JP6179288B2 - Method for producing silicon nitride powder - Google Patents

Method for producing silicon nitride powder Download PDF

Info

Publication number
JP6179288B2
JP6179288B2 JP2013186941A JP2013186941A JP6179288B2 JP 6179288 B2 JP6179288 B2 JP 6179288B2 JP 2013186941 A JP2013186941 A JP 2013186941A JP 2013186941 A JP2013186941 A JP 2013186941A JP 6179288 B2 JP6179288 B2 JP 6179288B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
core tube
nitride powder
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013186941A
Other languages
Japanese (ja)
Other versions
JP2015054786A (en
Inventor
耕司 柴田
耕司 柴田
卓司 王丸
卓司 王丸
猛 山尾
猛 山尾
道夫 本田
道夫 本田
孝行 藤井
孝行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013186941A priority Critical patent/JP6179288B2/en
Publication of JP2015054786A publication Critical patent/JP2015054786A/en
Application granted granted Critical
Publication of JP6179288B2 publication Critical patent/JP6179288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、大量生産に適したロータリーキルン炉を用いた非晶質Si−N(−H)系化合物粉末の焼成による窒化ケイ素粉末の製造方法おいて、ロータリーキルン炉の炉心管の内径に関わらず、焼結特性に優れた窒化ケイ素粉末を常に製造できる、窒化ケイ素粉末の製造方法に関するものである。   The present invention is a method for producing silicon nitride powder by firing amorphous Si-N (-H) compound powder using a rotary kiln furnace suitable for mass production, regardless of the inner diameter of the core tube of the rotary kiln furnace. The present invention relates to a method for producing silicon nitride powder, which can always produce silicon nitride powder having excellent sintering characteristics.

窒化ケイ素粉末を成形し加熱焼結することで得られる窒化ケイ素焼結体は、機械的強度、耐蝕性、耐熱衝撃性、熱伝導性、電気絶縁性等に優れているため、切削チップやボールベアリング等の耐摩耗用部材、自動車エンジン部品等の高温構造用部材、回路基板等として使用されている。窒化ケイ素焼結体は、通常、窒化ケイ素粉末に焼結助剤を混合し、プレス成形、射出成形、押し出し成形等によって成形体とし、これを焼結することによって製造される。   A silicon nitride sintered body obtained by molding and heat-sintering silicon nitride powder is excellent in mechanical strength, corrosion resistance, thermal shock resistance, thermal conductivity, electrical insulation, etc. It is used as a wear-resistant member such as a bearing, a high-temperature structural member such as an automobile engine part, and a circuit board. A silicon nitride sintered body is usually produced by mixing a sintering aid with silicon nitride powder, forming a molded body by press molding, injection molding, extrusion molding, or the like, and sintering the molded body.

良好な機械的特性を示す窒化ケイ素焼結体を製造するには、焼結特性が良好な窒化ケイ素粉末、すなわち、結晶化度が高く、高α分率の粒状結晶からなる窒化ケイ素粉末が必要とされる。このような高品質の窒化ケイ素粉末を製造する方法として、非晶質Si−N(−H)系化合物を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下で焼成する方法が既に知られている。   In order to produce a silicon nitride sintered body with good mechanical properties, a silicon nitride powder with good sintering properties, that is, a silicon nitride powder consisting of granular crystals with high crystallinity and high α fraction is required. It is said. As a method for producing such a high-quality silicon nitride powder, a method of firing an amorphous Si—N (—H) compound in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere is already known. It has been.

