JP6185355B2 - Lighting device for work mobile - Google Patents

Lighting device for work mobile Download PDF

Info

Publication number
JP6185355B2
JP6185355B2 JP2013204305A JP2013204305A JP6185355B2 JP 6185355 B2 JP6185355 B2 JP 6185355B2 JP 2013204305 A JP2013204305 A JP 2013204305A JP 2013204305 A JP2013204305 A JP 2013204305A JP 6185355 B2 JP6185355 B2 JP 6185355B2
Authority
JP
Japan
Prior art keywords
main body
moving body
posture
working
working moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013204305A
Other languages
Japanese (ja)
Other versions
JP2015067185A (en
Inventor
勝彦 箕浦
勝彦 箕浦
好伸 木村
好伸 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Morita Corp
Original Assignee
J Morita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Morita Corp filed Critical J Morita Corp
Priority to JP2013204305A priority Critical patent/JP6185355B2/en
Publication of JP2015067185A publication Critical patent/JP2015067185A/en
Application granted granted Critical
Publication of JP6185355B2 publication Critical patent/JP6185355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Control And Safety Of Cranes (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

本発明は、高所作業車としての梯子付消防自動車に搭載される伸縮式の梯子(先端屈折式のものも含む)、高所作業車としての屈折梯子付消防自動車に搭載される伸縮・屈折式の塔(ブーム)、その他の高所作業車に搭載される伸縮式のブーム、車両や固定設備に搭載されるクレーン等の作業用移動体に設置される照明装置に関するものである。   The present invention relates to a telescopic ladder (including a tip bending type) mounted on a fire engine with a ladder as an aerial work vehicle, and an extension / refraction mounted on a fire truck with a refractive ladder as an aerial work vehicle. The present invention relates to a lighting device installed on a working movable body such as a tower (boom) of a type, a telescopic boom mounted on other aerial work vehicles, and a crane mounted on a vehicle or fixed equipment.

例えば、梯子付消防自動車は、高層ビル火災などの高所での火災現場で消火活動や救助活動を行うために活躍している。梯子付消防自動車には、作業用移動体として伸縮式の梯子(先端屈折式のものも含む)が搭載されており、梯子の先端に装着されたバスケットや、梯子の上面(背面)にスライド移動自在に設置されたリフタに消防士等が搭乗して消火活動や救助活動を行う。   For example, fire trucks with ladders are active in fire fighting and rescue activities at fire sites in high places such as high-rise building fires. Fire trucks with ladders are equipped with telescopic ladders (including those with a refracting tip) as work moving bodies, and slide to the basket attached to the tip of the ladder or the upper surface (back) of the ladder. Firefighters, etc. board the lifter installed freely to perform fire fighting and rescue activities.

梯子付消防自動車を火災現場の近くに停車させた後、梯子を旋回、起伏及び伸縮移動させて、梯子の先端部を消火活動や救助活動に適した位置に安全かつ速やかに移動させるが、夜間などでは、梯子の先端部を移動させる対象位置であるビルの火災区画が見難いため、梯子に設置した照明装置で火災区画を照射して、梯子の安全かつ速やかな移動と、火災区画での円滑な消火活動や救助活動が行えるようにしている。   After the fire engine with a ladder is stopped near the fire site, the ladder is turned, undulated, and extended and retracted to move the tip of the ladder safely and promptly to a position suitable for fire fighting and rescue activities. Since it is difficult to see the fire section of the building that is the target position to move the tip of the ladder, the lighting section installed on the ladder irradiates the fire section, and the ladder can be moved safely and promptly. Smooth fire extinguishing and rescue activities are possible.

例えば、梯子を火災区画まで移動させる際に、建築物、電柱、樹木といった周辺の障害物との干渉を回避しなければならない場合があり、この梯子の回避動作によって、照明装置の照射範囲が火災区画から外れてしまうことがある。このような場合、作業者が外部入力手段を操作して、照明装置に操作信号を出力し、照明装置の姿勢を適宜に修正して、照明装置が火災区画を常に照射できるようにしているが、作業者の負担が大きい。   For example, when moving a ladder to a fire section, it may be necessary to avoid interference with surrounding obstacles such as buildings, utility poles, and trees. May fall out of compartment. In such a case, the operator operates the external input means, outputs an operation signal to the lighting device, and corrects the posture of the lighting device appropriately so that the lighting device can always irradiate the fire compartment. The burden on the operator is large.

移動体を自動追尾して照明する装置については、多くの提案がなされているが(例えば、下記の特許文献1、2)、移動体の位置検出をセンサや画像処理等によって行う必要があり、しかも、自動追尾制御に複雑な演算処理が必要である。そのため、この種の自動追尾照明装置は高価であり、ビルの火災区画のような、静止体の対象位置を照明するために設置される作業用移動体の照明装置には適さない。また、建設機械に自動追従型の照明装置を設置したものもあるが(例えば、下記の特許文献3、4)、これらは旋回及び起伏移動する作業機の先端部分(バケットの部分)を照射するものであり、静止体の対象位置を照明するために設置される作業用移動体の照明装置には適さない。   Many devices have been proposed for automatically tracking and illuminating a moving body (for example, Patent Documents 1 and 2 below), but it is necessary to detect the position of the moving body by a sensor or image processing. In addition, complicated arithmetic processing is required for automatic tracking control. Therefore, this type of automatic tracking lighting device is expensive, and is not suitable for a lighting device for a work moving body that is installed to illuminate a target position of a stationary body such as a fire section of a building. In addition, some construction machines are equipped with an automatic follow-up type lighting device (for example, Patent Documents 3 and 4 below), which irradiate the tip portion (bucket portion) of a working machine that turns and moves up and down. Therefore, it is not suitable for a lighting device for a working moving body that is installed to illuminate a target position of a stationary body.

特開2001−60406号公報JP 2001-60406 A 特開2000−123614号公報JP 2000-123614 A 特開平6−1180号公報JP-A-6-1180 特開平5−162583号公報Japanese Patent Laid-Open No. 5-162583

本発明の課題は、静止体の照明対象位置を、作業用移動体の動作に追随して、常に照明することができ、しかも、構成や制御が比較的簡素な作業用移動体の照明装置を提供することである。   An object of the present invention is to provide an illumination device for a working moving body that can always illuminate the illumination target position of the stationary body following the operation of the working moving body, and is relatively simple in configuration and control. Is to provide.

上記課題を解決するため、本発明は、旋回及び起伏を含む動作を行う作業用移動体に設置され、投光手段を有し、作業用移動体に対する姿勢変位が可能な本体部と、本体部の作業用移動体に対する姿勢を制御する制御部とを備えた作業用移動体の照明装置であって、制御部は、作業用移動体を所定位置に位置させ、本体部の投光手段から発せられる照明光を静止体の照明対象位置に照射した状態で、該照明対象位置に対応する目標位置に対して、本体部に設定された基準位置から上記目標位置を指向して延びる基準線上に仮想目標位置を設定する仮想目標設定機能部と、上記仮想目標位置を設定した状態からの作業用移動体の動作に追随して、本体部の上記基準位置から照明光の照射方向に対応して延びる照射基準線が常に上記仮想目標位置を指向するように本体部の姿勢を制御する姿勢制御機能部とを備えた構成を提供する。   In order to solve the above-described problems, the present invention provides a main body unit that is installed in a working moving body that performs operations including turning and undulation, has a light projecting unit, and can be displaced in posture with respect to the working moving body, and a main body unit And a control unit for controlling the posture of the work mobile body. The control unit positions the work mobile body at a predetermined position and emits it from the light projecting means of the main body. In a state in which the illumination light to be illuminated is irradiated to the illumination target position of the stationary body, a virtual position is drawn on a reference line extending toward the target position from the reference position set in the main body with respect to the target position corresponding to the illumination target position. The virtual target setting function unit for setting the target position and the operation of the work moving body from the state in which the virtual target position is set extend from the reference position of the main body corresponding to the illumination light irradiation direction. The irradiation reference line is always the virtual target position Providing a structure that includes a posture control function unit for controlling the orientation of the main unit to direct.

