JP6179732B2 - Method of molding coal or a mixture of coal and metal oxide - Google Patents

Method of molding coal or a mixture of coal and metal oxide Download PDF

Info

Publication number
JP6179732B2
JP6179732B2 JP2014213470A JP2014213470A JP6179732B2 JP 6179732 B2 JP6179732 B2 JP 6179732B2 JP 2014213470 A JP2014213470 A JP 2014213470A JP 2014213470 A JP2014213470 A JP 2014213470A JP 6179732 B2 JP6179732 B2 JP 6179732B2
Authority
JP
Japan
Prior art keywords
coal
molding
binder
methylene blue
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014213470A
Other languages
Japanese (ja)
Other versions
JP2016079312A (en
Inventor
藤本 英和
英和 藤本
孝思 庵屋敷
孝思 庵屋敷
亨 塩沢
亨 塩沢
佐藤 秀明
秀明 佐藤
佐藤 健
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014213470A priority Critical patent/JP6179732B2/en
Publication of JP2016079312A publication Critical patent/JP2016079312A/en
Application granted granted Critical
Publication of JP6179732B2 publication Critical patent/JP6179732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、コークスの原料、加炭材およびフェロコークスなどを得るための石炭または石炭と金属酸化物との混合物の成型方法に関する。   The present invention relates to a method for molding coal or a mixture of coal and a metal oxide to obtain a coke raw material, a carburized material, ferro-coke and the like.

石炭または石炭と金属酸化物との混合物の成型は、幅広い分野で行われている。例えば、特許文献1や特許文献2には、コークスの原料として石炭と粗製タールを混合成型し、コークス炉へ投入することが記載されている。特許文献3には、高炉における還元剤およびキュポラにおける溶銑への加炭材として、石炭にカルシウムを混合し成型後、コークス炉に装入することが記載されている。これらの特許文献で提案している技術は、いずれも、成型時にタール等のバインダーを用いて原料の成型を行った方法である。   Molding of coal or a mixture of coal and metal oxide is performed in a wide range of fields. For example, Patent Literature 1 and Patent Literature 2 describe that coal and crude tar are mixed and molded into a coke oven as coke raw materials. Patent Document 3 describes that, as a reducing agent in a blast furnace and a carburizing material for hot metal in a cupola, calcium is mixed with coal and molded and then charged into a coke oven. All of the techniques proposed in these patent documents are methods in which a raw material is molded using a binder such as tar during molding.

また、近年の高炉では、炭酸ガス排出削減を目的として、コークス中に金属鉄を含有させたフェロコークスの使用が検討されている(非特許文献1)。このフェロコークスというのは、石炭と鉄鉱石との混合物にバインダーを添加して成型したものであり、バインダーの添加が不可欠である。   In recent blast furnaces, the use of ferro-coke containing metallic iron in coke has been studied for the purpose of reducing carbon dioxide emissions (Non-patent Document 1). This ferro-coke is formed by adding a binder to a mixture of coal and iron ore, and the addition of the binder is indispensable.

特開昭62−34983号公報Japanese Patent Laid-Open No. 62-34983 特開昭60−110785号公報JP-A-60-110785 特公平8−16225号公報Japanese Patent Publication No. 8-16225

材料とプロセス、21、893 (2008)Materials and Processes, 21, 893 (2008) 造粒ハンドブック;P.202 (1991) 日本粉体工業技術協会 オーム社Granulation handbook; 202 (1991) Japan Powder Industrial Technology Association 昭和54年度連続式成型コークス製造技術の研究成果報告書;P.106−197 (1980) 日本鉄鋼連盟(連続式成型コークス研究開発委員会) オーム社1979 Research report on continuous molding coke manufacturing technology; 106-197 (1980) Japan Iron and Steel Federation (Continuous Forming Coke Research and Development Committee) Ohm 材料とプロセス、22、742 (2009)Materials and Processes, 22, 742 (2009) 石炭 化学と工業;三共出版株式会社、P.62 (1977)Coal chemistry and industry; Sankyo Publishing Co., Ltd. 62 (1977) 石炭科学会議発表論文集 (40)、 64−65、 2003−10−23Proceedings of the Coal Science Conference (40), 64-65, 2003-10-23 粘土科学 6(1)、 14−21、 1966−12−05Clay Science 6 (1), 14-21, 1966-12-05

前記フェロコークスの製造(成型)に当たっては、石炭銘柄によって成型物の強度が異なることが知られている。例えば、非特許文献2によると、石炭の硬さと成型物強度との関係は、石炭の硬度が高いほど成型物の強度が低下することが示されている。また、非特許文献3によると、バインダー添加量を一定にしたとき、複数の石炭銘柄を用いてそれらの配合比率を変えて成型物を製造した場合、それぞれの成型物の強度は異なることが開示されている。これらの結果は、石炭の銘柄によって、バインダー添加量などの条件を変更する必要があることを示している。   When manufacturing (molding) the ferro-coke, it is known that the strength of the molded product varies depending on the coal brand. For example, according to Non-Patent Document 2, the relationship between the hardness of the coal and the strength of the molded product indicates that the strength of the molded product decreases as the hardness of the coal increases. In addition, according to Non-Patent Document 3, it is disclosed that when the amount of binder added is constant, when moldings are produced by changing their blending ratio using a plurality of coal brands, the strength of each molding is different. Has been. These results indicate that it is necessary to change conditions such as the amount of binder added depending on the brand of coal.