以上のような高品質の窒化ケイ素粉末の製造方法として、特許文献1には、非晶質窒化ケイ素粉末及び/又は含窒素シラン化合物(後述する本発明の非晶質Si−N(−H)系化合物粉末と同一の化合物のことであり、以下非晶質Si−N(−H)系化合物粉末と記す)を圧縮成形して、嵩密度0.3〜0.8g/cm、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物とした上で、この顆粒状物を、1200〜1400℃の温度範囲全域における昇温速度を10℃/分以下にして焼成することが開示されている。しかしながら、特許文献1の実施例を見てもわかるように、この製造方法は、室温から加熱し最高焼成温度での保持が終了するまでの焼成時間が6.5〜8.3時間にも及び、生産速度と所要電力の面で、低コストで生産性が高い製造方法とは言い難い。 As a method for producing a high-quality silicon nitride powder as described above, Patent Document 1 discloses an amorphous silicon nitride powder and / or a nitrogen-containing silane compound (the amorphous Si—N (—H) of the present invention described later). The same compound as the system compound powder, hereinafter referred to as amorphous Si—N (—H) system compound powder) is compression molded to have a bulk density of 0.3 to 0.8 g / cm 3 , a short axis Disclosure of a granular material having a diameter of 1 mm or more and a major axis diameter of 20 mm or less and firing the granular material at a temperature increase rate of 1200 ° C. to 1400 ° C. over 10 ° C./min. Has been. However, as can be seen from the examples of Patent Document 1, this production method has a firing time of 6.5 to 8.3 hours until heating at room temperature and holding at the maximum firing temperature is completed. In terms of production speed and power requirements, it is difficult to say that this is a low-cost and highly productive manufacturing method.

一方、以上のような高品質の窒化ケイ素粉末を大量に生産できる製造方法として、特許文献2には、非晶質Si−N(−H)系化合物粉末を圧縮成形して、嵩密度0.3〜0.8g/cm 、短軸径1mm以上、かつ長軸径20mm以下の顆粒状物とし、該顆粒状物を、連続焼成炉、具体的にはロータリーキルン炉を用いて1400〜1700℃の温度で焼成する窒化珪素粉末の製造法が開示されている。同公報には、ロータリーキルン炉等の連続焼成炉を用いることにより、窒化ケイ素粉末を短時間で大量に生産できると記載されている。 On the other hand, as a production method capable of producing a large amount of high-quality silicon nitride powder as described above, Patent Document 2 discloses that an amorphous Si—N (—H) -based compound powder is compression-molded to obtain a bulk density of 0.1. 3 to 0.8 g / cm 3 , a short-axis diameter of 1 mm or more and a long-axis diameter of 20 mm or less, and the granular material is 1400 to 1700 ° C. using a continuous firing furnace, specifically a rotary kiln furnace. A method for producing silicon nitride powder that is fired at a temperature of 5 ° C is disclosed. The publication describes that silicon nitride powder can be produced in a large amount in a short time by using a continuous firing furnace such as a rotary kiln furnace.

特開平4−209706号公報JP-A-4-209706 特開平5−148032号公報Japanese Patent Laid-Open No. 5-148032

特許文献2に開示されているようなロータリーキルン炉を用いた製造方法は窒化ケイ素粉末の大量生産に適した方法ではあるものの、実際に窒化ケイ素粉末の生産量を上げるために、ロータリーキルン炉の炉心管の内径を大きくして、炉心管への原料の供給量を増やすと、炉心管の内径によっては、結晶化度およびα分率のいずれもが高い窒化ケイ素粉末が得られなくなる問題が生じた。つまり、これまではロータリーキルン炉の炉心管の内径を大きくして生産量を上げても、常に結晶化度およびα分率が高い窒化ケイ素粉末を製造し得る技術指標が得られていなかった。結晶化度またはα分率が高い窒化ケイ素粉末は、次に説明するように、窒化ケイ素焼結体の原料として有用である。   Although the manufacturing method using a rotary kiln furnace as disclosed in Patent Document 2 is a method suitable for mass production of silicon nitride powder, in order to actually increase the production amount of silicon nitride powder, the core tube of the rotary kiln furnace is used. Increasing the feed amount of the raw material to the core tube by increasing the inner diameter of the core tube has caused a problem that, depending on the inner diameter of the core tube, a silicon nitride powder having a high crystallinity and a high α fraction cannot be obtained. That is, until now, even if the inner diameter of the core tube of the rotary kiln furnace is increased to increase the production amount, a technical index that can always produce silicon nitride powder having a high crystallinity and an α fraction has not been obtained. The silicon nitride powder having a high degree of crystallinity or α fraction is useful as a raw material for a silicon nitride sintered body, as will be described below.