上記構成において、本体部には、ジャイロセンサと加速度センサとを含む慣性センサが設けられており、仮想目標設定機能部は、上記仮想目標位置を設定した状態における本体部の姿勢情報を記憶し、姿勢制御機能部は、作業用移動体の動作時に、仮想目標設定機能部で記憶された本体部の姿勢情報と、慣性センサで逐次検知される角度情報に基づいて、本体部の姿勢情報を逐次演算算出して、本体部の姿勢を制御する構成とすることができる。   In the above configuration, the main body is provided with an inertial sensor including a gyro sensor and an acceleration sensor, and the virtual target setting function unit stores posture information of the main body in a state where the virtual target position is set, The posture control function unit sequentially calculates the posture information of the main body based on the posture information of the main body stored in the virtual target setting function unit and the angle information sequentially detected by the inertial sensor during the operation of the working moving body. It can be configured to calculate and calculate the posture of the main body.

また、上記構成において、本体部は、作業用移動体に対して、作業用移動体の旋回方向面内で回動可能な第1作動部と、第1作動部に対して、作業用移動体の起伏方向面内で回動可能で、投光手段が設けられた第2作動部とを備え、制御部の姿勢制御機能部は、第1作動部の回動と、第2作動部の回動とを制御する構成とすることができる。   Further, in the above-described configuration, the main body includes a first operating unit that is rotatable with respect to the working moving body in a turning direction plane of the working moving body, and the working moving body with respect to the first operating unit. And a second actuating part provided with a light projecting means. The posture control function part of the control part is configured to rotate the first actuating part and rotate the second actuating part. It can be set as the structure which controls movement.

あるいは、上記構成において、本体部は、作業用移動体に対して、作業用移動体の起伏方向に回動可能な第1作動部と、第1作動部に対して、作業用移動体の旋回方向に回動可能で、投光手段が設けられた第2作動部とを備え、制御部の姿勢制御機能部は、第1作動部の回動と、第2作動部の回動とを制御する構成とすることができる。   Or in the said structure, a main-body part turns the working moving body with respect to the 1st operation part which can be rotated in the raising / lowering direction of the working moving body with respect to the working moving body. And a second actuating unit provided with a light projecting means, and a posture control function unit of the control unit controls the rotation of the first actuating unit and the rotation of the second actuating unit. It can be set as the structure to do.

また、上記構成において、本体部の作業用移動体に対する姿勢変位が所定範囲内に制限されており、姿勢制御機能部は、本体部の姿勢変位が規制される作業用移動体の動作範囲では、作業用移動体の動作に係らず、本体部の姿勢制御を停止し、作業用移動体が上記動作範囲を脱した位置で、本体部の姿勢制御を再開する構成とすることができる。   Further, in the above configuration, the posture displacement of the main body with respect to the work moving body is limited within a predetermined range, and the posture control function unit is within the operation range of the work moving body in which the posture displacement of the main body is restricted. Regardless of the operation of the working mobile body, the posture control of the main body can be stopped, and the posture control of the main body can be resumed at the position where the working mobile has left the above-mentioned operating range.

上記の慣性センサは、所定の基準以下の上記角度情報は姿勢制御機能部に出力しない不感機能を有していてもよい。   The inertial sensor may have an insensitive function that does not output the angle information below a predetermined reference to the attitude control function unit.

本発明の照明装置は、梯子付消防自動車等の高所作業車に搭載される作業体に好適である。   The lighting device of the present invention is suitable for a work body mounted on an aerial work vehicle such as a fire engine with a ladder.

本発明によれば、静止体の照明対象位置を、作業用移動体の動作に追随して、常に照明することができ、しかも、構成や制御が比較的簡素な作業用移動体の照明装置を提供することができる。   According to the present invention, it is possible to constantly illuminate the illumination target position of the stationary body following the operation of the working mobile body, and the illumination device for the working mobile body is relatively simple in configuration and control. Can be provided.

実施形態に係る梯子付消防自動車の側面図である。It is a side view of the fire engine with a ladder concerning an embodiment. 実施形態に係る梯子付消防自動車の平面図である。It is a top view of the fire engine with a ladder concerning an embodiment. 梯子の部分断面図(図1及び図2に示すV−V部分断面)である。It is a fragmentary sectional view (VV partial section shown in Drawing 1 and Drawing 2) of a ladder. 照明装置を、梯子の基端部に対して平面視となる方向(図3のW方向)から見た図である。It is the figure which looked at the illuminating device from the direction (W direction of FIG. 3) which becomes planar view with respect to the base end part of a ladder. 制御部による本体部の姿勢制御の制御ブロック図である。It is a control block diagram of the attitude | position control of the main-body part by a control part. 本体部(第1作動部)の旋回方向の姿勢制御の一例を示す作動原理図である。It is an operation | movement principle figure which shows an example of the attitude | position control of the turning direction of a main-body part (1st action | operation part). 本体部(第1作動部)の旋回方向の姿勢制御の一例を示す作動原理図である。It is an operation | movement principle figure which shows an example of the attitude | position control of the turning direction of a main-body part (1st action | operation part). 本体部(第2作動部)の起伏方向の姿勢制御の一例を示す作動原理図である。It is an operation | movement principle figure which shows an example of the attitude | position control of the raising / lowering direction of a main-body part (2nd operation part). 第1作動部の姿勢制御の停止と再開を説明する図である。It is a figure explaining stop and resumption of attitude control of the 1st operation part. 他の実施形態に係る梯子の部分断面図(図1及び図2に示すV−V部分断面に対応する断面)である。It is a fragmentary sectional view (a section corresponding to a VV partial section shown in Drawing 1 and Drawing 2) of a ladder concerning other embodiments.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は、この実施形態に係る高所作業車としての梯子付消防自動車を示している。この梯子付消防自動車は、車両本体1と、車両本体1に搭載された作業用移動体としての伸縮式(複数段)の梯子2と、梯子2の基端部(第1段)2aに設置された照明装置3と、梯子2の先端部に装着されたバスケット4とを備えている。照明装置3は、基端部2aの側部の構造材に適宜の取付部材2a1(図3参照)を介して装着され、この実施形態において、照明装置3は、基端部2aの両側部にそれぞれ設置されている。周知のように、車両本体1の後部に縦軸の旋回軸(旋回中心X)回りに旋回可能な旋回テーブル5が配設され、旋回テーブル5に支持フレーム6が取り付けられる。梯子2の基端部2aは支持フレーム6に横軸の起伏軸(起伏中心Y)を介して起伏移動自在に取り付けられる。梯子2は、複数段の梯子部材(図示省略)を入れ子式に組み合わせて構成され、伸縮駆動手段(図示省略)により伸縮作動され、起伏駆動手段(図示省略)により起伏作動され、旋回テーブル5により旋回作動される。なお、車両本体1にはアウトリガー・ジャッキ装置7が装備されており、梯子付消防自動車が火災現場の近傍に到着すると、アウトリガー・ジャッキ装置7が作動され、車両本体1が地上に安定的に支持される。   FIG.1 and FIG.2 has shown the fire engine with a ladder as an aerial work vehicle which concerns on this embodiment. This fire engine with a ladder is installed on a vehicle main body 1, an extendable (multiple-stage) ladder 2 as a working moving body mounted on the vehicle main body 1, and a base end (first stage) 2a of the ladder 2. And the basket 4 attached to the tip of the ladder 2. The illuminating device 3 is attached to the structural material on the side portion of the base end portion 2a via an appropriate attachment member 2a1 (see FIG. 3). In this embodiment, the illuminating device 3 is attached to both sides of the base end portion 2a. Each is installed. As is well known, a turning table 5 capable of turning about a turning axis (turning center X) on the vertical axis is disposed at the rear of the vehicle body 1, and a support frame 6 is attached to the turning table 5. The base end 2a of the ladder 2 is attached to the support frame 6 through a horizontal undulation axis (undulation center Y) so as to be movable up and down. The ladder 2 is constructed by combining a plurality of ladder members (not shown) in a nested manner, and is expanded and contracted by an expansion / contraction drive means (not shown), and is raised and lowered by an undulation drive means (not shown). It is swiveled. The vehicle body 1 is equipped with an outrigger jack device 7. When a fire engine with a ladder arrives near the fire site, the outrigger jack device 7 is activated and the vehicle body 1 is stably supported on the ground. Is done.

