JP6193088B2 - Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system - Google Patents

Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system Download PDF

Info

Publication number
JP6193088B2
JP6193088B2 JP2013220710A JP2013220710A JP6193088B2 JP 6193088 B2 JP6193088 B2 JP 6193088B2 JP 2013220710 A JP2013220710 A JP 2013220710A JP 2013220710 A JP2013220710 A JP 2013220710A JP 6193088 B2 JP6193088 B2 JP 6193088B2
Authority
JP
Japan
Prior art keywords
transparent resin
light
application
detecting
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013220710A
Other languages
Japanese (ja)
Other versions
JP2015081874A (en
Inventor
梅津 枝里子
枝里子 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTEX Matsumura Corp
Original Assignee
MTEX Matsumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTEX Matsumura Corp filed Critical MTEX Matsumura Corp
Priority to JP2013220710A priority Critical patent/JP6193088B2/en
Publication of JP2015081874A publication Critical patent/JP2015081874A/en
Application granted granted Critical
Publication of JP6193088B2 publication Critical patent/JP6193088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、金属光沢面に塗布される接着剤や保護膜等の透明樹脂の塗布領域と塗布量を検出する方法及びその光コヒーレンストモグラフィー計測システムに関するものである。   The present invention relates to a method for detecting an application region and an application amount of a transparent resin such as an adhesive or a protective film applied to a metallic gloss surface, and an optical coherence tomography measurement system thereof.

金属光沢面に塗布される透明樹脂の塗布の有無の検査は、顕微鏡を用いて目視で行っており、OCT装置(下記特許文献2,3参照)によった透明樹脂の塗布の有無を自動判定することは実現されていないのが現状である。   The inspection of the presence or absence of the application of the transparent resin applied to the glossy metal surface is performed visually using a microscope, and the presence or absence of the application of the transparent resin is automatically determined by an OCT apparatus (see Patent Documents 2 and 3 below). Currently, this is not realized.

なお、OCT装置によった、被計測試料として歯を取り扱ったものが開示されている(下記特許文献1参照)。   In addition, what handled the tooth | gear as a to-be-measured sample by the OCT apparatus is disclosed (refer the following patent document 1).

特開2006−132996号公報JP 2006-132996 A 特開2003−329577号公報JP 2003-329577 A 特開2002−310897号公報JP 2002-310897 A

レーザー研究,2003年10月号:医療を中心とする光コヒーレンストモグラフィーの技術展開Laser Research, October 2003: Technology development of optical coherence tomography centered on medical care

金属板上に配線を持つ金属基板の配線上には配線保護や絶縁、素子固定のため、半透明やほぼ透明に近い保護樹脂や接着剤(以下、透明樹脂という)が局所的に塗布されている。これらの塗布箇所において透明樹脂は、金属基板を繋ぐ金属配線領域を完全に覆う必要があり、配線付近の塗布領域及び塗布量の検出が求められている。しかし、現在では透明樹脂の塗布領域の検出は顕微鏡を用いて目視で行われ、自動検出が難しく、いまだ自動検出による塗布量の検出は実現できなかった。しかしながら、そもそも光コヒーレンストモグラフィー計測システムは、光をプローブとして用い、被検体内での光反射信号を光干渉として捉え、被検体の断層像を非接触、非侵襲で検出できるものである。光反射は、ミラーや金属光沢表面のような鏡面でおこる他、被検体内の媒質の屈折率差のあるところでも発生するが、ミラーや金属光沢面の反射では照射光量のほぼ100%が反射するのに対し、屈折率差のあるところでの反射は非常に小さい。   A semi-transparent or almost transparent protective resin or adhesive (hereinafter referred to as transparent resin) is locally applied on the wiring of a metal substrate having wiring on a metal plate for wiring protection, insulation, and element fixing. Yes. At these application locations, the transparent resin needs to completely cover the metal wiring area connecting the metal substrates, and detection of the application area and the application amount in the vicinity of the wiring is required. However, at present, the detection of the application region of the transparent resin is performed visually with a microscope, and automatic detection is difficult, and detection of the application amount by automatic detection has not been realized yet. However, in the first place, the optical coherence tomography measurement system can detect a tomographic image of a subject in a non-contact and non-invasive manner by using light as a probe and capturing a light reflection signal in the subject as light interference. Light reflection occurs on mirror surfaces such as mirrors and metallic glossy surfaces, and also occurs where there is a difference in the refractive index of the medium in the subject, but almost 100% of the amount of light is reflected when reflecting off mirrors or metallic glossy surfaces. In contrast, the reflection at a difference in refractive index is very small.

したがって、金属光沢面上に透明樹脂が塗布される場合、OCTでは金属光沢面からの反射光量で検出器の感度がとられてしまい、透明樹脂の塗布表面の検出が困難であり、断層像から透明樹脂の塗布の有無及び塗布量を計測することが難しい。   Therefore, when a transparent resin is applied on a metallic glossy surface, the sensitivity of the detector is taken by the amount of light reflected from the metallic glossy surface in OCT, and it is difficult to detect the coated surface of the transparent resin. It is difficult to measure the presence / absence and application amount of a transparent resin.

このように、光コヒーレンストモグラフィー計測システムでの断層像の計測において、透明樹脂の表面からの反射光を捉えきれないために、透明樹脂の塗布形状から透明樹脂の塗布領域や塗布量を検出することは簡単にはでいない。   In this way, in the measurement of tomographic images with the optical coherence tomography measurement system, the reflected light from the surface of the transparent resin cannot be captured, so the transparent resin application area and application amount are detected from the transparent resin application shape. Is not easy.

このような現状から、本発明は、金属光沢面に塗布される透明樹脂の塗布領域と塗布量を自動判定可能にして、生産ライン上で利用できるようにした、光コヒーレンストモグラフィー計測システムを提供するようにした。   Under such circumstances, the present invention provides an optical coherence tomography measurement system that can automatically determine the application area and the application amount of a transparent resin applied to a metallic glossy surface and can be used on a production line. I did it.

本発明は、上記状況に鑑みて、金属光沢面に塗布される透明樹脂の塗布の塗布領域と塗布量を自動判定可能にする金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法及びその光コヒーレンストモグラフィー計測システムを提供することを目的とする。   In view of the above situation, the present invention detects the application region and the application amount of a transparent resin applied to a metallic glossy surface that enables automatic determination of the application region and application amount of the transparent resin applied to the metal glossy surface. It is an object of the present invention to provide a method and an optical coherence tomography measurement system thereof.

