JP6185098B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP6185098B2
JP6185098B2 JP2016024555A JP2016024555A JP6185098B2 JP 6185098 B2 JP6185098 B2 JP 6185098B2 JP 2016024555 A JP2016024555 A JP 2016024555A JP 2016024555 A JP2016024555 A JP 2016024555A JP 6185098 B2 JP6185098 B2 JP 6185098B2
Authority
JP
Japan
Prior art keywords
photodiode
light receiving
pixels
receiving unit
shift register
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024555A
Other languages
English (en)
Other versions
JP2016096362A (ja
Inventor
一樹 藤田
一樹 藤田
竜次 久嶋
竜次 久嶋
治通 森
治通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2016024555A priority Critical patent/JP6185098B2/ja
Publication of JP2016096362A publication Critical patent/JP2016096362A/ja
Application granted granted Critical
Publication of JP6185098B2 publication Critical patent/JP6185098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像装置に関するものである。
特許文献1には、放射線撮像装置に関する技術が記載されている。この装置は、被写体からの放射線を電気信号に変換する変換素子と、電気信号を外部に転送する転送スイッチとを含む複数の画素が二次元状に配置されて成るセンサアレイを備えている。また、この装置は、センサアレイの各画素を行方向に接続する複数のゲート線と、各ゲート線に接続された各画素の電気信号を読み出すために、各ゲート線を駆動させるゲート駆動装置と、センサアレイの各画素を列方向に接続する複数の信号線と、各信号線に対応して設けられ、各転送スイッチから転送された電気信号を増幅して読み出す複数のアンプとを備えている。
特開2007−50053号公報
固体撮像装置は、複数の画素が複数行及び複数列にわたって二次元状に配置された受光部を有する。各画素には、入射した光を電子に変換するためのフォトダイオードが配置される。各画素のフォトダイオードは、各列毎に配設された読出用配線にスイッチ回路(例えばトランジスタ)を介して接続されており、フォトダイオード内に蓄積された電荷は、スイッチ回路が導通状態となることによって読出用配線へ流出する。電荷は、読出用配線を通って積分回路に達し、積分回路において電圧信号に変換される。各画素のスイッチ回路の導通状態を制御するための制御端子(例えばゲート端子)は、各行毎に配設された行選択用配線に接続されている。そして、シフトレジスタからの信号が行選択用配線を介して各スイッチ回路の制御端子に与えられることにより、各画素からの電荷の読み出しが各行毎に行われる。
このような構成を備える固体撮像装置では、受光部だけでなく受光部の周囲の領域にも光が入射する。また、例えば固体撮像装置がX線撮像装置として用いられる場合には、受光部の周囲の領域がシンチレータによって覆われていたとしても、シンチレータを透過したX線およびシンチレータからのシンチレーション光が受光部の周囲の領域に入射する。これにより、受光部の周囲の領域では不要な電荷(キャリア)が発生してしまう。特に、受光部と並んで配置されるシフトレジスタは或る程度の面積を有しているので、シフトレジスタが形成されている領域において多くの不要キャリアが発生する。
シフトレジスタにおいて発生した不要キャリアが受光部に流入すると、シフトレジスタに隣接する画素からの出力にノイズが重畳されてしまう。このような現象を回避するため、シフトレジスタと受光部との間の領域に、不要キャリアを吸収するためのフォトダイオード(ダミーフォトダイオード)を配置し、このダミーフォトダイオードを基準電位線(接地配線)に短絡することが考えられる。
しかしながら、この方式には次の課題がある。通常、受光部において互いに隣接する画素間には、これらのフォトダイオード間に生じるカップリング容量等に起因するクロストークが存在する。また、各画素では、スイッチ回路を介して互いに繋がっているフォトダイオードと行選択用配線との間に寄生容量が存在しており、この寄生容量もまた、クロストークに影響する。しかし、上述したダミーフォトダイオードにはスイッチ回路が設けられていないので、このような寄生容量は生じない。このため、ダミーフォトダイオードに隣接する画素では、他の画素と比較してクロストークの程度が異なり、ダミーフォトダイオードに隣接する画素からの出力特性やノイズの大きさが他の画素とは異なってしまう。
本発明は、このような問題点に鑑みてなされたものであり、ダミーフォトダイオードに隣接する画素の出力特性やノイズの大きさを、他の画素に近づけることができる固体撮像装置を提供することを目的とする。
