子の表面に存在しているアルカリ量との関係であるが、例えば、第一工程を行い得られた第一焼成物の表面に存在しているアルカリ量の分析値が2000ppmであり、その第一焼成物を用いて第二工程を行い得られた粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子の表面に存在しているアルカリ量が50ppmであったとすると、粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子の表面に存在しているアルカリ量は、第一焼成物の表面に存在しているアルカリ量の2.5%((50/2000)×100)となる。   Further, in the second step, the amount of alkali present on the surface of the lithium cobalt composite oxide particles (particles after firing in the second step) whose particle surfaces are coated with a coating compound is reduced by the first fired product ( The first baking is carried out so that the amount of alkali present on the surface of the baking after the baking in the first step is preferably 60% by mass or less, particularly preferably 50% by mass or less, and further preferably 40% by mass or less. The product is mixed with sulfate or phosphate and, if necessary, X element compound or M element compound. Here, the relationship between the amount of alkali present on the surface of the first fired product and the amount of alkali present on the surface of the lithium cobalt composite oxide particles whose particle surface is coated with the coating compound, For example, the analytical value of the amount of alkali present on the surface of the first baked product obtained by performing the first step is 2000 ppm, and the particle surface obtained by performing the second step using the first baked product is Assuming that the amount of alkali present on the surface of the lithium cobalt composite oxide particles coated with the coating compound is 50 ppm, the particle surface exists on the surface of the lithium cobalt composite oxide particles coated with the coating compound. The amount of alkali present is 2.5% ((50/2000) × 100) of the amount of alkali present on the surface of the first fired product.

なお、本発明において、粒子表面に存在しているアルカリとは、測定対象試料を25℃の水に分散し撹拌したときに、水に溶出されるアルカリ成分を指す。このような成分としては、炭酸リチウム(LiCO)、水酸化リチウム(LiOH)等が挙げられる。そして、粒子表面に存在しているアルカリ量は、測定対象資料5g及び超純水100gをビーカーに計り採り、25℃でマグネティックスターラーで5分間分散及び撹拌させ、次いで、この分散液をろ過して、得られるろ液中に存在するアルカリの量を中和滴定することによって求められる。なお、アルカリ量は、滴定によりリチウム量を測定して炭酸リチウム(LiCO)に換算した値である。 In the present invention, the alkali present on the particle surface refers to an alkali component eluted in water when the sample to be measured is dispersed in 25 ° C. water and stirred. Examples of such components include lithium carbonate (Li 2 CO 3 ) and lithium hydroxide (LiOH). The amount of alkali present on the particle surface is measured by measuring 5 g of measurement target material and 100 g of ultrapure water in a beaker, and dispersing and stirring for 5 minutes at 25 ° C. with a magnetic stirrer, and then filtering this dispersion. The amount of alkali present in the obtained filtrate is determined by neutralization titration. The alkali amount is a value obtained by measuring the amount of lithium by titration and converting it to lithium carbonate (Li 2 CO 3 ).

第一工程又は第二工程において原料を混合する方法としては、乳鉢による混合の他、リボンミキサー、ヘンシェルミキサー、ナウターミキサー等を用いる混合方法が挙げられる。   As a method of mixing the raw materials in the first step or the second step, a mixing method using a ribbon mixer, a Henschel mixer, a Nauter mixer or the like in addition to mixing with a mortar can be mentioned.

第一工程又は第二工程においては、必要に応じて焼成を複数回行ってもよく、また、焼成した後、必要に応じて、焼成物を粉砕又は分級してもよい。   In the first step or the second step, firing may be performed a plurality of times as necessary, and after firing, the fired product may be pulverized or classified as necessary.

本発明のリチウム二次電池用正極活物質としては、本発明のリチウム二次電池用正極活物質の製造方法を行い得られるリチウム二次電池用正極活物質が挙げられる。   Examples of the positive electrode active material for a lithium secondary battery of the present invention include a positive electrode active material for a lithium secondary battery obtained by performing the method for producing a positive electrode active material for a lithium secondary battery of the present invention.

一般に、放電容量を高くすることを目的として、リチウムコバルト複合酸化物粒子中のCo及びMに対してLiのモル比を大きくすると、リチウムコバルト複合酸化物粒子の表面に存在するアルカリ量が多くなってしまい、それが、リチウム二次電池の安定性に悪影響を与える。それに対して、本発明のリチウム二次電池用正極活物質の製造方法では、Co及びMに対してLiのモル比が大きく且つ粒子表面に存在するアルカリ量が多いリチウムコバルト複合酸化物粒子に対して、第二工程で、硫酸塩又はリン酸塩を用いて、粒子表面に存在しているアルカリを中和し、そして、被覆化合物で被覆するので、表面に存在するアルカリによる悪影響が抑えることができる。更に、本発明のリチウム二次電池用正極活物質の製造方法では、Co及びMに対してLiのモル比が大きいリチウムコバルト複合酸化物粒子の粒子表面を、第二工程で、全部又は一部が硫酸化合物又はリン酸化合物である被覆化合物で被覆するので、放電容量を高く維持したまま、平均作動電圧を高くすることができる。また、第一工程後に粒子表面に存在している残留アルカリ量が多いので、硫黄化合物又はリン化合物といった被覆化合物の被覆量を多くすることができる。   In general, when the molar ratio of Li to Co and M in the lithium cobalt composite oxide particles is increased for the purpose of increasing the discharge capacity, the amount of alkali present on the surface of the lithium cobalt composite oxide particles increases. This adversely affects the stability of the lithium secondary battery. On the other hand, in the method for producing a positive electrode active material for a lithium secondary battery of the present invention, the lithium cobalt composite oxide particles having a large molar ratio of Li to Co and M and a large amount of alkali present on the particle surface. Then, in the second step, sulfate or phosphate is used to neutralize the alkali present on the particle surface and coat with the coating compound, so that adverse effects due to the alkali present on the surface can be suppressed. it can. Furthermore, in the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, the surface of the lithium cobalt composite oxide particles having a large molar ratio of Li to Co and M is all or part of the particle surface in the second step. Is coated with a coating compound which is a sulfuric acid compound or a phosphoric acid compound, so that the average operating voltage can be increased while maintaining a high discharge capacity. Moreover, since there is much residual alkali amount which exists on the particle | grain surface after a 1st process, the coating amount of coating compounds, such as a sulfur compound or a phosphorus compound, can be increased.

本発明のリチウム二次電池は、本発明のリチウム二次電池用正極活物質が、正極活物質として用いられていることを特徴とするリチウム二次電池である。   The lithium secondary battery of the present invention is a lithium secondary battery characterized in that the positive electrode active material for a lithium secondary battery of the present invention is used as a positive electrode active material.

本発明のリチウム二次電池は、正極、負極、セパレーター、及びリチウム塩を含有する非水電解質からなる。   The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.

本発明のリチウム二次電池に係る正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものである。正極合剤は、正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明のリチウム二次電池は、正極に、本発明のリチウム二次電池用正極活物質が均一に塗布されている。このため本発明のリチウム二次電池は、電池性能が高く、特に高容量で安全性が高い。   The positive electrode according to the lithium secondary battery of the present invention is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector. The positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler that is added as necessary. In the lithium secondary battery of the present invention, the positive electrode active material for a lithium secondary battery of the present invention is uniformly applied to the positive electrode. For this reason, the lithium secondary battery of the present invention has high battery performance, particularly high capacity and high safety.