本発明は、上記目的を達成するために、
〔1〕金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、低コヒーレンス光源からの光を物体光と参照光に2分割し、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰させ、この回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とし、前記合波光を分光する回折格子で分光された前記合波光のスペクトルを検出し、この検出データをフーリエ逆変換処理して、前記透明樹脂の断層画像を形成し、この断層画像の解析により透明樹脂の塗布領域と塗布量を検出し、表示することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a method for detecting a coating area and a coating amount of a transparent resin to be applied to a metallic glossy surface, light from a low coherence light source is divided into object light and reference light, and the object light is locally applied to the metallic glossy surface. The transparent resin to be applied is scanned, irradiated and returned, the returned object light and the reference light are combined, the difference between the object optical path length and the reference optical path length is made variable, and the combined light is dispersed. The spectrum of the combined light split by the diffraction grating is detected, and the detected data is subjected to inverse Fourier transform processing to form a tomographic image of the transparent resin. Is detected and displayed.

〔2〕金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、低コヒーレンス光源からの光を物体光と参照光に2分割し、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰させ、この回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とし、前記合波光の位相を変調し、ビート信号を発生させ、前記合波光の干渉を検出し、この検出データを演算処理して、前記透明樹脂の断層画像を形成し、この断層画像の解析から透明樹脂の塗布領域と塗布量を検出し、表示することを特徴とする。   [2] In the method of detecting the coating area and the coating amount of the transparent resin applied to the metallic glossy surface, the light from the low-coherence light source is divided into the object light and the reference light, and the object light is locally applied to the metallic glossy surface. The transparent resin to be applied is scanned, irradiated and returned, the returned object light and the reference light are combined, the difference between the object optical path length and the reference optical path length is variable, and the phase of the combined light is changed. Modulating, generating a beat signal, detecting interference of the combined light, processing this detection data, forming a tomographic image of the transparent resin, and analyzing the tomographic image, and applying the transparent resin coating region and coating The quantity is detected and displayed.

〔3〕上記〔1〕又は〔2〕記載の金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、前記物体光が金属光沢面に局所的に塗布される透明樹脂への走査照射は、透明樹脂が塗布される領域と塗布されない領域を含むことを特徴とする。   [3] In the method for detecting the application region and the application amount of the transparent resin applied to the metallic glossy surface according to [1] or [2] above, the transparent resin in which the object light is locally applied to the metallic glossy surface The scanning irradiation is characterized by including a region where the transparent resin is applied and a region where the transparent resin is not applied.

〔4〕上記〔1〕又は〔2〕記載の金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、前記透明樹脂の塗布領域と塗布量の検出は、塗布量に応じて検出位置が異なる塗布面を検出することで行うことを特徴とする。   [4] In the method for detecting the application region and the application amount of the transparent resin applied to the metallic glossy surface according to [1] or [2], the detection of the application region and the application amount of the transparent resin may be performed according to the application amount. Accordingly, the detection is performed by detecting application surfaces having different detection positions.

〔5〕光コヒーレンストモグラフィー計測システムにおいて、低コヒーレンス光源と、この低コヒーレンス光源からの光を物体光と参照光に2分割する手段と、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰する手段と、前記回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とする手段と、前記合波光を分光する回折格子と、前記回折格子で分光された前記合波光のスペクトルを検出する検出手段と、この検出手段からの検出データを演算処理して、前記透明樹脂の断層画像を形成し、この断層画像の解析から前記透明樹脂の塗布領域と塗布量を検出し、表示する手段を具備することを特徴とする。   [5] In an optical coherence tomography measurement system, a low-coherence light source, means for dividing the light from the low-coherence light source into object light and reference light, and a transparent on which the object light is locally applied to a metallic gloss surface Means for scanning and irradiating the resin to return, means for combining the returned object light and the reference light, and making the difference between the object optical path length and the reference optical path length variable, and diffraction for dispersing the combined light. A grating, a detecting means for detecting the spectrum of the combined light split by the diffraction grating, and processing the detection data from the detecting means to form a tomographic image of the transparent resin, and analyzing the tomographic image And a means for detecting and displaying the application region and the application amount of the transparent resin.

〔6〕光コヒーレンストモグラフィー計測システムにおいて、低コヒーレンス光源と、この低コヒーレンス光源からの光を物体光と参照光に2分割する手段と、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰する手段と、前記回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とする手段と、前記合波光の位相を変調し、ビート信号を発生させる手段と、前記合波光の干渉を検出する検出手段と、前記検出手段からの検出データを演算処理して、前記被検体の断層画像を形成し、この断層画像の解析から透明樹脂の塗布領域と塗布量を検出し、表示する手段を具備することを特徴とする。   [6] In an optical coherence tomography measurement system, a low-coherence light source, means for dividing the light from the low-coherence light source into object light and reference light, and a transparent on which the object light is locally applied to a metallic gloss surface Means for scanning and irradiating the resin to return, means for combining the returned object light and the reference light, and making the difference between the object optical path length and the reference optical path length variable, and modulating the phase of the combined light Then, a means for generating a beat signal, a detection means for detecting interference of the combined light, and a calculation process of detection data from the detection means to form a tomographic image of the subject, and analysis of the tomographic image And a means for detecting and displaying the transparent resin application region and the application amount.

〔7〕上記〔5〕又は〔6〕記載の光コヒーレンストモグラフィー計測システムにおいて、前記物体光が金属光沢面に局所的に塗布される透明樹脂への走査照射は、前記透明樹脂が塗布される領域と塗布されない領域を含むことを特徴とする。   [7] In the optical coherence tomography measurement system according to the above [5] or [6], the scanning irradiation to the transparent resin in which the object light is locally applied to the metallic gloss surface is a region to which the transparent resin is applied. And a region not coated.

〔8〕上記〔5〕又は〔6〕記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂の塗布領域と塗布量の検出は、塗布量に応じて検出位置が異なる塗布面を検出することで行うことを特徴とする。   [8] In the optical coherence tomography measurement system according to [5] or [6], the application region and the application amount of the transparent resin are detected by detecting application surfaces having different detection positions according to the application amount. It is characterized by that.