上述した課題を解決するために、本発明による固体撮像装置は、第1のフォトダイオード、及び該第1のフォトダイオードに一端が接続された第1のスイッチ回路を各々含み、M行N列(M,Nは2以上の整数)に二次元配列されたM×N個の画素を有し、単結晶シリコン基板上に形成された受光部と、第1のフォトダイオード上を通り、各列毎に配設され、対応する列の画素に含まれる第1のスイッチ回路の他端に接続されたN本の読出用配線と、N本の読出用配線を経て入力される電荷の量に応じた電圧値を各々出力するN個の積分回路と、受光部に対して行方向に並んで配置され、第1のスイッチ回路の開閉状態を各行毎に制御するシフトレジスタと、シフトレジスタと受光部との間の領域に配置されたダミーフォトダイオードと、ダミーフォトダイオードに一端が接続された第2のスイッチ回路と、ダミーフォトダイオード上を通り、第2のスイッチ回路の他端に接続されるとともに基準電位線に短絡された電荷排出用配線とを備えることを特徴とする。
この固体撮像装置では、シフトレジスタと受光部との間の領域にダミーフォトダイオードが配置されている。シフトレジスタにおいて発生する不要キャリアは、このダミーフォトダイオードによって吸収される。これにより、シフトレジスタにおいて発生した不要キャリアに起因するノイズが受光部の画素からの出力に重畳されることを効果的に防ぐことができる。
また、この固体撮像装置では、ダミーフォトダイオードと電荷排出用配線とが第2のスイッチ回路を介して接続されており、第2のスイッチ回路が導通状態となったときに、不要キャリアがダミーフォトダイオードから電荷排出用配線を経て基準電位線へ排出される。このように、上記固体撮像装置では、受光部内の各画素における第1のスイッチ回路と同様に、ダミーフォトダイオードにも第2のスイッチ回路が設けられている。従って、上記の固体撮像装置によれば、ダミーフォトダイオードに隣接する画素におけるクロストークの大きさを、他の画素におけるクロストークの大きさに近づけることができ、ダミーフォトダイオードに隣接する画素からの出力特性やノイズの大きさを他の画素のそれに近づけることが可能となる。
また、固体撮像装置は、行方向におけるダミーフォトダイオードの幅が、該方向における第1のフォトダイオードの幅よりも短いことを特徴としてもよい。上記の固体撮像装置において、ダミーフォトダイオードの大きさは、第1のフォトダイオードと必ずしも等しくなくてもよい。そこで、このようにダミーフォトダイオードの幅を第1のフォトダイオードの幅よりも短くすることによって、受光部の周囲の領域を狭くし、例えば複数の固体撮像装置を並べて配置する際に固体撮像装置間に生じる不感領域を狭くすることができる。
また、固体撮像装置は、シフトレジスタと受光部とが共通の単結晶シリコン基板上に形成されていることを特徴としてもよい。このような場合には、シフトレジスタにおいて発生した不要キャリアが受光部に流入し易いが、上記の固体撮像装置によれば、受光部への不要キャリアの流入を効果的に防ぐことができる。
本発明による固体撮像装置によれば、ダミーフォトダイオードに隣接する画素の出力特性やノイズの大きさを、他の画素に近づけることができる。
固体撮像装置を示す平面図である。 固体撮像装置の一部を拡大した平面図である。 固体撮像装置の内部構成を示す図である。 画素、積分回路、及び保持回路、並びにキャリア捕獲領域の詳細な回路構成例を示す図である。 各信号のタイミングチャートである。 シフトレジスタと受光部との間の領域に、不要キャリアを吸収するためのダミーフォトダイオードを配置した例を示す平面図である。 (a)受光部の平面図であって、継ぎ露光の境界線の一例を示している。(b)キャリア捕獲部付近の継ぎ露光の境界線の一例を示している。 (a)受光部の平面図であって、継ぎ露光の境界線の別の例を示している。(b)キャリア捕獲部付近の継ぎ露光の境界線の別の例を示している。 2枚のガラス基板を並べて配置した例を概略的に示す平面図である。
以下、添付図面を参照しながら本発明による固体撮像装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
本実施形態に係る固体撮像装置は、例えば医療用X線撮像システムに用いられる。図1及び図2は、本実施形態における固体撮像装置1Aの構成を示す図である。図1は固体撮像装置1Aを示す平面図であり、図2は固体撮像装置1Aの一部を拡大した平面図である。なお、図1及び図2には、理解を容易にするためXYZ直交座標系を併せて示している。
図1に示されるように、固体撮像装置1Aは、受光部20、不要キャリア捕獲部30、読出回路部40、及び垂直シフトレジスタ60を備えている。受光部20、不要キャリア捕獲部30、読出回路部40、及び垂直シフトレジスタ60は、基板12の主面上に作製されている。垂直シフトレジスタ60は、受光部20に対してX軸方向に並んで配置されている。不要キャリア捕獲部30の一部分は、受光部20と垂直シフトレジスタ60との間の領域に配置されており、不要キャリア捕獲部30の残りの部分は、受光部20に対してY軸方向に並んで配置され、受光部20と読出回路部40との間の領域に位置している。
読出回路部40は、受光部20の複数列それぞれに対応して設けられた複数の積分回路を含んでおり、これら複数の積分回路は、対応する列の画素から出力される電荷の量に応じた電圧値をそれぞれ生成する。読出回路部40は、各積分回路から出力された電圧値を保持し、その保持した電圧値を逐次的に出力する。
