JP5490458B2 - Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Download PDF

Info

Publication number
JP5490458B2
JP5490458B2 JP2009164542A JP2009164542A JP5490458B2 JP 5490458 B2 JP5490458 B2 JP 5490458B2 JP 2009164542 A JP2009164542 A JP 2009164542A JP 2009164542 A JP2009164542 A JP 2009164542A JP 5490458 B2 JP5490458 B2 JP 5490458B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
atom
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009164542A
Other languages
Japanese (ja)
Other versions
JP2011023121A (en
Inventor
稔 福知
龍也 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2009164542A priority Critical patent/JP5490458B2/en
Priority to CN2010800407253A priority patent/CN102498597A/en
Priority to PCT/JP2010/061755 priority patent/WO2011007751A1/en
Priority to KR1020127000888A priority patent/KR20120049227A/en
Publication of JP2011023121A publication Critical patent/JP2011023121A/en
Application granted granted Critical
Publication of JP5490458B2 publication Critical patent/JP5490458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウム二次電池用正極活物質、その製造方法及び特にサイクル特性に優れたリチウム二次電池に関するものである。   The present invention relates to a positive electrode active material for a lithium secondary battery, a production method thereof, and particularly a lithium secondary battery excellent in cycle characteristics.

従来、リチウム二次電池の正極活物質として、コバルト酸リチウムが用いられてきた。しかし、コバルトは希少金属であるため、コバルトの含有率が低いリチウムニッケルコバルトマンガン系複合酸化物(例えば、特許文献1〜3参照)が開発されている。   Conventionally, lithium cobaltate has been used as a positive electrode active material for lithium secondary batteries. However, since cobalt is a rare metal, lithium nickel cobalt manganese composite oxide (for example, refer to Patent Documents 1 to 3) having a low cobalt content has been developed.

このリチウムニッケルコバルトマンガン系複合酸化物を正極活物質とするリチウム二次電池は、複合酸化物中に含まれるニッケル、マンガン、コバルトの原子比を調製することで、低コスト化が可能で、安全性の要求に対しても優れたものになることが知られているが、更に、サイクル特性に優れたものが要望されている。   This lithium nickel cobalt manganese complex oxide as a positive electrode active material can be manufactured at low cost by adjusting the atomic ratio of nickel, manganese and cobalt contained in the complex oxide. Although it is known that it will also be excellent with respect to the requirement of the property, the thing excellent in cycling characteristics is also requested | required.

また、下記特許文献4には、主にLi1.04Ni0.86Co0.15等の複合酸化物と、該複合酸化物の表面に粒子として、または層状に載置されるLiAlO等のAl含有化合物からなり、特定の諸物性を有するNaFeO型結晶構造を有する正極活物質を用いることが提案されている。しかし、特許文献4によれば、LiAlOは単なるAl含有化合物の例示に過ぎず、また、本発明にかかる正極活物質に関する具体的な記載はない。 Further, Patent Document 4 below mainly describes a composite oxide such as Li 1.04 Ni 0.86 Co 0.15 O 2 and LiAlO placed as a particle or a layer on the surface of the composite oxide. It has been proposed to use a positive electrode active material composed of an Al-containing compound such as 2 and having a NaFeO 2 type crystal structure having specific physical properties. However, according to Patent Document 4, LiAlO 2 is merely an example of an Al-containing compound, and there is no specific description regarding the positive electrode active material according to the present invention.

特開平04−106875号公報Japanese Patent Laid-Open No. 04-106875 国際公開第2004/092073号パンフレットInternational Publication No. 2004/092073 Pamphlet 特開2005−25975号公報JP 2005-25975 A 特開2007−103141号公報JP 2007-103141 A

本発明者らは、上記実情を鑑み鋭意研究を重ねた結果、特定の組成を有するリチウムニッケルコバルトマンガン系複合酸化物と、α-LiAlOを含有し、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合し、得られる混合物を焼成して生成されたものを正極活物質を用いたリチウム二次電池は、特にサイクル特性が優れたものになることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the above circumstances, the inventors of the present invention contain lithium nickel cobalt manganese-based composite oxide having a specific composition, α-LiAlO 2 , (a) a lithium compound, and (b) nickel. A compound containing an atom, a cobalt atom and a manganese atom and (c) aluminum phosphate mixed at 0.95 or more in terms of atomic ratio of lithium atom to nickel atom, cobalt atom, manganese atom and aluminum atom (Li / {Ni + Co + Mn + Al}) The lithium secondary battery using the positive electrode active material produced by firing the resulting mixture was found to have particularly excellent cycle characteristics, and the present invention was completed.

即ち、本発明の目的は、リチウム二次電池に、特に優れたサイクル特性を付与することができるリチウムニッケルコバルトマンガン系複合酸化物を用いたリチウム二次電池用正極活物質、該正極活物質を工業的に有利な方法で製造する方法及び該正極活物質を用いた、特にサイクル特性に優れたリチウム二次電池を提供することにある。   That is, an object of the present invention is to provide a positive electrode active material for a lithium secondary battery using a lithium nickel cobalt manganese based composite oxide capable of imparting particularly excellent cycle characteristics to the lithium secondary battery, and the positive electrode active material. An object of the present invention is to provide a lithium secondary battery using a method that is industrially advantageous and a particularly excellent cycle characteristic using the positive electrode active material.

本発明が提供しようとする第1の発明は、Al原子を含有する正極活物質であって、下記一般式(1)
LiNi1−y−zCoMn(1)
(式中、xは0.98≦x≦1.20、yは0<y≦0.5、zは0<z≦0.5を示し、但し、y+z<1を示す。)で表されるリチウム複合酸化物と、α−LiAlOを含有し、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合し、得られる混合物を焼成して生成されたものであることを特徴とするリチウム二次電池用正極活物質である。
A first invention to be provided by the present invention is a positive electrode active material containing an Al atom, the following general formula (1)
Li x Ni 1-yz Co y Mn z O 2 (1)
(Wherein x represents 0.98 ≦ x ≦ 1.20, y represents 0 <y ≦ 0.5, and z represents 0 <z ≦ 0.5, where y + z <1). A lithium composite oxide, α-LiAlO 2 , (a) a lithium compound, (b) a compound containing a nickel atom, a cobalt atom and a manganese atom, and (c) an aluminum phosphate, a nickel atom, a cobalt atom, For lithium secondary battery characterized by being produced by mixing at a ratio of lithium atom to manganese atom and aluminum atom (Li / {Ni + Co + Mn + Al}) of 0.95 or more and firing the resulting mixture It is a positive electrode active material.

また、本発明が提供しようとする第2の発明は、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を原子比でニッケル原子1モルに対してコバルト原子0.1〜1.0、マンガン原子0.1〜1.0含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合する第1工程、次いで、得られる混合物を焼成して下記一般式(1)
LiNi1−y−zCoMn(1)
(式中、xは0.98≦x≦1.20、yは0<y≦0.5、zは0<z≦0.5を示し、但し、y+z<1を示す。)で表されるリチウム複合酸化物と、α−LiAlOを含有する正極活物質を得る第2工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法である。
The second invention to be provided by the present invention is as follows: (a) lithium compound, (b) nickel atom, cobalt atom and manganese atom in atomic ratio of 0.1 to 1 cobalt atom per 1 mol of nickel atom. 0.0, a compound containing 0.1 to 1.0 manganese atoms and (c) aluminum phosphate in an atomic ratio (Li / {Ni + Co + Mn + Al}) of lithium atoms to nickel atoms, cobalt atoms, manganese atoms and aluminum atoms. The first step of mixing at 95 or higher, then firing the resulting mixture to give the following general formula (1)
Li x Ni 1-yz Co y Mn z O 2 (1)
(Wherein x represents 0.98 ≦ x ≦ 1.20, y represents 0 <y ≦ 0.5, and z represents 0 <z ≦ 0.5, where y + z <1). A method for producing a positive electrode active material for a lithium secondary battery, comprising a second step of obtaining a positive electrode active material containing lithium composite oxide and α-LiAlO 2 .

また、本発明が提供しよとする第3の発明は、前記第1の発明のリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池である。   A third invention to be provided by the present invention is a lithium secondary battery using the positive electrode active material for a lithium secondary battery according to the first invention.

本発明のリチウム二次電池用正極活物質によれば、リチウムニッケルコバルトマンガン系複合酸化物からなる正極活物質を用いて、特に優れたサイクル特性を有するリチウム二次電池を提供することができる。
また、該リチウム二次電池用正極活物質の製造方法によれば、該正極活物質を工業的に有利な方法で製造することができる。
According to the positive electrode active material for a lithium secondary battery of the present invention, a lithium secondary battery having particularly excellent cycle characteristics can be provided using a positive electrode active material made of a lithium nickel cobalt manganese based composite oxide.
Moreover, according to the manufacturing method of this positive electrode active material for lithium secondary batteries, this positive electrode active material can be manufactured by an industrially advantageous method.

参考実験1で得られた正極活物質試料のX線回折図。2 is an X-ray diffraction pattern of a positive electrode active material sample obtained in Reference Experiment 1. FIG. 参考実験1で得られた正極活物質試料のSEM写真。4 is an SEM photograph of a positive electrode active material sample obtained in Reference Experiment 1. 参考実験2で得られた正極活物質試料のX線回折図。4 is an X-ray diffraction pattern of a positive electrode active material sample obtained in Reference Experiment 2. FIG. 参考実験2で得られた正極活物質試料のSEM写真。4 is an SEM photograph of a positive electrode active material sample obtained in Reference Experiment 2. 実施例1で得られた正極活物質試料のSEM写真。3 is an SEM photograph of the positive electrode active material sample obtained in Example 1. FIG.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係るリチウム二次電池用正極活物質(以下、特に断らない限りは単に「正極活物質」と呼ぶ。)は、Al原子を含有する正極活物質であって、下記一般式(1)
LiNi1−y−zCoMn(1)
(式中、xは0.98≦x≦1.20、yは0<y≦0.5、zは0<z≦0.5を示し、但し、y+z<1を示す。)で表されるリチウム複合酸化物(以下、単に「リチウム複合酸化物」と呼ぶこともある。)と、α−LiAlOを含有し、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合し、得られる混合物を焼成して生成されたものであることを特徴とするものであり、かかる構成を有する正極活物質は、該正極活物質を用いたリチウム二次電池に、特に優れたサイクル特性を付与することができる。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
A positive electrode active material for a lithium secondary battery according to the present invention (hereinafter simply referred to as “positive electrode active material” unless otherwise specified) is a positive electrode active material containing Al atoms, and has the following general formula (1):
Li x Ni 1-yz Co y Mn z O 2 (1)
(Wherein x represents 0.98 ≦ x ≦ 1.20, y represents 0 <y ≦ 0.5, and z represents 0 <z ≦ 0.5, where y + z <1). Lithium composite oxide (hereinafter sometimes simply referred to as “lithium composite oxide”) and α-LiAlO 2 , and (a) a lithium compound, (b) a nickel atom, a cobalt atom, and a manganese atom. And a compound containing (c) aluminum phosphate at a ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms and aluminum atoms (Li / {Ni + Co + Mn + Al}) of 0.95 or more, and firing the resulting mixture. and characterized in that the one that was generated Te, the cathode active material having such a configuration, the lithium secondary battery using the positive electrode active material, to impart particularly excellent cycle characteristics That.