〔9〕上記〔5〕又は〔6〕記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂の走査は、前記透明樹脂を移動させる走査機構により行うことを特徴とする。   [9] The optical coherence tomography measurement system according to [5] or [6], wherein the scanning of the transparent resin is performed by a scanning mechanism that moves the transparent resin.

〔10〕上記〔5〕又は〔6〕記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂は所定位置に固定し、前記物体光をガルバノミラーによる走査機構により行うことを特徴とする。   [10] The optical coherence tomography measurement system according to [5] or [6], wherein the transparent resin is fixed at a predetermined position, and the object light is performed by a scanning mechanism using a galvanometer mirror.

本発明によれば、金属光沢面に塗布される透明樹脂の塗布の塗布領域と塗布量を自動判定可能にする、金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法及びその光コヒーレンストモグラフィー計測システムを提供することができる。   According to the present invention, it is possible to automatically determine the application area and the application amount of a transparent resin applied to a metallic glossy surface, and a method for detecting the application area and the application amount of a transparent resin applied to a metallic glossy surface. The optical coherence tomography measurement system can be provided.

本発明の第1実施例を示す全ファイバー型のスペクトルドメイン型のOCT計測システムのブロック図である。1 is a block diagram of an all fiber type spectral domain type OCT measurement system showing a first embodiment of the present invention; FIG. 本発明の第2実施例を示す全ファイバー型のスペクトルドメイン型のOCT計測システムのブロック図である。It is a block diagram of the OCT measurement system of the all-fiber type | mold spectrum domain type | mold which shows 2nd Example of this invention. 屈折率ni とnt の異なる媒質の境界での光反射率Rと光透過率Tの模式図である。It is a schematic diagram of the light reflectivity R and the light transmittance T at the boundary between media having different refractive indexes n i and n t . 金属基板の金属面に透明樹脂が塗布されている場合の反射の模式図である。It is a schematic diagram of reflection in case transparent resin is apply | coated to the metal surface of a metal substrate. 金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂の実形状(実際の厚さg)を示す模式図である。It is a schematic diagram which shows the real shape (actual thickness g) of transparent resin when transparent resin is apply | coated to the metal surface of a metal substrate. 本発明の光コヒーレンストモグラフィー計測システムを用いて計測した断面像の模式図である。It is a schematic diagram of the cross-sectional image measured using the optical coherence tomography measurement system of this invention. 金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂塗布部の顕微鏡像を示す図である。It is a figure which shows the microscope image of the transparent resin application part in case transparent resin is apply | coated to the metal surface of a metal substrate. 透明樹脂塗布部の3D像を示す図である。It is a figure which shows the 3D image of a transparent resin application part. 透明樹脂塗布部のXZ断層面を示す図である。It is a figure which shows the XZ tomographic plane of a transparent resin application part. 透明樹脂塗布部のXY断層面を示す図である。It is a figure which shows the XY tomographic plane of a transparent resin application part. 金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂塗布部の顕微鏡像を示す図である。It is a figure which shows the microscope image of the transparent resin application part in case transparent resin is apply | coated to the metal surface of a metal substrate. OCT像を示す図である。It is a figure which shows an OCT image. 計測の判定の流れを示す図である。It is a figure which shows the flow of determination of measurement. 金属基板の金属面に透明樹脂が塗布されている場合のNG丸を有する顕微鏡像及び透明樹脂の塗布部の傾斜マップを示す図である。It is a figure which shows the inclination map of the microscopic image which has a NG circle | round | yen in case the transparent resin is apply | coated to the metal surface of a metal substrate, and the application part of transparent resin. 金属基板の金属面に透明樹脂が塗布されている場合のOK丸を有する顕微鏡像及び透明樹脂の塗布部の傾斜マップを示す図である。It is a figure which shows the inclination map of the microscopic image which has an OK circle in case the transparent resin is apply | coated to the metal surface of a metal substrate, and the application part of transparent resin.

本発明の金属面に塗布される透明樹脂の塗布領域と塗布量を検出する方法は、低コヒーレンス光源からの光を物体光と参照光に2分割し、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰させ、この回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とし、前記合波光を分光する回折格子で分光された前記合波光のスペクトルを検出し、この検出データをフーリエ逆変換処理して、前記透明樹脂の断層画像を形成し、この断層画像の解析により透明樹脂の塗布領域と塗布量を検出し、表示する。   In the method of detecting the coating area and the coating amount of the transparent resin applied to the metal surface of the present invention, the light from the low coherence light source is divided into the object light and the reference light, and the object light is locally applied to the metallic gloss surface. Diffraction that scans and irradiates the transparent resin applied to the substrate, combines the returned object light and the reference light, makes the difference between the object optical path length and the reference optical path length variable, and splits the combined light The spectrum of the combined light split by the grating is detected, and the detected data is subjected to Fourier inverse transform processing to form a tomographic image of the transparent resin. By analyzing the tomographic image, the coating area and the coating amount of the transparent resin are determined. Detect and display.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す全ファイバー型のスペクトルドメイン型のOCT計測システムのブロック図である。   FIG. 1 is a block diagram of an all fiber type spectral domain type OCT measurement system showing a first embodiment of the present invention.