受光部20は、複数の画素P1,1〜PM,NがM行及びN列(M,Nは2以上の整数)にわたって二次元配列されることにより構成されている。図2には、複数の画素P1,1〜PM,Nを代表して、4つの画素Pm,N−1、Pm,N、Pm+1,N−1、及びPm+1,Nが示されている。例えば、画素Pm,Nは第m行第N列(mは1以上M以下の整数)に位置する画素である。図1及び図2において、列方向はY軸方向と一致し、行方向はX軸方向と一致する。受光部20に含まれる画素P1,1〜PM,Nそれぞれは、トランジスタ21及びフォトダイオード22を備えている。画素P1,1〜PM,Nそれぞれが有するトランジスタ21は、本実施形態における第1のスイッチ回路である。トランジスタ21は、好適には電界効果トランジスタ(FET)によって構成されるが、バイポーラトランジスタによって構成されてもよい。以下では、トランジスタ21がFETであるものとして説明する。この場合、制御端子はゲートを意味する。トランジスタ21がバイポーラトランジスタである場合には、制御端子はベースを意味する。
また、画素P1,1〜PM,Nそれぞれが有するフォトダイオード22は、本実施形態における第1のフォトダイオードである。フォトダイオード22は、pn接合若しくはpin接合を含む半導体領域によって構成され、入射光強度に応じた量の電荷を発生し、その発生した電荷を接合容量部に蓄積する。トランジスタ21の一端(例えばソース領域)は、フォトダイオード22と電気的に接続されている。なお、受光部20の上には図示しないシンチレータが設けられている。シンチレータは、入射したX線に応じてシンチレーション光を発生してX線像を光像へと変換し、この光像をフォトダイオード22へ出力する。
固体撮像装置1Aは、各行毎に配設された複数の行選択用配線Q〜Q(図2にはQ及びQm+1を代表して示す)と、各列毎に配設された複数の読出用配線R〜R(図2にはR及びRN−1を代表して示す)とを更に備えている。第m行の行選択用配線Qは、対応する行の画素Pm,1〜Pm,Nに含まれるトランジスタ21の開閉状態を制御するための制御端子(例えばゲート端子)と、トランジスタ21の開閉状態を各行毎に制御する垂直シフトレジスタ60とを互いに電気的に接続している。また、第n列(nは1以上N以下の整数)の読出用配線Rは、対応する列の画素P1,n〜PM,nに含まれるトランジスタ21の他端(例えばドレイン領域)と電気的に接続されている。複数の行選択用配線Q〜Q、及び複数の読出用配線R〜Rは、例えば金属からなる。
不要キャリア捕獲部30は、M個のキャリア捕獲領域DA〜DAを有する。キャリア捕獲領域DA〜DAは、受光部20と垂直シフトレジスタ60との間の領域において、各行毎に配置されている。なお、図2には、キャリア捕獲領域DA〜DAを代表して、2つのキャリア捕獲領域DA及びDAm+1が示されている。例えば、キャリア捕獲領域DAは第m行に位置するキャリア捕獲領域である。M個のキャリア捕獲領域DA〜DAそれぞれは、上述した画素P1,1〜PM,Nと同様に、トランジスタ21及びフォトダイオード22を備えている。なお、キャリア捕獲領域DA〜DAそれぞれが有するM個のトランジスタ21は、本実施形態における第2のスイッチ回路である。また、キャリア捕獲領域DA〜DAそれぞれが有するM個のフォトダイオード22は、本実施形態におけるダミーフォトダイオードであって、pn接合若しくはpin接合を含む半導体領域によって構成され、受光部20と垂直シフトレジスタ60との間の領域において各行毎に配置されている。トランジスタ21の一端(例えばソース領域)は、フォトダイオード22と電気的に接続されている。
キャリア捕獲領域DAに含まれるトランジスタ21の開閉状態を制御するための制御端子(例えばゲート端子)は、対応する行の行選択用配線Qと電気的に接続されている。また、固体撮像装置1Aは、電荷排出用配線Rを更に備えている。電荷排出用配線Rは、キャリア捕獲領域DA〜DAに含まれるトランジスタ21の他端(例えばドレイン領域)と電気的に接続されている。電荷排出用配線Rは、金属からなる。なお、キャリア捕獲領域DA〜DAは遮光されておらず、キャリア捕獲領域DA〜DAには通常の画素P1,1〜PM,Nと同様に光が入射する。但し、キャリア捕獲領域DA〜DAの一部または全部が遮光されていてもよい。
不要キャリア捕獲部30は、更に、各列毎に配置された(N+1)個のキャリア捕獲領域DB〜DBN+1を有する。キャリア捕獲領域DB〜DBN+1の構成は、前述した画素P1,1〜PM,Nと同様である。すなわち、キャリア捕獲領域DB〜DBN+1それぞれは、トランジスタ21及びフォトダイオード22を備えている。トランジスタ21の一端(例えばソース領域)は、フォトダイオード22と電気的に接続されている。キャリア捕獲領域DB〜DBN+1に含まれるトランジスタ21の制御端子は、後述する行選択用配線Qと電気的に接続されている。また、キャリア捕獲領域DB〜DBに含まれるトランジスタ21の他端(例えばドレイン領域)は、各列の読出用配線R〜Rと電気的に接続されている。なお、第(N+1)列のキャリア捕獲領域DBN+1に含まれるトランジスタ21の他端は、電荷排出用配線Rと電気的に接続されている。
