JP6179934B2 - Method and apparatus for detecting NOx gas in ozone-containing gas - Google Patents

Method and apparatus for detecting NOx gas in ozone-containing gas Download PDF

Info

Publication number
JP6179934B2
JP6179934B2 JP2013032903A JP2013032903A JP6179934B2 JP 6179934 B2 JP6179934 B2 JP 6179934B2 JP 2013032903 A JP2013032903 A JP 2013032903A JP 2013032903 A JP2013032903 A JP 2013032903A JP 6179934 B2 JP6179934 B2 JP 6179934B2
Authority
JP
Japan
Prior art keywords
nox
gas
light
ozone
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013032903A
Other languages
Japanese (ja)
Other versions
JP2014163720A (en
Inventor
政博 古谷
政博 古谷
西村 宏
宏 西村
中村 貞紀
貞紀 中村
井上 吾一
吾一 井上
小池 国彦
国彦 小池
黒河 明
明 黒河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Iwatani Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Iwatani Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013032903A priority Critical patent/JP6179934B2/en
Publication of JP2014163720A publication Critical patent/JP2014163720A/en
Application granted granted Critical
Publication of JP6179934B2 publication Critical patent/JP6179934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、オゾンが成分として含まれている被測定気体に対してその中のNOx成分を検出計測する方法およびその装置に関するものである。   The present invention relates to a method and apparatus for detecting and measuring a NOx component in a gas to be measured containing ozone as a component.

大気中の窒素酸化物の濃度を測定する方法として、JIS「大気中の窒素酸化物自動計測器」に化学発光法と吸光光度法が記載されている。
化学発光法はオゾンガスを添加して反応させる方式であり化学反応による発光強度を測定する。一酸化窒素がオゾンと反応して二酸化窒素となるとき、一部の励起状態の二酸化窒素が光を放出して基底状態に戻る。この光の強度を測定することで一酸化窒素濃度を推定する方式である。二酸化窒素濃度の測定は、二酸化窒素を一酸化窒素に一度分解したのち、前記オゾン混入発光方法により発光強度を測定して得られる。以上の方法で試料大気中の窒素酸化物(一酸化窒素+二酸化窒素)の総量濃度が測定できる。
As a method for measuring the concentration of nitrogen oxides in the atmosphere, the chemiluminescence method and the spectrophotometric method are described in JIS "Automatic nitrogen oxide measuring instrument in the atmosphere".
The chemiluminescence method is a method in which ozone gas is added and reacted, and the luminescence intensity due to the chemical reaction is measured. When nitric oxide reacts with ozone to form nitrogen dioxide, some excited nitrogen dioxide emits light and returns to the ground state. In this method, the concentration of nitric oxide is estimated by measuring the intensity of light. The measurement of nitrogen dioxide concentration is obtained by once decomposing nitrogen dioxide into nitric oxide and then measuring the emission intensity by the ozone-mixed emission method. With the above method, the total concentration of nitrogen oxides (nitrogen monoxide + nitrogen dioxide) in the sample atmosphere can be measured.

一方、吸光光度法、一酸化窒素と二酸化窒素を吸収する液体を準備し、被測定気体をこの吸収液中にくぐらせて一酸化窒素と二酸化窒素を吸収させる。吸収液はガスの吸収により吸光度が変わるので吸光度測定によって試料大気中の窒素酸化物を推定する。 Meanwhile, absorptiometry prepares a liquid to absorb nitrogen monoxide and nitrogen dioxide, to absorb nitrogen monoxide and nitrogen dioxide by preferably under a gas to be measured in the absorbing solution. Since the absorbance of the absorbing solution changes due to gas absorption, nitrogen oxides in the sample atmosphere are estimated by measuring the absorbance.

JIS B 7953「大気中の窒素酸化物自動計測器」JIS B 7953 "Automatic measuring instrument for nitrogen oxides in the atmosphere"

しかしながら被測定気体中にあらかじめオゾンガスが含まれている場合にはNOx検出に化学発光法を用いることはできない。これは、オゾン成分によって一酸化窒素成分はあらかじめ酸化されており化学発光計測のために新たにオゾンガスを添加しても新たな発光が生じないためである。   However, when ozone gas is previously contained in the gas to be measured, the chemiluminescence method cannot be used for NOx detection. This is because the nitric oxide component is previously oxidized by the ozone component, and no new light emission occurs even when ozone gas is newly added for chemiluminescence measurement.

また被測定気体中のオゾン分圧管理が重要な用途で、かつNOx濃度をインライン計測したい場合には、オゾンガスを添加したり分解したりする測定方法はオゾン分圧を変化させるため適用できない。とくにオゾン濃度が20 vol%を超えて高い場合には、一部のオゾンの分解をきっかけにオゾン全量の連鎖分解反応が生じる可能性があるため、熱源やオゾンが吸収する光を測定のために用いることは避けるべきである。   Moreover, when the ozone partial pressure management in the gas to be measured is an important application and it is desired to measure the NOx concentration in-line, the measuring method of adding or decomposing ozone gas cannot be applied because the ozone partial pressure is changed. Especially when the ozone concentration is higher than 20 vol%, the decomposition of some ozone may cause a chain decomposition reaction of the total amount of ozone, so the heat source and the light absorbed by ozone are used for measurement. Use should be avoided.