この図に示すように、OCT計測システム1は、低コヒーレンス光源2からの光をレンズ3を介して光ファイバー4によりファイバーカプラー(分波素子)5により光ファイバー6を介した参照光7と光ファイバー9を介した物体光10に分波し、参照光7は参照ミラー8で反射し、同一光路をファイバーカプラー(分波素子)5に戻り、物体光10は計測ヘッド11の対物レンズ12を介して、金属基板21の金属光沢面22に塗布される透明樹脂23に照射され、照射箇所からの表面反射光、内部散乱光、境界面反射光は同一光路をファイバーカプラー(分波素子)5に戻り、ファイバーカプラー(分波素子)5で合波干渉した光は光ファイバー13を介したレンズ14を介して回折格子15で分光され、分光器(CCDカメラ)16で合波光のスペクトルを検出し、この検出データを演算手段(PCユニット)17によりフーリエ逆変換処理して、前記透明樹脂23の断層画像を形成し、断層画像の解析により透明樹脂23の塗布領域と塗布量を検出し、表示手段(表示装置)18に表示する。つまり、ここでは、全ファイバー型の干渉計を構築し、干渉計の出力光を分光器16で波数解析することで、金属基板21の金属光沢面22に塗布される透明樹脂23の断層プロファイルを取得するシステムを採用している。この実施例では、透明樹脂23の走査は、透明樹脂23を移動させる走査機構により行うように構成したので、計測ヘッド11の簡素化を図ることができる。   As shown in this figure, the OCT measurement system 1 divides the light from the low coherence light source 2 into the optical fiber 4 through the lens 3 and the reference light 7 and the optical fiber 9 through the optical fiber 6 by the fiber coupler (demultiplexing element) 5. The reference light 7 is reflected by the reference mirror 8, returns to the fiber coupler (demultiplexing element) 5 through the same optical path, and the object light 10 passes through the objective lens 12 of the measuring head 11. The transparent resin 23 applied to the metallic gloss surface 22 of the metal substrate 21 is irradiated, and the surface reflected light, the internal scattered light, and the boundary surface reflected light from the irradiated portion return to the fiber coupler (demultiplexing element) 5 through the same optical path, The light combined and interfered by the fiber coupler (demultiplexing element) 5 is split by the diffraction grating 15 via the lens 14 via the optical fiber 13 and is then split by the spectroscope (CCD camera) 16. The spectrum of the wave light is detected, and the detected data is subjected to Fourier inverse transform processing by the computing means (PC unit) 17 to form a tomographic image of the transparent resin 23, and the application region and the application of the transparent resin 23 are analyzed by analyzing the tomographic image. The amount is detected and displayed on the display means (display device) 18. That is, here, by constructing an all-fiber interferometer and analyzing the wave number of the output light of the interferometer with the spectroscope 16, the tomographic profile of the transparent resin 23 applied to the metallic glossy surface 22 of the metal substrate 21 is obtained. The system to acquire is adopted. In this embodiment, since the scanning of the transparent resin 23 is configured to be performed by a scanning mechanism that moves the transparent resin 23, the measurement head 11 can be simplified.

図2は本発明の第2実施例を示す全ファイバー型のスペクトルドメイン型のOCT計測システムのブロック図である。 この実施例では、計測ヘッド51には透明樹脂23の走査を行うガルバノミラー53を内蔵させて光学的走査を行うように構成し、透明樹脂23は所定位置にセットし、固定するようにしている。よって、透明樹脂23のセットは、正確に、かつ容易に行うことができる。   FIG. 2 is a block diagram of an all-fiber spectral domain type OCT measurement system showing a second embodiment of the present invention. In this embodiment, a galvanometer mirror 53 for scanning the transparent resin 23 is built in the measuring head 51 so as to perform optical scanning, and the transparent resin 23 is set and fixed at a predetermined position. . Therefore, the setting of the transparent resin 23 can be performed accurately and easily.

図3は屈折率ni とnt の異なる媒質の境界での光反射率Rと光透過率Tの模式図である。 Figure 3 is a schematic diagram of an optical reflectance R and transmittance T of the boundary of media having different refractive index n i and n t.

この図において、光コヒーレンストモグラフィー計測システムで、被検体としての金属基板21の金属光沢面22に塗布される透明樹脂23の断層像を計測する場合、図3に示すように、空気25の屈折率をni と透明樹脂23の屈折率をnt とすると、屈折率ni と屈折率nt の異なる媒質の境界での光反射率Rは、
R=(nt −ni 2 /(nt +ni 2
で与えられる。
In this figure, when measuring a tomographic image of the transparent resin 23 applied to the metallic glossy surface 22 of the metal substrate 21 as an object with the optical coherence tomography measurement system, as shown in FIG. Where n i and the refractive index of the transparent resin 23 are n t , the light reflectivity R at the boundary between the media having different refractive indices n i and n t is
R = (n t −n i ) 2 / (n t + n i ) 2
Given in.

一方、光透過率Tは、
T=4nt i /(nt +ni 2
で与えられる。
On the other hand, the light transmittance T is
T = 4n t n i / (n t + n i ) 2
Given in.

図4は金属基板の金属面に透明樹脂が塗布されている場合の反射の模式図である。   FIG. 4 is a schematic view of reflection when a transparent resin is applied to the metal surface of the metal substrate.

この図に示すように、金属基板21の金属光沢面22に透明樹脂23が塗布されている場合、透明樹脂23の屈折率が1.5とすると、透明樹脂23の塗布表面24では照射光量に対し4%しか反射しないが、透明樹脂23が塗布される金属基板21の金属光沢面22では照射光量の96%が反射する。透明樹脂23の塗布表面24と金属基板21の金属光沢面22での反射光は同軸で反射し重なるため、金属基板21の金属光沢面22の高強度の反射光量で検出が飽和してしまい、低強度の透明樹脂23の塗布表面24の反射光量を十分に検出することができない。   As shown in this figure, when the transparent resin 23 is applied to the metallic glossy surface 22 of the metal substrate 21, if the refractive index of the transparent resin 23 is 1.5, the application surface 24 of the transparent resin 23 has an irradiation light amount. On the other hand, only 4% is reflected, but 96% of the irradiation light amount is reflected on the metallic glossy surface 22 of the metal substrate 21 to which the transparent resin 23 is applied. Since the reflected light on the coated surface 24 of the transparent resin 23 and the metallic glossy surface 22 of the metal substrate 21 are coaxially reflected and overlapped, the detection is saturated with the high intensity reflected light amount of the metallic glossy surface 22 of the metal substrate 21, The amount of reflected light from the coating surface 24 of the low-strength transparent resin 23 cannot be sufficiently detected.

また、局所的に透明樹脂23が塗布されることから、透明樹脂23の塗布表面24が図3のようにドーム状になる。透明樹脂23の塗布部中心以外のところでは、透明樹脂23の塗布表面24が光照射軸と垂直にならず、透明樹脂23の塗布表面24からの反射光は軸外に逃げてしまい検出できない。   Further, since the transparent resin 23 is locally applied, the application surface 24 of the transparent resin 23 has a dome shape as shown in FIG. In places other than the center of the application portion of the transparent resin 23, the application surface 24 of the transparent resin 23 is not perpendicular to the light irradiation axis, and the reflected light from the application surface 24 of the transparent resin 23 escapes off axis and cannot be detected.