続いて、固体撮像装置1Aの回路構成について詳細に説明する。図3は、固体撮像装置1Aの内部構成を示す図である。前述したように、受光部20は、M×N個の画素P1,1〜PM,NがM行N列に2次元配列されて成る。また、不要キャリア捕獲部30は、M個のキャリア捕獲領域DA〜DAと、(N+1)個のキャリア捕獲領域DB〜DBN+1とを含んでいる。第m行のN個の画素Pm,1〜Pm,Nおよびキャリア捕獲領域DAに接続された第m行選択用配線Qは、垂直シフトレジスタ60に接続されている。また、キャリア捕獲領域DB〜DBN+1に接続された行選択用配線Qもまた、垂直シフトレジスタ60に接続されている。
読出回路部40は、読出用配線R〜Rを介して各列毎に出力される電荷量に応じた電気信号を、逐次に出力するための回路である。読出回路部40は、各列毎に設けられたN個の積分回路42と、N個の保持回路44とを有している。積分回路42及び保持回路44は、各列毎に互いに直列に接続されている。N個の積分回路42は、互いに共通の構成を有している。また、N個の保持回路44は、互いに共通の構成を有している。
N個の積分回路42それぞれは、読出用配線R〜Rそれぞれに接続された入力端を有しており、読出用配線R〜Rから入力された電荷を蓄積し、その蓄積電荷量に応じた電圧値を出力端からN個の保持回路44それぞれへ出力する。但し、電荷排出用配線Rには積分回路が設けられておらず、電荷排出用配線Rは基準電位線(本実施形態においては接地電位に接続された電位線)GNDに短絡されている。従って、電荷排出用配線Rを通った電荷は、基準電位線GNDに排出される。このように、キャリア捕獲領域DA〜DAの各ダミーフォトダイオード22から出力される信号は、読出回路部40へ入力される画素P1,1〜PM,Nのフォトダイオード22から出力される信号と異なり、固体撮像装置1Aから出力されない。
N個の積分回路42それぞれは、N個の積分回路42に対して共通に設けられたリセット用配線46に接続されている。N個の保持回路44それぞれは、積分回路42の出力端に接続された入力端を有し、この入力端に入力される電圧値を保持し、その保持した電圧値を出力端から電圧出力用配線48へ出力する。N個の保持回路44それぞれは、N個の保持回路44に対して共通に設けられた保持用配線45に接続されている。また、N個の保持回路44それぞれは、第1列選択用配線U〜第N列選択用配線Uそれぞれを介して水平シフトレジスタ61に接続されている。
垂直シフトレジスタ60は、第m行選択制御信号VSを、第m行選択用配線Qを介して第m行のN個の画素Pm,1〜Pm,Nそれぞれに提供する。加えて、垂直シフトレジスタ60は、行選択制御信号VSを、行選択用配線Qを介して(N+1)個のキャリア捕獲領域DB〜DBN+1に提供する。垂直シフトレジスタ60において、行選択制御信号VS,VS〜VSは順次に有意値とされる。また、水平シフトレジスタ61は、列選択制御信号HS〜HSを、列選択用配線U〜Uを介してN個の保持回路44それぞれに提供する。列選択制御信号HS〜HSは順次に有意値とされる。また、N個の積分回路42それぞれには、リセット用配線46を介してリセット制御信号REが提供される。N個の保持回路44それぞれには、保持用配線45を介して保持制御信号Hdが提供される。
図4は、画素Pm,n、積分回路42、及び保持回路44、並びにキャリア捕獲領域DAの詳細な回路構成例を示す図である。ここでは、M×N個の画素P1,1〜PM,Nを代表して第m行第n列の画素Pm,nの回路図を示しており、M個のキャリア捕獲領域DA〜DAを代表して第m行のキャリア捕獲領域DAの回路図を示している。
図4に示されるように、画素Pm,nのフォトダイオード22のアノード端子は接地され、カソード端子は、トランジスタ21を介して読出用配線Rに接続されている。同様に、キャリア捕獲領域DAのフォトダイオード22のアノード端子は接地され、カソード端子は、トランジスタ21を介して電荷排出用配線Rに接続されている。画素Pm,n及びキャリア捕獲領域DAのトランジスタ21には、垂直シフトレジスタ60から第m行選択用配線Qを介して第m行選択制御信号VSが提供される。第m行選択制御信号VSは、第m行のN個の画素Pm,1〜Pm,n及びキャリア捕獲領域DAに含まれるトランジスタ21の開閉動作を指示する。例えば、第m行選択制御信号VSが非有意値(トランジスタ21の制御端子のオフ電圧)であるときに、トランジスタ21が非導通状態となる。このとき、フォトダイオード22において発生した電荷は、読出用配線R(または電荷排出用配線R)へ出力されることなくフォトダイオード22の接合容量部に蓄積される。一方、第m行選択制御信号VSが有意値(トランジスタ21の制御端子のオン電圧)であるときに、トランジスタ21が接続状態となる。このとき、フォトダイオード22の接合容量部に蓄積されていた電荷は、トランジスタ21を経て読出用配線R(または電荷排出用配線R)へ出力される。画素Pm,nのフォトダイオード22から出力された電荷は、読出用配線Rを通って積分回路42へ送られる。一方、キャリア捕獲領域DAのフォトダイオード22から出力された電荷は、電荷排出用配線Rを通って基準電位線GNDへ送られる。
積分回路42は、アンプ42a、容量素子42b、及び放電用スイッチ42cを含む、いわゆる電荷積分型の構成を備えている。容量素子42b及び放電用スイッチ42cは、互いに並列に接続され、且つアンプ42aの入力端子と出力端子との間に接続されている。アンプ42aの入力端子は読出用配線Rに接続されている。放電用スイッチ42cには、リセット用配線46を介してリセット制御信号REが提供される。