前記一般式(1)で表されるリチウム複合酸化物の式中のxは0.98以上1.20以下であり、好ましくは式中のxが1.00以上1.10以下の範囲であるとリチウム二次電池の初期放電容量が高くなる傾向があることから好ましい。式中のyは0より大きく、0.5以下であり、好ましくは式中のyが0より大きく、0.4以下の範囲であるとリチウム二次電池の安全性の点から好ましい。式中のzは0より大きく、0.5以下であり、好ましくは式中のzが0より大きく、0.4以下の範囲であるとリチウム二次電池の初期放電容量が高くなる傾向があることから好ましい。
前記一般式(1)で表されるリチウム複合酸化物において、特に好ましくは式中のxが1.00以上1.05以下、yが0.1以上0.3以下、zが0.1以上0.3以下である。
X in the formula of the lithium composite oxide represented by the general formula (1) is 0.98 or more and 1.20 or less, preferably x is in the range of 1.00 or more and 1.10 or less. Since the initial discharge capacity of the lithium secondary battery tends to be high, it is preferable. Y in the formula is greater than 0 and 0.5 or less, and preferably y in the formula is greater than 0 and in a range of 0.4 or less from the viewpoint of safety of the lithium secondary battery. Z in the formula is greater than 0 and 0.5 or less, and preferably in the range where z in the formula is greater than 0 and 0.4 or less, the initial discharge capacity of the lithium secondary battery tends to increase. Therefore, it is preferable.
In the lithium composite oxide represented by the general formula (1), particularly preferably, x in the formula is 1.00 or more and 1.05 or less, y is 0.1 or more and 0.3 or less, and z is 0.1 or more. 0.3 or less.

また、前記一般式(1)で表されるリチウム複合酸化物は、一次粒子が集合して二次粒子を形成した凝集状リチウム複合酸化物であると、塗料中での分散性が良好である点で好ましい。
該凝集状リチウム複合酸化物は、走査型電子顕微鏡観察から求められる一次粒子の平均粒径が0.2〜4μm、好ましくは0.5〜2μmであると、該正極活物質を用いたリチウム二次電池のサイクル特性が良好となる点で好ましい。更に、レーザー法粒度分布測定法から求められる二次粒子の平均粒径が4〜25μm、好ましくは5〜20μmであると、塗布性及び塗膜特性がよく、更に該正極活物質を用いたリチウム二次電池のサイクル特性も良好となる点で好ましい。
In addition, the lithium composite oxide represented by the general formula (1) has good dispersibility in the paint when the aggregated lithium composite oxide is formed by aggregating primary particles to form secondary particles. This is preferable.
When the aggregated lithium composite oxide has an average primary particle size of 0.2 to 4 μm, preferably 0.5 to 2 μm, determined by observation with a scanning electron microscope, It is preferable in that the cycle characteristics of the secondary battery are good. Furthermore, when the average particle size of the secondary particles obtained from the laser particle size distribution measurement method is 4 to 25 μm, preferably 5 to 20 μm, the coatability and the coating film characteristics are good, and lithium using the positive electrode active material This is preferable in that the cycle characteristics of the secondary battery are also good.

一方の成分のα−LiAlOの物性は、特に制限はないが、一般式(1)で表されるリチウム複合酸化物より微細なものが、リチウム複合酸化物と均一分散可能である点で好ましい。なお、前記一般式(1)で表されるリチウム複合酸化物より微細とは、一般式(1)で表わされるリチウム複合酸化物の二次粒子より平均粒径が小さいことを言う。 The physical properties of α-LiAlO 2 as one component are not particularly limited, but those finer than the lithium composite oxide represented by the general formula (1) are preferable in that they can be uniformly dispersed with the lithium composite oxide. . Note that “finer than the lithium composite oxide represented by the general formula (1)” means that the average particle diameter is smaller than the secondary particles of the lithium composite oxide represented by the general formula (1).

本発明の正極活物質は、Al原子を含有し、そのAl原子の存在形態が少なくともα−LiAlOの状態で存在するものである。即ち、本発明の正極活物質は、該正極活物質に含有されるAl原子が全てα−LiAlOとして存在していてもよく、α−LiAlO以外にAl原子が一部リチウム複合酸化物に固溶されていてもよい。 The positive electrode active material of the present invention contains Al atoms, and the Al atoms are present in a state of at least α-LiAlO 2 . That is, the positive electrode active material of the present invention may be present as all Al atoms alpha-LiAlO 2 contained in the positive electrode active material, Al atom in addition to alpha-LiAlO 2 is a partially lithium composite oxide It may be dissolved.

また、本発明の正極活物質において、Al原子の含有量は、Al原子として0.025〜0.90重量%、好ましくは0.05〜0.70重量%とすることが好ましい。この理由はAl原子の含有量がAl原子として0.025重量%未満では、該正極活物質を用いたリチウム二次電池において、十分なサイクル特性が得られなくなる傾向があり、一方、Al原子の含有量がAl原子として0.9重量%を超えると、該正極活物質を用いたリチウム二次電池において、十分な初期放電容量が得られなくなる傾向があるためである。   In the positive electrode active material of the present invention, the content of Al atoms is preferably 0.025 to 0.90% by weight, more preferably 0.05 to 0.70% by weight as Al atoms. This is because if the content of Al atoms is less than 0.025 wt% as Al atoms, there is a tendency that sufficient cycle characteristics cannot be obtained in a lithium secondary battery using the positive electrode active material. This is because when the content exceeds 0.9% by weight as Al atoms, in a lithium secondary battery using the positive electrode active material, a sufficient initial discharge capacity tends to be not obtained.

Al原子を含有するリチウムニッケルコバルトマンガン系複合酸化物の製造方法において、通常、アルミニウム源として水酸化アルミニウム等を用いると優先的にアルミニウム原子はリチウムニッケルコバルトマンガン系複合酸化物中に固溶されて存在するようになるが、これに対して、本発明者は前記アルミニウム源として、燐酸アルミニウムを用い、また、原料混合物中のニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子を特定以上に高めて反応を行うことに、前記一般式(1)で表されるリチウムニッケルコバルトマンガン系複合酸化物の他、α−LiAlOが生成されること、また、これを正極活物質を用いたリチウム二次電池は、特にサイクル特性の向上が認められることを見出した。
本発明の正極活物質は上記知見のもと、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上、好ましくは1.00〜1.10の範囲で混合し、得られる混合物を950℃以下、好ましくは870〜940℃で焼成して生成されたものであることが特に好ましい。
かかる製法で得られる正極活物質は、前記一般式(1)で表されるリチウム複合酸化物とα−LiAlOとの均一混合が得られ、また、該正極活物質を用いたリチウム二次電池は、特にサイクル特性が優れたものになる観点から好ましい。
In the production method of lithium nickel cobalt manganese based composite oxide containing Al atoms, when aluminum hydroxide is usually used as the aluminum source, aluminum atoms are preferentially dissolved in lithium nickel cobalt manganese based composite oxide. In contrast, the present inventor uses aluminum phosphate as the aluminum source, and more than a specific amount of lithium atoms relative to nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms in the raw material mixture. When the reaction is performed at a higher level, in addition to the lithium nickel cobalt manganese based composite oxide represented by the general formula (1), α-LiAlO 2 is generated, and this is converted into lithium using a positive electrode active material. It has been found that the secondary battery is particularly improved in cycle characteristics.
Based on the above knowledge, the positive electrode active material of the present invention comprises (a) a lithium compound, (b) a compound containing a nickel atom, a cobalt atom and a manganese atom, and (c) an aluminum phosphate. And an atomic ratio of lithium atoms to aluminum atoms (Li / {Ni + Co + Mn + Al}) of 0.95 or more, preferably 1.00 to 1.10, and the resulting mixture is 950 ° C. or lower, preferably 870 to 940 It is particularly preferable that the product is produced by firing at 0 ° C.
The positive electrode active material obtained by this manufacturing method can obtain a uniform mixture of the lithium composite oxide represented by the general formula (1) and α-LiAlO 2, and a lithium secondary battery using the positive electrode active material Is particularly preferable from the viewpoint of excellent cycle characteristics.

更に、本発明の正極活物質は、残存するLiOHが0.1重量%以下、好ましくは、0.05重量%以下、且つ残存するLiCOが0.5重量%以下、好ましくは0.3重量%以下であると、塗料のゲル化抑制、電池膨れ抑制の観点から特に好ましい。 Further, in the positive electrode active material of the present invention, the remaining LiOH is 0.1% by weight or less, preferably 0.05% by weight or less, and the remaining Li 2 CO 3 is 0.5% by weight or less, preferably 0.8%. The content of 3% by weight or less is particularly preferable from the viewpoints of suppressing gelation of the paint and suppressing battery swelling.

なお、本発明にかかる正極活物質は、更に、製法上、不可逆的に混入するLiPOが、本発明の効果を損なわない範囲で含有されていてもよい。 Incidentally, the positive electrode active material according to the present invention, further, on the production process, irreversibly LiPO 4 to be mixed may be contained within a range not to impair the effects of the present invention.

次いで、本発明のリチウム二次電池用正極活物質の製造方法について説明する。   Subsequently, the manufacturing method of the positive electrode active material for lithium secondary batteries of this invention is demonstrated.