図3は、図1及び図2における梯子2のV−V部分断面図、図4は、照明装置3を、梯子2の基端部2aに対して平面視となる方向(図3のW方向)から見た図である。照明装置3は、本体部3Aと制御部3Bとで構成され、この実施形態において、本体部3Aは、基端部2aの側部の構造材に適宜の取付部材2a1を介して装着され、取付部材2a1に対して基端部2aの平面方向と直交する方向の軸(回動中心Z1)回りに回動可能な第1作動部3aと、第1作動部3aに対して基端部2aの平面方向と平行な方向の軸(回動中心Z2)回りに回動可能な第2作動部3bとを備えている。第1作動部3aが基端部2aに対して回動中心Z1回りに回動し、換言すれば、基端部2aの旋回方向に回動し、及び/又は、第2作動部3bが第1作動部3aに対して回動中心Z2回りに回動し、換言すれば、基端部2aの起伏方向に回動し、これらの回動動作によって、基端部2aに対する本体部3Aの姿勢が変位する。本体部3Aの基端部2aに対する初期姿勢は、図4において、第2作動部3bの回動中心Z2が基端部2aの幅方向と一致し、回動中心Z2と直交する第1作動部3aの方向が基端部2aの長手方向と一致し、かつ、第2作動部3bの照射面3b1が基端部2aの平面方向と平行に基端部2aの先端側を向いた状態である(以下、この状態を「原点状態」という。)。例えば、第1作動部3aは、回動中心Z1回りに180°(図4に示す原点状態から左右方向にそれぞれ90°)の範囲で回動可能であり、第2作動部3bは、図4に示す原点状態から回動中心Z2回りに正逆両方向にそれぞれ360°の範囲で回動可能である。ただし、第2作動部3bは、図4に示す原点状態から回動中心Z2回りに正方向及び/又は逆方向にエンドレスで回動可能であってもよい。   3 is a VV partial cross-sectional view of the ladder 2 in FIGS. 1 and 2, and FIG. 4 is a plan view of the lighting device 3 with respect to the base end portion 2a of the ladder 2 (W direction in FIG. 3). ). The illuminating device 3 includes a main body 3A and a control unit 3B. In this embodiment, the main body 3A is mounted on a structural material on the side of the base end 2a via an appropriate mounting member 2a1. A first actuating portion 3a that is rotatable about an axis (rotation center Z1) in a direction orthogonal to the planar direction of the base end portion 2a with respect to the member 2a1, and a base end portion 2a of the first actuating portion 3a. And a second actuating portion 3b that is rotatable about an axis (rotation center Z2) in a direction parallel to the planar direction. The first actuating part 3a pivots around the pivot center Z1 with respect to the base end part 2a, in other words, pivots in the turning direction of the base end part 2a and / or the second actuating part 3b 1 is rotated about the rotation center Z2 with respect to the operating portion 3a, in other words, is rotated in the undulating direction of the base end portion 2a, and the posture of the main body portion 3A with respect to the base end portion 2a by these rotating operations. Is displaced. The initial posture of the main body portion 3A with respect to the base end portion 2a is as shown in FIG. 4 in which the first operation portion in which the rotation center Z2 of the second operation portion 3b coincides with the width direction of the base end portion 2a and is orthogonal to the rotation center Z2. The direction of 3a coincides with the longitudinal direction of the base end portion 2a, and the irradiation surface 3b1 of the second actuating portion 3b faces the distal end side of the base end portion 2a parallel to the plane direction of the base end portion 2a. (Hereafter, this state is referred to as “origin state”). For example, the first actuating part 3a can be rotated in the range of 180 ° around the turning center Z1 (90 ° in the horizontal direction from the origin state shown in FIG. 4), and the second actuating part 3b is shown in FIG. Can be rotated in the range of 360 ° in both forward and reverse directions around the rotation center Z2. However, the second operating part 3b may be endlessly rotatable in the forward direction and / or the reverse direction around the rotation center Z2 from the origin state shown in FIG.

この実施形態において、制御部3Bは、本体部3Aの第1作動部3aの内部に収容されている。また、第1作動部3aの内部には、制御部3Bに加え、第1作動部3aを回動中心Z1回りに回動させる回動機構、例えばサーボモータ(図示省略)と、第2作動部3bを回動中心Z2回りに回動させる回動機構、例えばサーボモータ(図示省略)と、本体部3Aの姿勢情報を検知するセンサ、例えばジャイロセンサと加速度センサとを含む慣性センサ、特に3軸のジャイロセンサと加速度センサとを含む3軸の慣性センサ3cが収容されている。例えば、第1作動部3aの回動中心Z1は、本体部3Aの重心G(第1作動部3aの重心又は本体部3A全体の重心)を通り、この重心Gの位置に慣性センサ3cが配置されている。慣性センサ3cで検知される本体部3Aの姿勢情報、この実施形態では、第1作動部3a及び第2作動部3bの回動に関する角度情報が制御部3Bに入力される。また、第2作動部3bの内部には、LED等の投光手段(図示省略)が収容され、投光手段から発せられる照明光は照射面3b1から所定の広がり角(例えば約100°以上)をもって所定方向に照射される。慣性センサ3cは、所定の基準以下の角度情報は姿勢制御機能部3B2に出力しない不感機能を有しており、例えば車両本体1から梯子2(基端部2a)伝わる振動やその他の外力により、本体部3Aが微小変位しても、この微小変位は制御のファクターとはならない。尚、慣性センサ3cは、本体部3Aの重心Gの位置に限らず、第1作動部3aの回動中心Z1上の任意の位置に配置すればよい。また、第1作動部3aの回動中心Z1は、本体部3Aの重心Gからずれた位置に在ってもよい。   In this embodiment, the control part 3B is accommodated in the inside of the 1st action | operation part 3a of 3 A of main-body parts. In addition to the control unit 3B, the first operating unit 3a includes a rotation mechanism that rotates the first operating unit 3a about the rotation center Z1, for example, a servo motor (not shown), and a second operating unit. A rotation mechanism that rotates 3b around the rotation center Z2, for example, a servo motor (not shown), and a sensor that detects posture information of the main body 3A, for example, an inertial sensor including a gyro sensor and an acceleration sensor, particularly three axes A three-axis inertial sensor 3c including a gyro sensor and an acceleration sensor is housed. For example, the rotation center Z1 of the first operating part 3a passes through the center of gravity G of the main body part 3A (the center of gravity of the first operating part 3a or the center of gravity of the entire main body part 3A), and the inertial sensor 3c is disposed at the position of the center of gravity G. Has been. Attitude information of the main body 3A detected by the inertial sensor 3c, in this embodiment, angle information regarding rotation of the first operating unit 3a and the second operating unit 3b is input to the control unit 3B. Further, a light projecting means (not shown) such as an LED is accommodated in the second operating portion 3b, and the illumination light emitted from the light projecting means is a predetermined spread angle (for example, about 100 ° or more) from the irradiation surface 3b1. Is irradiated in a predetermined direction. The inertial sensor 3c has an insensitive function that does not output angle information below a predetermined reference to the attitude control function unit 3B2. For example, due to vibrations transmitted from the vehicle body 1 to the ladder 2 (base end 2a) and other external forces, Even if the main body 3A is slightly displaced, this minute displacement does not become a control factor. Note that the inertial sensor 3c is not limited to the position of the center of gravity G of the main body 3A, and may be disposed at an arbitrary position on the rotation center Z1 of the first operating part 3a. Further, the rotation center Z1 of the first operating part 3a may be located at a position shifted from the center of gravity G of the main body part 3A.