このように、光コヒーレンストモグラフィー計測システムでの断層像の計測において、透明樹脂23の塗布表面24からの反射光を捉えきれないため、透明樹脂23の塗布形状から透明樹脂23の塗布領域や塗布量を検出することは簡単にはできない。   Thus, since the reflected light from the coating surface 24 of the transparent resin 23 cannot be captured in the measurement of the tomographic image by the optical coherence tomography measurement system, the coating region and the coating amount of the transparent resin 23 are changed from the coating shape of the transparent resin 23. It is not easy to detect.

このような現状から、本発明は、金属基板の金属面に塗布される透明樹脂23の塗布領域と塗布量を自動判定可能にして、生産ライン上で利用できるようにした、光コヒーレンストモグラフィー計測システムを提供するようにした。   In view of the current situation, the present invention is an optical coherence tomography measurement system that can automatically determine the application region and the application amount of the transparent resin 23 applied to the metal surface of the metal substrate and use it on the production line. To offer.

図5は金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂の実形状(実際の厚さg)を示す模式図、図6は本発明の光コヒーレンストモグラフィー計測システムを用いて計測した断面像の模式図である。   FIG. 5 is a schematic diagram showing the actual shape (actual thickness g) of the transparent resin when the transparent resin is applied to the metal surface of the metal substrate, and FIG. 6 is measured using the optical coherence tomography measurement system of the present invention. It is the schematic diagram of a cross-sectional image.

本発明の光コヒーレンストモグラフィー計測システムで、被検体としての金属基板21の金属光沢面22に塗布される透明樹脂23を計測する場合、図6に示されるように、計測される距離は被検体としての透明樹脂23の実厚さg(図5参照)ではなく光学距離であり、光学距離は実距離g×透明樹脂23の屈折率nt で与えられる。空気25の屈折率は、ほぼ1であるため、空気25中での測定距離は被検体としての透明樹脂23の実距離と一致するが、屈折率が1ではない媒質を測定する場合には、実距離より実距離g×(媒質の屈折率nt −1)だけ長く測定される。例えば厚み3mmのガラス(屈折率1.5)の厚みを測定すると、4.5mmと測定される。 In the optical coherence tomography measurement system of the present invention, when measuring the transparent resin 23 applied to the metallic glossy surface 22 of the metal substrate 21 as an object, as shown in FIG. The optical distance is not the actual thickness g of the transparent resin 23 (see FIG. 5), and the optical distance is given by the actual distance g × the refractive index n t of the transparent resin 23. Since the refractive index of the air 25 is approximately 1, the measurement distance in the air 25 coincides with the actual distance of the transparent resin 23 as the subject, but when measuring a medium whose refractive index is not 1, It is measured longer than the actual distance by an actual distance g × (medium refractive index n t −1). For example, when the thickness of glass having a thickness of 3 mm (refractive index of 1.5) is measured, it is measured to be 4.5 mm.

そのため、平面の金属基板の金属光沢面に局所的に透明樹脂を塗布した場合、その屈折率は1以上であることから、図6に示すように透明樹脂が塗布される位置での金属基板の位置は、透明樹脂の塗布表面が平面であるにも関わらず、塗布されていない金属基板の位置より深いところで検出されることになる。透明樹脂の塗布領域での金属基板の検出位置は透明樹脂の塗布表面を基準とすると、実距離g×媒質の屈折率nt となり、透明樹脂が塗布されていない領域の金属基板の検出位置はg×1(空気の屈折率)となるから、透明樹脂が塗布されていない金属基板の位置を基準とすると、透明樹脂の塗布領域での金属基板の位置は、
g×(nt −1)
となる。この量は、透明樹脂の厚みgに比例することから、この量を検出することにより、透明樹脂塗布量を求めることができる。透明樹脂が塗布されていない金属基板の位置より深層に金属基板の位置が検出されるかどうかで、透明樹脂塗布の有無を確認できる。また、十分に強度のある金属基板からの反射光を測定に使用するため、十分な検出感度が保たれる。
Therefore, when a transparent resin is locally applied to the metallic gloss surface of a flat metal substrate, the refractive index is 1 or more, so that the metal substrate at the position where the transparent resin is applied as shown in FIG. The position is detected deeper than the position of the uncoated metal substrate, even though the transparent resin coating surface is flat. The detection position of the metal substrate in the transparent resin application area is the actual distance g × the refractive index n t of the medium, based on the transparent resin application surface, and the detection position of the metal substrate in the area where the transparent resin is not applied is Since it is g × 1 (refractive index of air), the position of the metal substrate in the transparent resin application region is based on the position of the metal substrate on which the transparent resin is not applied.
g × (n t −1)
It becomes. Since this amount is proportional to the thickness g of the transparent resin, the transparent resin coating amount can be obtained by detecting this amount. Whether or not the transparent resin is applied can be confirmed by detecting whether or not the position of the metal substrate is detected deeper than the position of the metal substrate to which the transparent resin is not applied. Moreover, since the reflected light from a sufficiently strong metal substrate is used for measurement, sufficient detection sensitivity is maintained.

図7は金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂塗布部の顕微鏡像を示す図、図8はその透明樹脂塗布部の3D像を示す図、図9はその透明樹脂塗布部のXZ断層面を示す図、図10はその透明樹脂塗布部のXY断層面を示す図である。   FIG. 7 is a view showing a microscopic image of a transparent resin application portion when a transparent resin is applied to the metal surface of the metal substrate, FIG. 8 is a view showing a 3D image of the transparent resin application portion, and FIG. FIG. 10 is a diagram showing an XZ tomographic plane of the application part, and FIG. 10 is a diagram showing an XY tomographic plane of the transparent resin application part.