本発明のリチウム二次電池用正極活物質は、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を原子比でニッケル原子1モルに対してコバルト原子0.1〜1.0、マンガン原子0.1〜1.0含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合する第1工程、次いで、得られる混合物を焼成して前記一般式(1)で表されるリチウム複合酸化物と、α−LiAlOを含有する正極活物質を得る第2工程を有することにより工業的に有利に製造することができる。
The positive electrode active material for a lithium secondary battery according to the present invention comprises (a) a lithium compound, (b) a nickel atom, a cobalt atom, and a manganese atom in an atomic ratio of 0.1 to 1.0 cobalt atom with respect to 1 mol of nickel atom. 0.95 or more in terms of atomic ratio of lithium atom to nickel atom, cobalt atom, manganese atom and aluminum atom (Li / {Ni + Co + Mn + Al}) in a first step of mixing, then to have a second step of obtaining a lithium composite oxide represented by the general formula by calcining the resulting mixture (1), a positive electrode active material containing alpha-LiAlO 2 Thus, it can be produced industrially advantageously.

第1工程に係る(a)リチウム化合物は、例えば、リチウムの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられ、この中、炭酸リチウムが安価で生産作業性に優れる観点から特に好ましく用いられる。また、このリチウム化合物はレーザー法粒度分布測定法から求められる平均粒径が1〜100μm、好ましくは5〜80μmであると反応性が良好であるため特に好ましい。   Examples of the lithium compound (a) lithium compound according to the first step include lithium oxide, hydroxide, carbonate, nitrate, and organic acid salt. Among these, lithium carbonate is inexpensive and has excellent productivity. Are particularly preferably used. Further, this lithium compound has an average particle size determined by a laser particle size distribution measuring method of 1 to 100 μm, and preferably 5 to 80 μm, since the reactivity is good.

第1工程に係る(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物は、例えば、これらの複合水酸化物、複合オキシ水酸化物、複合炭酸塩又は複合酸化物が好ましく用いられる。前記の複合水酸化物は、例えば共沈法によって調製することができる。具体的には、前記ニッケル原子、コバルト原子及びマンガン原子を含む水溶液と、錯化剤の水溶液と、アルカリの水溶液とを混合することで、複合水酸化物を共沈させることができる(特開平10−81521号公報、特開平10−81520号公報、特開平10−29820号公報、2002−201028号公報等参照。)。また、複合オキシ水酸化物を用いる場合には、前述の共沈操作に従い複合水酸化物の沈殿を得た後、反応液に空気を吹き込み酸化を行えばよい。また、複合酸化物を用いる場合には、共沈操作に従い複合水酸化物の沈殿を得た後、これを例えば200〜500℃で加熱処理することにより複合酸化物を得ることができる。また、複合炭酸塩を用いる場合には、前述の共沈操作と同様に前記ニッケル原子、コバルト原子及びマンガン原子を含む水溶液と、錯化剤の水溶液を調製し、前記アルカリ水溶液を炭酸アルカリ又は炭酸水素アルカリの水溶液としてこれを混合することで複合炭酸塩を得ることができる。
本発明において、ニッケル原子、コバルト原子及びマンガン原子を含む化合物は、これらの各原子を含む複合水酸化物であることが(a)リチウム化合物との反応性が高い観点から好ましい。
As the compound (b) containing a nickel atom, a cobalt atom and a manganese atom according to the first step, for example, a composite hydroxide, a composite oxyhydroxide, a composite carbonate or a composite oxide is preferably used. The composite hydroxide can be prepared, for example, by a coprecipitation method. Specifically, a composite hydroxide can be coprecipitated by mixing an aqueous solution containing the nickel atom, cobalt atom and manganese atom, an aqueous solution of a complexing agent, and an aqueous solution of an alkali (Japanese Patent Application Laid-Open No. Hei. No. 10-81521, JP-A-10-81520, JP-A-10-29820, 2002-201028, etc.). In the case of using the composite oxyhydroxide, after obtaining the precipitate of the composite hydroxide according to the above-described coprecipitation operation, air may be blown into the reaction solution for oxidation. Moreover, when using complex oxide, after obtaining precipitation of complex hydroxide according to coprecipitation operation, this can be heat-processed at 200-500 degreeC, for example, and complex oxide can be obtained. In the case of using a composite carbonate, an aqueous solution containing the nickel atom, cobalt atom and manganese atom and an aqueous solution of a complexing agent are prepared in the same manner as in the coprecipitation operation described above, and the alkaline aqueous solution is converted to an alkali carbonate or carbonate carbonate. A composite carbonate can be obtained by mixing this as an aqueous solution of hydrogen alkali.
In the present invention, the compound containing a nickel atom, a cobalt atom and a manganese atom is preferably a composite hydroxide containing each of these atoms from the viewpoint of (a) high reactivity with the lithium compound.

本発明において、この(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物は、一次粒子が集合して二次粒子を形成した凝集体を用いると、凝集体の形状を保持した凝集状リチウム複合酸化物が得られ、また、この凝集状リチウム複合酸化物とα−LiAlOを含有する正極活物質を用いることで、特にサイクル特性が向上したリチウム二次電池が得られる点で好ましい。この場合、凝集状のニッケル原子、コバルト原子及びマンガン原子を含む化合物は、走査型電子顕微鏡観察により求められる一次粒子の平均粒径が0.2〜4μm、好ましくは0.5〜2μmで、レーザー法粒度分布測定法により求められる二次粒子の平均粒径が4〜25μm、好ましくは5〜20μmであると、得られる正極活物質は、塗布性及び塗膜特性が良く、更に該正極活物質を用いたリチウム二次電池のサイクル特性も良好になる点で好ましい。 In the present invention, this (b) compound containing nickel atom, cobalt atom and manganese atom is an aggregated lithium composite which retains the shape of the aggregate when an aggregate in which primary particles are aggregated to form secondary particles is used. An oxide is obtained, and the use of a positive electrode active material containing this aggregated lithium composite oxide and α-LiAlO 2 is preferable in that a lithium secondary battery with improved cycle characteristics can be obtained. In this case, the compound containing aggregated nickel atom, cobalt atom and manganese atom has an average primary particle size of 0.2 to 4 μm, preferably 0.5 to 2 μm, which is obtained by observation with a scanning electron microscope. When the average particle size of the secondary particles obtained by the method particle size distribution measurement method is 4 to 25 μm, preferably 5 to 20 μm, the resulting positive electrode active material has good coating properties and coating film properties, and further the positive electrode active material It is preferable in that the cycle characteristics of a lithium secondary battery using the lithium ion battery are also good.

更に、前記ニッケル原子、コバルト原子及びマンガン原子を含む化合物の組成は、前述した一般式(1)で表されるリチウム複合酸化物の式中のニッケル原子、コバルト原子及びマンガン原子のモル比の範囲である。即ち、ニッケル原子1モルに対してコバルト原子0.1〜1.0、好ましくは0.2〜0.7、マンガン原子0.1〜1.0、好ましくは0.2〜0.7である。   Further, the composition of the compound containing nickel atom, cobalt atom and manganese atom is within the range of molar ratio of nickel atom, cobalt atom and manganese atom in the lithium composite oxide represented by the general formula (1). It is. That is, with respect to 1 mol of nickel atoms, cobalt atoms are 0.1 to 1.0, preferably 0.2 to 0.7, manganese atoms are 0.1 to 1.0, preferably 0.2 to 0.7. .

第1工程に係る(c)燐酸アルミニウムとしては、工業的に入手可能なものであれば、その物性等は特に制限されるものではないが、レーザー法粒度分布測定法から求められる平均粒径が1〜30μm、好ましくは5〜20μmであると(a)リチウム化合物との反応性が良好であるという観点から特に好ましい。   The (c) aluminum phosphate according to the first step is not particularly limited as long as it is industrially available, but the average particle size determined from the laser particle size distribution measurement method is not limited. A thickness of 1 to 30 μm, preferably 5 to 20 μm is particularly preferable from the viewpoint of good reactivity with the lithium compound (a).

なお、前記原料の(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムは、高純度の正極活物質を製造するために、可及的に不純物含有量が少ないものが好ましい。   The raw material (a) lithium compound, (b) compound containing nickel atom, cobalt atom and manganese atom and (c) aluminum phosphate are as impurities as possible in order to produce a high purity positive electrode active material. Those having a low content are preferred.

第1工程に係る反応操作は、まず、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムを所定量混合し、均一混合物を得る。   In the reaction operation according to the first step, first, (a) a lithium compound, (b) a compound containing nickel atom, cobalt atom and manganese atom and (c) aluminum phosphate are mixed in a predetermined amount to obtain a uniform mixture.

(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムの配合割合は、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/(Ni+Co+Mn+Al))で0.95以上、好ましくは1.00〜1.10であることが、サイクル特性に優れた正極活物質を得る上で、1つの重要な要件となる。この理由は、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比が0.95より小さくなると、該方法により得られる正極活物質を用いたリチウム二次電池において、サイクル特性が良好で、更には十分な初期放電容量を持ったものを得ることができないからである。   The compounding ratio of (a) lithium compound, (b) compound containing nickel atom, cobalt atom and manganese atom and (c) aluminum phosphate is the atomic ratio of lithium atom to nickel atom, cobalt atom, manganese atom and aluminum atom (Li / (Ni + Co + Mn + Al)) is 0.95 or more, preferably 1.00 to 1.10, which is one important requirement for obtaining a positive electrode active material having excellent cycle characteristics. This is because when the atomic ratio of lithium atoms to nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms is less than 0.95, the cycle characteristics are good in the lithium secondary battery using the positive electrode active material obtained by the method. Furthermore, it is because a product having a sufficient initial discharge capacity cannot be obtained.