また、非特許文献4では、石炭銘柄が一定のものについて、細孔量の異なる鉄鉱石を混合した原料を用い、バインダー添加量を変更して成型した結果を示している。それによると、細孔量の多い鉄鉱石を用いた場合は、バインダー添加量を増加させる必要のあることが示されている。このことは、石炭においても、非特許文献5に示すとおり、カーボン分90mass%以下のとき、内部表面積が大きいと、添加したバインダーが吸収されやすく、一方、カーボン分の低い石炭ではバインダーの添加量を増加させる必要のあることを示唆している。実際、非特許文献2における石炭の硬さと成型物強度との関係においても、ハードグローブ指数が低下するほど、成型物の強度は低下することが明らかである。   Non-Patent Document 4 shows the result of molding with a fixed coal brand using a raw material mixed with iron ore with different pore amounts and changing the amount of binder added. According to this, it is shown that when iron ore having a large amount of pores is used, it is necessary to increase the amount of binder added. In coal, as shown in Non-Patent Document 5, when the carbon content is 90 mass% or less, if the internal surface area is large, the added binder is easily absorbed. This suggests that there is a need to increase. In fact, even in the relationship between the hardness of the coal and the strength of the molded product in Non-Patent Document 2, it is clear that the strength of the molded product decreases as the hard glove index decreases.

一般に、炭素含有率の低い石炭は、ハードグローブ指数が低く、このハードグローブ指数(以下「HGI」ともいう)の低い石炭は、バインダーの添加量を増加させれば、成型物の強度を上昇させることができると考えられる。   Generally, coal with a low carbon content has a low hard glove index, and coal with a low hard glove index (hereinafter also referred to as “HGI”) increases the strength of the molded product by increasing the amount of binder added. It is considered possible.

しかしながら、発明者らの検討では、前記HGIが50、炭素含有率が83mass%(daf:dry ash free)である、前記HGIと炭素含有率とがほぼ同じ石炭のグループについて、それぞれ同様に微粉とし、バインダー量一定で成型試験を実施したところ、石炭の銘柄によって、成型物強度の高い銘柄と低い銘柄とに分かれることが判った。   However, the inventors have studied that coal groups having the HGI of 50 and the carbon content of 83 mass% (daf: dry ash free) and having substantially the same carbon content as the HGI are similarly fined. When a molding test was carried out with a constant amount of binder, it was found that the brand of coal was divided into a brand with a high molding strength and a brand with a low molding strength.

本発明の目的は、バインダー添加量を最適化することにより、高い成型物強度を得ることができる、石炭または石炭と金属酸化物との混合物の成型方法を提案することにある。   An object of the present invention is to propose a molding method of coal or a mixture of coal and metal oxide, which can obtain a high molding strength by optimizing the amount of binder added.

発明者らは、前記ハードグローブ指数(HGI)と石炭含有率がほぼ同じであるにも拘わらず、石炭銘柄によっては成型物の強度がばらつく、という問題に接し、この問題の解決を目指して検討を行った。その結果、次のような知見を得た。即ち、このような強度のばらつきは、それぞれの石炭銘柄における、バインダーの吸収に関与する該石炭の吸着面積に違いがあるものと推察できる。つまり、石炭の吸着面積を評価するに当たっては、メチレンブルー吸着量を測定した結果から求めた石炭の吸着面積の方が、従来のBET測定法などによる内部表面積などよりも、より好適な評価を与え得ることに気付いたのである。   The inventors have come into contact with the problem that the strength of the molded product varies depending on the coal brand despite the fact that the hard glove index (HGI) and the coal content are almost the same. Went. As a result, the following knowledge was obtained. That is, it can be inferred that such a variation in strength has a difference in the adsorption area of the coal involved in the absorption of the binder in each coal brand. That is, in evaluating the adsorption area of coal, the adsorption area of coal obtained from the result of measuring the amount of methylene blue adsorption can give a more suitable evaluation than the internal surface area by the conventional BET measurement method and the like. I realized that.

本発明の目的は、かかる知見に鑑みて開発されたものであって、石炭(2銘柄以上の石炭の混合物を含む。以下同じ)または石炭と金属酸化物との混合物の成型を行う際に、石炭の吸着面積を事前に測定し、これをバインダー添加量に反映させることによって、石炭または石炭と金属酸化物との混合物の好適な成型方法を提案することにある。   The object of the present invention was developed in view of such knowledge, and when molding a coal (including a mixture of two or more brands of coal. The same applies hereinafter) or a mixture of coal and a metal oxide, It is to propose a suitable molding method of coal or a mixture of coal and metal oxide by measuring the adsorption area of coal in advance and reflecting this in the amount of binder added.