図7において、31は電子回路の素子(金属光沢面)、32は金属光沢面31に塗布された透明樹脂(半透明の接着剤)であり、図9において、33は素子(金属光沢面)の信号強度、34は透明樹脂部、35は配線部と素子を電気的に接続するAgペースト表面部の信号強度であり、透明樹脂32を検出できているが、ノイズとの信号強度が小さい。生産ライン上で使用するには工夫が必要である。図10において、36,37は透明樹脂部、38,39,40はAgペースト表面部である。   In FIG. 7, 31 is an element (metallic glossy surface) of an electronic circuit, 32 is a transparent resin (translucent adhesive) applied to the metallic glossy surface 31, and 33 in FIG. 9 is an element (metallic glossy surface). , 34 is the transparent resin portion, and 35 is the signal strength of the Ag paste surface portion that electrically connects the wiring portion and the element. Although the transparent resin 32 can be detected, the signal strength with noise is small. Ingenuity is required for use on the production line. In FIG. 10, 36 and 37 are transparent resin portions, and 38, 39 and 40 are Ag paste surface portions.

図11は金属基板の金属面に透明樹脂が塗布されている場合の透明樹脂塗布部の顕微鏡像を示す図であり、OK丸部は透明樹脂塗布有部、NG丸部は透明樹脂塗布部の無部である。図12はそのOCT像を示す図であり、41は透明樹脂が塗布されていない素子部、42はAgペースト表面部である。図13はその計測の判定の流れを示す図であり、図13(a)は透明樹脂塗布部の識別を示す図であり、反射信号のピーク強度をマップを作成する。素子部や金属基板部からの反射信号は強いため(白で表示)、透明樹脂塗布部とは明確な違いが現れる。図13(b)は透明樹脂塗布部の形状を示す図であり、反射信号の位置情報(高低情報)のマップを作成する。図13(c)は透明樹脂塗布部の傾斜形状を数値化し、Agペースト部の上記図13(b)の位置情報から傾斜マップを作成する。   FIG. 11 is a view showing a microscopic image of the transparent resin application part when the transparent resin is applied to the metal surface of the metal substrate. The OK round part is the transparent resin application part and the NG round part is the transparent resin application part. There is no part. FIG. 12 is a view showing the OCT image, 41 is an element part to which a transparent resin is not applied, and 42 is an Ag paste surface part. FIG. 13 is a diagram showing a flow of the determination of the measurement, and FIG. 13A is a diagram showing identification of the transparent resin application portion, and a map of the peak intensity of the reflected signal is created. Since the reflected signal from the element part and the metal substrate part is strong (indicated in white), a clear difference from the transparent resin application part appears. FIG. 13B is a diagram showing the shape of the transparent resin application part, and creates a map of position information (level information) of the reflected signal. FIG. 13C quantifies the slope shape of the transparent resin application part, and creates a slope map from the position information of FIG. 13B of the Ag paste part.

例えば図12(a)の断層画像において素子部41から右方Agペースト部42にかけての境界部においてほぼ平行を維持しており素子部に透明樹脂が塗布されていないことが判る。   For example, in the tomographic image shown in FIG. 12A, it can be seen that almost parallel is maintained at the boundary from the element portion 41 to the right Ag paste portion 42, and no transparent resin is applied to the element portion.

これに対して図12(b)の断層画像において素子部41から右方Agペースト部42にかけての境界部において基準面(素子面)から下降している。   On the other hand, in the tomographic image of FIG. 12B, the boundary portion from the element portion 41 to the right Ag paste portion 42 descends from the reference plane (element surface).

これは、素子部表面に透明樹脂が塗布されているための塗布量に応じて光学距離が伸びて表されていることを示している。   This indicates that the optical distance is extended and represented in accordance with the application amount for applying the transparent resin to the surface of the element portion.

これらの傾斜を塗布部全体として表したものが傾斜マップであり、負の傾斜(黒)から正の傾斜(白)をグレースケールで表す。   An inclination map representing these inclinations as the entire application portion represents a negative inclination (black) to a positive inclination (white) in gray scale.

図14は金属基板の金属面に透明樹脂が塗布されている場合のNG丸を有する顕微鏡像及び透明樹脂の塗布部の傾斜マップを示す図、図15は金属基板の金属面に透明樹脂が塗布されている場合のOK丸を有する顕微鏡像及び透明樹脂の塗布部の傾斜マップを示す図である。   FIG. 14 is a view showing a microscope image having an NG circle when the transparent resin is applied to the metal surface of the metal substrate and an inclination map of the application portion of the transparent resin, and FIG. 15 is an application of the transparent resin to the metal surface of the metal substrate. It is a figure which shows the inclination map of the microscopic image which has the OK circle | round | yen in the case of being performed, and the application part of transparent resin.

傾斜マップにおいてOK丸部はその外周部に負の傾斜(黒)部分が存在し、金属基板上に透明樹脂が十分に塗布されていることが判る。   In the inclination map, the OK round part has a negative inclination (black) part on the outer peripheral part, and it can be seen that the transparent resin is sufficiently applied on the metal substrate.

また、NG丸部分は、その外周部に負の傾斜(黒)部分が存在せず、金属基板上に透明樹脂が塗布されていないことが判る。   Further, it can be seen that the NG round portion does not have a negative slope (black) portion on the outer peripheral portion, and no transparent resin is applied on the metal substrate.

この図から明らかなように、透明樹脂の塗布領域を判別可能である。   As is apparent from this figure, the application region of the transparent resin can be determined.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の金属面に塗布される透明樹脂の塗布領域と塗布量を検出する方法及びその光コヒーレンストモグラフィー計測システムは、金属面に塗布される透明樹脂の塗布の塗布領域と塗布量を自動判定可能にする金属面に塗布される透明樹脂の塗布領域と塗布量を検出する方法及びその光コヒーレンストモグラフィー装置として利用可能である。   The method for detecting the application area and the application amount of the transparent resin applied to the metal surface of the present invention and the optical coherence tomography measurement system can automatically determine the application area and application amount of the application of the transparent resin applied to the metal surface. This method can be used as a method for detecting a coating region and a coating amount of a transparent resin to be applied to a metal surface and an optical coherence tomography device.