結晶化度が高い窒化ケイ素粉末、すなわち非晶質窒化ケイ素の含有比率が低い窒化ケイ素粉末を焼結すると、焼結時に、焼結速度が均一になる。したがって、結晶化度が高い窒化ケイ素粉末を焼結して得られる焼結体は、内部に残留気孔が少なく、また粒子のアスペクト比(長軸径/短軸径比)が大きいので、室温および高温の機械的強度が大きい。   When a silicon nitride powder having a high degree of crystallinity, that is, a silicon nitride powder having a low content of amorphous silicon nitride is sintered, the sintering rate becomes uniform during sintering. Therefore, a sintered body obtained by sintering silicon nitride powder having a high degree of crystallinity has few residual pores inside and a large aspect ratio (major axis diameter / minor axis diameter ratio) of the particles. High mechanical strength at high temperatures.

α分率が高い窒化ケイ素粉末、すなわちβ分率が低い窒化ケイ素粉末を焼結すると、焼結時に、窒化ケイ素のα相からβ相への転移に伴って生じる柱状結晶の成長が促進される。したがって、得られる窒化ケイ素焼結体は、アスペクト比の大きい柱状結晶の割合が高くなるので、破壊靱性が大きい。   Sintering silicon nitride powder with high α fraction, that is, silicon nitride powder with low β fraction, promotes the growth of columnar crystals that accompany the transition from α phase to β phase of silicon nitride during sintering. . Therefore, the obtained silicon nitride sintered body has a high fracture toughness because the ratio of columnar crystals having a large aspect ratio is high.

以上のように、ロータリーキルン炉で非晶質Si−N(−H)系化合物粉末を焼成する窒化ケイ素粉末の製造方法は、大量生産に適した製造方法ではあるものの、生産量を拡大するためにロータリーキルン炉の炉心管の内径を大きくすると、機械的性質が良好な窒化ケイ素焼結体を得るに必要な、結晶化度およびα分率が高い窒化ケイ素粉末を安定的に得ることが困難になる課題を有していた。そこで、本発明の目的は、ロータリーキルン炉を用いた非晶質Si−N(−H)系化合物粉末の焼成による窒化ケイ素粉末の製造方法おいて結晶化度およびα分率が高い窒化ケイ素粉末を常に製造することができる窒化ケイ素粉末の製造方法を提供することである。
As mentioned above, although the manufacturing method of the silicon nitride powder which bakes amorphous Si-N (-H) type compound powder in a rotary kiln furnace is a manufacturing method suitable for mass production, in order to expand a production amount Increasing the inner diameter of the core tube of a rotary kiln furnace makes it difficult to stably obtain a silicon nitride powder having a high crystallinity and a high α fraction, which is necessary for obtaining a silicon nitride sintered body having good mechanical properties. Had problems. An object of the present invention, the amorphous Si-N (-H) compounds Oite method of manufacturing a silicon nitride powder by sintering the powder, crystallinity and α fraction high silicon nitride using a rotary kiln furnace It is to provide a method for producing silicon nitride powder, which can always produce powder.

本発明者らは、内径が16〜30cmの円筒状の炉心管を備える外熱式ロータリーキルン炉を用いて、非晶質Si−N(−H)系化合物粉末を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下で焼成し、窒化ケイ素粉末を製造する方法について鋭意研究を重ねた結果、ロータリーキルン炉の炉心管出口での粉末層の最大厚さを特定の範囲に維持することを管理指標とすると、炉心管の内径に関わらず、結晶化度およびα分率が高い、具体的には、結晶化度が98%以上で、α分率が85%以上の窒化ケイ素粉末を常に製造できることを見出し、本発明を完成した。
The inventors of the present invention used an externally heated rotary kiln furnace having a cylindrical furnace core tube having an inner diameter of 16 to 30 cm to convert amorphous Si—N (—H) -based compound powder into a nitrogen-containing inert gas atmosphere or As a result of extensive research on the method of producing silicon nitride powder by firing in a nitrogen-containing reducing gas atmosphere, it is managed to maintain the maximum thickness of the powder layer at the core tube outlet of the rotary kiln furnace within a specific range. As an index, regardless of the inner diameter of the core tube, a silicon nitride powder having a high crystallinity and an α fraction, specifically, a crystallinity of 98% or more and an α fraction of 85% or more is always produced. The present invention has been completed by finding out what can be done.