前記課題を解決するための本発明は、石炭または石炭と金属酸化物との混合物をバインダーを用いて混練し、成型する際に、メチレンブルー吸着試験により測定した各石炭の吸着面積に応じてバインダーの添加量を決定して前記の成型を行うことを特徴とする石炭または石炭と金属酸化物との混合物の成型方法にある。   The present invention for solving the above-mentioned problems is that the coal or a mixture of coal and a metal oxide is kneaded with a binder and molded according to the adsorption area of each coal measured by a methylene blue adsorption test. The present invention provides a method for molding coal or a mixture of coal and metal oxide, wherein the molding is performed by determining the amount of addition.

なお、前記のように構成される本発明に係る石炭または石炭と金属酸化物との混合物の成型方法においては、
(1)石炭の粒度分布と、混練時間、混練温度に応じて、成型物の強度が最高となるバインダー添加率の最小値と石炭のメチレンブルー吸着面積との相関式を調べておき、成型に使用する石炭のメチレンブルー吸着面積に応じてバインダー添加率を決定すること、
(2)使用する石炭のメチレンブルー吸着試験により測定した吸着面積S(10−3/cm)を求め、以下の(1)式により求めたバインダー添加率a(mass%)で成型すること:
a=0.104S+4.5 (1)、
がより好ましい解決手段となるものと考えられる。
In the method of molding coal or a mixture of coal and metal oxide according to the present invention configured as described above,
(1) According to the coal particle size distribution, kneading time and kneading temperature, the correlation formula between the minimum value of the binder addition rate that maximizes the strength of the molded product and the methylene blue adsorption area of the coal is investigated and used for molding. Determining the binder addition rate according to the methylene blue adsorption area of the coal to be
(2) Obtain the adsorption area S (10 −3 m 2 / cm 2 ) measured by the methylene blue adsorption test of the coal to be used, and mold it at the binder addition rate a (mass%) obtained by the following equation (1). :
a = 0.104S + 4.5 (1),
Is considered to be a more preferable solution.

本発明によれば、石炭または石炭と金属酸化物との混合物の成型物を製造する際に、成型前に石炭各銘柄について、メチレンブルー吸着測定を行なって、それぞれの石炭の吸着面積を予め求めることによって、バインダーの好適な添加量の目安をつけることができるので、バインダーを過不足なく添加することができるようになる。その結果、本発明によれば、高強度な石炭成型物や石炭・金属酸化物成型物を好適に製造することができる。   According to the present invention, when producing a molded product of coal or a mixture of coal and metal oxide, methylene blue adsorption measurement is performed for each brand of coal before molding, and the adsorption area of each coal is obtained in advance. Therefore, it is possible to set an appropriate amount of the binder to be added, so that the binder can be added without excess or deficiency. As a result, according to the present invention, a high-strength coal molding or coal / metal oxide molding can be suitably produced.

BET内部表面積と石炭の炭素含有率との関係を示すグラフである。It is a graph which shows the relationship between a BET internal surface area and the carbon content rate of coal. 水銀圧入法による細孔量と石炭の炭素含有率との関係を示すグラフである。It is a graph which shows the relationship between the amount of pores by a mercury intrusion method, and the carbon content rate of coal. メチレンブルー(MB)吸着面積と炭素含有率との関係を示すグラフである。It is a graph which shows the relationship between a methylene blue (MB) adsorption area and carbon content. 成型物強度とBET内部表面積との関係を示すグラフである。It is a graph which shows the relationship between a molded article strength and a BET internal surface area. 成型物強度と水銀圧入法による細孔量との関係を示すグラフである。It is a graph which shows the relationship between a molded object strength and the amount of pores by the mercury intrusion method. 成型物強度とメチレンブルー(MB)吸着面積との関係を示すグラフである。It is a graph which shows the relationship between a molded article strength and a methylene blue (MB) adsorption area. 成型物強度とバインダー添加率との関係を示すグラフである。It is a graph which shows the relationship between molding strength and a binder addition rate. 最適バインダー添加率とメチレンブルー(MB)吸着面積との関係を示すグラフである。It is a graph which shows the relationship between an optimal binder addition rate and a methylene blue (MB) adsorption area. 石炭粉砕粒度0.4mmと1.5mmとにおける強度ピークのバインダー添加率とメチレンブルー(MB)吸着面積との関係を示すグラフである。It is a graph which shows the relationship between the binder addition rate of the intensity | strength peak in a coal grinding | pulverization particle size of 0.4 mm and 1.5 mm, and a methylene blue (MB) adsorption area. 混練温度100℃における強度ピークのバインダー添加率とメチレンブルー(MB)吸着面積との関係を示すグラフである。It is a graph which shows the relationship between the binder addition rate of the intensity | strength peak in kneading | mixing temperature of 100 degreeC, and a methylene blue (MB) adsorption area. 混練時間240秒における強度ピークのバインダー添加率とメチレンブルー(MB)吸着面積との関係を示すグラフである。It is a graph which shows the relationship between the binder addition rate of the intensity | strength peak in kneading time 240 seconds, and a methylene blue (MB) adsorption area. 成型物強度の推移結果を示すグラフである。It is a graph which shows the transition result of molding strength.