図5は、制御部3Bによる本体部3Aの姿勢制御の制御ブロック図である。制御部3Bは、仮想目標設定機能部3B1と姿勢制御機能部3B2とを備え、この実施形態では、さらにマニュアル制御機能部3B3を備えている。慣性センサ3cで検出される上記の角度情報は角度情報信号S1として姿勢制御機能部3B2に逐次入力され、姿勢制御機能部3B2は、本体部3A(第1作動部3aと第2作動部3b)の回動機構3dに制御信号S2を出力する。マニュアル制御機能部3B3には、外部の入力手段10から操作信号S3が入力され、マニュアル制御機能部3B3は、この操作信号S3に基づいて回動機構3dに制御信号S4を出力する。また、制御信号S4に基づく本体部3Aの姿勢情報が姿勢情報信号S5として、マニュアル制御機能部3B3から仮想目標設定機能部3B1に送られる。   FIG. 5 is a control block diagram of posture control of the main body 3A by the control unit 3B. The control unit 3B includes a virtual target setting function unit 3B1 and an attitude control function unit 3B2. In this embodiment, the control unit 3B further includes a manual control function unit 3B3. The angle information detected by the inertial sensor 3c is sequentially input to the attitude control function unit 3B2 as an angle information signal S1, and the attitude control function unit 3B2 includes the main body 3A (first operation unit 3a and second operation unit 3b). The control signal S2 is output to the rotation mechanism 3d. The manual control function unit 3B3 receives an operation signal S3 from the external input means 10, and the manual control function unit 3B3 outputs a control signal S4 to the rotation mechanism 3d based on the operation signal S3. Further, posture information of the main body 3A based on the control signal S4 is sent from the manual control function unit 3B3 to the virtual target setting function unit 3B1 as the posture information signal S5.

仮想目標設定機能部3B1は、梯子2(基端部2a)を所定位置(図1及び図2に示す梯子2の初期搭載位置を含む。)に位置させ、本体部3Aの第2作動部3bの投光手段から発せられる照明光を静止体の照明対象位置(例えば、火災が発生しているビルの火災区画)に照射した状態で、上記照明対象位置に対応する目標位置(この目標位置は、上記照明対象位置であっても良いし、上記照明対象位置から多少ずれた位置であってもよい。)に対して、本体部3Aに設定された基準位置から上記目標位置を指向して延びる基準線上に仮想目標位置を設定すると共に、この仮想目標位置を設定した状態(仮想目標設定時)における本体部3Aの姿勢情報を記憶する。例えば、仮想目標設定時に、本体部3Aの基端部2aに対する姿勢を図4に示す原点状態から変位させる場合、この姿勢変位は、マニュアル制御機能部3B3によって制御される。この場合、外部入力手段10から操作信号S3がマニュアル制御機能部3B3に入力され、マニュアル制御機能部3B3は、この操作信号S3に基づいて、制御信号S4を回動機構3dに出力して、本体部3Aを所定の姿勢に変位させる。また、この時の本体部3Aの姿勢情報は、姿勢情報信号S5として、マニュアル制御機能部3B3から仮想目標設定機能部3B1に送られ、仮想目標設定機能部3B1は、この姿勢情報信号S5から得られる本体部3Aの姿勢情報や仮想目標位置に関する既知の情報に基づいて、仮想目標設定時の本体部3Aの姿勢情報を演算算出して記憶する。   The virtual target setting function unit 3B1 positions the ladder 2 (base end 2a) at a predetermined position (including the initial mounting position of the ladder 2 shown in FIGS. 1 and 2), and the second operation unit 3b of the main body 3A. The target position (this target position is the target position) corresponding to the illumination target position in a state where the illumination light emitted from the light projecting means is irradiated to the target illumination target position (for example, the fire section of the building where the fire is occurring). , And may be a position slightly deviated from the illumination target position), and extends from the reference position set in the main body 3A toward the target position. The virtual target position is set on the reference line, and the posture information of the main body 3A in a state where the virtual target position is set (when the virtual target is set) is stored. For example, when the virtual target is set, when the posture of the main body 3A with respect to the base end 2a is displaced from the origin state shown in FIG. 4, this posture displacement is controlled by the manual control function unit 3B3. In this case, the operation signal S3 is input from the external input means 10 to the manual control function unit 3B3, and the manual control function unit 3B3 outputs the control signal S4 to the rotation mechanism 3d based on the operation signal S3. The part 3A is displaced to a predetermined posture. At this time, the posture information of the main body 3A is sent from the manual control function unit 3B3 to the virtual target setting function unit 3B1 as the posture information signal S5, and the virtual target setting function unit 3B1 is obtained from the posture information signal S5. Based on the posture information of the main body 3A and the known information regarding the virtual target position, the posture information of the main body 3A at the time of setting the virtual target is calculated and stored.

姿勢制御機能部3B2は、仮想目標設定時の状態からの基端部2aの動作に追随して、本体部3Aの上記基準位置から投光手段の照射方向に対応して延びる照射基準線が常に仮想目標位置を指向するように、本体部3Aの姿勢を制御する。この姿勢制御機能部3B2による制御は、仮想目標設定機能部3B1に記憶された本体部3Aの姿勢情報と、慣性センサ3cから逐次入力される角度情報に基づいて、本体部3Aの姿勢情報を逐次演算算出し、この算出結果を制御信号S2として回動機構3dに出力することによって行われる。   The posture control function unit 3B2 always follows the operation of the base end 2a from the state at the time of setting the virtual target, and the irradiation reference line extending from the reference position of the main body 3A corresponding to the irradiation direction of the light projecting unit is always The posture of the main body 3A is controlled so as to point to the virtual target position. The control by the posture control function unit 3B2 is based on the posture information of the main body 3A stored in the virtual target setting function unit 3B1 and the angle information sequentially input from the inertial sensor 3c. The calculation is performed by calculating and outputting the calculation result as a control signal S2 to the rotation mechanism 3d.

図6及び図7は、本体部3A(第1作動部3a)の旋回方向の姿勢制御の一例を示す作動原理図である。なお、制御開始時、本体部3Aの姿勢は常に図4に示す原点状態である(制御部3Bによる制御が終了すると、本体部3Aが図4に示す原点状態に復帰するようになっている。)。また、図6及び図7において、Bは、梯子2(基端部2a)の旋回中心Xから、本体部3A(第1作動部3aの重心G)までの距離であり、基端部2aに対する本体部3Aの設置位置によって決まる。   6 and 7 are operation principle diagrams illustrating an example of posture control in the turning direction of the main body 3A (first operation unit 3a). When the control is started, the posture of the main body 3A is always in the origin state shown in FIG. 4 (when the control by the control unit 3B is finished, the main body 3A returns to the origin state shown in FIG. 4). ). 6 and 7, B is the distance from the turning center X of the ladder 2 (base end portion 2a) to the main body portion 3A (the center of gravity G of the first operating portion 3a), and is relative to the base end portion 2a. It depends on the installation position of the main body 3A.