本発明のリチウム二次電池に係る正極合剤に含有される正極活物質の含有量は、70〜100質量%、好ましくは90〜98質量%が望ましい。   The content of the positive electrode active material contained in the positive electrode mixture according to the lithium secondary battery of the present invention is 70 to 100% by mass, preferably 90 to 98% by mass.

本発明のリチウム二次電池に係る正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The positive electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium , Carbon, nickel, titanium, and silver surface treated with baked carbon, aluminum or stainless steel. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

本発明のリチウム二次電池に係る導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50質量%、好ましくは2〜30質量%である。   The conductive agent according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constituted battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black, conductive fibers such as carbon fiber and metal fiber, Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives. Examples of graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The compounding ratio of the conductive agent is 1 to 50% by mass, preferably 2 to 30% by mass in the positive electrode mixture.

本発明のリチウム二次電池に係る結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはその(Na)イオン架橋体、エチレン−メタクリル酸共重合体またはその(Na)イオン架橋体、エチレン−アクリル酸メチル共重合体またはその(Na)イオン架橋体、エチレン−メタクリル酸メチル共重合体またはその(Na)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1〜50質量%、好ましくは5〜15質量%である。 Examples of the binder according to the lithium secondary battery of the present invention include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene. , Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-par Fluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene Copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na + ) ion crosslinked product, ethylene-methacrylic acid An acid copolymer or its (Na + ) ion crosslinked product, an ethylene-methyl acrylate copolymer or its (Na + ) ion crosslinked product, an ethylene-methyl methacrylate copolymer or its (Na + ) ion crosslinked product, Polyethylene Examples thereof include polysaccharides such as hydroxides, thermoplastic resins, and polymers having rubber elasticity, and these can be used alone or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by mass, preferably 5 to 15% by mass in the positive electrode mixture.

本発明のリチウム二次電池に係るフィラーは、正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30質量%が好ましい。   The filler relating to the lithium secondary battery of the present invention suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 mass% is preferable in a positive mix.

本発明のリチウム二次電池に係る負極は、負極集電体上に負極材料を塗布乾燥等して形成される。本発明のリチウム二次電池に係る負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの及びアルミニウム−カドミウム合金等が挙げられる。また、これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The negative electrode according to the lithium secondary battery of the present invention is formed by applying and drying a negative electrode material on a negative electrode current collector. The negative electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constructed battery. For example, stainless steel, nickel, copper, titanium , Aluminum, baked carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be used with surface roughness by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

本発明のリチウム二次電池に係る負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料、LiTi12等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Sn(M1−p(M(式中、MはMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、MはAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LiFe(0≦t≦1)、LiWO(0≦t≦1)等の化合物が挙げられる。金属酸化物としては、GeO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Sb、Sb、Sb、Bi、Bi、Bi等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material according to the lithium secondary battery of the present invention is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon alloys, tin alloys, metal oxides. Materials, conductive polymers, chalcogen compounds, Li—Co—Ni based materials, Li 4 Ti 5 O 12 and the like. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn p (M 1 ) 1-p (M 2 ) q O r (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and a halogen element in the periodic table, and 0 <p ≦ 1, 1 ≦ q ≦ 3 1 ≦ r ≦ 8), Li t Fe 2 O 3 (0 ≦ t ≦ 1), Li t WO 2 (0 ≦ t ≦ 1), and the like. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

本発明のリチウム二次電池に係るセパレーターとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μmである。セパレーターの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μmである。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようなものであってもよい。   As the separator according to the lithium secondary battery of the present invention, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, and is, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. When a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.

本発明のリチウム二次電池に係るリチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。本発明のリチウム二次電池に係る非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。   The nonaqueous electrolyte containing a lithium salt according to the lithium secondary battery of the present invention is composed of a nonaqueous electrolyte and a lithium salt. As the non-aqueous electrolyte according to the lithium secondary battery of the present invention, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent obtained by mixing one or more aprotic organic solvents such as ethyl propionate.

本発明のリチウム二次電池に係る有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。   Examples of the organic solid electrolyte according to the lithium secondary battery of the present invention include polyethylene derivatives, polyethylene oxide derivatives or polymers containing the same, polypropylene oxide derivatives or polymers containing the same, phosphate ester polymers, polyphosphazenes, polyaziridines, and polyethylenes. Examples thereof include a polymer containing an ionic dissociation group such as sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the non-aqueous electrolyte.

本発明のリチウム二次電池に係る無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩、硫化物等を用いることができ、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、P、LiS又はLiS−P、LiS−SiS、LiS−GeS、LiS−Ga、LiS−B、LiS−P−X、LiS−SiS−X、LiS−GeS−X、LiS−Ga−X、LiS−B−X、(式中、XはLiI、B、又はAlから選ばれる少なくとも1種以上)等が挙げられる。 As the inorganic solid electrolyte according to the lithium secondary battery of the present invention, Li nitride, halide, oxyacid salt, sulfide, and the like can be used, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N—LiI—LiOH, LiSiO 4 , LiSiO 4 —LiI—LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 —LiI—LiOH, P 2 S 5 , Li 2 S or Li 2 S—P 2 S 5, Li 2 S- SiS 2, Li 2 S-GeS 2, Li 2 S-Ga 2 S 3, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -X, Li 2 S -SiS 2 -X, Li 2 S- GeS 2 -X, Li 2 S-Ga 2 S 3 -X, Li 2 S-B 2 S 3 -X, ( wherein, X is LiI, B 2 S 3, or less selected from Al 2 S 3 Both 1 or more), and the like.

更に、無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(LiPO)、酸化リチウム(LiO)、硫酸リチウム(LiSO)、酸化リン(P)、硼酸リチウム(LiBO)等の酸素を含む化合物、LiPO4−u2u/3(uは0<u<4)、LiSiO4−u2u/3(uは0<u<4)、LiGeO4−u2u/3(uは0<u<4)、LiBO3−u2u/3(uは0<u<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンが移動する妨げを軽減し、更にイオン伝導性を向上させることができる。 Further, when the inorganic solid electrolyte is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5) ), Compounds containing oxygen such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-u N 2u / 3 (u is 0 <u <4), Li 4 SiO 4-u N 2u / 3 (u is Nitrogen such as 0 <u <4), Li 4 GeO 4 -u N 2u / 3 (u is 0 <u <4), Li 3 BO 3-u N 2u / 3 (u is 0 <u <3) The compound to be contained can be contained in the inorganic solid electrolyte. By adding the compound containing oxygen or the compound containing nitrogen, the gap between the formed amorphous skeletons can be widened, the hindrance to movement of lithium ions can be reduced, and ion conductivity can be further improved.

本発明のリチウム二次電池に係るリチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、CHSOLi、CFSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt according to the lithium secondary battery of the present invention, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 are used. SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic Examples thereof include a salt obtained by mixing one or more of lithium carboxylate, lithium tetraphenylborate, imides and the like.