リセット制御信号REは、N個の積分回路42それぞれの放電用スイッチ42cの開閉動作を指示する。例えば、リセット制御信号REが非有意値(例えばハイレベル)であるときに、放電用スイッチ42cが閉じて、容量素子42bが放電され、積分回路42の出力電圧値が初期化される。また、リセット制御信号REが有意値(例えばローレベル)であるときに、放電用スイッチ42cが開いて、積分回路42に入力された電荷が容量素子42bに蓄積され、その蓄積電荷量に応じた電圧値が積分回路42から出力される。
保持回路44は、入力用スイッチ44a、出力用スイッチ44b及び容量素子44cを含む。容量素子44cの一端は接地されている。容量素子44cの他端は、入力用スイッチ44aを介して積分回路42の出力端に接続され、且つ、出力用スイッチ44bを介して電圧出力用配線48と接続されている。入力用スイッチ44aには、保持用配線45を介して保持制御信号Hdが与えられる。保持制御信号Hdは、N個の保持回路44それぞれの入力用スイッチ44aの開閉動作を指示する。保持回路44の出力用スイッチ44bには、第n列選択用配線Uを介して第n列選択制御信号HSが与えられる。選択制御信号HSは、保持回路44の出力用スイッチ44bの開閉動作を指示する。
例えば、保持制御信号Hdがハイレベルからローレベルに転じると、入力用スイッチ44aが閉状態から開状態に転じて、そのときに保持回路44に入力されている電圧値が容量素子44cに保持される。また、第n列選択制御信号HSがローレベルからハイレベルに転じると、出力用スイッチ44bが閉じて、容量素子44cに保持されている電圧値が電圧出力用配線48へ出力される。
図5は、各信号のタイミングチャートである。図5には、上から順に、(a)リセット制御信号RE、(b)行選択制御信号VS、(c)第1行選択制御信号VS、(d)第2行選択制御信号VS、(e)第3行選択制御信号VS、(f)第4行選択制御信号VS、(g)第M行選択制御信号VS、(h)保持制御信号Hd、及び(i)第1列選択制御信号HS〜第N列選択制御信号HSがそれぞれ示されている。
まず、時刻t10から時刻t11までの期間、リセット制御信号REがハイレベルとされる。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となり、容量素子42bが放電される。
時刻t11より後の時刻t12から時刻t13までの期間、垂直シフトレジスタ60が行選択制御信号VSをハイレベルとする。これにより、キャリア捕獲領域DB〜DBN+1においてトランジスタ21が接続状態となり、キャリア捕獲領域DB〜DBN+1それぞれのフォトダイオード22に蓄積された電荷が、読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。その後、時刻t13より後の時刻t14から時刻t15までの期間、リセット制御信号REがハイレベルとされる。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となり、容量素子42bに蓄積されていた電荷が放出される。
続いて、時刻t15より後の時刻t16から時刻t17までの期間、第1行選択制御信号VSをハイレベルとする。これにより、第1行の画素P1,1〜P1,N及びキャリア捕獲領域DAにおいてトランジスタ21が接続状態となる。画素P1,1〜P1,Nそれぞれのフォトダイオード22に蓄積された電荷は、読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。積分回路42からは、容量素子42bに蓄積された電荷量に応じた大きさの電圧値が出力される。一方、キャリア捕獲領域DAのフォトダイオード22に蓄積された電荷は、電荷排出用配線Rを通って基準電位線GNDへ放出される。
そして、時刻t17より後の時刻t18から時刻t19までの期間、保持制御信号Hdがハイレベルとされ、これにより、N個の保持回路44のそれぞれにおいて入力用スイッチ44aが接続状態となり、積分回路42から出力された電圧値が容量素子44cによって保持される。
続いて、時刻t19より後の時刻t20から時刻t21までの期間、水平シフトレジスタ61が第1列選択制御信号HS〜第N列選択制御信号HSを順次ハイレベルとする。これにより、N個の保持回路44の出力用スイッチ44bが順次閉状態となり、容量素子44cに保持されていた電圧値が逐次に電圧出力用配線48へ出力される。また、この間、リセット制御信号REがハイレベルとされ、積分回路42の容量素子42bが放電される。
続いて、時刻t21より後の時刻t22から時刻t23までの期間、垂直シフトレジスタ60が第2行選択制御信号VSをハイレベルとする。これにより、第2行の画素P2,1〜P2,N及びキャリア捕獲領域DAにおいてトランジスタ21が接続状態となる。画素P2,1〜P2,Nそれぞれのフォトダイオード22に蓄積された電荷は、読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。一方、キャリア捕獲領域DAのフォトダイオード22に蓄積された電荷は、電荷排出用配線Rを通って基準電位線GNDへ放出される。以降、第1行と同様の動作によって、容量素子42bに蓄積された電荷量に応じた大きさの電圧値がN個の保持回路44から逐次に電圧出力用配線48へ出力される。そして、第3行ないし第M行の画素に蓄積された電荷についても、第1行と同様の動作によって電圧値に変換され、逐次に電圧出力用配線48へ出力される。こうして、受光部20からの一つの撮像フレーム分の画像データの読み出しが完了する。