すなわち本発明は、水平方向に対して傾斜させた、内径が16〜30cmの円筒状の炉心管を備える外熱式ロータリーキルン炉を用いて、比表面積が400〜1200m/gである非晶質Si−N(−H)系化合物粉末を、前記炉心管内に前記炉心管入口より投入し、前記炉心管内で層状に流動させながら、窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下、1400〜1700℃の最高温度で焼成し、前記炉心管出口より取り出す窒化ケイ素粉末の製造方法であって、前記炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを1〜8cmの範囲に維持することを管理指標として窒化ケイ素粉末を製造することを特徴とする窒化ケイ素粉末の製造方法に関する。
That is, the present invention uses an externally heated rotary kiln furnace provided with a cylindrical furnace core tube having an inner diameter of 16 to 30 cm that is inclined with respect to the horizontal direction, and has an amorphous surface area of 400 to 1200 m 2 / g. Si-N (-H) based compound powder is introduced into the core tube from the inlet of the core tube, and flows in layers in the core tube, under a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere, A method for producing silicon nitride powder that is fired at a maximum temperature of 1400 to 1700 ° C. and is taken out from the outlet of the core tube, wherein the maximum thickness of the powder layer of silicon nitride powder at the outlet of the core tube is maintained in the range of 1 to 8 cm. The present invention relates to a method for producing silicon nitride powder, characterized in that silicon nitride powder is produced using the management index as a management index.

また本発明は、前記最高温度が1450〜1550℃であることを特徴とする窒化ケイ素粉末の製造方法に関する。   The present invention also relates to a method for producing silicon nitride powder, wherein the maximum temperature is 1450 to 1550 ° C.

本発明によれば結晶化度が高く、高α分率の窒化ケイ素粉末を製造することができるので、焼結特性に優れた窒化ケイ素粉末を、安価に大量に製造することが可能になる。また、使用するロータリーキルン炉の設備規模によって生産量を調整しても、本発明の管理指標を用いて窒化ケイ素粉末を製造することで、常に焼結特性に優れた窒化ケイ素粉末を提供することが可能になる。

According to the present invention, since a silicon nitride powder having a high crystallinity and a high α fraction can be produced, it becomes possible to produce a large amount of silicon nitride powder having excellent sintering characteristics at low cost. . Moreover, even if the production amount is adjusted depending on the equipment scale of the rotary kiln used, it is possible to always provide a silicon nitride powder having excellent sintering characteristics by producing the silicon nitride powder using the management index of the present invention. It becomes possible.

本発明のロータリーキルン炉の炉心管出口における窒化ケイ素粉末の粉末層の模式図である。It is a schematic diagram of the powder layer of the silicon nitride powder in the core tube exit of the rotary kiln furnace of this invention. 炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが8cmより大きい場合の、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の断面の模式図である。It is a schematic diagram of the cross section of the powder layer of the amorphous Si-N (-H) type compound powder at the time of crystallization when the maximum thickness of the powder layer of the silicon nitride powder at the furnace tube outlet is larger than 8 cm. 炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを測定するためのゲージを、ロータリーキルン炉の炉心管出口に設置した覗き窓の外側に付けた状態を示す模式図である。It is a schematic diagram which shows the state which attached the gauge for measuring the maximum thickness of the powder layer of the silicon nitride powder in a furnace core tube exit to the outer side of the observation window installed in the furnace core tube exit of a rotary kiln furnace.