また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。   Moreover, the compound shown below can be added to a nonaqueous electrolyte for the purpose of improving discharge, a charge characteristic, and a flame retardance. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compounds with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, and carbonates. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.

本発明のリチウム二次電池は、体積当たりの容量が高く、安全性、サイクル特性及び作動電圧にも優れたリチウム二次電池であり、電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。   The lithium secondary battery of the present invention is a lithium secondary battery having a high capacity per volume and excellent in safety, cycle characteristics and operating voltage. The shape of the battery is a button, a sheet, a cylinder, a corner, a coin type, etc. Any shape may be sufficient.

本発明のリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器、電動工具等の民生用電子機器が挙げられる。   The use of the lithium secondary battery of the present invention is not particularly limited. Examples include electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, game machines, and electric tools.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、例中の特性は以下の方法により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples. In addition, the characteristic in an example was measured with the following method.

<粒子表面のアルカリ量>
試料5g、純水100gをビーカーに計り採り、25℃でマグネティックスターラーを用いて5分間分散させた。次いで、この分散液をろ過し、そのろ液30mlを自動滴定装置(型式COMTITE−2500)にて0.1N−HClで中和滴定し、リチウム量を測定した。測定で得られた値を炭酸リチウムに換算したものを粒子表面のアルカリ量とした。
<Alkali amount on particle surface>
A sample (5 g) and pure water (100 g) were weighed in a beaker and dispersed at 25 ° C. for 5 minutes using a magnetic stirrer. Next, this dispersion was filtered, and 30 ml of the filtrate was neutralized with 0.1 N HCl with an automatic titrator (model COMMITITE-2500), and the amount of lithium was measured. The value obtained by the measurement was converted to lithium carbonate as the alkali amount on the particle surface.

<Co原子の含有量の測定>
試料0.2gをビーカーに計り採り、過塩素酸約5mlを加えてホットプレートにて加熱して、試料を溶解したのち、100mlメスフラスコに移し変えて超純水にて定溶した液体を、測定液とする。その測定液のCo濃度をキレート滴定法にて測定することより、試料中のCo原子の含有量を測定した。
<Li、M、S、P及びXの各原子の含有量の測定>
試料0.2gをビーカーに計り採り、過塩素酸約5mlを加えてホットプレートにて加熱して、試料を溶解したのち、100mlメスフラスコに移し変えて超純水にて定溶した液体を、測定液とする。その測定液の各原子濃度をICP発光分析装置(パーキンエルマージャパン社製、Optina4300DV)にて測定することより、試料中の各原子の量を求めた。
<Measurement of Co atom content>
Weigh 0.2 g of sample into a beaker, add about 5 ml of perchloric acid and heat on a hot plate to dissolve the sample, then transfer to a 100 ml volumetric flask and dissolve the liquid that has been dissolved in ultrapure water. Use as the measurement solution. The content of Co atom in the sample was measured by measuring the Co concentration of the measurement liquid by chelate titration method.
<Measurement of content of each atom of Li, M, S, P and X>
Weigh 0.2 g of sample into a beaker, add about 5 ml of perchloric acid and heat on a hot plate to dissolve the sample, then transfer to a 100 ml volumetric flask and dissolve the liquid that has been dissolved in ultrapure water. Use as the measurement solution. The amount of each atom in the sample was determined by measuring the concentration of each atom in the measurement solution using an ICP emission analyzer (manufactured by PerkinElmer Japan, Optina 4300 DV).

<粒子表面の硫黄化合物、リン化合物、X元素の塩、M原子の確認>
X線光電子分光装置(クレイトス社製、AXIS−NOVA形)により、得られたスペクトルのピークから、S原子、P原子、X原子又はM原子の存在を確認することにより行った。
<Confirmation of particle surface sulfur compound, phosphorus compound, X element salt, M atom>
This was performed by confirming the presence of S atom, P atom, X atom or M atom from the peak of the obtained spectrum with an X-ray photoelectron spectrometer (manufactured by Kratos, AXIS-NOVA type).

(実施例1〜14)
(1)第一工程
表1に示したCo原子とLi原子のモル比となるように四酸化三コバルト(平均粒径25.0μm)、炭酸リチウム(平均粒径7.0μm)を秤量し、更にM元素化合物、X元素化合物を、表1に示す割合となるように乾式で家庭用ミキサーを用いて60秒間十分に混合し第一焼成原料混合物を得た。次いで得られた第一焼成原料混合物をアルミナ製の鉢で表1に示す温度と時間で大気中で焼成した。得られた第一焼成物のアルカリ量を表1に示す。
(2)第二工程
第一工程で得られた第一焼成物を粉砕した後、粉砕物に、硫酸塩、リン酸塩、M元素化合物又はX元素化合物、及び純水を表2で示す割合となるように添加し、乳鉢を用いて十分に混合し第二焼成原料混合物を得た。次いで得られた第二焼成原料混合物をアルミナ製の鉢で表2に示す温度と時間で大気中で焼成した。焼成終了後、焼成物を粉砕、分級して、粒子表面が被覆化合物で被覆されたリチウムコバルト複合酸化物粒子を得、これを正極活物質試料とした。
なお、得られたリチウムコバルト複合酸化物粒子をX線光電子分光装置により測定したところ、実施例1〜6及び12ではS原子が、実施例7〜11ではP原子が検出された。
(Examples 1-14)
(1) First Step Weigh tricobalt tetroxide (average particle size 25.0 μm) and lithium carbonate (average particle size 7.0 μm) so as to have the molar ratio of Co atom and Li atom shown in Table 1. Furthermore, the M element compound and the X element compound were sufficiently mixed for 60 seconds using a household mixer in a dry manner so that the ratios shown in Table 1 were obtained, to obtain a first fired raw material mixture. Next, the obtained first firing raw material mixture was fired in the air at the temperature and time shown in Table 1 in an alumina pot. Table 1 shows the alkali amount of the obtained first fired product.
(2) Second step After pulverizing the first fired product obtained in the first step, the ratio of sulfate, phosphate, M element compound or X element compound, and pure water shown in Table 2 to the pulverized product And mixed well using a mortar to obtain a second baking raw material mixture. Next, the obtained second firing raw material mixture was fired in the air at the temperature and time shown in Table 2 in an alumina pot. After the firing, the fired product was pulverized and classified to obtain lithium cobalt composite oxide particles whose particle surfaces were coated with a coating compound, which was used as a positive electrode active material sample.
When the obtained lithium cobalt composite oxide particles were measured with an X-ray photoelectron spectrometer, S atoms were detected in Examples 1 to 6 and 12, and P atoms were detected in Examples 7 to 11.