吸光光度法では被測定気体を吸収液中に流通させるため被測定ガスに吸収液の蒸気が混入してしまう。そのため被測定ガスの配管の途中にとりつけてインライン測定することが難しい。被測定気体が陰圧の場合は吸収液の蒸発が促進され配管汚染が問題となる。   In the absorptiometric method, since the gas to be measured is circulated in the absorption liquid, the vapor of the absorption liquid is mixed into the gas to be measured. For this reason, it is difficult to perform in-line measurement in the middle of the piping of the gas to be measured. When the gas to be measured has a negative pressure, the evaporation of the absorbing liquid is promoted and piping contamination becomes a problem.

本発明は上記課題を鑑みてなされたものであり、被測定気体中にオゾンガスがあらかじめ含まれていてもNOx濃度を測定できる方法およびその装置を提供することが目的である。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method and an apparatus for measuring NOx concentration even if ozone gas is contained in the gas to be measured in advance.

本発明の気体中に含まれるNOxガスを検出する方法としては、
NOxが付着するNOx吸着部を配置した気体流路部に、N O、NO、NO 、N 、N 、NO 、HNO から選ばれる少なくとも1つの成分とオゾンとが含まれる被測定気体を供給して、NOx吸着部(5)にNOxを吸着させ、
このNOx吸着部にオゾンに吸収されない波長域である360 nm〜410 nmの入射光を光照射部からを照射し、
NOx吸着部の入射光および被測定気体に曝される部分の材料基材が、シリカゲル、もしくは、多孔質の表面を有する石英またはガラスで形成され、
NOx吸着部を透過した透過光、NOx吸着部から反射した反射光、NOx吸着部で発生した発生光の内の少なくとも1つの光を光検出部で検出し、
光検出部で得られた光強度をデータ記録解析部で解析記録することを特徴とする。
As a method for detecting NOx gas contained in the gas of the present invention,
At least one component selected from N 2 O, NO, NO 2 , N 2 O 4 , N 2 O 5 , NO 3 , and HNO 3 and ozone are disposed in the gas flow path portion in which the NOx adsorbing portion to which NOx adheres is disposed. by supplying a gas to be measured which contains the NOx adsorbed to the NOx adsorption unit (5),
The NOx adsorbing part is irradiated with incident light of 360 nm to 410 nm, which is a wavelength range not absorbed by ozone, from the light irradiating part,
The material substrate of the portion exposed to the incident light and the gas to be measured of the NOx adsorption portion is formed of silica gel or quartz or glass having a porous surface,
The light detection unit detects at least one of transmitted light that has passed through the NOx adsorption unit, reflected light that has been reflected from the NOx adsorption unit, and generated light that has been generated at the NOx adsorption unit,
The light intensity obtained by the light detection unit is analyzed and recorded by the data recording / analysis unit.

この場合、光照射部から照射する光は、所定の波長域内(360 nm〜410 nm)の光であれば、単一波長、または複数波長、もしくは所定の幅の広がりを持つ波長のいずれであっても利用することができる。 In this case, if the light irradiated from the light irradiation unit is light within a predetermined wavelength range (360 nm to 410 nm), it is either a single wavelength, a plurality of wavelengths, or a wavelength having a predetermined width. Can also be used.

さらに、被測定気体が0.1 vol%以上100 vol%未満のオゾン濃度であり、かつ、そのオゾン濃度がNOx濃度よりも大きいことが望ましい。 Furthermore , it is desirable that the gas to be measured has an ozone concentration of 0.1 vol% or more and less than 100 vol%, and the ozone concentration is higher than the NOx concentration.

また、上述の方法を実施する装置としては、
NOxガス検出装置はオゾンと、N O、NO、NO 、N 、N 、NO 、HNO から選ばれる少なくとも1つの成分とが含まれている被測定気体を内部に充満させる気体流路部と、
この気体流路部の一部に配置したNOxを付着させるNOx吸着材を有するNOx吸着部と
NOx吸着部にオゾンに吸収されない波長域である360 nm〜410 nmの入射光を照射する光照射部と、
光照射部から照射された入射光のNOx吸着部を透過した透過光、入射光がNOx吸着部で反射した反射光、入射光によりNOx吸着部で生じた発生光のうちの少なくとも1つの光を検出する光検出部と、
光検出部から得られた光強度を記録し解析するデータ記録解析部とを具備し、
光照射部からの入射光および被測定気体に曝される前記NOx吸着部の材料基材が、シリカゲル、もしくは表面が多孔質である石英またはガラスで形成されていることを特徴としている。
In addition, as an apparatus for carrying out the above method,
The NOx gas detection device internally contains a gas to be measured containing ozone and at least one component selected from N 2 O, NO, NO 2 , N 2 O 4 , N 2 O 5 , NO 3 , and HNO 3. A gas flow path section to be filled with,
A NOx adsorbing section having a NOx adsorbing material for adhering NOx disposed in a part of the gas flow path section;
A light irradiation unit that irradiates incident light of 360 nm to 410 nm, which is a wavelength region that is not absorbed by ozone, into the NOx adsorption unit;
At least one of the transmitted light that has passed through the NOx adsorption portion of the incident light irradiated from the light irradiation portion, the reflected light that has been reflected by the NOx adsorption portion, and the generated light that has been generated at the NOx adsorption portion by the incident light. A light detection unit to detect;
A data recording analysis unit that records and analyzes the light intensity obtained from the light detection unit,
The material substrate of the NOx adsorbing portion exposed to the incident light from the light irradiating portion and the gas to be measured is formed of silica gel or quartz or glass having a porous surface.