また、(b)ニッケル原子、マンガン原子及びコバルト原子を含む化合物及び(c)燐酸アルミニウムの配合割合は、ニッケル原子、コバルト原子及びマンガン原子に対するアルミニウム原子の原子比(Al/{Ni+Co+Mn})で0.001〜0.03、好ましくは0.005〜0.02とすることが、該方法により得られる正極活物質を用いたリチウム二次電池において、初期放電容量とサイクル特性の両方が優れたものになる観点から特に好ましい。
一方、ニッケル原子、コバルト原子及びマンガン原子に対するアルミニウム原子の原子比(Al/{Ni+Co+Mn})が0.001未満では、該方法により得られる正極活物質を用いたリチウム二次電池のサイクル特性が低下する傾向があり、ニッケル原子、コバルト原子及びマンガン原子に対するアルミニウム原子の原子比が0.03より大きくなると、該方法により得られる正極活物質を用いたリチウム二次電池の初期放電容量が低下する傾向があり、好ましくない。
The compounding ratio of (b) a compound containing nickel atom, manganese atom and cobalt atom and (c) aluminum phosphate is 0 in terms of atomic ratio of aluminum atom to nickel atom, cobalt atom and manganese atom (Al / {Ni + Co + Mn}). 0.001 to 0.03, preferably 0.005 to 0.02, a lithium secondary battery using a positive electrode active material obtained by the method has both excellent initial discharge capacity and cycle characteristics It is particularly preferable from the viewpoint of.
On the other hand, if the atomic ratio of aluminum atom to nickel atom, cobalt atom and manganese atom (Al / {Ni + Co + Mn}) is less than 0.001, the cycle characteristics of the lithium secondary battery using the positive electrode active material obtained by the method are deteriorated. When the atomic ratio of aluminum atoms to nickel atoms, cobalt atoms, and manganese atoms is greater than 0.03, the initial discharge capacity of the lithium secondary battery using the positive electrode active material obtained by the method tends to decrease. Is not preferable.

混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダー等を用いることが好ましい。   The mixing may be either a dry method or a wet method, but a dry method is preferred because the production is easy. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.

第1工程で得られた原料が均一混合された混合物は、次いで第2工程に付して、前記一般式(1)で表されるリチウム複合酸化物とα−LiAlOとを含む正極活物質を得る。 The mixture obtained by uniformly mixing the raw materials obtained in the first step is then subjected to the second step, and the positive electrode active material containing the lithium composite oxide represented by the general formula (1) and α-LiAlO 2 Get.

本発明にかかる第2工程は、第1工程で得られた原料が均一混合された混合物を焼成しリチウム複合酸化物とα−LiAlOとを含む正極活物質を得る工程である。
第2工程における焼成温度は950℃以下、好ましくは870〜940℃である。この理由は、焼成温度が950℃より大きくなると、該方法により得られる正極活物質を用いたリチウム二次電池の初期放電容量及びサイクル特性が低下する傾向があるためである。
The second step according to the present invention is a step of obtaining a positive electrode active material containing a lithium composite oxide and α-LiAlO 2 by firing the mixture in which the raw materials obtained in the first step are uniformly mixed.
The firing temperature in the second step is 950 ° C. or lower, preferably 870 to 940 ° C. This is because when the firing temperature is higher than 950 ° C., the initial discharge capacity and cycle characteristics of the lithium secondary battery using the positive electrode active material obtained by the method tend to be lowered.

本発明において焼成は、所定の焼成温度に達する前まで、昇温速度を適宜調整しながら行うことが好ましい。即ち、室温(25℃)〜600℃まで400〜800℃/hr、好ましくは500〜700℃/hrで昇温し、次いで所定の焼成温度まで50〜150℃/hr、好ましくは75〜125℃/hrで昇温することが、生産効率がよく、また、該方法により得られる正極活物質を用いたリチウム二次電池において、特にサイクル特性に優れたものが得られる観点から好ましい。
また、焼成は、大気中又は酸素雰囲気中で、1〜30時間焼成することが好ましい。
In the present invention, the firing is preferably performed while appropriately adjusting the temperature rising rate until the predetermined firing temperature is reached. That is, the temperature is raised from room temperature (25 ° C.) to 600 ° C. at 400 to 800 ° C./hr, preferably 500 to 700 ° C./hr, and then to a predetermined firing temperature of 50 to 150 ° C./hr, preferably 75 to 125 ° C. It is preferable to raise the temperature at / hr from the viewpoint of good production efficiency and, in particular, a lithium secondary battery using a positive electrode active material obtained by the method, which has excellent cycle characteristics.
Moreover, it is preferable to bake for 1 to 30 hours in air | atmosphere or oxygen atmosphere.

また、本発明において、焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。
焼成後、適宜冷却し、必要に応じ粉砕すると、本発明の正極活物質が得られる。
Moreover, in this invention, you may perform baking as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired.
After firing, the cathode active material of the present invention can be obtained by appropriately cooling and grinding if necessary.

本発明では、更に、得られた正極活物質を溶媒で洗浄処理する第3工程、次いで、洗浄処理後の正極活物質をアニール処理する第4工程を施すことにより、残存するLiOH及び/又はLiCOを低減し、更に、塗布性及び塗膜特性を向上させ、また、リチウム二次電池の電池膨れを、更に抑制した正極活物質を得ることができる。 In the present invention, the remaining LiOH and / or LiCO is further performed by performing a third step of washing the obtained positive electrode active material with a solvent, and then performing a fourth step of annealing the positive electrode active material after the washing treatment. 3 can be reduced, and the coating properties and coating film characteristics can be further improved, and a positive electrode active material in which the battery swelling of the lithium secondary battery is further suppressed can be obtained.

第2工程終了後に、得られる正極活物質には、残存するLiOHが0.1重量%より大きく、LiCOが0.5重量%より大きい量で含有されている。本発明にかかる第3工程では、残存するLiOHを0.1重量%以下、好ましくは0.05重量%以下、LiCOを0.5重量%以下、好ましくは0.4重量%以下まで低減し、LiOH及びLiCOを実質的に含有しない正極活物質を得る。
該LiOH及びLiCOを実質的に含有しない正極活物質は、正極材を製造する際のバインダー樹脂との混練の際のゲル化を抑制し、塗布性を向上させることができる。
After completion of the second step, the obtained positive electrode active material contains residual LiOH in an amount greater than 0.1% by weight and Li 2 CO 3 in an amount greater than 0.5% by weight. In the third step according to the present invention, the remaining LiOH is 0.1 wt% or less, preferably 0.05 wt% or less, and Li 2 CO 3 is 0.5 wt% or less, preferably 0.4 wt% or less. A positive electrode active material that is reduced and substantially free of LiOH and Li 2 CO 3 is obtained.
The positive electrode active material which does not substantially contain LiOH and Li 2 CO 3 can suppress gelation during kneading with a binder resin when producing the positive electrode material, and can improve the coating property.

第3工程に係る溶媒は、例えば、水、温水、エタノール、メタノール、アセトン等を1種又は2種以上の混合溶媒として用いることができる。この中、水が安価で洗浄効率が高い観点から好ましい。また、第3工程において、洗浄する方法としては、特に制限はないが、溶媒と正極活物質とを攪拌下に接触させる方法、或いはリパルプ等の常法の方法を用いることができる。   The solvent which concerns on a 3rd process can use water, warm water, ethanol, methanol, acetone etc. as 1 type, or 2 or more types of mixed solvents, for example. Among these, water is preferable from the viewpoint of low cost and high cleaning efficiency. Moreover, there is no restriction | limiting in particular as a washing | cleaning method in a 3rd process, The method of making a solvent and a positive electrode active material contact under stirring, or usual methods, such as a repulp, can be used.

洗浄処理後は、第4工程に付して、洗浄処理を施した正極活物質をアニール処理する。
このアニール処理により、該アニール処理を施した正極活物質を用いたリチウム二次電池は、洗浄処理のみを施した正極活物質を用いたリチウム二次電池に比べ、初期放電容量及びサイクル特性が向上し、また、該アニール処理を施した正極活物質は、リチウム二次電池の電池膨れを更に抑制することができる。
After the cleaning process, the positive electrode active material subjected to the cleaning process is annealed in the fourth step.
By this annealing treatment, the lithium secondary battery using the positive electrode active material subjected to the annealing treatment has improved initial discharge capacity and cycle characteristics compared to the lithium secondary battery using the positive electrode active material subjected only to the cleaning treatment. In addition, the positive electrode active material subjected to the annealing treatment can further suppress the battery swelling of the lithium secondary battery.

アニール処理の条件は、400〜800℃、好ましくは500〜700℃で加熱処理することにより行われる。この理由は加熱処理温度が400℃未満では、該方法により得られる正極活物質を用いたリチウム二次電池において、十分なサイクル特性が得られない傾向があり、一方、800℃を超えると、該方法により得られる正極活物質を用いたリチウム二次電池において、初期放電容量が低下する傾向があり好ましくない。アニール処理を行う雰囲気は、特に制限されるものではなく、大気中又は酸素雰囲気中のいずれであってもよい。   The annealing treatment is performed by heat treatment at 400 to 800 ° C., preferably 500 to 700 ° C. The reason for this is that if the heat treatment temperature is less than 400 ° C., sufficient cycle characteristics tend not to be obtained in the lithium secondary battery using the positive electrode active material obtained by the method, while if it exceeds 800 ° C., In a lithium secondary battery using a positive electrode active material obtained by the method, the initial discharge capacity tends to decrease, which is not preferable. The atmosphere in which the annealing treatment is performed is not particularly limited, and may be either in the air or in an oxygen atmosphere.

アニール処理の時間は、通常、3時間以上、好ましくは5〜10時間である。また、アニール処理は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度アニール処理したものを粉砕し、次いで再アニール処理を行ってもよい。
アニール処理終了後は、必要により解砕或いは粉砕を行い、次いで分級を行って製品とする。
The annealing treatment time is usually 3 hours or more, preferably 5 to 10 hours. Further, the annealing treatment may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the one that has been annealed may be pulverized and then reannealed.
After the annealing treatment is completed, crushing or pulverization is performed as necessary, followed by classification to obtain a product.

本発明に係るリチウム二次電池は、上記リチウム二次電池用正極活物質を用いるものであり、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものであり、正極合剤は正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明に係るリチウム二次電池は、正極に本発明の前記一般式(1)で表されるリチウム複合酸化物とα−LiAlOを含有する正極活物質が均一に塗布されている。このため本発明に係るリチウム二次電池は、特にサイクル特性に優れる。 A lithium secondary battery according to the present invention uses the positive electrode active material for a lithium secondary battery, and includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing a lithium salt. The positive electrode is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector, and the positive electrode mixture includes a positive electrode active material, a conductive agent, a binder, and a filler added as necessary. Consists of. In the lithium secondary battery according to the present invention, the positive electrode active material containing the lithium composite oxide represented by the general formula (1) of the present invention and α-LiAlO 2 is uniformly applied to the positive electrode. For this reason, the lithium secondary battery according to the present invention is particularly excellent in cycle characteristics.