(比較例1及び比較例2)
表3に示したCo原子とLi原子のモル比となるように四酸化三コバルト(平均粒径25.0μm)、炭酸リチウム(平均粒径7.0μm)を秤量し、更にM元素化合物を、表3に示す割合となるように乾式で家庭用ミキサーを用いて60秒間十分に混合し焼成原料混合物を得た。次いで得られた焼成原料混合物をアルミナ製の鉢で表3に示す温度と時間で大気中で焼成した。得られた焼成物のアルカリ量を表3に示す。
次いで、得られた焼成物を粉砕、分級してリチウムコバルト複合酸化物粒子を得、これを正極活物質試料とした。つまり、実施例における第二工程を行なわなかった。
(Comparative Example 1 and Comparative Example 2)
Tricobalt tetroxide (average particle size 25.0 μm) and lithium carbonate (average particle size 7.0 μm) were weighed so that the molar ratio of Co atoms and Li atoms shown in Table 3 was obtained, The mixture was thoroughly mixed for 60 seconds using a household mixer in a dry manner so as to obtain the ratio shown in Table 3 to obtain a calcined raw material mixture. Next, the obtained firing raw material mixture was fired in the air at a temperature and time shown in Table 3 in an alumina pot. Table 3 shows the alkali amount of the obtained fired product.
Subsequently, the obtained fired product was pulverized and classified to obtain lithium cobalt composite oxide particles, which were used as a positive electrode active material sample. That is, the second step in the example was not performed.

(比較例3)
(1)第一焼成
表3に示したCo原子とLi原子のモル比となるように四酸化三コバルト(平均粒径25.0μm)、炭酸リチウム(平均粒径7.0μm)を秤量し、更にM元素を含む添加剤を、表3に示す割合となるように乾式で家庭用ミキサーを用いて60秒間十分に混合し第一焼成原料混合物を得た。次いで得られた第一焼成原料混合物をアルミナ製の鉢で表1に示す温度と時間で大気中で焼成した。得られた焼成物のアルカリ量を表3に示す。
(2)第二焼成
第一工程で得られた第一焼成物を粉砕した後、粉砕物に、硫酸マグネシウム7水和物及び純水を表4で示す割合となるように添加し、乳鉢を用いて十分に混合し第二焼成原料混合物を得た。次いで得られた第二焼成原料混合物をアルミナ製の鉢で表4に示す温度と時間で大気中で焼成した。焼成終了後、焼成物を粉砕、分級して粒子表面が被覆化合物で被覆されたリチウムコバルト複合酸化物粒子を得、これを正極活物質試料とした。
(Comparative Example 3)
(1) First calcination Weigh tricobalt tetroxide (average particle size 25.0 μm) and lithium carbonate (average particle size 7.0 μm) so as to have a molar ratio of Co atoms and Li atoms shown in Table 3. Furthermore, the additive containing M element was mixed thoroughly for 60 seconds using a household mixer in a dry manner so that the ratio shown in Table 3 was obtained to obtain a first fired raw material mixture. Next, the obtained first firing raw material mixture was fired in the air at the temperature and time shown in Table 1 in an alumina pot. Table 3 shows the alkali amount of the obtained fired product.
(2) Second calcination After pulverizing the first baked product obtained in the first step, magnesium sulfate heptahydrate and pure water were added to the pulverized product in the proportions shown in Table 4, and a mortar was added. Using and mixing well, a second calcined raw material mixture was obtained. Next, the obtained second firing raw material mixture was fired in the air at a temperature and time shown in Table 4 in an alumina pot. After the completion of firing, the fired product was pulverized and classified to obtain lithium cobalt composite oxide particles whose particle surfaces were coated with a coating compound, which was used as a positive electrode active material sample.

(比較例4及び比較例5)
(1)第一焼成
表3に示したCo原子とLi原子のモル比となるように四酸化三コバルト(平均粒径25.0μm)、炭酸リチウム(平均粒径7.0μm)を秤量し、更にM元素化合物を、表3に示す割合となるように乾式で家庭用ミキサーを用いて60秒間十分に混合し第一焼成原料混合物を得た。次いで得られた第一焼成原料混合物をアルミナ製の鉢で表3に示す温度と時間で大気中で焼成した。得られた焼成物のアルカリ量を表3に示す。
(2)第二焼成
第一工程で得られた焼成物を粉砕した後、粉砕物に、硫酸マグネシウム7水和物を表4で示す割合となるように添加し、乾式の状態で乳鉢を用いて十分に混合し混合物を得た。次いで得られた混合物をアルミナ製の鉢で表4に示す温度と時間で大気中で焼成した。焼成終了後、焼成物を粉砕、分級してリチウムコバルト系複合酸化物を得、これを正極活物質試料とした。
(Comparative Example 4 and Comparative Example 5)
(1) First calcination Weigh tricobalt tetroxide (average particle size 25.0 μm) and lithium carbonate (average particle size 7.0 μm) so as to have a molar ratio of Co atoms and Li atoms shown in Table 3. Further, the M element compound was sufficiently mixed for 60 seconds using a household mixer in a dry manner so that the ratio shown in Table 3 was obtained to obtain a first firing raw material mixture. Next, the obtained first firing raw material mixture was fired in the atmosphere at a temperature and time shown in Table 3 in an alumina pot. Table 3 shows the alkali amount of the obtained fired product.
(2) Second firing After the fired product obtained in the first step is pulverized, magnesium sulfate heptahydrate is added to the pulverized product so as to have the ratio shown in Table 4, and a mortar is used in a dry state. And mixed well to obtain a mixture. Subsequently, the obtained mixture was baked in the atmosphere at the temperature and time shown in Table 4 in an alumina pot. After the firing, the fired product was pulverized and classified to obtain a lithium cobalt composite oxide, which was used as a positive electrode active material sample.

<正極活物質試料の特性評価>
実施例及び比較例で得られた正極活物質試料について、平均粒径、BET比表面積、タップ密度及び粒子表面のアルカリ量を求めた。また、その結果を表5に示す。
<Characteristic evaluation of positive electrode active material sample>
About the positive electrode active material sample obtained by the Example and the comparative example, the average particle diameter, the BET specific surface area, the tap density, and the alkali amount of the particle | grain surface were calculated | required. The results are shown in Table 5.

<平均粒径>
平均粒径をレーザー回折・散乱法により測定した。
<タップ密度>
JIS−K−5101に記載された見掛密度又は見掛比容の方法に基づいて、50mlのメスシリンダーにサンプル50〜70gを入れ、ユアサアイオニクス社製、DUAL AUTOTAP装置にセットし、タッピング回数500回、タッピング高さ3.2mmでタップし、容量を読み取り見掛密度を算出し、タップ密度とした。
<粒子表面のアルカリ量の評価>
正極活物質試料5g、純水100gをビーカーに計り採り、25℃でマグネティックスターラーを用いて5分間分散させる。次いでこの分散液をろ過し、そのろ液30mlを自動滴定装置(型式COMTITE−2500)にて0.1N−HClで中和滴定し、リチウム量を測定した。測定で得られた値を炭酸リチウムに換算したものを粒子表面のアルカリ量とした。
<Average particle size>
The average particle size was measured by a laser diffraction / scattering method.
<Tap density>
Based on the method of apparent density or apparent specific volume described in JIS-K-5101, put 50 to 70 g of sample into a 50 ml graduated cylinder, set it in the dual automatic tap device manufactured by Yuasa Ionics, and tapping frequency The tap was tapped 500 times at a tapping height of 3.2 mm, the capacity was read, and the apparent density was calculated to obtain the tap density.
<Evaluation of the amount of alkali on the particle surface>
5 g of the positive electrode active material sample and 100 g of pure water are weighed in a beaker and dispersed at 25 ° C. for 5 minutes using a magnetic stirrer. Next, this dispersion was filtered, and 30 ml of the filtrate was neutralized with 0.1 N HCl using an automatic titrator (model COMMITE-2500), and the amount of lithium was measured. The value obtained by the measurement was converted to lithium carbonate as the alkali amount on the particle surface.