本発明は、石炭または石炭と金属酸化物と成型物を製造する方法において、成型前に、石炭の各銘柄のメチレンブルー吸着測定を行ない、個々の石炭の吸着面積を求め、このことによって、バインダーの最適添加量を知ることにある。   In the method for producing coal or coal and metal oxide and molding, the present invention performs methylene blue adsorption measurement of each brand of coal before molding to determine the adsorption area of each coal, thereby It is to know the optimum addition amount.

以下、まず前記メチレンブルー(MB)吸着試験法について説明する。その説明に先立ち、従来法(BET法、水銀圧入法)と本発明法とを、炭素含有量との関係および成型物強度との関係で比較し、さらに、本発明例について、バインダー添加率との関係を説明する。次いで、これらの関係から、本発明の石炭または石炭と金属酸化物との混合物の成型方法について説明する。   Hereinafter, the methylene blue (MB) adsorption test method will be described first. Prior to the explanation, the conventional method (BET method, mercury intrusion method) and the method of the present invention were compared with the relationship between the carbon content and the strength of the molded product. The relationship will be described. Next, based on these relationships, a method for molding coal or a mixture of coal and metal oxide of the present invention will be described.

<メチレンブルー吸着法について>
メチレンブルー吸着とは、非特許文献6、7に示すように、粘土鉱物などの比表面積や陽イオン交換容量測定に使われている手法である。発明者らは、この測定法について鋭意検討を重ねた結果、メチレンブルー吸着法によって求められた吸着面積が、前記石炭成型物等のバインダー添加量の最適値と相関し、これが結果的に成型物強度の支配因子の一つになることを見出した。なお、この測定法において、メチレンブルーそのものは石炭表面に対し一重に吸着すると考えられるため、メチレンブルーの吸着量からメチレンブルー1分子の面積(1.3nm)を乗ずれば、メチレンブルーの吸着した面積が算出できると考えられる。以下に、石炭のメチレンブルー吸着量測定方法を示す。
<About the methylene blue adsorption method>
As shown in Non-Patent Documents 6 and 7, methylene blue adsorption is a technique used for measuring the specific surface area and cation exchange capacity of clay minerals. As a result of intensive studies on this measurement method, the inventors have found that the adsorption area determined by the methylene blue adsorption method correlates with the optimum value of the binder addition amount of the coal molding or the like, which results in the molding strength. We found that it becomes one of the governing factors. In this measurement method, methylene blue itself is considered to be adsorbed to the coal surface in a single layer. Therefore, the area of methylene blue adsorbed is calculated by multiplying the amount of methylene blue adsorbed by the area of one molecule of methylene blue (1.3 nm 2 ). It is considered possible. The method for measuring the amount of methylene blue adsorbed on coal will be described below.

(1)メチレンブルー濃度5×10-6mol/Lとなるように調製したメチレンブルー水溶液を600mL準備する。
(2)成型時に目標となる粉砕粒度へ石炭を粉砕(全量2mm以下)する。石炭をN中で十分乾燥させる。
(3)石炭1gを測りとり、ポリプロピレン製の容器に移し、少量のエタノール水を滴下後、速やかにメチレンブルー水溶液600mLを添加する。
(4)攪拌しながら1分間保持し、速やかにメンブレンフィルターにてろ過する。ろ過瓶やサンプル瓶は全てポリプロピレン製とする。
(5)ろ液を回収し、可視分光光度計によりろ液の吸光度(665nmにて)を測定する。事前に求めている吸光度と濃度の検量線からろ液のメチレンブルー濃度を評価する。
(6)メチレンブルー吸着前のメチレンブルー水溶液濃度と試験後の水溶液濃度差からメチレンブルー吸着量を評価する。メチレンブルー1分子のサイズから石炭単位重量あたりのメチレンブルー吸着面積を算出する。
(1) Prepare 600 mL of methylene blue aqueous solution prepared so as to have a methylene blue concentration of 5 × 10 −6 mol / L.
(2) The coal is pulverized to a target pulverization particle size at the time of molding (total amount is 2 mm or less). Sufficiently drying the coal in N 2.
(3) Weigh 1 g of coal, transfer it to a polypropylene container, add a small amount of ethanol water, and then quickly add 600 mL of methylene blue aqueous solution.
(4) Hold for 1 minute with stirring, and immediately filter through a membrane filter. All filtration bottles and sample bottles shall be made of polypropylene.
(5) Collect the filtrate and measure the absorbance (at 665 nm) of the filtrate with a visible spectrophotometer. Evaluate the methylene blue concentration of the filtrate from the absorbance and concentration calibration curve obtained in advance.
(6) The amount of methylene blue adsorbed is evaluated from the difference in aqueous methylene blue concentration before methylene blue adsorption and the aqueous solution concentration after the test. The methylene blue adsorption area per unit weight of coal is calculated from the size of one molecule of methylene blue.