1 OCT計測システム
2 低コヒーレンス光源
3 レンズ
4,6,9,13 光ファイバー
5 ファイバーカプラ(分波素子)
7 参照光
8 参照ミラー
10 物体光
11 計測ヘッド
12,54 対物レンズ
14,52 レンズ
15 回折素子
16 分光器(CCDカメラ)
17 演算手段(PCユニット)
18 表示手段(表示装置)
21 金属基板
22 金属光沢面
23,32 接着剤や保護樹脂等の透明樹脂
24 透明樹脂の塗布表面
25 空気
31 素子部(金属光沢面)
33 素子部(金属光沢面)の信号強度
34 接着剤や保護樹脂等の透明樹脂部
35 Agペースト表面部の信号強度
36,37 接着剤部
38,39,40,42 Agペースト表面部
41 接着剤が塗布されている素子部
51 計測ヘッド
53 ガルバノミラー
1 OCT measurement system 2 Low coherence light source 3 Lens 4, 6, 9, 13 Optical fiber 5 Fiber coupler (demultiplexing element)
7 Reference Light 8 Reference Mirror 10 Object Light 11 Measuring Head 12, 54 Objective Lens 14, 52 Lens 15 Diffraction Element 16 Spectroscope (CCD Camera)
17 Calculation means (PC unit)
18 Display means (display device)
DESCRIPTION OF SYMBOLS 21 Metal substrate 22 Metal gloss surface 23,32 Transparent resin, such as an adhesive agent and protective resin 24 Transparent resin coating surface 25 Air 31 Element part (metal gloss surface)
33 Signal strength of element part (metallic glossy surface) 34 Transparent resin part such as adhesive or protective resin 35 Signal strength of Ag paste surface part 36, 37 Adhesive part 38, 39, 40, 42 Ag paste surface part 41 Adhesive Element part 51 is applied 51 Measuring head 53 Galvano mirror

Claims (10)

低コヒーレンス光源からの光を物体光と参照光に2分割し、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰させ、該回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とし、前記合波光を分光する回折格子で分光された前記合波光のスペクトルを検出し、該検出データをフーリエ逆変換処理して、前記透明樹脂の断層画像を形成し、該断層画像の解析により前記透明樹脂の塗布領域と塗布量を検出し、表示することを特徴とする金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法。 The light from the low-coherence light source is divided into object light and reference light, and the object light is scanned and irradiated to a transparent resin locally applied to the metallic glossy surface, and the returned object light and the reference The light is combined, the difference between the object optical path length and the reference optical path length is made variable, the spectrum of the combined light separated by the diffraction grating that separates the combined light is detected, and the detected data is subjected to inverse Fourier transform processing. Te, wherein forming a tomographic image of a transparent resin, and detecting the coating amount and the coating area of the transparent resin by analyzing the tomographic image, the application area of the transparent resin applied to the metallic luster surface and displaying And the method of detecting the coating amount. 低コヒーレンス光源からの光を物体光と参照光に2分割し、前記物体光を金属光沢面に局所的に塗布される前記透明樹脂に走査して照射し回帰させ、該回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とし、前記合波光の位相を変調し、ビート信号を発生させ、前記合波光の干渉を検出し、該検出データを演算処理して、前記透明樹脂の断層画像を形成し、該断層画像の解析から前記透明樹脂の塗布領域と塗布量を検出し、表示することを特徴とする金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法。   The light from the low-coherence light source is divided into object light and reference light, and the object light is scanned and irradiated to the transparent resin locally applied to the metallic glossy surface, and the returned object light and the reference light are returned. Combines the reference light, makes the difference between the object optical path length and the reference optical path length variable, modulates the phase of the combined light, generates a beat signal, detects interference of the combined light, and calculates the detection data Processing, forming a tomographic image of the transparent resin, detecting and displaying the transparent resin coating area and coating amount from the analysis of the tomographic image, and displaying the transparent resin coated on the metallic glossy surface A method for detecting the coating area and the coating amount. 請求項1又は2記載の金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、前記物体光が金属光沢面に局所的に塗布される前記透明樹脂への走査照射は、前記透明樹脂が塗布される領域と塗布されない領域を含むことを特徴とする金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法。   3. The method for detecting the application area and the application amount of the transparent resin applied to the metallic glossy surface according to claim 1 or 2, wherein the scanning irradiation to the transparent resin in which the object light is locally applied to the metallic glossy surface is performed. A method for detecting an application area and an application amount of a transparent resin applied to a metallic glossy surface, wherein the transparent resin includes an area where the transparent resin is applied and an area where the transparent resin is not applied. 請求項1又は2記載の金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法において、前記透明樹脂の塗布領域と塗布量の検出は、塗布量に応じて検出位置が異なる塗布面を検出することで行うことを特徴とする金属光沢面に塗布される透明樹脂の塗布領域と塗布量を検出する方法。   3. The method for detecting the application area and application amount of a transparent resin applied to the metallic glossy surface according to claim 1 or 2, wherein the detection position of the application area and application amount of the transparent resin differs depending on the application quantity. A method for detecting an application region and an application amount of a transparent resin applied to a metallic glossy surface, which is performed by detecting an application surface. 低コヒーレンス光源と、該低コヒーレンス光源からの光を物体光と参照光に2分割する手段と、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰する手段と、前記回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とする手段と、前記合波光を分光する回折格子と、前記回折格子で分光された前記合波光のスペクトルを検出する検出手段と、該検出手段からの検出データを演算処理して、前記透明樹脂の断層画像を形成し、該断層画像の解析から前記透明樹脂の塗布領域と塗布量を検出し、表示する手段を具備することを特徴とする光コヒーレンストモグラフィー計測システム。   A low-coherence light source, means for dividing light from the low-coherence light source into object light and reference light, and means for scanning and irradiating the object light to a transparent resin locally applied to a metallic glossy surface And means for combining the returned object light and the reference light so as to make a difference between the object optical path length and the reference optical path length variable, a diffraction grating for spectrally separating the combined light, and spectrally separated by the diffraction grating A detection means for detecting the spectrum of the combined light, and processing the detection data from the detection means to form a tomographic image of the transparent resin, and from the analysis of the tomographic image, the application region and the application amount of the transparent resin An optical coherence tomography measurement system comprising means for detecting and displaying the light. 低コヒーレンス光源と、該低コヒーレンス光源からの光を物体光と参照光に2分割する手段と、前記物体光を金属光沢面に局所的に塗布される透明樹脂に走査して照射し回帰する手段と、前記回帰した物体光と前記参照光を合波し、物体光路長と参照光路長との差を可変とする手段と、前記合波光の位相を変調し、ビート信号を発生させる手段と、前記合波光の干渉を検出する検出手段と、前記検出手段からの検出データを演算処理して、前記被検体の断層画像を形成し、該断層画像の解析から前記透明樹脂の塗布領域と塗布量を検出し、表示する手段を具備することを特徴とする光コヒーレンストモグラフィー計測システム。   A low-coherence light source, means for dividing light from the low-coherence light source into object light and reference light, and means for scanning and irradiating the object light to a transparent resin locally applied to a metallic glossy surface And means for combining the returned object light and the reference light, making the difference between the object optical path length and the reference optical path length variable, means for modulating the phase of the combined light and generating a beat signal; Detection means for detecting the interference of the combined light, and processing the detection data from the detection means to form a tomographic image of the subject, and from the analysis of the tomographic image, the application region and the application amount of the transparent resin An optical coherence tomography measurement system comprising means for detecting and displaying the light. 請求項5又は6記載の光コヒーレンストモグラフィー計測システムにおいて、前記物体光が金属光沢面に局所的に塗布される前記透明樹脂への走査照射は、前記透明樹脂が塗布される領域と塗布されない領域を含むことを特徴とする光コヒーレンストモグラフィー計測システム。   The optical coherence tomography measurement system according to claim 5 or 6, wherein the scanning irradiation to the transparent resin in which the object light is locally applied to the metallic glossy surface includes an area where the transparent resin is applied and an area where the transparent resin is not applied. An optical coherence tomography measurement system comprising: 請求項5又は6記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂の塗布領域と塗布量の検出は、塗布量に応じて検出位置が異なる塗布面を検出することで行うことを特徴とする光コヒーレンストモグラフィー計測システム。   7. The optical coherence tomography measurement system according to claim 5, wherein the detection of the application region and the application amount of the transparent resin is performed by detecting an application surface having a detection position different depending on the application amount. Coherence tomography measurement system. 請求項5又は6記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂の走査は、前記透明樹脂を移動させる走査機構により行うことを特徴とする光コヒーレンストモグラフィー計測システム。   7. The optical coherence tomography measurement system according to claim 5, wherein scanning of the transparent resin is performed by a scanning mechanism that moves the transparent resin. 請求項5又は6記載の光コヒーレンストモグラフィー計測システムにおいて、前記透明樹脂は所定位置に固定し、前記物体光をガルバノミラーによる走査機構により行うことを特徴とする光コヒーレンストモグラフィー計測システム。   7. The optical coherence tomography measurement system according to claim 5, wherein the transparent resin is fixed at a predetermined position, and the object light is measured by a scanning mechanism using a galvanometer mirror.
JP2013220710A 2013-10-24 2013-10-24 Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system Active JP6193088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013220710A JP6193088B2 (en) 2013-10-24 2013-10-24 Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013220710A JP6193088B2 (en) 2013-10-24 2013-10-24 Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system