以下のようにして、電池性能試験を行った。
<リチウム二次電池の作製>
実施例1〜13及び比較例1〜5で得られた正極活物質96質量%、黒鉛粉末2質量%、ポリフッ化ビニリデン2質量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してコイン型リチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。
次いで、得られたリチウム二次電池の性能評価を行った。その結果を、表6に示す。
The battery performance test was conducted as follows.
<Production of lithium secondary battery>
A positive electrode agent was prepared by mixing 96% by mass of the positive electrode active material obtained in Examples 1 to 13 and Comparative Examples 1 to 5, 2% by mass of graphite powder, and 2% by mass of polyvinylidene fluoride. A kneaded paste was prepared by dispersing in pyrrolidinone. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.
Subsequently, performance evaluation of the obtained lithium secondary battery was performed. The results are shown in Table 6.

<電池の性能評価>
作製したコイン型リチウム二次電池を室温で下記試験条件で作動させ、下記の電池性能を評価した。
(評価A;サイクル特性評価)
先ず、0.5Cにて4.45Vまで2時間かけて充電を行い、更に4.45Vで3時間電圧を保持させる定電流・定電圧充電(CCCV充電)を行った。その後、0.2Cにて3.0Vまで定電流放電(CC放電)させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返した。下記(1)〜(4)の測定結果を表6に示す。
(1)初期放電容量(重量当たり)
サイクル特性評価における1サイクル目の放電容量を初期放電容量とした。
(2)初期放電容量(体積当たり)
正極板作製時に計測された電極密度と初期放電容量(重量当たり)の積により算出した。
(3)容量維持率
サイクル特性評価における1サイクル目と20サイクル目のそれぞれの放電容量(重量当たり)から、下記式により容量維持率を算出した。
容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
(4)平均作動電圧
サイクル特性評価における20サイクル目の作動電圧を平均作動電圧とした。
<Battery performance evaluation>
The produced coin-type lithium secondary battery was operated at room temperature under the following test conditions, and the following battery performance was evaluated.
(Evaluation A; cycle characteristic evaluation)
First, charging was performed at 0.5 C to 4.45 V over 2 hours, and then constant current / constant voltage charging (CCCV charging) was performed at 4.45 V for 3 hours. Thereafter, charge and discharge were performed at a constant current discharge (CC discharge) to 3.0 V at 0.2 C, and these operations were regarded as one cycle, and the discharge capacity was measured every cycle. This cycle was repeated 20 cycles. Table 6 shows the measurement results of the following (1) to (4).
(1) Initial discharge capacity (per weight)
The discharge capacity at the first cycle in the cycle characteristic evaluation was defined as the initial discharge capacity.
(2) Initial discharge capacity (per volume)
Calculation was performed by the product of the electrode density measured at the time of producing the positive electrode plate and the initial discharge capacity (per weight).
(3) Capacity maintenance rate From each discharge capacity (per weight) of the 1st cycle and 20th cycle in cycle characteristic evaluation, the capacity maintenance rate was computed by the following formula.
Capacity maintenance ratio (%) = (discharge capacity at 20th cycle / discharge capacity at 1st cycle) × 100
(4) Average operating voltage The operating voltage of the 20th cycle in cycle characteristic evaluation was made into the average operating voltage.

(評価B;高温下での満充電耐性評価)
正極材料の高温耐性に係わる評価であり、充電状態で高温に曝されたときの正極材料の挙動をみたものである。
評価方法は作成したコイン型リチウムイオン二次電池を用いてエージング操作を行い、その後に60℃の恒温槽中に移す。恒温槽中で電流値0.1C、電圧4.55Vの定電流・定電圧充電条件で充電を行う。所定の電圧まで充電されたところで流れる電流値は0.02C以下となるが、その状態のまま充電をし続けることで一定の時間が経過すると再び電流値が上昇し、最終的には電流値は0.1Cの値まで戻る。充電開始後150時間、200時間、300時間が経過した時点での電流値を、高温下での満充電状態における正極材料の耐性の数値とする。この数値が低いほど耐性が高いことを表す。
(Evaluation B; full charge resistance evaluation under high temperature)
This is an evaluation related to the high temperature resistance of the positive electrode material, and shows the behavior of the positive electrode material when exposed to a high temperature in a charged state.
In the evaluation method, an aging operation is performed using the produced coin-type lithium ion secondary battery, and then, it is transferred to a thermostatic bath at 60 ° C. Charging is performed in a constant temperature bath under constant current / constant voltage charging conditions with a current value of 0.1 C and a voltage of 4.55 V. The current value that flows when it is charged to a predetermined voltage is 0.02C or less, but the current value rises again after a certain period of time by continuing to charge in that state, and finally the current value is Return to the value of 0.1C. The current value at the time when 150 hours, 200 hours, and 300 hours have elapsed after the start of charging is taken as the numerical value of the resistance of the positive electrode material in a fully charged state at high temperature. The lower this value, the higher the resistance.