<従来法(BET法、水銀圧入法)および本発明法と炭素含有量との関係>
従来法として、以下の表1に示す性状の石炭に対して、BET測定による石炭の内部表面積、水銀圧入法による石炭の内部細孔量を求めた。結果を図1、2に示す。ここで用いた石炭は炭素含有率が82〜90mass%(daf)の石炭である。BET内部表面積と炭素含有率の関係は、図1に示すように、炭素含有率の上昇に伴い、内部表面積はほぼ単調に減少している。水銀圧入法による内部細孔量と炭素含有率の関係は、図2に示すように、バラツキが多いが、概ね、炭素含有率の上昇に伴い、内部細孔量は減少している。ここで、内部細孔量は5ミクロン以下の値を示すが、5ミクロン以外の閾値でも傾向は同じであった。
<Relationship between conventional method (BET method, mercury intrusion method) and the present invention method and carbon content>
As a conventional method, the internal surface area of coal by BET measurement and the amount of internal pores of coal by mercury intrusion method were determined for coal having the properties shown in Table 1 below. The results are shown in FIGS. The coal used here is coal having a carbon content of 82 to 90 mass% (daf). As shown in FIG. 1, the relationship between the BET internal surface area and the carbon content is almost monotonously decreasing as the carbon content is increased. As shown in FIG. 2, the relationship between the amount of internal pores and the carbon content by the mercury intrusion method varies widely, but generally the amount of internal pores decreases as the carbon content increases. Here, the amount of internal pores shows a value of 5 microns or less, but the tendency was the same even with thresholds other than 5 microns.

一方、メチレンブルー吸着量から算出した単位石炭重量および単位石炭粒子外表面積あたりのメチレンブルー吸着面積と炭素含有率との関係を図3に示す。図3に示すように、メチレンブルー吸着面積は炭素含有率の上昇に従い、概ね減少しているが、炭素含有率83mass%で1銘柄(D炭)のみメチレンブルー吸着面積が低いケースが見られる。   Meanwhile, FIG. 3 shows the relationship between the unit coal weight calculated from the methylene blue adsorption amount and the methylene blue adsorption area per unit coal particle outer surface area and the carbon content. As shown in FIG. 3, the methylene blue adsorption area generally decreases as the carbon content increases, but there is a case where the methylene blue adsorption area is low only for one brand (D charcoal) at a carbon content of 83 mass%.

Figure 0006179732
Figure 0006179732

<従来法(BET法、水銀圧入法)および本発明法と成型物強度との関係について>
次に、従来法および本発明法により、炭素含有率が83mass%付近の石炭B〜Gについて、成型試験を行った。バインダーとの混練りおよび成型は下記のように行った。石炭は全量3mm以下、すなわち平均粒径が0.6〜0.9mmとなるように粉砕した。鉄鉱石は微粉のFe含有率65mass%のものを全原料重量に対して30mass%となるように配合した。バインダーは全原料重量に対し5mass%に添加し、高速ミキサーにて140〜160℃で90〜120秒間混練した。混練した原料をダブルロール型成型機にてブリケットを製造した。ロールのサイズは直径650mm×104mmとし、周速0.2m/s、成型線圧3.3〜3.8t/cmで成型した。成型物のサイズは30mm×25mm×18mm(6cc)で形状は卵型である。成型物強度はI型ドラム試験装置(内径130mm×700mmの円筒状)を用いて、1分間に20回転の回転速度で30回転させた後の16mm以上の残存率により強度評価を行った(ID強度30/16)。
<Relationship between the conventional method (BET method, mercury intrusion method) and the present invention method and the strength of the molded product>
Next, a molding test was performed on coals B to G having a carbon content of about 83 mass% by the conventional method and the present invention method. Kneading with a binder and molding were performed as follows. Coal was pulverized so that the total amount was 3 mm or less, that is, the average particle size was 0.6 to 0.9 mm. The iron ore was blended so that the Fe content in the fine powder was 65 mass% and 30 mass% with respect to the total raw material weight. The binder was added to 5 mass% with respect to the total raw material weight, and kneaded at 140 to 160 ° C. for 90 to 120 seconds with a high speed mixer. The kneaded raw material was used to produce briquettes with a double roll type molding machine. The roll size was 650 mm × 104 mm in diameter, and was molded at a peripheral speed of 0.2 m / s and a molding linear pressure of 3.3 to 3.8 t / cm. The size of the molded product is 30 mm × 25 mm × 18 mm (6 cc) and the shape is egg-shaped. The strength of the molded product was evaluated by using a type I drum test apparatus (cylindrical shape having an inner diameter of 130 mm × 700 mm) based on a residual rate of 16 mm or more after 30 rotations at a rotation speed of 20 rotations per minute (ID Strength 30/16).