以上に説明した本実施形態による固体撮像装置1Aが奏する効果について説明する。本実施形態の固体撮像装置1Aでは、受光部20だけでなく受光部20の周囲の領域にも光が入射する。また、固体撮像装置1AはX線撮像装置として用いられるが、受光部20の周囲の領域がシンチレータによって覆われていたとしても、シンチレータを透過したX線およびシンチレータからのシンチレーション光が受光部20の周囲の領域に入射する。これにより、受光部20の周囲の領域では不要な電荷(不要キャリア)が発生してしまう。特に、受光部20と並んで配置される垂直シフトレジスタ60は或る程度の面積を有しているので、垂直シフトレジスタ60が形成されている領域において多くの不要キャリアが発生する。
垂直シフトレジスタ60において発生した不要キャリアが受光部20に流入すると、垂直シフトレジスタ60に隣接する画素P1,N〜PM,Nからの出力にノイズが重畳されてしまう。図6は、このような現象を回避するため、垂直シフトレジスタ60と受光部20との間の領域に、不要キャリアを吸収するためのフォトダイオード(ダミーフォトダイオード)81を配置した例を示す平面図である。このダミーフォトダイオード81は、複数行にわたって形成されており、第1行から第M行まで連続的に形成されている(すなわち列方向につながっている)。このダミーフォトダイオード81を基準電位線(接地配線)GNDに短絡することにより、垂直シフトレジスタ60において発生した不要キャリアを基準電位線GNDへ放出し、受光部20への流入を防ぐことができる。
しかしながら、この方式には次の課題がある。通常、受光部20において互いに隣接する画素間には、これらのフォトダイオード22間に生じるカップリング容量等に起因するクロストークが存在する。また、各画素では、トランジスタ21を介して互いに繋がっているフォトダイオード22と行選択用配線Qとの間に寄生容量が存在しており、この寄生容量もまた、クロストークに影響する。しかし、上述したダミーフォトダイオード81にはトランジスタが設けられていないので、そのような寄生容量は生じない。このため、ダミーフォトダイオード81に隣接する画素P1,N〜PM,Nでは、他の画素と比較してクロストークの程度が異なり、ダミーフォトダイオード81に隣接する画素P1,N〜PM,Nからの出力特性やノイズの大きさが他の画素とは異なってしまう。
このような課題に鑑み、本実施形態の固体撮像装置1Aでは、垂直シフトレジスタ60と受光部20との間のキャリア捕獲領域DA〜DAにおいて、M個のフォトダイオード(ダミーフォトダイオード)22が各行毎に配置されている。垂直シフトレジスタ60において発生する不要キャリアは、これらのフォトダイオード22によって吸収される。これにより、垂直シフトレジスタ60において発生した不要キャリアに起因するノイズが受光部20の画素からの出力に重畳されることを効果的に防ぐことができる。
また、この固体撮像装置1Aでは、キャリア捕獲領域DA〜DAのフォトダイオード22と電荷排出用配線Rとがトランジスタ21を介して接続されており、トランジスタ21が導通状態となったときに、不要キャリアがフォトダイオード22から電荷排出用配線Rを経て基準電位線GNDへ排出される。このように、固体撮像装置1Aでは、受光部20内の各画素P1,1〜PM,Nと同様に、キャリア捕獲領域DA〜DAのフォトダイオード22にもトランジスタ21が設けられている。また、各行のキャリア捕獲領域DA〜DAそれぞれにフォトダイオード22が設けられているため、列方向に隣接するキャリア捕獲領域DA〜DAのフォトダイオード22は互いに離間している。従って、本実施形態の固体撮像装置1Aによれば、キャリア捕獲領域DA〜DAに隣接する画素P1,N〜PM,Nにおけるクロストークの大きさを、他の画素におけるクロストークの大きさに近づけることができるので、画素P1,N〜PM,Nからの出力特性やノイズの大きさを他の画素のそれに近づけることが可能となる。また、キャリア捕獲領域DA〜DAが遮光されていないか、または一部のみ遮光されている場合には、他の画素P1,1〜PM,Nと同様にキャリア捕獲領域DA〜DAのフォトダイオード22にも光が入射してキャリアが発生するので、キャリアの蓄積量も他の画素に近づけることが可能となる。
また、本実施形態のように、垂直シフトレジスタ60と受光部20とは、共通の基板12上に形成されていてもよい。このような場合には、垂直シフトレジスタ60において発生した不要キャリアが受光部20に流入し易いが、本実施形態の固体撮像装置1Aによれば、受光部20への不要キャリアの流入を効果的に防ぐことができる。
また、本実施形態のように、キャリア捕獲領域DA〜DAのトランジスタ21の各制御端子は、各画素P1,1〜PM,Nのトランジスタ21の各制御端子と共通の行選択用配線Q〜Qに接続されていることが好ましい。これにより、キャリア捕獲領域DA〜DAのフォトダイオード22と行選択用配線Q〜Qとの間の寄生容量値を、各画素P1,1〜PM,Nのフォトダイオード22と行選択用配線Q〜Qとの間の寄生容量値に近づけることができる。従って、キャリア捕獲領域DA〜DAに隣接する画素P1,N〜PM,Nにおけるクロストークの大きさを、他の画素におけるクロストークの大きさに更に近づけることができる。