(評価C;安全性の評価)
(1)DSC発熱量
実施例及び比較例で調製した正極活物質を用いたリチウム二次電池を、正極に対して定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.45Vまで充電した後、アルゴン雰囲気下でリチウム二次電池を分解し、リチウムを引き抜きデインターカレーションした正極活物質を含有する正極板を取り出した。次いで、この取り出した各正極板から正極活物質を5.0mg削り取り、エチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートの容量比25:60:15混練液1リットルに、LiPF1モルを溶解した液5.0μmlと一緒に示差走査熱量測定(DSC)用密閉式セル(SUSセル)に封入し、昇温速度2℃/minにて示差走査熱量測定装置(メトラートレド社製、形式DSC1)にて示差熱量変化を測定した。また180℃〜220℃の範囲における発熱量の総和S(J/g)を求めた。 この発熱量の総和S(J/g)の値が小さい方が、熱安定性、即ち電池安全性が優れていることを示す。図1に示差熱量変化の結果を示す。この図1の縦軸の熱量は、測定した正極活物質の重さで割った値である。
(2)ガス発生量
前記<リチウム二次電池の作製>と同様の方法で、実施例及び比較例で調製した正極活物質により正極板を得た。負極板は、人造黒鉛の1種であるメソカーボンマイクロビーズ(MCMB)を負極活物質として用い、MCMB95質量%、ポリフッ化ビニリデン5%を混合して、これをN−2−ピロリジノンに分散させて混練ペーストを調製し、該混練ペーストを銅箔に塗布したのち乾燥、プレスすることにより得た。
この正極板、負極板を用いて、セパレーター、集電板、取り付け金具、外部端子、電解液等の各部材を使用して200mAhのラミネート型リチウム二次電池を作製した。このうち、電解液にはエチレンカーボネート:ジメチルカーボネート:ジエチルカーボネートが25:60:15の混練液1リットルにLiPF1モルを溶解したものを使用した。
作製したラミネート型リチウム二次電池を、室温で正極に対して定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.4Vまで充電した後、開回路状態で90℃の恒温槽にて4時間保持した。その後、室温まで自然冷却し、0.2Cの定電流モードで2.7Vまで放電した後、リチウム二次電池を水中に入れたときの重量増加を測定し、膨れ量とした。次いで、以下の式により正極活物質のガス発生量とした。ガス発生量が少ない方が安全性に優れていることを示す。
ガス発生量(ml/g)=膨れ量(ml)/正極活物質の重量(g)
(Evaluation C: Safety evaluation)
(1) DSC calorific value The lithium secondary battery using the positive electrode active material prepared in Examples and Comparative Examples was 4.45 V over 5 hours at 0.5 C by constant current voltage (CCCV) charging with respect to the positive electrode. Then, the lithium secondary battery was disassembled in an argon atmosphere, and a positive electrode plate containing a positive electrode active material that was extracted and deintercalated with lithium was taken out. Next, 5.0 mg of the positive electrode active material was scraped from each of the taken-out positive electrode plates, and 1 mol of LiPF 6 was dissolved in 1 liter of a volume ratio of ethylene carbonate, dimethyl carbonate and diethyl carbonate of 25:60:15. Sealed together with 0 μml in a closed cell for differential scanning calorimetry (DSC) (SUS cell) and differential calorific value with a differential scanning calorimeter (model DSC1 manufactured by METTLER TOLEDO) at a heating rate of 2 ° C./min. Changes were measured. Further, the total calorific value S (J / g) in the range of 180 ° C. to 220 ° C. was obtained. A smaller value of the total amount of heat generation S (J / g) indicates better thermal stability, that is, battery safety. FIG. 1 shows the result of the differential calorific value change. The amount of heat on the vertical axis in FIG. 1 is a value divided by the weight of the measured positive electrode active material.
(2) Gas generation amount A positive electrode plate was obtained from the positive electrode active materials prepared in Examples and Comparative Examples in the same manner as in <Preparation of Lithium Secondary Battery>. The negative electrode plate uses mesocarbon microbeads (MCMB), which is a kind of artificial graphite, as a negative electrode active material, and is mixed with 95% by mass of MCMB and 5% of polyvinylidene fluoride and dispersed in N-2-pyrrolidinone. A kneaded paste was prepared, and the kneaded paste was applied to a copper foil, dried and pressed.
Using this positive electrode plate and negative electrode plate, a laminate type lithium secondary battery of 200 mAh was produced using each member such as a separator, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, the electrolyte solution used was a solution of 1 mol of LiPF 6 in 1 liter of a kneaded solution of 25:60:15 of ethylene carbonate: dimethyl carbonate: diethyl carbonate.
The laminated lithium secondary battery thus prepared was charged to 4.4 V over 5 hours at 0.5 C by constant current voltage (CCCV) charging with respect to the positive electrode at room temperature, and then a 90 ° C. thermostat in an open circuit state. For 4 hours. Then, after naturally cooling to room temperature and discharging to 2.7 V in a constant current mode of 0.2 C, the increase in weight when the lithium secondary battery was put in water was measured and taken as the amount of swelling. Next, the gas generation amount of the positive electrode active material was determined by the following formula. The smaller the amount of gas generated, the better the safety.
Gas generation amount (ml / g) = swelling amount (ml) / weight of positive electrode active material (g)

評価Aのサイクル特性評価、評価Bの高温下での満充電耐性評価及び評価Cの安全性の評価の何れも、概ね、実施例の方が比較例よりも優れた値を示しており、総合的に本発明のリチウム二次電池の特性が優れていることがわかる。   The cycle characteristics evaluation of evaluation A, the full charge resistance evaluation under high temperature of evaluation B, and the safety evaluation of evaluation C are generally superior to those of the comparative example. In particular, it can be seen that the characteristics of the lithium secondary battery of the present invention are excellent.

なお、表中、M元素化合物、X元素化合物、硫酸塩及びリン酸塩の混合量は、Co原子に対するM原子、X原子、S原子又はP原子のモル%である。   In the table, the mixing amount of the M element compound, the X element compound, the sulfate and the phosphate is a mol% of M atom, X atom, S atom or P atom with respect to Co atom.

本発明のリチウム二次電池正極活物質は、充填密度が高く、リチウム二次電池の安全性、サイクル特性、更には体積当たりの容量及び平均作動電圧を向上させることができる。
また、本発明の製造方法によれば、該リチウム二次電池用正極活物質を工業的に有利な方法で提供することができる。
The positive electrode active material of the lithium secondary battery of the present invention has a high packing density, and can improve the safety and cycle characteristics of the lithium secondary battery, as well as the capacity per volume and the average operating voltage.
Moreover, according to the manufacturing method of this invention, this positive electrode active material for lithium secondary batteries can be provided by an industrially advantageous method.

Claims (17)