石炭B〜Gについて、成型物強度に及ぼすBET法で求めた石炭粒子表面積及び水銀圧入法で求めた細孔量との関係を図4、5に示すとともに、成型物強度に及ぼすメチレンブルー法で求めた吸着面積との関係を図6に示す。図4、5から、BET法による石炭粒子内部面積および水銀圧入法による細孔量は成型物強度と相関が小さいことがわかる。一方、図6に示す成型物強度はメチレンブルー吸着面積と高い相関関係が認められる。おそらく本発明で検討したメチレンブルー吸着が、石炭外表面および外表面近傍の内部でのみ起こり、バインダーとしての石炭系軟質ピッチ(SOP)の吸着部位と相関があるのではないかと推察される。炭素含有率が83mass%の石炭でD炭のみ、成型物強度が非常に高かった。これは、図6に示すとおり、D炭のメチレンブルー吸着面積が小さいことから、成型試験時に行う混練過程でバインダーがD炭に吸収される量が少なく、バインダーの機能が十分発揮されたために成型物強度が高かったと推察される。   Regarding coals B to G, the relationship between the coal particle surface area determined by the BET method affecting the strength of the molded product and the amount of pores determined by the mercury intrusion method is shown in FIGS. The relationship with the adsorption area is shown in FIG. 4 and 5, it can be seen that the coal particle internal area by the BET method and the pore amount by the mercury intrusion method have a small correlation with the strength of the molded product. On the other hand, the molding strength shown in FIG. 6 has a high correlation with the methylene blue adsorption area. Presumably, the methylene blue adsorption studied in the present invention occurs only on the outer surface of the coal and in the vicinity of the outer surface, and is correlated with the adsorption site of the coal-based soft pitch (SOP) as a binder. The strength of the molded product was very high with only coal D having a carbon content of 83 mass%. As shown in FIG. 6, since the methylene blue adsorption area of D charcoal is small, the amount of binder absorbed into D charcoal during the kneading process performed during the molding test is small, and the function of the binder is sufficiently exhibited, so that the molded product It is inferred that the strength was high.

<本発明に係るバインダー添加率とMB吸着面積との関係について>
図7に石炭B〜Gについて、成型条件を一定としてバインダー添加率のみを変更して成型した結果を示す。各銘柄ともバインダー添加率の上昇に従い、成型物強度は上昇している。銘柄によって成型物強度が最高値となるバインダー添加率が異なることがわかる。
<Relationship between binder addition rate and MB adsorption area according to the present invention>
FIG. 7 shows the results of molding coals B to G with the molding conditions fixed and only the binder addition rate changed. With each brand, the strength of the molded product increases as the binder addition rate increases. It can be seen that the binder addition rate at which the strength of the molded product becomes the maximum value differs depending on the brand.

図8にメチレンブルー吸着面積と最適バインダー添加率(図7より成型物強度がほぼ最高値となる最少量のバインダー添加率で評価)との関係を示す。メチレンブルー吸着面積と最適バインダー添加率には高い相関が認められ、メチレンブルー吸着面積の小さい銘柄は、少ないバインダー量で成型物強度が高くなることがわかる。この結果から、使用する石炭のメチレンブルー吸着試験により測定した吸着面積S(10−3/cm)を求め、以下の(1)式
a=0.104S+4.5 (1)
により求めたバインダー添加率a(mass%)で成型することが好ましいことがわかる。
FIG. 8 shows the relationship between the methylene blue adsorption area and the optimum binder addition rate (evaluated with the minimum amount of binder addition rate at which the strength of the molded product is almost the maximum value from FIG. 7). A high correlation is recognized between the methylene blue adsorption area and the optimum binder addition rate, and it can be seen that the brand having a small methylene blue adsorption area has a high molding strength with a small amount of binder. These results determine the adsorption area was measured by methylene blue adsorption test of coal using S (10 -3 m 2 / cm 2), the following equation (1) a = 0.104S + 4.5 (1)
It can be seen that it is preferable to mold at the binder addition rate a (mass%) determined by the above.

図8の評価試験と比較して石炭粉砕粒度0.4mmと1.5mmへ、混練温度100℃へ、混練時間240秒へ大幅に変更したケースについて、最適バインダー添加率に及ぼす影響を図9〜11に示す。原料条件や混練条件を大幅に変更すると図8に比較してメチレンブルー吸着面積の影響度が異なることがわかる。このことから原料条件や混練成型条件を一定にしておけば、各銘柄のメチレンブルー吸着面積を測定することによって最適バインダー添加率の予測が可能となる。   Compared with the evaluation test of FIG. 8, the influence on the optimum binder addition rate is shown in the case where the coal pulverization particle size is changed to 0.4 mm and 1.5 mm, the kneading temperature is 100 ° C., and the kneading time is 240 seconds. 11 shows. It can be seen that when the raw material conditions and the kneading conditions are changed significantly, the degree of influence of the methylene blue adsorption area is different from that in FIG. From this, if the raw material conditions and kneading molding conditions are kept constant, the optimum binder addition rate can be predicted by measuring the methylene blue adsorption area of each brand.