ここで、本実施形態に係る固体撮像装置1Aの製造工程における露光方法について説明する。固体撮像装置1Aを製造する際には、多数の画素P1,N〜PM,Nおよびキャリア捕獲領域DA〜DA、DB〜DBN+1を、所定パターンを含むレチクルを使用しつつフォトリソグラフィ技術によって作製する。このとき、各画素P1,N〜PM,Nが互いに共通の構成を有することから、所定パターンを含むレチクルの位置を移動させながら複数回にわたって露光を行う、いわゆる継ぎ露光が行われる。図7(a)は、受光部20の平面図であって、継ぎ露光の境界線(継ぎ目)LAの一例を示している。図7(a)に示される例では、矩形状のフォトダイオード22の中心を通る線を境界線LA,LBとしている。この場合、図7(b)に示されるように、キャリア捕獲領域DA〜DA、DB〜DBN+1のフォトダイオード22の大きさは、画素P1,N〜PM,Nのフォトダイオード22の大きさとほぼ同等となる。
また、図8(a)は、受光部20の平面図であって、継ぎ露光の境界線LAの別の例を示している。図8(a)に示される例では、列方向の境界線LAが、矩形状のフォトダイオード22の中心に対して左側(すなわちキャリア捕獲領域DA〜DAから離れる側)に寄っており、また、行方向の境界線LBが、矩形状のフォトダイオード22の中心に対して上側(すなわちキャリア捕獲領域DB〜DBから離れる側)に寄っている。この場合、図8(b)に示されるように、キャリア捕獲領域DA〜DA、DB〜DBN+1のフォトダイオード22の大きさを、画素P1,N〜PM,Nのフォトダイオード22の大きさよりも小さくすることができる。具体的には、行方向におけるキャリア捕獲領域DA〜DAのフォトダイオード22の幅を、該方向における画素P1,N〜PM,Nのフォトダイオード22の幅よりも短くすることができる。また、列方向におけるキャリア捕獲領域DB〜DBのフォトダイオード22の幅を、該方向における画素P1,N〜PM,Nのフォトダイオード22の幅よりも短くすることができる。従って、受光部20の周囲に必要とされる領域を狭くすることができる。
上記のようにキャリア捕獲領域DA〜DA、DB〜DBN+1のフォトダイオード22を小さくすることには、次の利点がある。図9は、2枚のガラス基板12を並べて配置した例を概略的に示す平面図である。これらのガラス基板12上には、受光部20の画素P1,N〜PM,Nと、キャリア捕獲領域DA〜DA及びDB〜DBN+1とが形成されている。固体撮像装置全体での受光部の面積を更に大きくしたい場合には、このように複数枚のガラス基板12を並べて配置することが有効である。このとき、2枚のガラス基板12上における画素P1,N〜PM,N、キャリア捕獲領域DA〜DA及びDB〜DBの配置を同一とすれば、部品を共通化して製造コストを低く抑えることができる。しかし、その場合、2つの受光部20の間にキャリア捕獲領域DA〜DAが位置することとなり、その領域は画像を取得できない不感領域(デッドエリア)となる。このような場合、行方向におけるキャリア捕獲領域DA〜DAのフォトダイオード22の幅を、該方向における画素P1,N〜PM,Nのフォトダイオード22の幅よりも短くすることによって、上記の不感領域を狭くすることが可能となる。
また、図8(a)を参照すると、通常の画素Pm+1,nにおいて、Pm+1,n+1に近い側にトランジスタが形成されている。また、画素Pm+1,nの継ぎ目(境界線LA)は、画素Pm+1,n−1に近い側に存在している。つまり、画素Pm+1,nの中心に対して、画素の一方の側にトランジスタ、他方の側に継ぎ目(境界線LA)が存在することとなり、行方向において継ぎ目とトランジスタとの距離が大きくなる。このように、継ぎ目とトランジスタとを物理的に離すことができるので、製造不良を少なくすることができる。
本発明による固体撮像装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態に示された受光部は、ガラス基板上にアモルファスシリコンや多結晶シリコンが成膜された構成を備えてもよい。この場合、トランジスタ21は薄膜トランジスタによって好適に実現される。或いは、受光部は、単結晶シリコン基板上に作製されてもよい。
また、上記実施形態では、各画素に増幅回路を有さず、各列の読出し用配線毎に積分回路が設けられた、いわゆるパッシブピクセルセンサ(PPS)について本発明を適用したが、本発明は、各画素毎に増幅回路を有する、いわゆるアクティブピクセルセンサ(APS)に適用されてもよい。
また、上記実施形態では、受光部に対し列方向に並んでキャリア捕獲領域DB〜DBN+1が設けられている例を示したが、キャリア捕獲領域DB〜DBN+1は省略されてもよい。
1A…固体撮像装置、12…基板、20…受光部、21…トランジスタ、22…フォトダイオード、30…不要キャリア捕獲部、40…読出回路部、42…積分回路、44…保持回路、45…保持用配線、46…リセット用配線、48…電圧出力用配線、51…ボンディングワイヤ、60…垂直シフトレジスタ、61…水平シフトレジスタ、DA〜DA,DB〜DBN+1…キャリア捕獲領域、GND…基準電位線、LA,LB…境界線(継ぎ目)、P1,1〜PM,N…画素、Q〜Q,Q…行選択用配線、R〜R…読出用配線、R…電荷排出用配線、R…読出用配線、R…列読出用配線。

Claims (1)

  1. 第1のフォトダイオード、及び該第1のフォトダイオードに一端が接続された第1のスイッチ回路を各々含み、M行N列(M,Nは2以上の整数)に二次元配列されたM×N個の画素を有し、単結晶シリコン基板上に形成された受光部と、
    前記第1のフォトダイオード上を通り、各列毎に配設され、対応する列の前記画素に含まれる前記第1のスイッチ回路の他端に接続されたN本の読出用配線と、