本発明方法及びその方法を適用する本発明装置では、In the method of the present invention and the device of the present invention to which the method is applied,
被測定気体中にはオゾンが成分として含まれているためNOxはオゾンによって酸化が進行し流路に置かれたNOx吸着部に付着される。  Since ozone is included as a component in the gas to be measured, NOx is oxidized by ozone and adheres to the NOx adsorption portion placed in the flow path.
この付着物に光を照射して付着物の吸収・反射・発光の特性を測定しNOx量を測定するとき、波長360 nm〜410 nmの光はオゾンには吸収されないため測定気体中のオゾン分圧の影響を受けることなくNOx濃度を測定することができるし、オゾンガスが分解しにくいため、オゾン濃度20 vol%を超えるような自己分解性が高い高濃度のオゾンガスを含む気体にもNOx測定の適用ができる。When this deposit is irradiated with light to measure the absorption / reflection / emission characteristics of the deposit and measure the amount of NOx, light of wavelength 360 nm to 410 nm is not absorbed by ozone, so the ozone content in the measurement gas NOx concentration can be measured without being affected by pressure, and since ozone gas is difficult to decompose, NOx measurement is also possible for gases containing high-concentration ozone gas that has a high self-degradability such as ozone concentration exceeding 20 vol%. Can be applied.

また、NOx吸着部の材料基材にシリカゲルあるいは多孔質な表面を有する石英やガラスを用いることにより、表面が平滑な材料基材を用いる場合に比べて、オゾンによって酸化が進行したNOxを付着することのできる面積を広くできるため、NOx検出信号を大きくすることができる。Further, by using silica gel or quartz or glass having a porous surface for the material substrate of the NOx adsorbing portion, NOx that has been oxidized by ozone adheres compared to the case of using a material substrate having a smooth surface. Since the possible area can be increased, the NOx detection signal can be increased.

さらに、材料の基材であるシリカゲル・石英・ガラスは波長360 nm〜410 nmの光を透過するため、NOx吸着部の基材の多孔部の内部まで照射光が届き、NOx検出信号を大きくすることができる。Furthermore, since the silica gel, quartz, and glass that are the base materials of the material transmit light having a wavelength of 360 nm to 410 nm, the irradiation light reaches the inside of the porous portion of the base material of the NOx adsorption portion, and the NOx detection signal is increased. be able to.

オゾン濃度1〜5 vol%程度のオゾンガスは産業用の無声放電方式オゾナイザーで容易に生成できるため使用頻度が高いが、この汎用濃度のオゾンガスを含む気体にもNOx測定の適用ができる。さらに、オゾン濃度20 vol%を超えるような自己分解性が高い高濃度のオゾンガスを含む気体にNOx測定の適用ができる。
また、オゾン濃度がNOx濃度よりも高い場合はNOx酸化が進んで最終酸化状態が安定的に得られるため本発明の適用に有利であるから、本発明は、0.1vol%以上のオゾンガスを含む気体に好適に用いることができる。
Ozone gas having an ozone concentration of about 1 to 5 vol% is frequently used because it can be easily generated by an industrial silent discharge type ozonizer. However, NOx measurement can also be applied to a gas containing ozone gas having a general concentration. Further, NOx measurement can be applied to a gas containing a high concentration ozone gas having a high self-decomposition property such as an ozone concentration exceeding 20 vol%.
Further, when the ozone concentration is higher than the NOx concentration, NOx oxidation proceeds and the final oxidation state is stably obtained, which is advantageous for the application of the present invention. Therefore, the present invention includes 0.1 vol% or more ozone gas. It can be suitably used for gas.

本発明に係るNOxガス検出装置の一実施形態を模式的に示す図である。It is a figure showing typically one embodiment of the NOx gas detection device concerning the present invention. 本発明に係るNOxガス検出装置の別の実施形態を模式的に示す図である。It is a figure which shows typically another embodiment of the NOx gas detection apparatus which concerns on this invention. 本発明に係るNOxガス検出装置の異なる実施形態を模式的に示す図である。It is a figure which shows typically different embodiment of the NOx gas detection apparatus which concerns on this invention. 本発明に係るNOxガス検出装置でのNOx検出の測定例である。It is an example of a measurement of NOx detection in the NOx gas detection device according to the present invention. 本発明に係るNOxガス検出装置のさらに異なる実施形態を模式的に示す図である。It is a figure which shows typically further another embodiment of the NOx gas detection apparatus which concerns on this invention.