<実施例1>
この実施例は、フェロコークスを製造する実操業において石炭と鉄鉱石混合物の成型物製造を行った例である。使用した石炭はC、D、G炭である。原料条件は、各銘柄を平均粒径0.8mm程度となるように粉砕し、1銘柄ごとの成型を行なった。鉄鉱石は、微粉のFe含有率65mass%のものを全原料重量に対して30mass%となるように配合した。バインダーとしては、石炭質軟質ピッチ(SOP)を使用し、図8に基づき最適バインダー量を添加した。高速ミキサーにて155℃で石炭、鉄鉱石、バインダーを120秒間混練した。混練した原料をダブルロール型成型機にてブリケットを製造した。ロールのサイズは直径1050mm×1000mmとし、周速0.2m/s、成型線圧3.3〜3.8t/cmで成型した。
<Example 1>
This example is an example in which a molded product of a mixture of coal and iron ore was produced in an actual operation for producing ferro-coke. Coal used is C, D, G charcoal. As for the raw material conditions, each brand was pulverized so as to have an average particle size of about 0.8 mm and molded for each brand. The iron ore was blended so that the Fe content in the fine powder was 65 mass% and 30 mass% with respect to the total raw material weight. As the binder, coal-based soft pitch (SOP) was used, and the optimum binder amount was added based on FIG. Coal, iron ore, and binder were kneaded for 120 seconds at 155 ° C. with a high-speed mixer. The kneaded raw material was used to produce briquettes with a double roll type molding machine. The roll size was 1050 mm × 1000 mm in diameter, and was molded at a peripheral speed of 0.2 m / s and a molding linear pressure of 3.3 to 3.8 t / cm.

銘柄変更は石炭D、G、Cの順に実施し、各銘柄とも2時間ずつの成型を行った。そして、添加するバインダーは銘柄変更して30分間は前の銘柄の添加量とし、その後、図8に基づく最適なバインダー量に変更した。成型物強度の推移結果を図12に示す。成型物強度は30分ごとに測定を行った。石炭Dではバインダー添加率5mass%一定で成型を行い、3時間後に石炭Gへ切り替え、バインダー添加率を3.5時間後に6mass%へ変更した。その後、6時間後に石炭Cへ銘柄変更後、バインダー添加率を6.5時間後に6.6mass%へ変更した。銘柄変更後、バインダー添加率が最適でない時間帯の成型物強度は低いが、図8に基づく適量添加後に成型物強度は回復することを確認した。   The brand was changed in the order of coals D, G, and C, and each brand was molded for 2 hours. And, the binder to be added was changed to the brand, and the addition amount of the previous brand was changed for 30 minutes, and then changed to the optimum binder amount based on FIG. The transition result of the strength of the molded product is shown in FIG. The strength of the molded product was measured every 30 minutes. In coal D, molding was performed at a constant binder addition rate of 5 mass%, and after 3 hours, switching to coal G was performed, and the binder addition rate was changed to 6 mass% after 3.5 hours. Thereafter, the brand was changed to coal C after 6 hours, and the binder addition rate was changed to 6.6 mass% after 6.5 hours. After changing the brand, the strength of the molded product was low during the time zone when the binder addition rate was not optimal.

<実施例2>
実施例1と同様の方法で、それぞれ1:1で混合した、石炭DとGとの混合物、石炭GとCとの混合物、石炭CとDとの混合物、について、成型物強度の推移を調べた。この際、最適なバインダー量は、図8に基づき求めた2つの石炭のバインダー量の平均とした。結果として、図12に近似した成型物強度を得ることができ、石炭同士の混合物でも、本発明の効果があることを確認した。
<Example 2>
In the same manner as in Example 1, the transition of the molding strength was examined for each of the mixture of coal D and G, the mixture of coal G and C, and the mixture of coal C and D, which were mixed at 1: 1. It was. At this time, the optimum binder amount was the average of the binder amounts of the two coals obtained based on FIG. As a result, the strength of the molded product approximated to FIG. 12 can be obtained, and it was confirmed that even a mixture of coal has the effect of the present invention.

本発明の石炭または石炭と金属酸化物との混合物の成型方法は、バインダー添加量を最適化することにより高い成型物強度を得ることができ、石炭、2種類以上の石炭の混合物、および石炭と金属酸化物との混合物の成型に際して好適に用いることができる他、バインダーの添加を必要とする他の粉粒物の成型にも応用が可能である。   The method for molding coal or a mixture of coal and metal oxide according to the present invention can obtain a high molding strength by optimizing the amount of binder added, and includes coal, a mixture of two or more types of coal, and coal. In addition to being suitably used for molding a mixture with a metal oxide, the present invention can also be applied to molding of other granular materials that require the addition of a binder.