Coに対するLiの原子換算のモル比(Li/Co)が、1.03〜1.20であるリチウムコバルト複合酸化物粒子であって、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であり、
表面に存在しているアルカリ量が500〜5000ppmであるリチウムコバルト複合酸化物粒子のアルカリが、該硫黄化合物又は該リン化合物の一部で中和されたものであり、
該粒子表面に存在する残留アルカリ分が500ppm以下であること、
を特徴とするリチウム二次電池用正極活物質。
Lithium cobalt composite oxide particles having an atomic conversion molar ratio of Li to Co (Li / Co) of 1.03 to 1.20, wherein the particle surface is coated with a coating compound. all or part of sulfur compound or phosphorus compound der is,
The alkali of the lithium cobalt composite oxide particles having an alkali amount of 500 to 5000 ppm present on the surface is neutralized with a part of the sulfur compound or the phosphorus compound,
The residual alkali content present on the particle surface is 500 ppm or less;
A positive electrode active material for a lithium secondary battery.
前記リチウムコバルト複合酸化物粒子が、M原子(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)のうちの1種又は2種以上を含有することを特徴とする請求項1記載のリチウム二次電池用正極活物質。   The lithium cobalt composite oxide particles are M atoms (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba). 2, W, Na, K, Co, Ni, or Mn.), The positive electrode active material for a lithium secondary battery according to claim 1. 前記リチウムコバルト複合酸化物粒子が、F原子を含有することを特徴とする請求項1又は2いずれか1項記載のリチウム二次電池用正極活物質。 The lithium cobalt composite oxide particles, the positive active material of claim 1 or 2 any one of claims, characterized in that it contains a F atom. 粒子表面が、硫黄化合物及びリン化合物のうちの1種又は2種以上と、X元素の塩(Xは、Fである。)と、により被覆されていることを特徴とする請求項1〜3いずれか1項記載のリチウム二次電池用正極活物質。 The particle surface, and one or more of the sulfur compounds and phosphorus compounds, salts of element X (X is F.) According to claim 1, characterized in that a, it is covered by The positive electrode active material for lithium secondary batteries of any one of Claims. 粒子表面が、硫黄化合物及びリン化合物のうちの1種又は2種以上と、M原子化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)と、により被覆されていることを特徴とする請求項1〜3いずれか1項記載のリチウム二次電池用正極活物質。   The particle surface is one or more of sulfur compounds and phosphorus compounds and M atom compounds (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb) And Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn.). Positive electrode active material for lithium secondary battery. 粒子表面が、硫黄化合物及びリン化合物のうちの1種又は2種以上と、X元素の塩(Xは、Fである。)と、M原子化合物(Mは、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnである。)と、により被覆されていることを特徴とする請求項1〜3いずれか1項記載のリチウム二次電池用正極活物質。 The particle surface has one or more of sulfur compounds and phosphorus compounds, a salt of X element (X is F ), and an M atom compound (M is Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn.). The positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3. レーザー回折・散乱法により測定される平均粒径が5〜30μmであり、且つ、タップ密度が2.5g/ml以上であることを特徴とする請求項1〜6いずれか1項記載のリチウム二次電池用正極活物質。 The lithium secondary battery according to any one of claims 1 to 6, wherein an average particle diameter measured by a laser diffraction / scattering method is 5 to 30 µm, and a tap density is 2.5 g / ml or more. Positive electrode active material for secondary battery. リチウム化合物と、コバルト化合物と、を混合して、リチウム化合物と、コバルト化合物と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(A)を得るか、又はリチウム化合物と、コバルト化合物と、M 元素化合物(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、M は単独又は2種以上含有していてもよい。)のうちの1種又は2種以上と、を混合して、リチウム化合物と、コバルト化合物と、M 元素化合物(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、M は単独又は2種以上含有していてもよい。)のうちの1種又は2種以上と、を含有し、該リチウム化合物及び該コバルト化合物の混合割合が、Co原子に対するLi原子の原子換算のモル比(Li/Co)で、1.06〜1.20となる混合割合である第一焼成原料混合物(B)を得、次いで、該第一焼成原料混合物(A)又は該第一焼成原料混合物(B)を、800〜1100℃で焼成して、第一焼成物を得る第一工程と、
該第一焼成物に、硫酸塩又はリン酸塩と、該第一焼成物、該硫酸塩及び該リン酸塩の合計量に対して0.1〜15質量%の水と、を混合し、第二焼成原料混合物を得、次いで、該第二焼成原料混合物を、200〜1100℃で焼成して、粒子表面が被覆化合物で被覆されており、該被覆化合物の全部又は一部が硫黄化合物又はリン化合物であるリチウムコバルト複合酸化物粒子を得る第二工程と、
を有することを特徴とするリチウム二次電池用正極活物質の製造方法。
A lithium compound and a cobalt compound are mixed to contain a lithium compound and a cobalt compound, and a mixing ratio of the lithium compound and the cobalt compound is a molar ratio of Li atom to Co atom (Li / in Co), and either obtain a first fired material mixture is a mixture ratio to form from 1.06 to 1.20 (a), or a lithium compound, a cobalt compound, M 1 element compound (M 1 are, Mg, Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, M 1 alone or two or more may be contained.) were mixed with one or more, the out of, a lithium compound, a cobalt compound, M 1 element compound (M 1 are, Mg, Al Ti, Zr, Cu, F , Sr, Ca, V, is Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni or Mn, M 1 is contained singly or two or more Or a mixture ratio of the lithium compound and the cobalt compound is a molar ratio of Li atom to Co atom (Li / Co), The first baking raw material mixture (B) having a mixing ratio of 1.06 to 1.20 is obtained, and then the first baking raw material mixture (A) or the first baking raw material mixture (B) is 800 to 1100. A first step of firing at 0 ° C. to obtain a first fired product,
In the first fired product, sulfate or phosphate and 0.1 to 15% by mass of water with respect to the total amount of the first fired product, sulfate and phosphate are mixed, A second calcined raw material mixture is obtained, and then the second calcined raw material mixture is calcined at 200 to 1100 ° C., the particle surface is coated with a coating compound, and all or part of the coating compound is a sulfur compound or A second step of obtaining lithium cobalt composite oxide particles which are phosphorus compounds;
The manufacturing method of the positive electrode active material for lithium secondary batteries characterized by having.
前記第二工程において混合される前記硫酸塩が、(NHSO、NHHSO、(NHH(SO、(NH)H(SO、又は下記一般式(1):
(HSO (1)
(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、aは0又は1である。)
で表される硫酸塩のうちの1種又は2種以上であることを特徴とする請求項8記載のリチウム二次電池用正極活物質の製造方法。
The sulfate mixed in the second step is (NH 4 ) 2 SO 4 , NH 4 HSO 4 , (NH 4 ) 3 H (SO 4 ) 2 , (NH 4 ) H 3 (SO 4 ) 2 , Or the following general formula (1):
M 2 x (H a SO 4 ) y (1)
(M 2 are, Mg, Al, Ti, Zr , Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni Or Mn, x and y are integers, and a is 0 or 1.)
The manufacturing method of the positive electrode active material for lithium secondary batteries of Claim 8 characterized by being 1 type (s) or 2 or more types of the sulfate represented by these.
前記第二工程において混合される前記リン酸塩が、(NHHPO、NHPO、又は下記一般式(3):
(HPO (3)
(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、x及びyは整数であり、bは0、1又は2である。)
で表されるリン酸塩のうちの1種又は2種以上であることを特徴とする請求項8又は9いずれか1項記載のリチウム二次電池用正極活物質の製造方法。
The phosphate mixed in the second step is (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 , or the following general formula (3):
M 3 x (H b PO 4 ) y (3)
(M 3 are, Mg, Al, Ti, Zr , Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni Or Mn, x and y are integers, and b is 0, 1 or 2.)
The manufacturing method of the positive electrode active material for lithium secondary batteries of any one of Claim 8 or 9 characterized by being 1 type, or 2 or more types in the phosphate represented by these.
前記第一工程において、リチウム化合物及びコバルト化合物と共に、又はリチウム化合物、コバルト化合物及びM 元素化合物と共に、X 元素化合物(X は、Fである。)を混合することを特徴とする請求項8〜10いずれか1項記載のリチウム二次電池用正極活物質の製造方法。 The X 1 element compound (X 1 is F ) is mixed with the lithium compound, the cobalt compound, or the lithium compound, the cobalt compound, and the M 1 element compound in the first step. The manufacturing method of the positive electrode active material for lithium secondary batteries of any one of 8-10. 前記第二工程において、前記第一焼成物に、前記硫酸塩又は前記リン酸塩と水と共に、M 元素化合物(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、M は単独又は2種以上含有していてもよい。)のうちの1種又は2種以上を混合すること、及び水の混合量が、前記第一焼成物、前記硫酸塩、前記リン酸塩及び該M 元素化合物の合計量に対して0.1〜15質量%であることを特徴とする請求項8〜11いずれか1項記載のリチウム二次電池用正極活物質の製造方法。 Wherein in a second step, the first calcined material, the with sulfate or the phosphoric acid salt and water, M 4 element compound (M 4 are, Mg, Al, Ti, Zr , Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn, and M 4 may be contained singly or in combination. mixing one or more of, and amount of mixing water, the first calcined material, the sulfates, the total amount of said phosphate and said M 4 element compound 0.1 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 8 to 11, wherein the content is -15 mass%. 前記第二工程において、前記第一焼成物に、前記硫酸塩又は前記リン酸塩と水と共に、X 元素化合物(X は、Fである。)を混合すること、及び水の混合量が、前記第一焼成物、前記硫酸塩、前記リン酸塩及び該X 元素化合物の合計量に対して0.1〜15質量%であることを特徴とする請求項8〜11いずれか1項記載のリチウム二次電池用正極活物質の製造方法。 In the second step, an X 2 element compound (X 2 is F ) is mixed with the first fired product together with the sulfate or the phosphate and water, and the amount of water mixed is It said first calcined product, the sulfate, the phosphate, and claims 8-11 any one, which is a 0.1 to 15 wt% based on the total weight of the X 2 element compound The manufacturing method of the positive electrode active material for lithium secondary batteries of description. 前記第二工程において、前記第一焼成物に、前記硫酸塩又は前記リン酸塩と水と共に、M 元素化合物(M は、Mg、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Co、Ni又はMnであり、M は単独又は2種以上含有していてもよい。)のうちの1種又は2種以上と、X 元素化合物(X は、Fである。)と、を混合すること、及び水の混合量が、前記第一焼成物、前記硫酸塩、前記リン酸塩、該M 元素化合物及び該X 元素化合物の合計量に対して0.1〜15質量%であることを特徴とする請求項8〜11いずれか1項記載のリチウム二次電池用正極活物質の製造方法。 Wherein in a second step, the first calcined material, together with the sulfuric acid salt or the phosphoric acid salt and water, M 5 element compound (M 5 is, Mg, Al, Ti, Zr , Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Co, Ni, or Mn, and M 5 may be contained singly or in combination. and one or more of, X 3 element compound (X 3 is F.) be mixed with the, and the mixing amount of water, the first calcined material, the sulfate, the phosphate, said M 5 element compound and the X 3 according to claim 8 to 11 lithium secondary battery according to any one of the total amount of element compounds characterized in that it is a 0.1 to 15 wt% For producing a positive electrode active material for use. 前記第一焼成物の表面に存在しているアルカリ量が、500〜5000ppmであることを特徴とする請求項8〜14いずれか1項記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 8 to 14, wherein the amount of alkali present on the surface of the first fired product is 500 to 5000 ppm. 前記第二工程において、前記第二工程で焼成後の粒子表面が被覆化合物で被覆されているリチウムコバルト複合酸化物粒子の表面に存在しているアルカリ量が、前記第一焼成物の表面に存在しているアルカリ量の60質量%以下となるように、前記第一焼成物に、前記硫酸塩又は前記リン酸塩を混合することを特徴とする請求項8〜15いずれか1項記載のリチウム二次電池用正極活物質の製造方法。   In the second step, the amount of alkali present on the surface of the lithium cobalt composite oxide particle whose surface after firing in the second step is coated with a coating compound is present on the surface of the first fired product. The lithium according to any one of claims 8 to 15, wherein the sulfate or the phosphate is mixed with the first fired product so that the amount of alkali is 60% by mass or less. A method for producing a positive electrode active material for a secondary battery. 請求項1〜7いずれか1項記載のリチウム二次電池用正極活物質が、正極活物質として用いられていることを特徴とするリチウム二次電池。 Claim 1 positive active material for a lithium secondary battery 7 have Zureka 1 wherein the lithium secondary battery, characterized by being used as a positive electrode active material.
JP2013239682A 2013-11-20 2013-11-20 Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery Active JP6194235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013239682A JP6194235B2 (en) 2013-11-20 2013-11-20 Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239682A JP6194235B2 (en) 2013-11-20 2013-11-20 Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2015099722A JP2015099722A (en) 2015-05-28
JP6194235B2 true JP6194235B2 (en) 2017-09-06