正極合剤に含有される正極活物質の含有量は、70〜100重量%、好ましくは90〜98重量%が望ましい。   The content of the positive electrode active material contained in the positive electrode mixture is 70 to 100% by weight, preferably 90 to 98% by weight.

正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The positive electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the constituted battery. For example, stainless steel, nickel, aluminum, titanium, calcined carbon, aluminum, and stainless steel Examples of the surface include carbon, nickel, titanium, and silver surface-treated. The surface of these materials may be oxidized and used, or the current collector surface may be provided with irregularities by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1〜50重量%、好ましくは2〜30重量%である。   The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. For example, graphite such as natural graphite and artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, carbon black such as thermal black, conductive fibers such as carbon fiber and metal fiber, Examples include metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives. Examples of graphite include scaly graphite, scaly graphite, and earthy graphite. These can be used alone or in combination of two or more. The blending ratio of the conductive agent is 1 to 50% by weight, preferably 2 to 30% by weight in the positive electrode mixture.

結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン−アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン−メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1〜50重量%、好ましくは5〜15重量%である。 Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, regenerated cellulose, diacetylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, fluorinated Vinylidene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene Oroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or its (Na + ) ion cross-linked product, ethylene-methacrylic acid copolymer or its (Na + ) Ionic cross-linked product, ethylene-methyl acrylate copolymer or its (Na + ) ionic cross-linked product, ethylene-methyl methacrylate copolymer or its (Na + ) ionic cross-linked product, polysaccharides such as polyethylene oxide, heat Plastic tree , Polymers having rubber elasticity, and these may be used individually or in combination. In addition, when using the compound containing a functional group which reacts with lithium like a polysaccharide, it is preferable to add the compound like an isocyanate group and to deactivate the functional group, for example. The blending ratio of the binder is 1 to 50% by weight, preferably 5 to 15% by weight in the positive electrode mixture.

フィラーは正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0〜30重量%が好ましい。   The filler suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary. As the filler, any fibrous material can be used as long as it does not cause a chemical change in the constructed battery. For example, olefinic polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used. Although the addition amount of a filler is not specifically limited, 0-30 weight% is preferable in a positive mix.

負極は、負極集電体上に負極材料を塗布乾燥等して形成される。負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの及びアルミニウム−カドミウム合金等が挙げられる。また、これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1〜500μmとすることが好ましい。   The negative electrode is formed by applying and drying a negative electrode material on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in a configured battery. For example, stainless steel, nickel, copper, titanium, aluminum, calcined carbon, copper or stainless steel Examples of the steel surface include carbon, nickel, titanium, silver surface-treated, and an aluminum-cadmium alloy. Further, the surface of these materials may be used after being oxidized, or the surface of the current collector may be used with surface roughness by surface treatment. Examples of the current collector include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foam bodies, fiber groups, nonwoven fabric molded bodies, and the like. The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm.

負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li−Co−Ni系材料等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、SnP(M11-p(M2qr(式中、M1はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LixFe23(0≦x≦1)、LixWO2(0≦x≦1)、チタン酸リチウム等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ−p−フェニレン等が挙げられる。 The negative electrode material is not particularly limited, and examples thereof include carbonaceous materials, metal composite oxides, lithium metals, lithium alloys, silicon-based alloys, tin-based alloys, metal oxides, conductive polymers, and chalcogen compounds. And Li—Co—Ni-based materials. Examples of the carbonaceous material include non-graphitizable carbon materials and graphite-based carbon materials. Examples of the metal composite oxide include Sn P (M 1 ) 1-p (M 2 ) q Or (wherein M 1 represents one or more elements selected from Mn, Fe, Pb and Ge, M 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and a halogen element in the periodic table, and 0 <p ≦ 1, 1 ≦ q ≦ 3 ,. showing a 1 ≦ r ≦ 8), Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), include compounds of lithium titanate. As the metal oxide, GeO, GeO 2, SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, Bi 2 O 3 Bi 2 O 4 , Bi 2 O 5 and the like. Examples of the conductive polymer include polyacetylene and poly-p-phenylene.

セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレーターの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μmである。セパレターの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μmである。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレーターを兼ねるようなものであってもよい。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers or polyethylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator may be in a range generally useful for batteries, and is, for example, 0.01 to 10 μm. The thickness of the separator may be in a range for a general battery, for example, 5 to 300 μm. When a solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.

リチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。   The non-aqueous electrolyte containing a lithium salt is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, or an inorganic solid electrolyte is used. Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, and 2-methyl. Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 3-methyl -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3- Ropansaruton, methyl propionate, and a solvent obtained by mixing one or more aprotic organic solvents such as ethyl propionate.

有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。   Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, Examples thereof include a polymer containing an ionic dissociation group such as polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above non-aqueous electrolyte.

無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩、硫化物等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、LiSiO4、LiSiO4−LiI−LiOH、Li2SiS3、Li4SiO4、Li4SiO4−LiI−LiOH、P25、Li2S又はLi2S−P25、Li2S−SiS2、Li2S−GeS2、Li2S−Ga23、Li2S−B23、Li2S−P25−X、Li2S−SiS2−X、Li2S−GeS2−X、Li2S−Ga23−X、Li2S−B23−X、(式中、XはLiI、B23、又はAl23から選ばれる少なくとも1種以上)等が挙げられる。 As the inorganic solid electrolytes, nitrides Li, halides, oxygen acid salts, can be used sulfides, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, P 2 S 5, Li 2 S or Li 2 S-P 2 S 5 , Li 2 S-SiS 2 , Li 2 S—GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—B 2 S 3 , Li 2 S—P 2 S 5 —X, Li 2 S—SiS 2 —X, Li 2 S -GeS in 2 -X, Li 2 S-Ga 2 S 3 -X, Li 2 S-B 2 S 3 -X, ( wherein at least X is selected LiI, B 2 S 3, or from Al 2 S 3 One or more).

更に、無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(Li3PO4)、酸化リチウム(Li2O)、硫酸リチウム(Li2SO4)、酸化リン(P25)、硼酸リチウム(Li3BO3)等の酸素を含む化合物、Li3PO4-x2x/3(xは0<x<4)、Li4SiO4-x2x/3(xは0<x<4)、Li4GeO4-x2x/3(xは0<x<4)、Li3BO3-x2x/3(xは0<x<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンが移動する妨げを軽減し、更にイオン伝導性を向上させることができる。 Further, when the inorganic solid electrolyte is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5) ), Compounds containing oxygen such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 <x <4), Li 4 SiO 4-x N 2x / 3 (x is Nitrogen such as 0 <x <4), Li 4 GeO 4-x N 2x / 3 (x is 0 <x <4), Li 3 BO 3-x N 2x / 3 (x is 0 <x <3) The compound to be contained can be contained in the inorganic solid electrolyte. By adding the compound containing oxygen or the compound containing nitrogen, the gap between the formed amorphous skeletons can be widened, the hindrance to movement of lithium ions can be reduced, and ion conductivity can be further improved.

リチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。 As the lithium salt, those dissolved in the non-aqueous electrolyte are used. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, Examples thereof include salts in which one kind or two or more kinds such as imides are mixed.

また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2−メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4−アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。   Moreover, the compound shown below can be added to a nonaqueous electrolyte for the purpose of improving discharge, a charge characteristic, and a flame retardance. For example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether , Ammonium salt, polyethylene glycol, pyrrole, 2-methoxyethanol, aluminum trichloride, conductive polymer electrode active material monomer, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compounds with carbonyl group, hexamethylphosphine Examples include hollic triamide and 4-alkylmorpholine, bicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazenes, and carbonates. That. In order to make the electrolyte nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride can be included in the electrolyte. In addition, carbon dioxide gas can be included in the electrolytic solution in order to make it suitable for high-temperature storage.

本発明に係るリチウム二次電池は、電池性能、特にサイクル特性に優れたリチウム二次電池であり、電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。   The lithium secondary battery according to the present invention is a lithium secondary battery excellent in battery performance, particularly in cycle characteristics, and the shape of the battery may be any shape such as a button, a sheet, a cylinder, a corner, or a coin type.

本発明に係るリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ゲーム機器等の民生用電子機器が挙げられる。   The use of the lithium secondary battery according to the present invention is not particularly limited. For example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless cordless handset, a portable CD player, a radio, an LCD TV, a backup power source, and an electric shaver. And electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, and game machines.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
<ニッケル原子、コバルト原子及びマンガン原子を含む化合物>
本発明の実施例においては、下記諸物性を有する市販のニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合水酸化物(田中化学研究所製)を用いた。なお、一次粒子の平均粒径は、任意に抽出した100個の凝集粒子について、走査型電子顕微鏡観察により求めた。また、二次粒子の平均粒子はレーザー法粒度分布測定方法により求めた。複合酸化物中のNi:Co:Mnのモル比は、ICPによりNi原子、Co原子及びMn原子の含有量を測定し、その測定値から算出した。
複合水酸化物の物性
(1)複合水酸化物中のNi:Co:Mnのモル比=0.60:0.20:0.20
(2)複合水酸化物の一次粒子の平均粒径;0.2μm
(3)複合水酸化物の二次粒子の平均粒径;10.9μm
(4)複合水酸化物のBET比表面積;2.3m/g
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
<Compound containing nickel atom, cobalt atom and manganese atom>
In the examples of the present invention, a commercially available aggregated composite hydroxide (manufactured by Tanaka Chemical Research Laboratory) containing nickel, cobalt and manganese atoms having the following physical properties was used. In addition, the average particle diameter of the primary particles was obtained by observation with a scanning electron microscope for 100 arbitrarily extracted aggregated particles. The average particle size of secondary particles was determined by a laser particle size distribution measurement method. The molar ratio of Ni: Co: Mn in the composite oxide was calculated from the measured values obtained by measuring the contents of Ni atoms, Co atoms and Mn atoms by ICP.
Physical properties of composite hydroxides
(1) Ni: Co: Mn molar ratio in composite hydroxide = 0.60: 0.20: 0.20
(2) Average particle size of primary particles of composite hydroxide; 0.2 μm
(3) Average particle size of secondary particles of composite hydroxide; 10.9 μm
(4) BET specific surface area of the composite hydroxide; 2.3 m 2 / g