本発明の気体中に含まれるNOxガスを検出する装置は、
オゾンが成分として含まれているガスを被測定気体とし、
被測定気体中にはNO、NO、NO、N、N、NO、HNOのうちの少なくとも1つの成分が含まれていて、
この被測定気体を気体流路部を流通させる。
このとき、気体流路部の一部に設けられたNOx吸着部は被測定気体に曝され、オゾンによるNOxの酸化物が付着する。
The apparatus for detecting NOx gas contained in the gas of the present invention,
The gas that contains ozone as a component is the gas to be measured,
The gas to be measured contains at least one component of N 2 O, NO, NO 2 , N 2 O 4 , N 2 O 5 , NO 3 , HNO 3 ,
This gas to be measured is circulated through the gas flow path.
At this time, the NOx adsorbing part provided in a part of the gas flow path part is exposed to the gas to be measured, and oxides of NOx due to ozone adhere thereto.

NOx吸着部には光照射部から波長360 nm〜410 nmの範囲内にある光を照射する。
NOx吸着部を透過した照射光は光検出部でその強度を捕捉する。データ記録解析部はその光強度を記録し解析する。
The NOx adsorbing part is irradiated with light in the wavelength range of 360 nm to 410 nm from the light irradiation part.
The intensity of the irradiation light transmitted through the NOx adsorption unit is captured by the light detection unit. The data recording / analyzing unit records and analyzes the light intensity.

NOx吸着剤としてシリカゲルを用いた場合、オゾン流下中のNOxは、オゾンによって酸化が進行し、NO → NO→ NO→ HNOと変化してシリカゲル表面に吸着されている。
紫外線を照射するとそれらNOxは紫外線を吸収して還元される。そのためシリカゲル表面に付着しているNOx量が多いほど紫外線をよく吸収する。そこで紫外線の透過光強度の変化を見ることによりNOx量を測定することができる。
When silica gel is used as the NOx adsorbent, the oxidation of NOx under the flow of ozone progresses due to ozone, and changes in the order NO → NO 2 → NO 3 → HNO 3 and is adsorbed on the silica gel surface.
When irradiated with ultraviolet rays, the NOx absorbs the ultraviolet rays and is reduced. Therefore, the larger the amount of NOx adhering to the silica gel surface, the better the ultraviolet rays are absorbed. Therefore, the amount of NOx can be measured by observing the change in transmitted light intensity of ultraviolet rays.

なお透過光強度の他に、NOx吸着部で反射した光、またはNOx吸着部で発生した光を利用することもできる。   In addition to the transmitted light intensity, light reflected by the NOx adsorption unit or light generated by the NOx adsorption unit can also be used.

入射光は単一波長の光だけでなく、360 nm〜410 nmの範囲内での複数の異なる波長が混合した光も使用できる。また、360 nm〜410 nmの範囲内で波長が連続的にあるいは離散的に広がりを持つ光も使用できる。 As the incident light, not only single-wavelength light but also light in which a plurality of different wavelengths are mixed within the range of 360 nm to 410 nm can be used. Further , light having a wavelength continuously or discretely spread within a range of 360 nm to 410 nm can also be used.

波長360 nm〜410 nmの光はオゾンガスが吸収しないため、被測定気体中のオゾンを光で分解することはないという利点がある。また透過光強度が気体中のオゾンガス分圧によって左右されることがないという利点もある。   Since light having a wavelength of 360 nm to 410 nm is not absorbed by ozone gas, there is an advantage that ozone in the gas to be measured is not decomposed by light. There is also an advantage that the transmitted light intensity is not affected by the partial pressure of ozone gas in the gas.

NOx吸着部の材料基材にシリカゲルもしくは表面が多孔質な石英やガラスを用いることにより、平滑な材料基材を用いる場合に比べて、オゾンによって酸化が進行したNOxが付着できる面積を大きくできるため、NOx検出信号を大きくすることができる。   By using silica gel or quartz or glass having a porous surface for the material substrate of the NOx adsorption part, the area on which NOx oxidized by ozone can adhere can be increased compared to the case of using a smooth material substrate. The NOx detection signal can be increased.

また、材料基材をシリカゲル・石英・ガラスは波長360 nm〜410 nmの光を透過するため、NOx吸着部の基材にある多孔の内部まで照射光が届くため、NOx検出信号を大きくすることができる。 Moreover, since the wood charge base silica, quartz, glass that transmits light with a wavelength of 360 nm~410 nm, for irradiating light to the interior of the porous in the base material of the NOx adsorption unit arrives, to increase the NOx detection signal be able to.

NOx吸着材料はオゾンよりもNOxを選択的に吸着する特質を備えることが望ましい。   It is desirable that the NOx adsorbing material has a property of selectively adsorbing NOx over ozone.

なお、多孔質の材料の細孔径は、平均値もしくは中央値もしくは最頻値が1.5 nm以上30 nm以下の範囲内にあることが望ましい。   The pore diameter of the porous material is preferably in the range of 1.5 nm or more and 30 nm or less in average value, median value, or mode value.

孔の深さは孔の直径の5倍以上あることが望ましい。   The depth of the hole is desirably 5 times or more the diameter of the hole.

またNOx吸着部の材料の特性として、オゾンによって酸化が進行したNOxの飽和吸着量はオゾンガスの飽和吸着量よりも大きいことが望ましい。   Further, as a characteristic of the material of the NOx adsorbing portion, it is desirable that the saturated adsorption amount of NOx that has been oxidized by ozone is larger than the saturated adsorption amount of ozone gas.