図6は、仮想目標設定時の状態を示している。仮想目標位置の設定は、例えば次のような態様で行う。まず、梯子2(基端部2a)を図1及び図2に示す初期搭載位置から所定位置まで作動させると共に、外部入力手段10から操作信号S3をマニュアル制御機能部3B3に入力し、マニュアル制御機能部3B3により、本体部3Aを図4に示す原点状態から所定の姿勢に変位させて、第2作動部3bの投光手段から発せられる照明光を静止体の照明対象位置O1に照射する。この状態で、本体部3Aの基準位置、この例では本体部3Aの重心G(回動中心Z1上に位置する。)から、3次元空間内で上記照明光の照射方向(光軸L1)と平行な方向に延びる基準線L2を設定する。この基準線L2は、平面視で照明光の光軸L1から平行方向に距離δ1だけずれており、この基準線L2上に、照明対象位置O1に対応する目標位置O2が在る。照明装置3は、照明対象位置O1や目標位置O2までの距離は検知しないので、仮想目標設定機能部3B1により、本体部3Aの重心Gから基準線L2に沿って所定距離A0だけ離れた位置に仮想目標位置O3を設定する。この所定距離A0は、目標位置O2までの距離よりも小さくなる場合もあるし、大きくなる場合もあるし、同じになる場合もある(目標位置O2までの距離が分からないため)。仮想目標位置O3が目標位置O2に近づくほど照射の精度は良くなる。また、上記の所定距離A0は、仮想目標設定時に、その都度適宜に設定してもよいし、照明装置3を設置する作業移動体の構造や搭載態様、作業移動体の作業目的や作業態様等に応じて、予め固定値として設定しておいてもよい。 FIG. 6 shows a state when the virtual target is set. The virtual target position is set in the following manner, for example. First, the ladder 2 (base end portion 2a) is operated from the initial mounting position shown in FIGS. 1 and 2 to a predetermined position, and the operation signal S3 is input from the external input means 10 to the manual control function unit 3B3, and the manual control function The main unit 3A is displaced from the origin state shown in FIG. 4 to a predetermined posture by the unit 3B3, and the illumination light emitted from the light projecting means of the second operating unit 3b is irradiated to the illumination target position O1 of the stationary body. In this state, from the reference position of the main body 3A, in this example, the center of gravity G (located on the rotation center Z1) of the main body 3A, the irradiation direction of the illumination light (optical axis L1) in the three-dimensional space A reference line L2 extending in a parallel direction is set. This reference line L2 is shifted in a parallel direction from the optical axis L1 of the illumination light by a distance δ1 in plan view, and a target position O2 corresponding to the illumination target position O1 exists on the reference line L2. The illumination device 3, since the distance to the illumination target position O1 and the target position O2 is not detected, the virtual target setting function unit 3B1, separated by a predetermined distance A 0 along a reference line L2 from the center of gravity G of the body 3A position Is set to the virtual target position O3. This predetermined distance A 0 may be smaller than the distance to the target position O2, may be larger, or may be the same (because the distance to the target position O2 is not known). The closer the virtual target position O3 is to the target position O2, the better the irradiation accuracy. In addition, the predetermined distance A 0 may be set as appropriate each time a virtual target is set, or the structure and mounting mode of the work moving body on which the lighting device 3 is installed, the work purpose and work mode of the work moving body. Depending on the above, it may be set as a fixed value in advance.

上記の態様で仮想目標位置O3を設定すると、仮想目標位置O3と重心Gと基端部2aの旋回中心Xとで、幾何学三角形ができる。重心Gと仮想目標位置O3との間の距離はA0、旋回中心Xと重心Gとの間の距離はB、旋回中心Xと仮想目標位置O3との間の距離はC、距離A0の辺と距離Bの辺との間の角度はα0、距離Bの辺と距離Cの辺との間の角度はβ0である。距離A0は、仮想目標位置O3を設定することによって決まり、距離Bは、基端部2aに対する本体部3Aの設置位置によって決まる。また、角度α0は、マニュアル制御機能部3B3から仮想目標設定機能部3B1に送られる姿勢情報信号S5から算出される。仮想目標設定機能部3B1は、既知の距離A0と距離Bと角度α0の値から、余弦定理により距離Cと角度β0を演算算出し、仮想目標設定時における本体部3Aの姿勢情報として、距離A0、距離B、距離C、角度α0及び角度β0を記憶する。 When the virtual target position O3 is set in the above manner, a geometric triangle is formed by the virtual target position O3, the center of gravity G, and the turning center X of the base end 2a. The distance between the center of gravity G and the virtual target position O3 is A 0 , the distance between the turning center X and the center of gravity G is B, the distance between the turning center X and the virtual target position O3 is C, and the distance A 0 is The angle between the side and the side at the distance B is α 0 , and the angle between the side at the distance B and the side at the distance C is β 0 . The distance A 0 is determined by setting the virtual target position O3, and the distance B is determined by the installation position of the main body 3A with respect to the base end 2a. The angle α 0 is calculated from the attitude information signal S5 sent from the manual control function unit 3B3 to the virtual target setting function unit 3B1. Virtual target setting function unit 3B1 from the value of a known distance A 0 and the distance B and the angle alpha 0, the distance C and the angle beta 0 calculated calculated by the cosine theorem, as the posture information of the body 3A at the time of the virtual target setting , Distance A 0 , distance B, distance C, angle α 0 and angle β 0 are stored.

尚、仮想目標位置O3の設定は、照明対象位置O1に応じて、梯子2(基端部2a)のみを初期搭載位置から所定位置まで作動させて、または、梯子2(基端部2a)を初期搭載位置に維持し、本体部3Aのみを図4に示す原点状態から所定の姿勢に変位させて、あるいは、梯子2(基端部2a)を初期搭載位置に維持し、かつ、本体部3Aを図4に示す原点状態に維持した状態で行うこともできる。   The virtual target position O3 is set by operating only the ladder 2 (base end portion 2a) from the initial mounting position to a predetermined position according to the illumination target position O1, or by moving the ladder 2 (base end portion 2a). While maintaining the initial mounting position, only the main body portion 3A is displaced from the origin state shown in FIG. 4 to a predetermined posture, or the ladder 2 (base end portion 2a) is maintained at the initial mounting position and the main body portion 3A. Can also be performed while maintaining the origin state shown in FIG.

図7は、姿勢制御時の状態を示している。上記の仮想目標設定時の状態から梯子2(基端部2a)が旋回動作を行うと、その旋回動作に伴って、本体部3A(第1作動部3a)に収容された慣性センサ3cが基端部2aの旋回角の角度変位β1を逐次検出し、その角度変位β1は角度情報S1として姿勢制御機能部3B2に逐次入力される。姿勢制御機能部3B2は、仮想目標設定機能部3B1に記憶された距離B、距離C及び角度β0と、慣性センサ3cで逐次検出される角度変位β1に基づいて、基端部2aの旋回角β2(距離Bの辺と距離Cの辺との間の角度)を算出し、本体部3A(第1作動部3a)の重心Gから照明光の光軸L1と平行な方向に延びる照射基準線L3が常に仮想目標位置O3を指向するように、余弦定理により本体部3A(第1作動部3a)の基端部2aに対する旋回方向の角度α1を演算算出する。この算出結果は、制御信号S2として、姿勢制御機能部3B2から第1作動部3aの回動機構3dに逐次出力され、これにより、第1作動部3aが角度α1の位置まで回動する。 FIG. 7 shows a state during posture control. When the ladder 2 (base end portion 2a) performs the turning operation from the state at the time of setting the virtual target, the inertial sensor 3c accommodated in the main body 3A (first operating portion 3a) is based on the turning operation. The angular displacement β 1 of the turning angle of the end portion 2a is sequentially detected, and the angular displacement β 1 is sequentially input to the attitude control function unit 3B2 as angle information S1. Attitude control function unit 3B2, the distance B which is stored in the virtual target setting function unit 3B1, a distance C and the angle beta 0, based on the angular displacement β1 is sequentially detected by the inertial sensor 3c, the turning angle of the base end portion 2a β 2 (an angle between the side of the distance B and the side of the distance C) is calculated, and the irradiation reference extends in the direction parallel to the optical axis L1 of the illumination light from the center of gravity G of the main body 3A (first operating unit 3a). The angle α 1 in the turning direction with respect to the base end portion 2a of the main body portion 3A (first operating portion 3a) is calculated and calculated by the cosine theorem so that the line L3 always points to the virtual target position O3. The calculation result is, as the control signal S2, is sequentially outputted from the posture control function unit 3B2 the rotation mechanism 3d of the first actuating portion 3a, thereby, the first actuating portion 3a is rotated to the position of the angle alpha 1.

上記の例では、本体部3Aの基準位置を重心Gに設定したが、本体部3Aの基準位置を、第2作動部3bの回動中心Z2と照明光の光軸L1との交点Mに設定し、仮想目標設定時は、照明光の光軸L1と一致する基準線L2上に仮想目標位置O1を設定し、姿勢制御時は、照明光の光軸L1と一致する照射基準線L3が常に仮想目標位置O1を指向するように制御することも可能である。   In the above example, the reference position of the main body 3A is set to the center of gravity G, but the reference position of the main body 3A is set to the intersection M between the rotation center Z2 of the second operating part 3b and the optical axis L1 of the illumination light. When the virtual target is set, the virtual target position O1 is set on the reference line L2 that coincides with the optical axis L1 of the illumination light. At the time of attitude control, the irradiation reference line L3 that coincides with the optical axis L1 of the illumination light is always set. It is also possible to perform control so that the virtual target position O1 is directed.