以下に、本発明に関わる窒化ケイ素粉末の製造方法を詳細に説明する。   Below, the manufacturing method of the silicon nitride powder in connection with this invention is demonstrated in detail.

本発明では、非晶質Si−N(−H)系化合物粉末を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下で焼成して、窒化ケイ素粉末を製造する。本発明で使用する非晶質Si−N(−H)系化合物とは、シリコンジイミド、シリコンテトラアミド、シリコンクロルイミド等の含窒素シラン化合物の一部又は全てを加熱分解して得られるSi、N及びHの各元素を含む非晶質の化合物、又は、Si及びNを含む非晶質窒化ケイ素のことであり、以下の組成式(1)で表される。
Si2x(NH)12−3x・・・・(1)
(ただし、式中x=0.5〜4であり、組成式には明記しないが、不純物としてハロゲンを含有する化合物を含む)
In the present invention, the amorphous Si—N (—H) -based compound powder is fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere to produce silicon nitride powder. The amorphous Si—N (—H) compound used in the present invention is Si obtained by thermally decomposing part or all of a nitrogen-containing silane compound such as silicon diimide, silicon tetraamide, silicon chlorimide, It is an amorphous compound containing each element of N and H, or an amorphous silicon nitride containing Si and N, and is represented by the following composition formula (1).
Si 6 N 2x (NH) 12-3x (1)
(However, x = 0.5 to 4 in the formula, and is not specified in the composition formula, but includes a compound containing halogen as an impurity)

なお、本発明においては、非晶質Si−N(−H)系化合物は、組成式(1)において、x=0.5で表されるSi(NH)10.5からx=4で表される非晶質Siまでの一連の化合物を総て包含しており、x=3で表されるSi(NH)はシリコンニトロゲンイミドと呼ばれている。 Note that in the present invention, the amorphous Si—N (—H) -based compound is obtained from Si 6 N 1 (NH) 10.5 represented by x = 0.5 in the composition formula (1). All the series of compounds up to amorphous Si 3 N 4 represented by 4 are included, and Si 6 N 6 (NH) 3 represented by x = 3 is called silicon nitrogen imide. .

本発明に係る含窒素シラン化合物としては、シリコンジイミド、シリコンテトラアミド、シリコンクロルイミド等が用いられる。これらの化合物は以下の組成式(2)で表される。本発明においては、便宜的に、以下の組成式(2)においてy=8〜12で表される含窒素シラン化合物をシリコンジイミドと表記する。
Si(NH)(NH24−2y・・・・(2)
(ただし、式中y=0〜12であり、組成式には明記しないが、不純物としてハロゲンを含有する化合物を含む)
As the nitrogen-containing silane compound according to the present invention, silicon diimide, silicon tetraamide, silicon chlorimide and the like are used. These compounds are represented by the following composition formula (2). In the present invention, for convenience, a nitrogen-containing silane compound represented by y = 8 to 12 in the following composition formula (2) is represented as silicon diimide.
Si 6 (NH) y (NH 2 ) 24-2y (2)
(However, in the formula, y = 0 to 12 and is not specified in the composition formula, but includes a compound containing halogen as an impurity)

本発明に係る非晶質Si−N(−H)系化合物粉末は、公知方法、例えば、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを気相で反応させる方法、液状の前記ハロゲン化ケイ素と液体アンモニアとを反応させる方法等によって製造される。   The amorphous Si—N (—H) -based compound powder according to the present invention is obtained by reacting ammonia in a gas phase with a known method, for example, silicon halide such as silicon tetrachloride, silicon tetrabromide, silicon tetraiodide and the like. Or a method of reacting the liquid silicon halide with liquid ammonia.

また、本発明に係る非晶質Si−N(−H)系化合物粉末としては、公知方法、例えば、前記含窒素シラン化合物を窒素又はアンモニアガス雰囲気下に1200℃以下の温度で加熱分解する方法、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハロゲン化ケイ素とアンモニアとを高温で反応させる方法等によって製造されたものが用いられる。   In addition, as the amorphous Si—N (—H) -based compound powder according to the present invention, a known method, for example, a method in which the nitrogen-containing silane compound is thermally decomposed at a temperature of 1200 ° C. or lower in a nitrogen or ammonia gas atmosphere. Those produced by a method of reacting ammonia with silicon halide such as silicon tetrachloride, silicon tetrabromide, silicon tetraiodide and the like are used.