Family

ID=53376210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239682A Active JP6194235B2 (en) 2013-11-20 2013-11-20 Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6194235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930935B2 (en) 2017-11-30 2021-02-23 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059978B1 (en) * 2015-11-30 2019-12-30 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
DE202017007594U1 (en) 2016-07-05 2023-09-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material and secondary battery
KR20180023732A (en) * 2016-08-26 2018-03-07 삼성에스디아이 주식회사 Composite positive electrode active material for lithium ion battery, preparing method thereof, and lithium ion battery including positive electrode comprising the same
CN109792049B (en) 2016-10-12 2023-03-14 株式会社半导体能源研究所 Positive electrode active material particle and method for producing positive electrode active material particle
CN112201778A (en) 2017-05-12 2021-01-08 株式会社半导体能源研究所 Positive electrode active material particles
CN115117444B (en) 2017-05-19 2023-12-01 株式会社半导体能源研究所 Lithium ion secondary battery
CN112201844A (en) * 2017-06-26 2021-01-08 株式会社半导体能源研究所 Method for producing positive electrode active material and secondary battery
US20220173394A1 (en) * 2019-04-05 2022-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming positive electrode active material
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device
CN113972352B (en) * 2020-07-07 2023-04-07 巴斯夫杉杉电池材料有限公司 Positive electrode active material of lithium ion battery and preparation method thereof
CN112614997B (en) * 2020-12-18 2022-07-01 中国民航大学 Preparation method of carbon fluoride anode material based on hydrogen bond organic framework material
CN115117316A (en) * 2022-07-08 2022-09-27 广东邦普循环科技有限公司 Phosphorus-containing substance coated positive electrode material and preparation method and application thereof
CN115425210A (en) * 2022-09-27 2022-12-02 广东邦普循环科技有限公司 Binary high-nickel sodium-ion battery positive electrode material, preparation method and application

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995382B2 (en) * 2001-07-05 2012-08-08 日本化学工業株式会社 Lithium cobalt complex oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
US8945770B2 (en) * 2008-11-10 2015-02-03 Lg Chem, Ltd. Cathode active material exhibiting improved property in high voltage
CN102574698A (en) * 2009-06-05 2012-07-11 尤米科尔公司 Nanoparticle doped precursors for stable lithium cathode material
JP5589536B2 (en) * 2009-09-09 2014-09-17 ソニー株式会社 Positive electrode active material, positive electrode, nonaqueous electrolyte battery, and method for producing positive electrode active material
JP2011138718A (en) * 2009-12-29 2011-07-14 Sony Corp Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
KR101630821B1 (en) * 2011-06-17 2016-06-16 우미코르 Lithium metal oxide partcles coated with a mixture of the elements of the core material and one or more metal oxides
JP5897356B2 (en) * 2012-03-01 2016-03-30 日本化学工業株式会社 Method for producing positive electrode active material for lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930935B2 (en) 2017-11-30 2021-02-23 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP2015099722A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP6194235B2 (en) Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, and lithium secondary battery
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4245888B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5490458B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP5341325B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5732351B2 (en) Method for producing lithium cobalt oxide
JP2012113823A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
JP3959333B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5897357B2 (en) Lithium secondary battery positive electrode active material manufacturing method, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4995382B2 (en) Lithium cobalt complex oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4754209B2 (en) Method for producing lithium cobalt composite oxide powder
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5134292B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4319663B2 (en) Lithium manganate, lithium secondary battery positive electrode secondary active material, lithium secondary battery positive electrode active material, and lithium secondary battery
WO2020080210A1 (en) Positive-electrode active material for lithium secondary battery, manufacturing method for same, and lithium secondary battery
WO2023210525A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP2009167100A (en) Lithium manganate, method for manufacturing the same, positive electrode sub-active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250