本発明に係るNOxガス検出装置を説明する。   A NOx gas detection device according to the present invention will be described.

図1に示すように、NOxガス検出装置(1)は被測定気体を内部に流通させて充満させる気体流路部(2)を備えており、気体流路部(2)の一部には石英窓(3)が設けてあり、この石英窓(3)の外側に波長380 nmの光を照射する光照射部(4)が配置してある。
そして、前記石英窓(3)の形成部に対応する気体流路部(2)の内部にはシリカゲル製NOx吸着材を収容してNOx吸着部(5)としている。
NOx吸着部(5)に前記光照射部(4)から波長380 nmの入射光(Li)が照射される。
As shown in FIG. 1, the NOx gas detection device (1) includes a gas flow path portion (2) that circulates and fills the gas to be measured, and a part of the gas flow path portion (2) includes A quartz window (3) is provided, and a light irradiation section (4) for irradiating light with a wavelength of 380 nm is disposed outside the quartz window (3).
And the inside of the gas flow path part (2) corresponding to the formation part of the said quartz window (3) accommodates the NOx adsorption material made from a silica gel, and it is set as the NOx adsorption part (5).
The NOx adsorption part (5) is irradiated with incident light (Li) having a wavelength of 380 nm from the light irradiation part (4).

NOx吸着部(5)のNOx吸着材(シリカゲル)を透過した透過光(Lt)は、フォトダイオードを用いた光検出部(6)で捕捉される。
透過光(Lt)の信号強度はデータ記録解析部(7)で時系列に記録される。
The transmitted light (Lt) that has passed through the NOx adsorbent (silica gel) of the NOx adsorbing section (5) is captured by the light detecting section (6) using a photodiode.
The signal intensity of the transmitted light (Lt) is recorded in time series by the data recording analysis unit (7).

NOx吸着材としてのシリカゲルは粒状であっても、粉末であってもよい。またそれらシリカゲルを石英等の紫外光を透過する基板上に塗布してあってもよい。シリカゲルの替わりに、ガラス基板の表面を化学処理して多孔質にした基板でもよく、NOxが付着する材料で表面積を増加させる処理がしてあり紫外光が透過すれば使用できる。   The silica gel as the NOx adsorbent may be granular or powder. These silica gels may be coated on a substrate such as quartz that transmits ultraviolet light. Instead of silica gel, a substrate obtained by chemically treating the surface of a glass substrate to be porous may be used. If the surface of the glass substrate is increased with a material to which NOx adheres and ultraviolet light is transmitted, it can be used.

図2は、図1の装置に入射光強度の変動を取り除くための機構を追加した装置である。入射光強度は光源の経時劣化や周囲の温度変動などで変動する。入射光の一部はハーフミラー(8)で反射分光され、この分光された入射光(Ld)はフォトダイオードを用いた入射光検出部(9)で入射光の強度を検出する。光検出部(6)からの透過光強度の信号は入射光検出部(9)からの信号で規格化することで入射光強度の変動を取り除くことができる。この処理はデータ記録解析部(7)で行う。入射光強度の変動を取り除くことにより、透過光強度ではなく透過率を求めることができ、透過率のNOx付着によるわずかな変化を検出することができる。   FIG. 2 is an apparatus in which a mechanism for removing fluctuations in incident light intensity is added to the apparatus of FIG. Incident light intensity fluctuates due to deterioration of the light source over time or ambient temperature fluctuations. Part of the incident light is reflected and split by the half mirror (8), and the split incident light (Ld) detects the intensity of the incident light by the incident light detector (9) using a photodiode. The signal of the transmitted light intensity from the light detection unit (6) is normalized by the signal from the incident light detection unit (9), so that fluctuations in the incident light intensity can be removed. This processing is performed by the data recording analysis unit (7). By removing the fluctuation of the incident light intensity, the transmittance can be obtained instead of the transmitted light intensity, and a slight change of the transmittance due to NOx adhesion can be detected.

図3は、光検出部(6)のみの1台を用いても透過率を求める装置の例である。入射光(Li)はNOx吸着材(シリカゲル)を透過して透過光(Lt)となり、一方ハーフミラー(8)で一部を分光された入射光(Ld)は図中の気体流路部(2)の背面を通って直接光検出部(6)に入射する。入射光(Li)と分光された入射光(Ld)はチョッパーに(10)より切り替える。データ記録解析部(7)では、まずチョッパー(10)の回転と光検出部(6)からの信号を同期処理して分光された入射光(Ld)と透過光(Lt)の強度をそれぞれ求め、次に透過光(Lt)の強度を分光された入射光(Ld)の強度で規格化し、最終的にシリカゲルの透過率を求めることができる。 FIG. 3 shows an example of an apparatus for obtaining the transmittance even when only one photodetecting section (6) is used. Incident light (Li) passes through the NOx adsorbent (silica gel) and becomes transmitted light (Lt), while incident light (Ld) partially split by the half mirror (8) is the gas flow path ( The light directly enters the light detection section (6) through the back surface of 2) . The incident light (Li) and the split incident light (Ld) are switched to the chopper from (10). In the data recording analysis unit (7), first, the rotation of the chopper (10) and the signal from the light detection unit (6) are processed synchronously to determine the intensity of the incident light (Ld) and the transmitted light (Lt) respectively. Then, the intensity of the transmitted light (Lt) can be normalized by the intensity of the incident light (Ld) thus dispersed, and finally the transmittance of the silica gel can be obtained.