本発明には、窒化ケイ素粉末の原料として、比表面積が400〜1200m/gの非晶質Si−N(−H)系化合物粉末を用いる。非晶質Si−N(−H)系化合物粉末の比表面積が400m/gよりも小さいと、焼成時の1000〜1400℃の温度範囲で急激な結晶化が起こり、得られる窒化ケイ素粉末中に針状粒子や凝集粒子が生成してしまう。このような粉末で焼結体を作製しても均質な組織が形成されず、得られる焼結体の強度が小さくなる。一方、比表面積が1200m/gより大きいと、得られる窒化ケイ素粉末のα分率が小さくなるので、焼結性が悪化し、焼結体の強度が小さくなる。 In the present invention, an amorphous Si—N (—H) compound powder having a specific surface area of 400 to 1200 m 2 / g is used as a raw material of the silicon nitride powder. If the specific surface area of the amorphous Si—N (—H) compound powder is smaller than 400 m 2 / g, rapid crystallization occurs in the temperature range of 1000 to 1400 ° C. during firing, and the resulting silicon nitride powder Then, acicular particles and aggregated particles are formed. Even if a sintered body is produced with such a powder, a homogeneous structure is not formed, and the strength of the obtained sintered body is reduced. On the other hand, when the specific surface area is larger than 1200 m 2 / g, the α fraction of the obtained silicon nitride powder becomes small, so that the sinterability deteriorates and the strength of the sintered body becomes small.

非晶質Si−N(−H)系化合物粉末の比表面積は、その原料となる含窒素シラン化合物の比表面積と、含窒素シラン化合物を加熱分解する際の最高温度で調節できる。含窒素シラン化合物の比表面積を大きくするほど、また前記加熱分解時の最高温度を低くするほど、非晶質Si−N(−H)系化合物粉末の比表面積を大きくすることができる。含窒素シラン化合物の比表面積は、含窒素シラン化合物がシリコンジイミドである場合には、例えば特許文献2に示す公知の方法、すなわちハロゲン化ケイ素と液体アンモニアとを反応させる際のハロゲン化ケイ素と液体アンモニアとの比率(ハロゲン化ケイ素/液体アンモニア(体積比))を変化させる方法により調節することができる。前記ハロゲン化ケイ素/液体アンモニアを大きくすることで含窒素シラン化合物の比表面積を大きくすることができる。   The specific surface area of the amorphous Si—N (—H) -based compound powder can be adjusted by the specific surface area of the nitrogen-containing silane compound as a raw material and the maximum temperature when the nitrogen-containing silane compound is thermally decomposed. The specific surface area of the amorphous Si—N (—H) compound powder can be increased as the specific surface area of the nitrogen-containing silane compound is increased and the maximum temperature during the thermal decomposition is decreased. When the nitrogen-containing silane compound is silicon diimide, the specific surface area of the nitrogen-containing silane compound is, for example, a known method shown in Patent Document 2, that is, silicon halide and liquid when reacting silicon halide with liquid ammonia. It can be adjusted by a method of changing the ratio with ammonia (silicon halide / liquid ammonia (volume ratio)). The specific surface area of the nitrogen-containing silane compound can be increased by increasing the silicon halide / liquid ammonia.