Publications (2)

Publication Number Publication Date
JP2015081874A JP2015081874A (en) 2015-04-27
JP6193088B2 true JP6193088B2 (en) 2017-09-06

Family

ID=53012536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013220710A Active JP6193088B2 (en) 2013-10-24 2013-10-24 Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system

Country Status (1)

Country Link
JP (1) JP6193088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6571436B2 (en) * 2015-07-28 2019-09-04 株式会社ティーワイテクノ Method and apparatus for evaluating powder compression molding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69227902T3 (en) * 1991-04-29 2010-04-22 Massachusetts Institute Of Technology, Cambridge DEVICE FOR OPTICAL IMAGING AND MEASUREMENT
JP3660185B2 (en) * 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 Tomographic image forming method and apparatus therefor
JP2012202761A (en) * 2011-03-24 2012-10-22 Nikon Corp Optical interference tomographic device
DE102011051146B3 (en) * 2011-06-17 2012-10-04 Precitec Optronik Gmbh Test method for testing a bonding layer between wafer-shaped samples
JP2013068529A (en) * 2011-09-22 2013-04-18 Sanyo Engineer & Construction Inc Tomographic image processing method and tomographic image processing apparatus
JP5978599B2 (en) * 2011-11-17 2016-08-24 花王株式会社 Method for evaluating makeup skin

Also Published As

Publication number Publication date
JP2015081874A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
EP1687587B1 (en) Method and apparatus for three-dimensional spectrally encoded imaging
CN103328921B (en) Single-shot full-field reflection phase microscopy
JP5748753B2 (en) Equipment for absolute measurement of two-dimensional optical path distribution by interferometry
TWI794416B (en) Metrology of multi-layer stacks and interferometer system
WO2011083544A1 (en) Film thickness measuring apparatus using interference and method of measuring film thickness using interference
CN110196021A (en) Coating layer thickness and its application are measured based on Optical coherence tomography technology
JPH09503065A (en) Interferometric measuring method and apparatus for measuring surface shape
JP2008292296A (en) Method for measuring film thickness of transparency film and its apparatus
Luo et al. 4D surface shape measurement system with high spectral resolution and great depth accuracy
Zhang et al. Rapid imaging and product screening with low-cost line-field Fourier domain optical coherence tomography
Rey-Barroso et al. Morphological study of skin cancer lesions through a 3D scanner based on fringe projection and machine learning
TWI458960B (en) White-light interference measuring device and interfere measuring method thereof
JP6193088B2 (en) Method for detecting application area and application amount of transparent resin applied to glossy metallic surface and optical coherence tomography measurement system
Claveau et al. Local reflectance spectra measurements of surfaces using coherence scanning interferometry
KR101759247B1 (en) System and Method for testing authenticity of paintings using optical characteristics analysis
JP6564848B2 (en) Film thickness measuring apparatus and film thickness measuring method
Liu et al. Optically computed phase microscopy for quantitative dynamic imaging of label-free cells and nanoparticles
JP4192038B2 (en) Surface shape and / or film thickness measuring method and apparatus
JP2000002514A (en) Film thickness measuring apparatus, alignment sensor and alignment apparatus
KR101547459B1 (en) Phase reduction imaging system and imaging method of using the same
TWI292471B (en)
JP6196841B2 (en) Transmitted wavefront measuring apparatus and transmitted wavefront measuring method
Lawman et al. Quasi-tomography by free space line field spectral domain optical coherence reflectometry
Keksel et al. Physical Modeling of Full-Field Time-Domain Optical Coherence Tomography
KR102305193B1 (en) Method of measuring refractive of transparent film index using white light scanning interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6193088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250