Claims (2)

石炭または石炭と金属酸化物との混合物をバインダーを用いて混練し、成型する際に、石炭の粒度分布と、混練時間、混練温度に応じて、成型物の強度が最高となるバインダー添加率の最小値と石炭のメチレンブルー吸着試験により測定した各石炭の吸着面積との相関式に基づき、成型に使用する石炭のメチレンブルー吸着面積に応じたバインダー添加率を決定して前記の成型を行うことを特徴とする石炭または石炭と金属酸化物との混合物の成型方法。 When kneading and molding coal or a mixture of coal and metal oxide with a binder , depending on the coal particle size distribution, kneading time and kneading temperature, the binder addition rate that maximizes the strength of the molded product Based on the correlation between the minimum value and the adsorption area of each coal measured by the methylene blue adsorption test of coal, the molding is performed by determining the binder addition rate according to the methylene blue adsorption area of the coal used for molding A method for molding coal or a mixture of coal and metal oxide. 使用する石炭のメチレンブルー吸着試験により測定した吸着面積S(10−3/cm)を求め、以下の(1)式により求めたバインダー添加率a(mass%)で成型することを特徴とする請求項1に記載の石炭または石炭と金属酸化物との混合物の成型方法。
a=0.104S+4.5 (1)
The adsorption area S (10 −3 m 2 / cm 2 ) measured by the methylene blue adsorption test of the coal to be used is obtained and molded at the binder addition rate a (mass%) obtained by the following equation (1). The shaping | molding method of the mixture of coal or coal and a metal oxide of Claim 1 to do .
a = 0.104S + 4.5 (1)
JP2014213470A 2014-10-20 2014-10-20 Method of molding coal or a mixture of coal and metal oxide Active JP6179732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213470A JP6179732B2 (en) 2014-10-20 2014-10-20 Method of molding coal or a mixture of coal and metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213470A JP6179732B2 (en) 2014-10-20 2014-10-20 Method of molding coal or a mixture of coal and metal oxide

Publications (2)

Publication Number Publication Date
JP2016079312A JP2016079312A (en) 2016-05-16
JP6179732B2 true JP6179732B2 (en) 2017-08-16

Family

ID=55957768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213470A Active JP6179732B2 (en) 2014-10-20 2014-10-20 Method of molding coal or a mixture of coal and metal oxide

Country Status (1)

Country Link
JP (1) JP6179732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360081B2 (en) 2021-09-24 2023-10-12 横浜ゴム株式会社 Rubber composition for heavy duty tires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853090B2 (en) * 2006-04-12 2012-01-11 Jfeスチール株式会社 Ferro-coke manufacturing method and apparatus
JP5487790B2 (en) * 2009-08-10 2014-05-07 Jfeスチール株式会社 Ferro-coke manufacturing method
JP2011084734A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing ferro coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360081B2 (en) 2021-09-24 2023-10-12 横浜ゴム株式会社 Rubber composition for heavy duty tires

Also Published As

Publication number Publication date
JP2016079312A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
CN101896627B (en) Self-fluxing pellets for use in a blast furnce and process for the production of the same
KR101054136B1 (en) Hot Briquette Iron and How to Make It
CA2864451C (en) Coal-to-coal adhesiveness evaluation method
CN101602604A (en) A kind of blast furnace mud and method of manufacturing technology thereof
JP2011084734A (en) Method for producing ferro coke
CN107614710B (en) The manufacturing method of reduced iron
JP6179732B2 (en) Method of molding coal or a mixture of coal and metal oxide
WO2015146122A1 (en) Coal mixture, method for producing coal mixture, and method for producing coke
JP6764875B2 (en) Magnetite-based sinter and its manufacturing method
Jian et al. Improving granulating and sintering performance by pretreating specularite concentrates through mechanical activation
JP2015199791A (en) Method for producing coke
JP6036891B2 (en) Coke production method
Zhang et al. Structure characteristics and adhesive property of humic substances extracted with different methods
KR101403805B1 (en) Catalyst for removing acidic gas contained in coke oven gas and method for producing the same
JP5747776B2 (en) Method for producing molded coke
RU2174528C1 (en) Method of preparing coke
CN114438313A (en) Sintering material and batching method thereof
JP6260563B2 (en) Ferro-coke manufacturing method
EP3255122B1 (en) Ferrocoke manufacturing method
JP2022033594A (en) Method for manufacturing sintered ore
CN111560515B (en) Control method for pellet production
JP5453993B2 (en) Ferro-coke manufacturing method
KR101421208B1 (en) Selection method of carboneous materials and manufacturing method of reduced iron using the same
EP3315584B1 (en) Method for producing molded product for ferro-coke
RU2542186C1 (en) Iron-ore pellet obtaining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6179732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250