{参考実験1}
炭酸リチウム(平均粒子;7μm)、前記ニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合水酸化物及び燐酸アルミニウム(平均粒径;16.2μm、純正化学社製)とを表1に示す量添加し、十分乾式で混合して、これら原料の均一混合物を得た。次いで600℃まで1時間で昇温、更に925℃まで3時間で昇温し、次に925℃で10時間保持し大気中で焼成した。焼成終了後、冷却し得られた焼成物を粉砕し、正極活物質試料を得た。
参考実験1で得られた正極活物質試料についてCuKα線によるX線回折分析を行った。その結果、LiNi0.6Co0.2Mn0.2の回折ピークの他、2θ=18.64°、45.16°にα-LiAlOの回折ピークが確認された(図1参照)。
従って、本発明の製法で得られる正極活物質は、LiNi0.6Co0.2Mn0.2とα−LiAlOを含有するものであることが確認できた。
また、該正極活物質試料を走査型電子顕微鏡観察及びEPMAによる元素マッピングを行った結果、該正極活物質試料は一次粒子が集合し二次粒子を形成した凝集体であり、凝集粒子にAl原子が均一に分布していることが確認された。該該正極活物質試料のSEM写真を図2に示す。
該正極活物質試料は、走査型電子顕微鏡観察から求められる一次粒子の平均粒径が0.5μmで、レーザー法粒度分布測定法により求められる二次粒子の平均粒径が8.3μmであり、BET比表面積が0.92m/gであった。なお、一次粒子の平均粒径は、任意に抽出した100個の凝集粒子について、走査型電子顕微鏡観察により求めた。
{Reference Experiment 1}
Table 1 shows amounts of lithium carbonate (average particle: 7 μm), the above-mentioned aggregated composite hydroxide containing nickel, cobalt, and manganese atoms and aluminum phosphate (average particle size: 16.2 μm, manufactured by Junsei Chemical Co., Ltd.) The mixture was added and sufficiently dried to obtain a uniform mixture of these raw materials. Next, the temperature was raised to 600 ° C. over 1 hour, further raised to 925 ° C. over 3 hours, then held at 925 ° C. for 10 hours and fired in the atmosphere. After the firing, the fired product obtained by cooling was pulverized to obtain a positive electrode active material sample.
The positive electrode active material sample obtained in Reference Experiment 1 was subjected to X-ray diffraction analysis using CuKα rays. As a result, a diffraction peak of α-LiAlO 2 was confirmed at 2θ = 18.64 ° and 45.16 ° in addition to the diffraction peak of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (see FIG. 1). ).
Therefore, it was confirmed that the positive electrode active material obtained by the production method of the present invention contains LiNi 0.6 Co 0.2 Mn 0.2 O 2 and α-LiAlO 2 .
Moreover, as a result of performing elemental mapping by scanning electron microscope observation and EPMA of the positive electrode active material sample, the positive electrode active material sample is an aggregate in which primary particles are aggregated to form secondary particles. Was confirmed to be uniformly distributed. An SEM photograph of the positive electrode active material sample is shown in FIG.
The positive electrode active material sample has an average primary particle size of 0.5 μm determined from observation with a scanning electron microscope and an average secondary particle size of 8.3 μm determined by a laser particle size distribution measurement method. The BET specific surface area was 0.92 m 2 / g. In addition, the average particle diameter of the primary particles was obtained by observation with a scanning electron microscope for 100 arbitrarily extracted aggregated particles.

{参考実験2}
燐酸アルミニウムを水酸化アルミニウム(平均粒径;1.4μm)とした以外は参考実験1と同じ条件で反応を行って正極活物質試料を得た。
参考実験2で得られた正極活物質試料をCuKα線によるX線回折分析を行った。その結果、LiNi0.60Co0.20Mn0.20Al0.10であることが確認された(図3参照)。
また、該正極活物質試料は、走査型電子顕微鏡観察から求められる一次粒子の平均粒径が0.5μmで、レーザー法粒度分布測定法により求められる二次粒子の平均粒径が9.6μmであり、BET比表面積が0.40m/gであった。なお、一次粒子の平均粒径は、任意に抽出した100個の凝集粒子について、走査型電子顕微鏡観察により求めた。また、該正極活物質試料のSEM写真を図4に示す。
{Reference Experiment 2}
A positive electrode active material sample was obtained by performing the reaction under the same conditions as in Reference Experiment 1 except that aluminum phosphate was changed to aluminum hydroxide (average particle size: 1.4 μm).
The positive electrode active material sample obtained in Reference Experiment 2 was subjected to X-ray diffraction analysis using CuKα rays. As a result, it was confirmed that it was LiNi 0.60 Co 0.20 Mn 0.20 Al 0.10 O 2 (see FIG. 3).
In addition, the positive electrode active material sample has an average primary particle size of 0.5 μm determined by observation with a scanning electron microscope, and an average secondary particle size of 9.6 μm determined by a laser particle size distribution measurement method. And the BET specific surface area was 0.40 m 2 / g. In addition, the average particle diameter of the primary particles was obtained by observation with a scanning electron microscope for 100 arbitrarily extracted aggregated particles. An SEM photograph of the positive electrode active material sample is shown in FIG.

参考実験1及び参考実験2の結果から、アルミニウム源として水酸化アルミニウムを用いた場合は、アルミニウムはリチウムニッケルコバルトマンガン複合酸化物に固溶して含有されるのに対して、アルミニウム源として燐酸アルミニウムを用いたときは、優先的にα−LiAlOが個別に生成されることが分かる。 From the results of Reference Experiment 1 and Reference Experiment 2, when aluminum hydroxide is used as the aluminum source, aluminum is contained as a solid solution in lithium nickel cobalt manganese composite oxide, whereas aluminum phosphate is used as the aluminum source. It can be seen that α-LiAlO 2 is preferentially generated individually when using.

{実施例1}
<第1工程・第2工程>
炭酸リチウム(平均粒子;7μm)、前記ニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合水酸化物及び燐酸アルミニウム(平均粒径;16.2μm、純正化学社製)とを表3に示す量添加し、十分乾式で混合して、これら原料の均一混合物を得た。次いで600℃まで1時間で昇温、更に925℃まで3時間で昇温し、次に925℃で10時間保持し大気中で焼成した。焼成終了後、冷却し得られた焼成物を粉砕し、LiNi0.6Co0.2Mn0.2とα−LiAlOを含有する正極活物質試料(A)を得た。また、得られ正極活物質試料(A)のSEM写真を図5に示す。
{Example 1}
<First step and second step>
Amounts shown in Table 3 of lithium carbonate (average particle: 7 μm), aggregated composite hydroxide containing nickel atom, cobalt atom and manganese atom and aluminum phosphate (average particle size: 16.2 μm, manufactured by Junsei Chemical Co., Ltd.) The mixture was added and sufficiently dried to obtain a uniform mixture of these raw materials. Next, the temperature was raised to 600 ° C. over 1 hour, further raised to 925 ° C. over 3 hours, then held at 925 ° C. for 10 hours and fired in the atmosphere. After the firing, the fired product obtained by cooling was pulverized to obtain a positive electrode active material sample (A) containing LiNi 0.6 Co 0.2 Mn 0.2 O 2 and α-LiAlO 2 . Moreover, the SEM photograph of the obtained positive electrode active material sample (A) is shown in FIG.

{実施例2}
<第3工程・第4工程>
実施例1で得られた正極活物質試料(A)を18重量部及び純水45重量部をビーカーに仕込み、室温(25℃)で15分間攪拌を行って洗浄処理を行った。
洗浄終了後、常法により固液分離して正極活物質(B)をウェト状態で回収した。
次いで、ウェト状態の正極活物質(B)をウェト状態のまま、600℃で5時間、大気雰囲気で加熱処理し、加熱処理品を粉砕、次いで分級してLiNi0.6Co0.2Mn0.2とα−LiAlOを含有する正極活物質試料(C2)を得た。
{Example 2}
<3rd process and 4th process>
18 parts by weight of the positive electrode active material sample (A) obtained in Example 1 and 45 parts by weight of pure water were charged into a beaker, and the mixture was stirred at room temperature (25 ° C.) for 15 minutes for washing treatment.
After the washing, solid-liquid separation was performed by a conventional method, and the positive electrode active material (B) was recovered in a wet state.
Next, the wet positive electrode active material (B) is heated in the atmosphere at 600 ° C. for 5 hours in the wet state, and the heat-treated product is pulverized and then classified to obtain LiNi 0.6 Co 0.2 Mn 0. A positive electrode active material sample (C2) containing .2 O 2 and α-LiAlO 2 was obtained.

{実施例3}
燐酸アルミニウムの添加量を表3のとおりに変えた以外は、実施例1と同様にして第1工程〜第2工程を実施し、更に実施例2と同様にして第3工程〜第4工程を実施し、LiNi0.6Co0.2Mn0.2とα−LiAlOを含有する正極活物質試料(C3)を得た。
{Example 3}
Except for changing the addition amount of aluminum phosphate as shown in Table 3, the first to second steps were carried out in the same manner as in Example 1, and the third to fourth steps were further carried out in the same manner as in Example 2. The positive electrode active material sample (C3) containing LiNi 0.6 Co 0.2 Mn 0.2 O 2 and α-LiAlO 2 was obtained.

{比較例1}
燐酸アルミニウムを添加しない以外は、実施例1と同様にして第1工程及び第2工程を実施し、更に実施例2と同様にして第3工程〜第4工程を実施し、LiNi0.6Co0.2Mn0.2を含有する正極活物質試料(c1)を得た。
{Comparative Example 1}
Except for not adding aluminum phosphate, the first and second steps were performed in the same manner as in Example 1, and the third to fourth steps were further performed in the same manner as in Example 2. LiNi 0.6 Co A positive electrode active material sample (c1) containing 0.2 Mn 0.2 O 2 was obtained.