本発明においては、非晶質Si−N(−H)系化合物粉末を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成するに際し、水平方向に対して傾斜させた円筒状の炉心管を備え、該炉心管を軸芯周りに回転させつつ外側から加熱することで、前記炉心管内に投入された被加熱物を焼成する外熱式ロータリーキルン炉を用いて、上述の非晶質Si−N(−H)系化合物粉末を1400〜1700℃の温度で焼成する。焼成温度が1400℃より低いと、十分に結晶化せず、窒化ケイ素粉末中に多量の非晶質窒化ケイ素粉末が含まれるので好ましくない。また、焼成温度が1700℃より高いと、粗大結晶が成長するばかりでなく、生成した窒化ケイ素粉末の分解が始まるので好ましくない。   In the present invention, when the amorphous Si—N (—H) compound powder is fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere, the cylindrical powder is inclined with respect to the horizontal direction. Using an externally heated rotary kiln furnace for firing an object to be heated put in the furnace core tube by heating from outside while rotating the core tube around the axis, The Si—N (—H) -based compound powder is fired at a temperature of 1400 to 1700 ° C. When the firing temperature is lower than 1400 ° C., crystallization is not sufficient, and a large amount of amorphous silicon nitride powder is contained in the silicon nitride powder, which is not preferable. On the other hand, when the firing temperature is higher than 1700 ° C., not only coarse crystals grow, but also decomposition of the produced silicon nitride powder starts, which is not preferable.

非晶質Si−N(−H)系化合物粉末は、顆粒状物に成形して炉心管内に投入することが好ましく、その顆粒状物は、直径が1mm以上20mm以下であることが特に好ましい。非晶質Si−N(−H)系化合物粉末を顆粒状に成形すると、炉心管内での非晶質Si−N(−H)系化合物粉末の流動性が向上し、非晶質Si−N(−H)系化合物粉末の結晶化に伴って発生する結晶化熱の放熱性が良くなるので、得られる窒化ケイ素粉末の品質の均一性が向上するからである。顆粒物の直径が1mm以上20mm以下である場合は、特に非晶質Si−N(−H)系化合物粉末の流動性が良くなり、得られる窒化ケイ素粉末の品質の均一性が特に良くなる。   The amorphous Si—N (—H) -based compound powder is preferably formed into a granular material and charged into the furnace core tube, and the granular material particularly preferably has a diameter of 1 mm or more and 20 mm or less. When the amorphous Si—N (—H) compound powder is formed into granules, the fluidity of the amorphous Si—N (—H) compound powder in the core tube is improved, and the amorphous Si—N This is because the heat dissipation of the crystallization heat generated with the crystallization of the (—H) -based compound powder is improved, so that the uniformity of the quality of the obtained silicon nitride powder is improved. When the diameter of the granule is 1 mm or more and 20 mm or less, the fluidity of the amorphous Si—N (—H) compound powder is particularly improved, and the uniformity of the quality of the resulting silicon nitride powder is particularly improved.

本発明で使用するロータリーキルン炉は、水平方向に対して傾斜させた円筒状の炉心管を備え、該炉心管を軸芯周りに回転させつつ該炉心管をその外側から加熱することで、該炉心管内に、該炉心管の片端に設置された該炉心管入口より供給された原料を焼成し、その焼成物を該炉心管の片端に設置された該炉心管出口より取り出す外熱式ロータリーキルン炉である。一般に、ロータリーキルン炉においては、水平方向に対して傾斜させた円筒状の炉心管の高い側に設けられた入口から原料粉末が供給されると、供給された原料粉末は、炉心管の断面方向には、炉心管の回転と粉末層の最大傾斜方向へのすべりにより渦巻運動をする。そして、軸方向には、炉心管の傾斜により粉末が炉心管の低い側に設けられた出口方向に移動し排出される。本発明においては、本発明のロータリーキルン炉の炉心管内に炉心管入口より非晶質Si−N(−H)系化合物粉末を供給し、炉心管内で焼成して結晶化し、炉心管出口より窒化ケイ素粉末を取り出す。なお、本発明においては、ロータリーキルン炉の炉心管内に供給されるまでの非晶質Si−N(−H)系化合物粉末を原料粉末と称することがある。また、焼成時に炉心管内を流動する粉末を被焼成粉末と称することがある。被焼成粉末には、非晶質Si−N(−H)系化合物粉末と窒化ケイ素粉末とがある。   The rotary kiln furnace used in the present invention includes a cylindrical core tube inclined with respect to the horizontal direction, and the core tube is heated from outside while rotating the core tube around the axis, thereby In an externally heated rotary kiln furnace in which a raw material supplied from the inlet of the core tube installed at one end of the core tube is fired and the fired product is taken out from the outlet of the core tube installed at one end of the core tube. is there. Generally, in a rotary kiln furnace, when raw material powder is supplied from an inlet provided on the high side of a cylindrical core tube inclined with respect to the horizontal direction, the supplied raw material powder is in the cross-sectional direction of the core tube. Swirls by rotating the core tube and sliding the powder layer in the maximum tilt direction. In the axial direction, the powder moves to the outlet direction provided on the lower side of the core tube and is discharged by the inclination of the core tube. In the present invention, the amorphous Si—N (—H) compound powder is supplied from the inlet of the core tube into the core tube of the rotary kiln furnace of the present invention, baked and crystallized in the core tube, and silicon nitride from the outlet of the core tube. Remove the powder. In the present invention, the amorphous Si—N (—H) compound powder until it is supplied into the core tube of the rotary kiln furnace may be referred to as a raw material powder. Further, the powder that flows in the furnace core tube during firing may be referred to as a powder to be fired. Examples of the powder to be fired include amorphous Si—N (—H) compound powder and silicon nitride powder.