なお本例では吸着剤としてのシリカゲルを透過した光についての装置例を示したが、シリカゲルの表面からの反射光(Lr)も使用できる。この場合も透過率と同様に、NOx付着にともなって反射率が変化するので、その変化率を測定すればNOx検出に使用できる。   In this example, an example of an apparatus for light transmitted through silica gel as an adsorbent is shown, but reflected light (Lr) from the surface of silica gel can also be used. In this case as well, the reflectance changes as NOx adheres, as with the transmittance. Therefore, if the change rate is measured, it can be used for NOx detection.

NOxが紫外線によって発光する場合はその発生光(Lg)の発光強度を利用することができる。その場合、発光波長は可視領域になるので測定気体による吸収量を補正する必要がある。   When NOx emits light by ultraviolet rays, the emission intensity of the generated light (Lg) can be used. In that case, since the emission wavelength is in the visible region, it is necessary to correct the amount of absorption by the measurement gas.

図4は図1に示す装置を用いて、入射光強度(Io)に対する透過光強度(Tr)からNOxガスを検出した例である。
図中で0〜280分までは酸素ガス、もしくは酸素95 vol%‐オゾン5 vol%のオゾン含有ガスを流し、その中に置いたシリカゲルの透過強度を測定した。280〜530分の間では、酸素95 vol%−オゾン 5 vol%のオゾン含有ガスにNOガスを100 ppm混入したものを流下した。このときNOx流下の時間経過に伴って透過率(Tr/Io)が3.8%減衰した。シリカゲル表面ではNの吸着過程と紫外線による還元過程(N→NO→NO)が平衡しながら進行する。ただしHNOの毛細管凝縮による内部への拡散は徐々に進行するため吸着NOx量が飽和に達するには時間を要するものと思われる。
FIG. 4 shows an example in which NOx gas is detected from the transmitted light intensity (Tr) with respect to the incident light intensity (Io) using the apparatus shown in FIG.
In the figure, from 0 to 280 minutes, oxygen gas or an ozone-containing gas of 95% by volume of oxygen and 5% by volume of ozone was flowed, and the transmission intensity of silica gel placed therein was measured. Between 280 and 530 minutes, an ozone-containing gas of 95 vol% oxygen-5 vol% ozone mixed with 100 ppm NO gas was allowed to flow down. At this time, the transmittance (Tr / Io) attenuated by 3.8% with the passage of time under the flow of NOx. On the silica gel surface, the adsorption process of N 2 O 5 and the reduction process by ultraviolet rays (N 2 O 5 → NO 3 → NO 2 ) proceed in equilibrium. However, it is considered that it takes time for the amount of adsorbed NOx to reach saturation because the diffusion of HNO 3 into the inside due to capillary condensation proceeds gradually.

530〜800分の間では、酸素ガス、もしくは酸素95 vol%‐オゾン5 vol%のオゾン含有ガスを流すことにより透過強度は復帰を始めた。これは紫外線によって吸着NOxが還元されシリカゲル表面から気体として脱離していったことによるものである。表面からの脱離の時定数は0.5時間である。時間を要する過程は、毛細管凝縮して内部に閉じ込められたHNOが表面まで拡散する過程であり時定数は19時間であった。 Between 530 and 800 minutes, the permeation intensity began to return by flowing an oxygen gas or an ozone-containing gas of 95% by volume of oxygen and 5% by volume of ozone. This is because the adsorbed NOx is reduced by ultraviolet rays and desorbed as a gas from the silica gel surface. The time constant for desorption from the surface is 0.5 hour. The time-consuming process is a process in which HNO 3 confined in the capillaries and confined inside diffuses to the surface, and the time constant was 19 hours.

図5に示す装置は、差分光吸収法を用いてシリカゲルの透過率を求めるようにしたものである。光照射部(4)からの出射光(Li)はNOx吸着材(シリカゲル)を透過し、この透過光(Lt)の一部はハーフミラー(8)で反射分光され、この分光された透過光(Ld)は370 nm干渉フィルター(11)を介して、フォトダイオードを用いた分光検出部(12)で分光された透過光の強度を検出する。一方ハーフミラー(8)を透過した透過光(Lt)は400 nm干渉フィルター(13)を介して光検出部(6)に到達し、分光検出部(12)および光検出部(6)からの透過光強度の信号はデータ記録解析部(7)送られ、NOxの光吸収には波長依存性(例えばNOでは400 nmの吸収係数は360 nmの吸収係数よりも大きい)があることを利用してこのデータ記録解析部(7)でそれぞれの透過光強度を測定しそれら信号強度の差からNOx濃度を求めるようにしたものである。 The apparatus shown in FIG. 5 uses the differential light absorption method to determine the transmittance of silica gel. The emitted light (Li) from the light irradiator (4) passes through the NOx adsorbent (silica gel), and a part of the transmitted light (Lt) is reflected and spectrumd by the half mirror (8). (Ld) detects the intensity of transmitted light spectrally separated by the spectroscopic detection unit (12) using a photodiode through the 370 nm interference filter (11). On the other hand, the transmitted light (Lt) transmitted through the half mirror (8) reaches the light detection unit (6) through the 400 nm interference filter (13), and is transmitted from the spectral detection unit (12) and the light detection unit (6). The transmitted light intensity signal is sent to the data recording / analyzing unit (7), and the light absorption of NOx has a wavelength dependency (for example, the absorption coefficient at 400 nm is larger than the absorption coefficient at 360 nm for NO 2 ). Then, the transmitted light intensity is measured by the data recording analysis unit (7), and the NOx concentration is obtained from the difference between the signal intensities.