図8は、本体部3A(第2作動部3b)の起伏方向の姿勢制御の一例を示す作動原理図である。中央の図は、梯子2(基端部2a)が仰角を取っていない状態、上下の図は、梯子2(基端部2a)がそれぞれ仰角γを取った状態を示している。仮想目標位置O3の設定は、照明対象位置O1に応じて、上記のいずれかの状態で行うが、ここでは簡単のため、基端部2aが仰角を取っていない状態(中央の図の状態)で仮想目標位置O3を設定し、この状態から基端部2aが上方向に仰角γを取りながら起伏移動する場合(上の図の状態)を例にとって説明する。なお、図8において、B’は、梯子2(基端部2a)の起伏中心Yから、本体部3A{第2作動部3bの回動中心Z2と照明光の光軸L1との交点Mから仰角線(仰角γの線)に下した垂線の位置)までの距離であり、基端部2aに対する本体部3Aの設置位置によって決まる。   FIG. 8 is an operation principle diagram illustrating an example of posture control in the undulation direction of the main body 3A (second operation unit 3b). The center diagram shows a state where the ladder 2 (base end portion 2a) does not take an elevation angle, and the upper and lower diagrams show a state where the ladder 2 (base end portion 2a) takes an elevation angle γ. The virtual target position O3 is set in one of the above states according to the illumination target position O1, but here, for the sake of simplicity, the base end portion 2a does not take an elevation angle (the state in the center diagram). The case where the virtual target position O3 is set and the base end portion 2a moves up and down while taking the elevation angle γ upward from this state (the state in the above figure) will be described as an example. In FIG. 8, B ′ is from the undulation center Y of the ladder 2 (base end portion 2a), from the intersection M between the main body 3A {the rotation center Z2 of the second operating portion 3b and the optical axis L1 of the illumination light. This is the distance to the elevation angle line (the position of the perpendicular line below the elevation angle γ) and is determined by the installation position of the main body 3A with respect to the base end 2a.

仮想目標位置O3の設定は上述した態様と同様の態様で行う。この例では、本体部3Aの基準位置が、第2作動部3bの回動中心Z2と照明光の光軸L1との交点Mに設定され、仮想目標設定時(この例では中央の図の状態)、本体部3Aの基準位置Mから仮想目標位置O3を指向して延びる基準線L2は照明光の光軸L1と一致する。また、距離A0は上述した態様で所定距離に設定され、基準位置Mと仰角線(仰角γの線)との間のずれ量δ2は本体部3Aの構造によって決まる。この例では、基端部2aの仰角γは0°である。仮想目標設定機能部3B1は、距離A0と距離B’と仰角(γ=0)とずれ量δ2を本体部3A(第2作動部3b)の姿勢情報として記憶する。 The setting of the virtual target position O3 is performed in the same manner as described above. In this example, the reference position of the main body 3A is set to the intersection M between the rotation center Z2 of the second operating unit 3b and the optical axis L1 of the illumination light, and when the virtual target is set (in this example, the state of the center figure) ), A reference line L2 extending from the reference position M of the main body 3A toward the virtual target position O3 coincides with the optical axis L1 of the illumination light. Further, the distance A 0 is set to a predetermined distance in the above-described manner, and the shift amount δ2 between the reference position M and the elevation angle line (line of the elevation angle γ) is determined by the structure of the main body 3A. In this example, the elevation angle γ of the base end portion 2a is 0 °. Virtual target setting function unit 3B1 stores the distance A 0 and the distance B 'between the elevation angle (gamma = 0) and the shift amount δ2 as the posture information of the body portion 3A (second actuating section 3b).

上記の仮想目標設定時の状態から梯子2(基端部2a)が上方向に起伏動作を行うと、その起伏動作に伴って、本体部3A(第1作動部3a)に収容された慣性センサ3cが基端部2aの仰角の角度変位γを逐次検出し、その角度変位γは角度情報S1として姿勢制御機能部3B2に入力される。姿勢制御機能部3B2は、仮想目標設定機能部3B1に記憶された距離A0、距離B’、仰角(γ=0)、ずれ量δ2と、慣性センサ3cで逐次検出される角度変位γに基づいて、基端部2aの仰角γを算出し、本体部3A(第2作動部3b)の基準位置Mから延びる照射基準線L3(光軸L1と一致)が常に仮想目標位置O3を指向するように、余弦定理により、第2作動部3bの基端部2aに対する起伏方向の角度α2を演算算出する。この算出結果は、制御信号S2として、姿勢制御機能部3B2から第2作動部3bの回動機構3dに出力され、これにより、第2作動部3bが角度α2の位置まで回動する。 When the ladder 2 (base end portion 2a) performs the upward and downward movement from the state at the time of setting the virtual target, the inertial sensor accommodated in the main body 3A (first operating portion 3a) is accompanied by the upward and downward movement. 3c sequentially detects the angular displacement γ of the elevation angle of the base end portion 2a, and the angular displacement γ is input to the attitude control function unit 3B2 as angle information S1. The posture control function unit 3B2 is based on the distance A 0 , the distance B ′, the elevation angle (γ = 0), the shift amount δ2 stored in the virtual target setting function unit 3B1, and the angular displacement γ sequentially detected by the inertial sensor 3c. Thus, the elevation angle γ of the base end 2a is calculated so that the irradiation reference line L3 (coincident with the optical axis L1) extending from the reference position M of the main body 3A (second operating unit 3b) always points to the virtual target position O3. In addition, the angle α 2 in the undulation direction with respect to the base end portion 2a of the second operating portion 3b is calculated and calculated by the cosine theorem. The calculation result is, as the control signal S2, is outputted from the posture control function unit 3B2 the rotation mechanism 3d of the second actuating portion 3b, thereby, the second operating portion 3b is rotated to the position of the angle alpha 2.

姿勢制御機能部3B2は、上述したような第1作動部3aの姿勢制御と、第2作動部3bの姿勢制御とを適宜に併用しながら、梯子2(基端部2a)の動作に追随して、本体部3Aの姿勢を制御し、本体部3A(第2作動部3b)の投光手段から発せられる照明光が常に照明対象位置O1を照射するようにする。厳密には、照明光の光軸L1は照明対象位置O1の中心からずれる場合が多いが、このずれ量は、照明対象位置O1までの距離に比較して小さなものであり、また、照明光は所定の広がり角をもって照射されるので、照明対象位置O1を常に照明光の照射範囲内に収めることができる。   The posture control function unit 3B2 follows the operation of the ladder 2 (base end portion 2a) while appropriately using the posture control of the first operation unit 3a and the posture control of the second operation unit 3b as described above. Thus, the posture of the main body 3A is controlled so that the illumination light emitted from the light projecting means of the main body 3A (second operating unit 3b) always irradiates the illumination target position O1. Strictly speaking, the optical axis L1 of the illumination light often deviates from the center of the illumination target position O1, but this deviation is small compared to the distance to the illumination target position O1, and the illumination light is Since irradiation is performed with a predetermined spread angle, the illumination target position O1 can always be within the illumination light irradiation range.