{比較例2}
<第1工程・第2工程>
炭酸リチウム(平均粒子;7μm)、前記ニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合酸化物及び酸化マグネシウム(平均粒径;5.3μm)とを表3に示す量添加し、十分乾式で混合して、これら原料の均一混合物を得た。次いで600℃まで1時間で昇温、更に925℃まで3時間で昇温し、次に925℃で10時間保持し大気中で焼成した。焼成終了後、冷却し得られた焼成物を粉砕し、正極活物質(a2)を得た。
<第3工程・第4工程>
得られた正極活物質(a2)を18重量部及び純水45重量部をビーカーに仕込み、室温(25℃)で15分間攪拌を行って洗浄処理を行った。
洗浄終了後、常法により固液分離して正極活物質試料(b2)をウェト状態で回収した。
次いで、ウェト状態の正極活物質(b2)をウェト状態のまま、600℃で5時間、大気雰囲気で加熱処理し、加熱処理品を粉砕、次いで分級して正極活物質試料(c3)を得た。
{Comparative Example 2}
<First step and second step>
Lithium carbonate (average particle: 7 μm), aggregated complex oxide containing nickel atom, cobalt atom and manganese atom and magnesium oxide (average particle size: 5.3 μm) were added in the amounts shown in Table 3 and sufficiently dry. By mixing, a uniform mixture of these raw materials was obtained. Next, the temperature was raised to 600 ° C. over 1 hour, further raised to 925 ° C. over 3 hours, then held at 925 ° C. for 10 hours and fired in the atmosphere. After the completion of firing, the fired product obtained by cooling was pulverized to obtain a positive electrode active material (a2).
<3rd process and 4th process>
18 parts by weight of the obtained positive electrode active material (a2) and 45 parts by weight of pure water were charged in a beaker, and washed at room temperature (25 ° C.) for 15 minutes.
After the washing, solid-liquid separation was performed by a conventional method, and the positive electrode active material sample (b2) was recovered in a wet state.
Subsequently, the positive electrode active material (b2) in the wet state was heat-treated at 600 ° C. for 5 hours in the air atmosphere, and the heat-treated product was pulverized and classified to obtain a positive electrode active material sample (c3). .

{比較例3}
<第1工程・第2工程>
炭酸リチウム(平均粒子;7μm)、前記ニッケル原子、コバルト原子及びマンガン原子を含む凝集状複合酸化物及び水酸化アルミニウム(平均粒径;1.4μm)とを表3に示す量添加し、十分乾式で混合して、これら原料の均一混合物を得た。次いで600℃まで1時間で昇温、更に925℃まで3時間で昇温し、次に925℃で10時間保持し大気中で焼成した。焼成終了後、冷却し得られた焼成物を粉砕し、正極活物質(a3)を得た。
<第3工程・第4工程>
得られた正極活物質(a3)を18重量部及び純水45重量部をビーカーに仕込み、室温(25℃)で15分間攪拌を行って洗浄処理を行った。
洗浄終了後、常法により固液分離して正極活物質試料(b3)をウェト状態で回収した。
次いで、ウェト状態の正極活物質(b3)をウェト状態のまま、600℃で5時間、大気雰囲気で加熱処理し、加熱処理品を粉砕、次いで分級して正極活物質試料(c3)を得た。
{Comparative Example 3}
<First step and second step>
Lithium carbonate (average particle: 7 μm), aggregated complex oxide containing nickel atom, cobalt atom and manganese atom, and aluminum hydroxide (average particle size: 1.4 μm) were added in the amounts shown in Table 3, and sufficiently dry To obtain a uniform mixture of these raw materials. Next, the temperature was raised to 600 ° C. over 1 hour, further raised to 925 ° C. over 3 hours, then held at 925 ° C. for 10 hours and fired in the atmosphere. After the firing, the fired product obtained by cooling was pulverized to obtain a positive electrode active material (a3).
<3rd process and 4th process>
18 parts by weight of the obtained positive electrode active material (a3) and 45 parts by weight of pure water were placed in a beaker, and the mixture was stirred for 15 minutes at room temperature (25 ° C.) for washing treatment.
After the washing, solid-liquid separation was performed by a conventional method, and the positive electrode active material sample (b3) was collected in a wet state.
Next, the positive electrode active material (b3) in the wet state was heat-treated at 600 ° C. for 5 hours in the air atmosphere, and the heat-treated product was pulverized and classified to obtain a positive electrode active material sample (c3). .

<物性評価>
上記で得られた正極活物質試料について、一次粒子の平均粒径、二次粒子の平均粒径、BET比表面積、Alの含有量、残存するLiOH及びLiCOの量を求めた。なお、得られた正極活物質の粒子性状は、SEM写真観察から求めた。
(平均粒径の評価)
一次粒子の平均粒径は、任意に抽出した100個の凝集粒子の平均値として、走査型電子顕微鏡観察により測定した。また、二次粒子の平均粒径はレーザー粒度分布測定法により求めた。
(Al含有量及びMg含有量の評価)
ICP発光分析法によりAl原子の量として求めた。なお、Mg含量量もICP発光分析法により求めた。
(LiOH、LiCO含有量の評価)
試料5g、純水100gをビーカーに計り採りマグネチックスターラーを用いて5分間分散させる。次いでこの分散液をろ過し、そのろ液30mlを自動滴定装置(型式COMTITE−2500)にて0.1N−HClで滴定し残留LiOH及びLiCOを算出した。
<Physical property evaluation>
About the positive electrode active material sample obtained above, the average particle size of the primary particles, the average particle size of the secondary particles, the BET specific surface area, the Al content, the amount of the remaining LiOH and Li 2 CO 2 were determined. In addition, the particle property of the obtained positive electrode active material was calculated | required from SEM photograph observation.
(Evaluation of average particle size)
The average particle diameter of the primary particles was measured by observation with a scanning electron microscope as an average value of 100 aggregated particles arbitrarily extracted. The average particle size of the secondary particles was determined by a laser particle size distribution measurement method.
(Evaluation of Al content and Mg content)
The amount of Al atoms was determined by ICP emission analysis. The Mg content was also determined by ICP emission analysis.
(Evaluation of LiOH and Li 2 CO 3 content)
5 g of sample and 100 g of pure water are measured in a beaker and dispersed for 5 minutes using a magnetic stirrer. Next, this dispersion was filtered, and 30 ml of the filtrate was titrated with 0.1 N HCl with an automatic titrator (model COMMITE-2500) to calculate residual LiOH and Li 2 CO 3 .

<リチウム二次電池の評価>
(1)リチウム二次電池の作成
実施例1〜3及び比較例1〜3で得られた正極活物質95重量%、黒鉛粉末2.5重量%、ポリフッ化ビニリデン2.5重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF61モルを溶解したものを使用した。
<Evaluation of lithium secondary battery>
(1) Preparation of lithium secondary battery 95% by weight of the positive electrode active material obtained in Examples 1 to 3 and Comparative Examples 1 to 3, 2.5% by weight of graphite powder, and 2.5% by weight of polyvinylidene fluoride were mixed. Thus, a positive electrode agent was prepared, and this was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.

(2)電池の性能評価
作製したリチウム二次電池を室温(25℃)で下記条件で作動させ、下記の電池性能を評価した。
<サイクル特性の評価>
正極に対して定電流電圧(CCCV)充電により1.0Cで5時間かけて、4.3Vまで充電した後、放電レート0.2Cで2.7Vまで放電させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目のそれぞれの放電容量から、下記式により容量維持率を算出した。なお、1サイクル目の放電容量を初期放電容量とした。結果を表5に示す。
容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
(2) Battery performance evaluation The produced lithium secondary battery was operated at room temperature (25 ° C) under the following conditions, and the following battery performance was evaluated.
<Evaluation of cycle characteristics>
After charging the positive electrode to 4.3V by constant current voltage (CCCV) charging at 1.0C for 5 hours, charging / discharging to discharge to 2.7V at a discharge rate of 0.2C is performed. The discharge capacity was measured every cycle as one cycle. This cycle was repeated 20 times, and the capacity retention rate was calculated from the discharge capacity of the first cycle and the 20th cycle according to the following formula. The discharge capacity at the first cycle was defined as the initial discharge capacity. The results are shown in Table 5.
Capacity maintenance ratio (%) = (discharge capacity at 20th cycle / discharge capacity at 1st cycle) × 100

(3)塗料安定性の評価
実施例1〜3及び比較例1〜3で得られた正極活物質95重量%、黒鉛粉末2.5重量%、ポリフッ化ビニリデン2.5重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。この混錬ペーストを、斜めにしたガラス板に落としゲル化の指標となる流動性について下記に沿って目視で評価した。その結果を表5に併記した。
塗料安定性の評価基準
評価 流動性
◎・・・良好
○・・・やや良好
×・・・不良
(3) Evaluation of paint stability 95% by weight of the positive electrode active material obtained in Examples 1 to 3 and Comparative Examples 1 to 3, 2.5% by weight of graphite powder, and 2.5% by weight of polyvinylidene fluoride were mixed. A kneading paste was prepared using a positive electrode agent dispersed in N-methyl-2-pyrrolidinone. The kneaded paste was dropped on an inclined glass plate and visually evaluated for fluidity as an index for gelation. The results are also shown in Table 5.
Evaluation criteria for paint stability
Evaluation Liquidity
◎ ・ ・ ・ Good
○ ・ ・ ・ Slightly good
× ・ ・ ・ Bad

本発明のリチウム二次電池正極活物質によれば、リチウムニッケルコバルトマンガン系複合酸化物からなる正極活物質を用いて、特に優れたサイクル特性を有するリチウム二次電池を提供することができる。
また、該リチウム二次電池用正極活物質の製造方法によれば、該正極活物質を工業的に有利な方法で製造することができる。
According to the positive electrode active material of the lithium secondary battery of the present invention, a lithium secondary battery having particularly excellent cycle characteristics can be provided using a positive electrode active material made of a lithium nickel cobalt manganese based composite oxide.
Moreover, according to the manufacturing method of this positive electrode active material for lithium secondary batteries, this positive electrode active material can be manufactured by an industrially advantageous method.