    前記N本の読出用配線に接続された読出回路部と、
    前記受光部に対して行方向に並んで配置され、前記第1のスイッチ回路の開閉状態を各行毎に制御するシフトレジスタと、
    前記シフトレジスタと前記受光部との間の領域に配置されたダミーフォトダイオードと、
    前記ダミーフォトダイオードに一端が接続された第2のスイッチ回路と、
    前記ダミーフォトダイオード上を通り、前記第2のスイッチ回路の他端に接続されるとともに基準電位線に短絡された電荷排出用配線と
    を備え
    前記シフトレジスタと前記受光部とが共通の前記単結晶シリコン基板上に形成されており、
    行方向における前記ダミーフォトダイオードの幅が、該方向における前記第1のフォトダイオードの幅よりも短いことを特徴とする、固体撮像装置。
JP2016024555A 2016-02-12 2016-02-12 固体撮像装置 Active JP6185098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024555A JP6185098B2 (ja) 2016-02-12 2016-02-12 固体撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024555A JP6185098B2 (ja) 2016-02-12 2016-02-12 固体撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013122910A Division JP5886793B2 (ja) 2013-06-11 2013-06-11 固体撮像装置

Publications (2)

Publication Number Publication Date
JP2016096362A JP2016096362A (ja) 2016-05-26
JP6185098B2 true JP6185098B2 (ja) 2017-08-23

Family

ID=56071364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024555A Active JP6185098B2 (ja) 2016-02-12 2016-02-12 固体撮像装置

Country Status (1)

Country Link
JP (1) JP6185098B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386213B2 (ja) * 1998-09-24 2009-12-16 キヤノン株式会社 光電変換装置及び画素パネル
US6928144B2 (en) * 2003-08-01 2005-08-09 General Electric Company Guard ring for direct photo-to-electron conversion detector array
JP2006073621A (ja) * 2004-08-31 2006-03-16 Canon Inc 測距用固体撮像装置とこれを用いたオートフォーカスカメラ
JP4130211B2 (ja) * 2006-05-31 2008-08-06 三洋電機株式会社 撮像装置
JP4719201B2 (ja) * 2007-09-25 2011-07-06 浜松ホトニクス株式会社 固体撮像装置

Also Published As

Publication number Publication date
JP2016096362A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5886793B2 (ja) 固体撮像装置
US10586822B2 (en) Semiconductor module, MOS type solid-state image pickup device, camera and manufacturing method of camera
JP6188433B2 (ja) 固体撮像装置
KR102158897B1 (ko) 고체 촬상 장치
US20080030612A1 (en) Photoelectric conversion apparatus and image pickup system using the same
JP5714982B2 (ja) 固体撮像素子の制御方法
KR101575378B1 (ko) 고체 촬상 장치 및 이를 포함하는 x선 ct 장치
KR101916483B1 (ko) 고체 촬상 장치
KR101916485B1 (ko) 고체 촬상 장치
WO2014178179A1 (ja) 固体撮像素子および撮像装置
JP6185098B2 (ja) 固体撮像装置
JP5749873B1 (ja) 固体撮像素子の制御方法
US20180191968A1 (en) Solid-state imaging device
JP3658401B2 (ja) 固体撮像装置及びそれを用いたカメラ
JP6255527B1 (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6185098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250