上述したように、この実施形態において、本体部3Aの第1作動部3aは、図4に示す原点状態から回動中心Z1回りに左右方向にそれぞれ90°(合計180°)の範囲で回動可能であり、梯子2(基端部2a)がある動作範囲を超えて移動すると、第1作動部3aが回動可能範囲の限界まで回動して、それ以上は回動できなくなる。姿勢制御機能部3B2は、このような第1作動部3aの回動が規制される基端部2aの動作範囲では、基端部2aの動作に係らず、姿勢制御機能部3B2の回動制御を停止し、基端部2aが上記の動作範囲を脱した位置で、第1作動部3aの回動制御を再開する。例えば、図9は、基端部2a(図6及び図7に示す距離Bの位置が基準)が左回りに旋回移動し、第1作動部3aが図4に示す原点状態(P0の位置)から左回りに回動する場合を示している。姿勢制御機能部3B2は、図6に示す角度α0、β0と図7に示す角度α1とβ1、β2に基づいて、第1作動部3aの回動角度と基端部2aの旋回角を検知することができる。基端部2aの旋回移動に追随して、第1作動部3aは左回りに回動するが、基端部2aがP1の位置まで旋回移動すると、第1作動部3aは原点状態から左方向に90°回動して、それ以上は回動できなくなる。姿勢制御機能部3B2は、この状態を検知し、P1の位置で第1作動部3aの回動制御を停止する。そして、姿勢制御機能部3B2は、第1作動部3aの回動が規制される基端部2aの動作範囲(P1〜P2〜P3の範囲)では、この停止状態を維持し、第1作動部3aの回動が再び可能となる位置P3まで基端部2aが旋回移動した時点で、第1作動部3aの回動制御を再開する。回動制御の再開時、姿勢制御機能部3B2は、第1作動部3aを右回りに180°回動させ、この状態から、基端部2aの旋回移動に追随して、第1作動部3aの回動を制御する。基端部2aが右回りに旋回移動する場合も、同様の態様で制御が行われる。 As described above, in this embodiment, the first actuating part 3a of the main body part 3A rotates from the origin state shown in FIG. 4 in the range of 90 ° in the left-right direction around the rotation center Z1 (180 ° in total). If the ladder 2 (base end portion 2a) moves beyond a certain operating range, the first actuating portion 3a rotates to the limit of the rotatable range, and can no longer be rotated. The posture control function unit 3B2 controls the rotation of the posture control function unit 3B2 regardless of the operation of the base end 2a in the operation range of the base end 2a in which the rotation of the first operating unit 3a is restricted. Is stopped, and the rotation control of the first actuating part 3a is resumed at the position where the base end part 2a is out of the above operating range. For example, Figure 9 is a proximal end 2a (reference is at a distance B shown in FIGS. 6 and 7) to pivot moves counterclockwise, the first actuating portion 3a is the position of the origin state (P 0 shown in FIG. 4 ) From left to right. The attitude control function unit 3B2 is configured to determine the rotation angle of the first operating unit 3a and the base end 2a based on the angles α 0 and β 0 shown in FIG. 6 and the angles α 1 , β 1 and β 2 shown in FIG. The turning angle can be detected. Following the pivotal movement of the base end portion 2a, but first actuating portion 3a is rotated counterclockwise, the proximal end portion 2a is pivoted moved to the position of P 1, the first actuating portion 3a is left from the origin state It turns 90 ° in the direction and can no longer turn. Attitude control function unit 3B2 detects this condition and stops the rotation control of the first operating portion 3a at a position P 1. Then, the posture control function unit 3B2 is in the operating range of the base end portion 2a of rotation of the first actuating portion 3a is regulated (the range of P 1 ~P 2 ~P 3), maintaining the stopped state, the when the rotation of the first operation unit 3a is moved again allows a position P 3 to the base end portion 2a is turning resumes rotation control of the first actuating portion 3a. At the time of resuming the rotation control, the posture control function unit 3B2 rotates the first operating unit 3a clockwise by 180 °, and from this state, the first operating unit 3a follows the turning movement of the base end 2a. To control the rotation. The control is performed in the same manner when the base end portion 2a is pivoted clockwise.

図10は、他の実施形態に係る梯子2と照明装置3を示している(図1及び図2のV−V部分断面に対応する部分断面)。この実施形態において、本体部3Aは、基端部2aの側部の構造材に適宜の取付部材2a2を介して装着され、取付部材2a2に対して基端部2aの平面方向と平行な方向の軸(回動中心Z1)回りに回動可能な第1作動部3aと、第1作動部3aに対して基端部2aの平面方向と直交する方向の軸(回動中心Z2)回りに回動可能な第2作動部3bとを備えている。第1作動部3aが基端部2aに対して回動中心Z1回りに回動し、換言すれば、基端部2aの起伏方向に回動し、及び/又は、第2作動部3bが第1作動部3aに対して回動中心Z2回りに回動し、換言すれば、基端部2aの旋回方向に回動し、これらの回動動作によって、基端部2aに対する本体部3Aの姿勢が変位する。第1作動部3aの姿勢制御(回動制御)は、図8に示す作動原理図に準じて行い、第2作動部3bの姿勢制御(回動制御)は、図6及び図7に示す作動原理図に準じて行うことができる。   FIG. 10 shows a ladder 2 and a lighting device 3 according to another embodiment (a partial cross section corresponding to the VV partial cross section in FIGS. 1 and 2). In this embodiment, the main body 3A is attached to a structural material on the side of the base end 2a via an appropriate mounting member 2a2, and is in a direction parallel to the planar direction of the base end 2a with respect to the mounting member 2a2. A first actuating part 3a rotatable around an axis (rotation center Z1), and rotating about an axis (rotation center Z2) in a direction perpendicular to the planar direction of the base end part 2a with respect to the first actuating part 3a. And a movable second actuating part 3b. The first actuating part 3a pivots around the pivot center Z1 with respect to the base end part 2a, in other words, pivots in the undulating direction of the base end part 2a and / or the second actuating part 3b 1 is rotated about the rotation center Z2 with respect to the operating portion 3a, in other words, is rotated in the turning direction of the base end 2a, and by these turning operations, the posture of the main body 3A with respect to the base end 2a Is displaced. The posture control (rotation control) of the first operation unit 3a is performed according to the operation principle diagram shown in FIG. 8, and the posture control (rotation control) of the second operation unit 3b is the operation shown in FIGS. This can be done according to the principle diagram.

本発明の照明装置は、梯子付消防自動車の伸縮式の梯子の他、屈折梯子付消防自動車の伸縮・屈折式のブーム、その他の高所作業車の伸縮式のブーム、車両や固定設備に搭載されるクレーン等の作業用移動体に設置することもできる。   The lighting device of the present invention is mounted on a telescopic ladder of a fire engine with a ladder, an extendable / refractive boom of a fire engine with a refractive ladder, an extendable boom of an other aerial work vehicle, a vehicle or a fixed facility. It can also be installed in a working mobile body such as a crane.

1 車両本体
2 梯子(作業用移動体)
2a 基端部
3 照明装置
3A 本体部
3a 第1作動部
3b 第2作動部
3b1 照射面
3c 慣性センサ
3B 制御部
3B1 仮想目標設定機能部
3B2 姿勢制御機能部
3B3 マニュアル制御機能部
Z1 第1作動部の回動中心
Z2 第2作動部の回動中心
G 本体部の重心
M 第2作動部の回動中心と照明光の光軸との交点
X 基端部の旋回中心
Y 基端部の起伏中心
O1 照明対象位置
O2 目標位置
O3 仮想目標位置
L1 照明光の光軸
L2 基準線
L3 照射基準線
1 Vehicle body 2 Ladder (working vehicle)
2a Base end part 3 Illuminating device 3A Main body part 3a First action part 3b Second action part 3b1 Irradiation surface 3c Inertial sensor 3B Control part 3B1 Virtual target setting function part 3B2 Posture control function part 3B3 Manual control function part Z1 First action part Rotation center Z2 Rotation center G of the second operating part G Center of gravity M of the main body part Intersection X of the rotation center of the second operating part and the optical axis of the illumination light Y Rotation center Y of the base end part O1 Illumination target position O2 Target position O3 Virtual target position L1 Optical axis L2 of illumination light Reference line L3 Irradiation reference line

Claims (7)