Claims (11)

Al原子を含有する正極活物質であって、下記一般式(1)
LiNi1−y−zCoMn(1)
(式中、xは0.98≦x≦1.20、yは0<y≦0.5、zは0<z≦0.5を示し、但し、y+z<1を示す。)で表されるリチウム複合酸化物と、α-LiAlOを含有し、(a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合し、得られる混合物を焼成して生成されたものであることを特徴とするリチウム二次電池用正極活物質。
A positive electrode active material containing an Al atom, the following general formula (1)
Li x Ni 1-yz Co y Mn z O 2 (1)
(Wherein x represents 0.98 ≦ x ≦ 1.20, y represents 0 <y ≦ 0.5, and z represents 0 <z ≦ 0.5, where y + z <1). A lithium composite oxide containing α-LiAlO 2 , (a) a lithium compound, (b) a compound containing a nickel atom, a cobalt atom and a manganese atom, and (c) an aluminum phosphate, a nickel atom, a cobalt atom, For lithium secondary battery characterized by being produced by mixing at a ratio of lithium atom to manganese atom and aluminum atom (Li / {Ni + Co + Mn + Al}) of 0.95 or more and firing the resulting mixture Positive electrode active material.
前記リチウム複合酸化物は、一次粒子が集合して二次粒子を形成した凝集状リチウム複合酸化物であることを特徴とする請求項1記載のリチウム二次電池用正極活物質。   2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium composite oxide is an aggregated lithium composite oxide in which primary particles are aggregated to form secondary particles. Al原子の含有量が0.025〜0.90重量%であることを特徴とする請求項1又は2記載のリチウム二次電池用正極活物質。 The positive electrode active material for a lithium secondary battery according to claim 1 or 2 , wherein the content of Al atoms is 0.025 to 0.90 wt%. 残存するLiOHが0.1重量%以下で、且つ残存するLiCOが0.5重量%以下であることを特徴とする請求項1乃至記載のリチウム二次電池用正極活物質。 With LiOH remaining 0.1 wt% or less, and the positive active material of claims 1 to 3, wherein the Li 2 CO 3 remaining is 0.5 wt% or less. (a)リチウム化合物、(b)ニッケル原子、コバルト原子及びマンガン原子を原子比でニッケル原子1モルに対してコバルト原子0.1〜1.0、マンガン原子0.1〜1.0含む化合物及び(c)燐酸アルミニウムとを、ニッケル原子、コバルト原子、マンガン原子及びアルミニウム原子に対するリチウム原子の原子比(Li/{Ni+Co+Mn+Al})で0.95以上で混合する第1工程、次いで、得られる混合物を焼成して下記一般式(1)
LiNi1−y−zCoMn(1)
(式中、xは0.98≦x≦1.20、yは0<y≦0.5、zは0<z≦0.5を示し、但し、y+z<1を示す。)で表されるリチウム複合酸化物と、α-LiAlOを含有する正極活物質を得る第2工程を有することを特徴とするリチウム二次電池用正極活物質の製造方法。
(A) a lithium compound, (b) a compound containing 0.1 to 1.0 cobalt atom and 0.1 to 1.0 manganese atom with respect to 1 mol of nickel atom in terms of atomic ratio of nickel atom, cobalt atom and manganese atom, and (C) a first step of mixing aluminum phosphate with a nickel atom, a cobalt atom, a manganese atom and an atomic ratio of lithium atoms to aluminum atoms (Li / {Ni + Co + Mn + Al}) of 0.95 or more, and then the resulting mixture After firing, the following general formula (1)
Li x Ni 1-yz Co y Mn z O 2 (1)
(Wherein x represents 0.98 ≦ x ≦ 1.20, y represents 0 <y ≦ 0.5, and z represents 0 <z ≦ 0.5, where y + z <1). A method for producing a positive electrode active material for a lithium secondary battery, comprising a second step of obtaining a positive electrode active material containing lithium composite oxide and α-LiAlO 2 .
前記第2工程の焼成は950℃以下で行うことを特徴とする請求項記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 5, wherein the firing in the second step is performed at 950 ° C. or less. 前記ニッケル原子、マンガン原子及びコバルト原子を含む化合物が凝集状複合水酸化物であることを特徴とする請求項又は記載のリチウム二次電池用正極活物質の製造方法。 Said nickel atoms, method for producing a cathode active material for lithium secondary battery according to claim 5 or 6, wherein the compound containing manganese atoms, and cobalt atoms are aggregated like composite hydroxide. 更に、得られた正極活物質を溶媒で洗浄処理する第3工程、次いで、洗浄処理後の正極活物質をアニール処理する第4工程を有することを特徴とする請求項記載のリチウム二次電池用正極活物質の製造方法。 6. The lithium secondary battery according to claim 5 , further comprising a third step of washing the obtained positive electrode active material with a solvent and then a fourth step of annealing the positive electrode active material after the washing treatment. For producing a positive electrode active material for use. 前記溶媒が水であることを特徴とする請求項記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 8 , wherein the solvent is water. 前記アニール処理は400〜800℃で行うことを特徴とする請求項記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 8, wherein the annealing treatment is performed at 400 to 800 ° C. 請求項1乃至の何れか1項に記載のリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池。 A lithium secondary battery using the positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4 .
JP2009164542A 2009-07-13 2009-07-13 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Active JP5490458B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009164542A JP5490458B2 (en) 2009-07-13 2009-07-13 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN2010800407253A CN102498597A (en) 2009-07-13 2010-07-12 Positive electrode active material for lithium secondary batteries, production method for same and lithium secondary battery
PCT/JP2010/061755 WO2011007751A1 (en) 2009-07-13 2010-07-12 Positive electrode active material for lithium secondary batteries, production method for same and lithium secondary battery
KR1020127000888A KR20120049227A (en) 2009-07-13 2010-07-12 Positive electrode active material for lithium secondary batteries, production method for same and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164542A JP5490458B2 (en) 2009-07-13 2009-07-13 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011023121A JP2011023121A (en) 2011-02-03
JP5490458B2 true JP5490458B2 (en) 2014-05-14

Family

ID=43449359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164542A Active JP5490458B2 (en) 2009-07-13 2009-07-13 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (4)

Country Link
JP (1) JP5490458B2 (en)
KR (1) KR20120049227A (en)
CN (1) CN102498597A (en)
WO (1) WO2011007751A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661646B2 (en) 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery
US20120231343A1 (en) 2009-12-22 2012-09-13 Jx Nippon Mining & Metals Corporation Positive Electrode Active Material For A Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
JP5819199B2 (en) 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011096525A1 (en) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5923036B2 (en) 2010-03-04 2016-05-24 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
KR101445954B1 (en) 2010-03-04 2014-09-29 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
CN102754254B (en) 2010-03-04 2016-01-20 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
JP5368627B2 (en) 2010-12-03 2013-12-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20120099411A (en) 2011-01-21 2012-09-10 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method of manufacturing positive electrode active material for a lithium-ion battery and a positive electrode active material for a lithium-ion battery
WO2012107313A1 (en) * 2011-02-07 2012-08-16 Umicore High nickel cathode material having low soluble base content
CN102812583B (en) 2011-03-29 2015-02-11 Jx日矿日石金属株式会社 Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
CN103299456B (en) * 2011-03-31 2016-01-13 Jx日矿日石金属株式会社 Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
WO2013062313A1 (en) * 2011-10-24 2013-05-02 주식회사 엘지화학 Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
EP3101716B1 (en) * 2014-01-27 2018-07-04 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US10593942B2 (en) * 2014-10-30 2020-03-17 Sumitomo Metal Mining Co., Ltd. Nickel-containing composite hydroxide and production process therefor, positive-electrode active material for a nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
JP2016105366A (en) 2014-12-01 2016-06-09 ソニー株式会社 Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
JP6108141B2 (en) * 2014-12-25 2017-04-05 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR20160081545A (en) * 2014-12-31 2016-07-08 주식회사 에코프로 Cathod active material and manufacturing method of the same
JP6733139B2 (en) 2015-08-27 2020-07-29 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2017164237A1 (en) * 2016-03-24 2017-09-28 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous-electrolyte secondary cell and method for manufacturing same, positive-electrode material paste for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
JP7135269B2 (en) * 2016-03-24 2022-09-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN106248670A (en) * 2016-08-16 2016-12-21 格林美(无锡)能源材料有限公司 The method of residual alkali in multiple positive electrode is measured based on automatic titering process
JP7054065B2 (en) * 2017-08-29 2022-04-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the positive electrode active material
CN111052465B (en) 2017-08-29 2023-04-07 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
KR102165118B1 (en) 2017-10-26 2020-10-14 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR102179970B1 (en) 2017-12-08 2020-11-17 주식회사 엘지화학 Positive electrode active material precursor for lithium secondary battery, preparing method of the same
JP6966959B2 (en) * 2018-03-01 2021-11-17 住友化学株式会社 Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
KR102282282B1 (en) 2018-11-05 2021-07-27 주식회사 엘지화학 Apparatus and method for manufacturing positive electrode active material precursor
JP7271920B2 (en) * 2018-11-29 2023-05-12 住友金属鉱山株式会社 Lithium-nickel-containing composite oxide and method for producing the same, and positive electrode active material for lithium-ion secondary battery using the lithium-nickel-containing composite oxide as a base material and method for producing the same
JP7262418B2 (en) * 2020-04-28 2023-04-21 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20240037680A (en) * 2022-09-15 2024-03-22 주식회사 엘지화학 Preparing method of precusor for positive electrode active material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
CN1331267C (en) * 2003-08-15 2007-08-08 比亚迪股份有限公司 Lithium ion secondary cell and method for preparing anode thereof
JP4502664B2 (en) * 2004-02-24 2010-07-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4897223B2 (en) * 2005-01-24 2012-03-14 日立マクセルエナジー株式会社 Nonaqueous electrolyte secondary battery
JP4984478B2 (en) * 2005-10-04 2012-07-25 住友化学株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2011023121A (en) 2011-02-03
KR20120049227A (en) 2012-05-16
CN102498597A (en) 2012-06-13
WO2011007751A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5490458B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5341325B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5584456B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5172231B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5749650B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2011065391A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP5897356B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5490457B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2012113823A (en) Positive electrode active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery
JP5732351B2 (en) Method for producing lithium cobalt oxide
JP5897357B2 (en) Lithium secondary battery positive electrode active material manufacturing method, lithium secondary battery positive electrode active material, and lithium secondary battery
JP2014041710A (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP4754209B2 (en) Method for producing lithium cobalt composite oxide powder
JP5134292B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5508322B2 (en) Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4748706B2 (en) Lithium manganese based composite oxide powder, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
WO2021246215A1 (en) Positive electrode active material for lithium secondary batteries, method for producing same, and lithium secondary battery
JP2022075600A (en) Cathode active material for lithium secondary battery, method of producing the same and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250