本発明は、放電により生成したオゾンガスを使用する設備全般に応用することができる。   The present invention can be applied to all facilities using ozone gas generated by discharge.

2…気体流路部、4…光照射部、5…NOx吸着部、6…光検出部、7…データ記録解析部、Lt…NOx吸着部透過光、Lr…NOx吸着部反射光、Lg…NOx吸着部発生光。   2 ... Gas channel part, 4 ... Light irradiation part, 5 ... NOx adsorption part, 6 ... Light detection part, 7 ... Data recording analysis part, Lt ... NOx adsorption part transmitted light, Lr ... NOx adsorption part reflected light, Lg ... NOx adsorption part generated light.

Claims (4)

気体中に含まれるNOxガスを検出する方法であって、
NOxが付着するNOx吸着部(5)を配置した気体流路部(2)に、N O、NO、NO 、N 、N 、NO 、HNO から選ばれる少なくとも1つの成分とオゾンとが含まれる被測定気体を供給して、NOx吸着部(5)にNOxを吸着させ、
このNOx吸着部(5)にオゾンに吸収されない波長域である360 nm〜410 nmの入射光(Li)を光照射部(4)からを照射し、
NOx吸着部(5)の入射光(Li)および被測定気体に曝される部分の材料基材が、シリカゲル、もしくは、多孔質の表面を有する石英またはガラスで形成され、
NOx吸着部(5)を透過した透過光(Lt)、NOx吸着部(5)から反射した反射光(Lr)、NOx吸着部(5)で発生した発生光(Lg)の内の少なくとも1つの光を光検出部(6)で検出し、
光検出部(6)で得られた光強度をデータ記録解析部(7)で解析記録することを特徴とするオゾン含有ガス中のNOxガス検出方法。
A method for detecting NOx gas contained in a gas, comprising:
At least selected from N 2 O, NO, NO 2 , N 2 O 4 , N 2 O 5 , NO 3 , and HNO 3 in the gas flow path part (2) in which the NOx adsorbing part (5) to which NOx adheres is arranged. Supplying a gas to be measured containing one component and ozone, and adsorbing NOx to the NOx adsorbing section (5);
The NOx adsorbing part (5) is irradiated with incident light (Li) having a wavelength range of 360 nm to 410 nm which is not absorbed by ozone from the light irradiating part (4).
The material substrate of the portion exposed to the incident light (Li) and the gas to be measured of the NOx adsorption portion (5) is formed of silica gel or quartz or glass having a porous surface,
At least one of transmitted light (Lt) transmitted through the NOx adsorbing part (5), reflected light (Lr) reflected from the NOx adsorbing part (5), and generated light (Lg) generated at the NOx adsorbing part (5) The light is detected by the light detector (6),
A method for detecting NOx gas in an ozone-containing gas, characterized in that the light intensity obtained by the light detection unit (6) is analyzed and recorded by a data recording analysis unit (7).
被測定気体中のオゾン濃度が0.1 vol%以上100 vol%未満のオゾン濃度であり、かつ、そのオゾン濃度がNOx濃度よりも大きい請求項1に記載のオゾン含有ガス中のNOxガス検出方法。The method for detecting NOx gas in ozone-containing gas according to claim 1, wherein the ozone concentration in the gas to be measured is an ozone concentration of 0.1 vol% or more and less than 100 vol%, and the ozone concentration is larger than the NOx concentration. . 気体中に含まれるNOxガスを検出する装置であって、An apparatus for detecting NOx gas contained in a gas,
このNOxガス検出装置はオゾンと、NThis NOx gas detector is composed of ozone and N 2 O、NO、NOO, NO, NO 2 、N, N 2 O 4 、N, N 2 O 5 、NO, NO 3 、HNO, HNO 3 から選ばれる少なくとも1つの成分とが含まれている被測定気体を内部に充満させる気体流路部(2)と、A gas flow path section (2) for filling the gas to be measured containing at least one component selected from
この気体流路部(2)の一部に配置したNOxを付着させるNOx吸着材を有するNOx吸着部(5)とA NOx adsorbing section (5) having a NOx adsorbing material for adhering NOx disposed in a part of the gas flow path section (2);
このNOx吸着部(5)にオゾンに吸収されない波長域である360 nm〜410 nmの入射光(Li)を照射する光照射部(4)と、A light irradiating unit (4) for irradiating the NOx adsorbing unit (5) with incident light (Li) having a wavelength range of 360 nm to 410 nm which is not absorbed by ozone;
この光照射部(4)から照射された入射光(Li)のNOx吸着部を透過した透過光(Lt)、入射光(Li)がNOx吸着部で反射した反射光反射光(Lr)、入射光(Li)によりNOx吸着部で生じた発生光(Lg)のうちの少なくとも1つの光を検出する光検出部(6)と、The incident light (Li) irradiated from this light irradiation part (4) is transmitted through the NOx adsorption part (Lt), the reflected light reflected from the NOx adsorption part (Lr), incident light (Li) A light detection unit (6) for detecting at least one of generated light (Lg) generated in the NOx adsorption unit by light (Li);
この光検出部(6)から得られた光強度を記録し解析するデータ記録解析部(7)とを具備し、A data recording analysis section (7) for recording and analyzing the light intensity obtained from the light detection section (6),
光照射部からの入射光(Li)および被測定気体に曝される前記NOx吸着部での材料基材が、シリカゲル、もしくは表面が多孔質である石英またはガラスで形成されていることを特徴とするオゾン含有ガス中のNOxガス検出装置。The material base material in the NOx adsorption part exposed to incident light (Li) from the light irradiation part and the gas to be measured is formed of silica gel or quartz or glass having a porous surface. A NOx gas detector in ozone-containing gas.
前記被測定気体中のオゾン濃度が0.1 vol%以上100 vol%未満であり、かつ、そのオゾン濃度がNOx濃度よりも大きいことを特徴とする請求項3に記載のオゾン含有ガス中のNOxガス検出装置。4. The NOx in the ozone-containing gas according to claim 3, wherein the ozone concentration in the gas to be measured is 0.1 vol% or more and less than 100 vol%, and the ozone concentration is higher than the NOx concentration. Gas detection device.
JP2013032903A 2013-02-22 2013-02-22 Method and apparatus for detecting NOx gas in ozone-containing gas Active JP6179934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013032903A JP6179934B2 (en) 2013-02-22 2013-02-22 Method and apparatus for detecting NOx gas in ozone-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013032903A JP6179934B2 (en) 2013-02-22 2013-02-22 Method and apparatus for detecting NOx gas in ozone-containing gas