旋回及び起伏を含む動作を行う作業用移動体に設置され、投光手段を有し、前記作業用移動体に対する姿勢変位が可能な本体部と、該本体部の前記作業用移動体に対する姿勢を制御する制御部とを備えた作業用移動体の照明装置であって、
前記制御部は、前記作業用移動体を所定位置に位置させ、前記本体部の投光手段から発せられる照明光を静止体の照明対象位置に照射した状態で、前記照明対象位置に対応する目標位置に対して、前記本体部に設定された基準位置から前記目標位置を指向して延びる基準線上に仮想目標位置を設定する仮想目標設定機能部と、前記仮想目標位置を設定した状態からの前記作業用移動体の動作に追随して、前記本体部の前記基準位置から前記照明光の照射方向に対応して延びる照射基準線が常に前記仮想目標位置を指向するように前記本体部の姿勢を制御する姿勢制御機能部とを備えていることを特徴とする作業用移動体の照明装置。
A main body portion that is installed in a working moving body that performs operations including turning and undulation, has a light projecting unit, and can be displaced in posture with respect to the working moving body; and a posture of the main body portion with respect to the working moving body. An illumination device for a working mobile body comprising a control unit for controlling,
The control unit is configured to position the work moving body at a predetermined position, and irradiate the illumination target position of the stationary body with the illumination light emitted from the light projecting unit of the main body unit. A virtual target setting function unit configured to set a virtual target position on a reference line extending toward the target position from a reference position set in the main body with respect to the position; and the state from the state where the virtual target position is set Following the operation of the working moving body, the posture of the main body is set so that an irradiation reference line extending from the reference position of the main body corresponding to the irradiation direction of the illumination light always points to the virtual target position. An illuminating device for a working moving body, comprising: a posture control function unit for controlling.
前記本体部には、ジャイロセンサと加速度センサとを含む慣性センサが設けられており、前記仮想目標設定機能部は、前記仮想目標位置を設定した状態における前記本体部の姿勢情報を記憶し、前記姿勢制御機能部は、前記作業用移動体の動作時に、前記仮想目標設定機能部で記憶された前記本体部の姿勢情報と、前記慣性センサで逐次検知される角度情報に基づいて、前記本体部の姿勢情報を逐次演算算出して、前記本体部の姿勢を制御することを特徴とする請求項1に記載の作業用移動体の照明装置。   The main body is provided with an inertial sensor including a gyro sensor and an acceleration sensor, and the virtual target setting function unit stores posture information of the main body in a state where the virtual target position is set, The posture control function unit, based on the posture information of the main body stored in the virtual target setting function unit and the angle information sequentially detected by the inertial sensor, during the operation of the working moving body 2. The illumination device for a working moving body according to claim 1, wherein the posture information is sequentially calculated and calculated to control the posture of the main body. 前記本体部は、前記作業用移動体に対して、該作業用移動体の旋回方向に回動可能な第1作動部と、該第1作動部に対して、前記作業用移動体の起伏方向に回動可能で、前記投光手段が設けられた第2作動部とを備え、前記制御部の姿勢制御機能部は、前記第1作動部の回動と、前記第2作動部の回動とを制御することを特徴とする請求項1又は2に記載の作業用移動体の照明装置。   The main body includes a first actuating portion that is rotatable with respect to the working moving body in a turning direction of the working moving body, and a undulation direction of the working moving body with respect to the first working portion. And a second actuating part provided with the light projecting means. The posture control function part of the control part comprises a pivot of the first actuating part and a pivot of the second actuating part. The lighting device for a working moving body according to claim 1 or 2, wherein 前記本体部は、前記作業用移動体に対して、該作業用移動体の起伏方向に回動可能な第1作動部と、該第1作動部に対して、前記作業用移動体の旋回方向に回動可能で、前記投光手段が設けられた第2作動部とを備え、前記制御部の姿勢制御機能部は、前記第1作動部の回動と、前記第2作動部の回動とを制御することを特徴とする請求項1又は2に記載の作業用移動体の照明装置。   The main body includes a first actuating portion that is rotatable with respect to the working moving body in a undulation direction of the working moving body, and a turning direction of the working moving body with respect to the first working portion. And a second actuating part provided with the light projecting means. The posture control function part of the control part comprises a pivot of the first actuating part and a pivot of the second actuating part. The lighting device for a working moving body according to claim 1 or 2, wherein 前記本体部の前記作業用移動体に対する姿勢変位が所定範囲内に制限されており、前記姿勢制御機能部は、前記本体部の姿勢変位が規制される前記作業用移動体の動作範囲では、前記作業用移動体の動作に係らず、前記本体部の姿勢制御を停止し、前記作業用移動体が前記動作範囲を脱した位置で、前記本体部の姿勢制御を再開することを特徴とする請求項1から4の何れか1項に記載の作業用移動体の照明装置。   The posture displacement of the main body portion with respect to the working mobile body is limited within a predetermined range, and the posture control function unit is configured to operate in the operation range of the working mobile body in which the posture displacement of the main body portion is restricted. The attitude control of the main body is stopped regardless of the operation of the working moving body, and the attitude control of the main body is resumed at a position where the working moving body leaves the operating range. Item 5. The lighting device for a working moving body according to any one of Items 1 to 4. 前記慣性センサは、所定の基準以下の上記角度情報は前記姿勢制御機能部に出力しない不感機能を有することを特徴とする請求項2に記載の作業用移動体の照明装置。   The illumination device for a working moving body according to claim 2, wherein the inertial sensor has a dead function that does not output the angle information equal to or less than a predetermined reference to the posture control function unit. 高所作業車に搭載される請求項1から6の何れか1項に記載の作業用移動体の照明装置。   The illumination device for a working moving body according to any one of claims 1 to 6, which is mounted on an aerial work vehicle.
JP2013204305A 2013-09-30 2013-09-30 Lighting device for work mobile Active JP6185355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204305A JP6185355B2 (en) 2013-09-30 2013-09-30 Lighting device for work mobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204305A JP6185355B2 (en) 2013-09-30 2013-09-30 Lighting device for work mobile

Publications (2)

Publication Number Publication Date
JP2015067185A JP2015067185A (en) 2015-04-13
JP6185355B2 true JP6185355B2 (en) 2017-08-23

Family

ID=52834321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204305A Active JP6185355B2 (en) 2013-09-30 2013-09-30 Lighting device for work mobile

Country Status (1)

Country Link
JP (1) JP6185355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520489A1 (en) * 2017-10-11 2019-04-15 Rosenbauer Int Ag Method for ambient lighting of an emergency vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587919Y2 (en) * 1978-03-27 1983-02-12 株式会社大阪サイレン製作所 ladder tip light
JPH09288903A (en) * 1996-04-22 1997-11-04 Matsushita Electric Works Ltd Remote control device for spotlight
JP2002043074A (en) * 2000-07-19 2002-02-08 Matsushita Electric Works Ltd Method and system for spatial art lighting and storage medium for the same
JP5469914B2 (en) * 2009-05-08 2014-04-16 株式会社アイチコーポレーション Boom work vehicle operation control device
JP2013163417A (en) * 2012-02-09 2013-08-22 Stanley Electric Co Ltd Lighting control apparatus for vehicle headlight, and vehicle headlight system

Also Published As

Publication number Publication date
JP2015067185A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6177400B1 (en) Crane truck
US20130187785A1 (en) Overhead hazard warning systems
WO2017002749A1 (en) Work assist system for work machines
JP6743676B2 (en) Remote control terminal
US10099660B2 (en) Truck-mounted concrete pump and method for operating same
JP5816382B2 (en) High altitude work vehicle, high altitude work vehicle vehicle attitude adjustment system, high altitude work vehicle vehicle attitude adjustment method, and high altitude work vehicle high altitude work structure turning method
JP4716765B2 (en) Remote control device
JP6185355B2 (en) Lighting device for work mobile
JP6202667B2 (en) Crane lighting equipment
JP2007126231A (en) Remote operating device for work machine
JP2001316098A (en) Bending type boom device
JP6770665B1 (en) Passenger boarding bridge
JP4667877B2 (en) Remote control device for aerial work platforms
JP4829592B2 (en) Remote control device for work vehicle
JP2021080039A (en) Working vehicle
JP6915506B2 (en) Working machine operation lever device
KR101957678B1 (en) High place works car having safety-zone displaying function
JP2001226081A (en) Boom working speed control device of flexing boom type working car
JP2588906B2 (en) Operation control device for aerial work vehicles
JP7086461B2 (en) Safety device for aerial work platforms
US20220106175A1 (en) Operation control device for vehicle with an aerial work platform
JP6807733B2 (en) Aerial work platform
JP6328972B2 (en) Aerial work platform
JP2019189405A5 (en)
JPH0733239B2 (en) Aerial work vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6185355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250