Publications (2)

Publication Number Publication Date
JP2014163720A JP2014163720A (en) 2014-09-08
JP6179934B2 true JP6179934B2 (en) 2017-08-16

Family

ID=51614473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013032903A Active JP6179934B2 (en) 2013-02-22 2013-02-22 Method and apparatus for detecting NOx gas in ozone-containing gas

Country Status (1)

Country Link
JP (1) JP6179934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180608A (en) * 2015-03-23 2016-10-13 株式会社トクヤマ Detector detecting by ultraviolet light absorption
JP6672876B2 (en) * 2016-02-22 2020-03-25 栗田工業株式会社 Apparatus and method for detecting matter adhering to liquid contact member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230870A (en) * 1998-02-17 1999-08-27 Fujitsu Ltd Nitrogen oxide detecting device
DE10125837B4 (en) * 2001-05-25 2005-02-24 Wma Airsense Analysentechnik Gmbh Gas detector for detecting gaseous compounds
JP2010210565A (en) * 2009-03-12 2010-09-24 Noritsu Koki Co Ltd Nitrogen dioxide concentration measuring apparatus and sterilizer
JP2011121805A (en) * 2009-12-09 2011-06-23 Iwatani Internatl Corp Method for removing nitrogen oxide and moisture contained in ozone gas
JPWO2012124269A1 (en) * 2011-03-11 2014-07-17 パナソニックヘルスケア株式会社 Nitrogen oxide concentration measuring device

Also Published As

Publication number Publication date
JP2014163720A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Okabe et al. Ambient and source SO2 detector based on a fluorescence method
US8654334B1 (en) Incoherent cavity ringdown spectroscopy gas analyzer coupled with periodic chemical scrubbing
US8128874B2 (en) Pressurized detectors substance analyzer
da Silveira Petruci et al. Analytical methods applied for ozone gas detection: A review
US20100027016A1 (en) Ozone Monitor with Gas-Phase Ozone Scrubber
US10175213B2 (en) Direct in situ monitoring of adsorbent and catalyst beds
JP6179934B2 (en) Method and apparatus for detecting NOx gas in ozone-containing gas
Alam et al. Interference from alkenes in chemiluminescent NO x measurements
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP2003035705A (en) Method, material, agent and apparatus for detection sulfur dioxide gas
US20090302230A1 (en) Use of a Broad Band UV Light Source for Reducing The Mercury Interference in Ozone Measurements
Liao et al. Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid
JP4406702B2 (en) Formaldehyde detection method and detection apparatus
JP4048139B2 (en) Concentration measuring device
Baldini et al. Reversible and selective detection of NO2 by means of optical fibres
Li et al. Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter
Liberti Modern methods for air pollution monitoring
JP2006119115A (en) Measurement method for photocatalyst activity, and measurement device or the like therefor
Crawley Application of non-dispersive infrared (NDIR) spectroscopy to the measurement of atmospheric trace gases
JP7026384B2 (en) Acetone detector
US3540849A (en) Analysis of aldehydes,unsaturated hydrocarbons and ketones
JPH0452891B2 (en)
Kroon Analysis of ambient air
JP6935241B2 (en) Removal member, calibration device, and gas analyzer
RU2626389C1 (en) Method for optical determination of component, mainly hydrogen sulfide, and its concentration in gas flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6179934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250