ロータリーキルン炉での焼成における炉心管内部の最高温度、即ち焼成温度は1400〜1700℃の範囲、好ましくは1450〜1550℃の範囲である。焼成温度が1400℃より低いと、窒化ケイ素粉末が十分に結晶化せず、窒化ケイ素粉末中に多量の非晶質窒化ケイ素が含まれ、結晶化度が高い窒化ケイ素粉末が得られない。また、焼成温度が1700℃より高いと、粗大結晶が成長したり、窒化ケイ素粉末の一部またはすべてが分解して、焼結性が良好な窒化ケイ素粉末が得られない。   The maximum temperature inside the furnace core tube in firing in the rotary kiln, that is, the firing temperature is in the range of 1400 to 1700 ° C, preferably in the range of 1450 to 1550 ° C. When the firing temperature is lower than 1400 ° C., the silicon nitride powder is not sufficiently crystallized, and a large amount of amorphous silicon nitride is contained in the silicon nitride powder, so that a silicon nitride powder having a high crystallinity cannot be obtained. On the other hand, when the firing temperature is higher than 1700 ° C., a coarse crystal grows or a part or all of the silicon nitride powder is decomposed, and a silicon nitride powder with good sinterability cannot be obtained.

本発明では、ロータリーキルン炉を用いて非晶質Si−N(−H)系化合物粉末を窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下に焼成する際に、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを1〜8cmの範囲に維持することを管理指標とする。   In the present invention, when an amorphous Si—N (—H) compound powder is fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere using a rotary kiln furnace, silicon nitride at the furnace tube outlet is baked. The management index is to maintain the maximum thickness of the powder layer of the powder in the range of 1 to 8 cm.

ロータリーキルン炉の炉心管の内径に関わらず、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが1cm未満の場合は、得られる窒化ケイ素粉末のβ分率が大きくなってα分率が低下する。焼成時の最高温度を1400℃より低くすることで、α分率の低下は抑制できるが、その場合、前述の通り、結晶化度が高い窒化ケイ素粉末は得られない。   Regardless of the inner diameter of the core tube of the rotary kiln, when the maximum thickness of the silicon nitride powder layer at the core tube outlet is less than 1 cm, the β fraction of the resulting silicon nitride powder increases and the α fraction decreases. To do. By making the maximum temperature during firing lower than 1400 ° C., a decrease in the α fraction can be suppressed, but in that case, as described above, a silicon nitride powder having a high crystallinity cannot be obtained.

一方、ロータリーキルン炉の炉心管の内径に関わらず、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが8cmを超える場合は、得られる窒化ケイ素粉末の結晶化度が低くなる。焼成時の最高温度を1700℃より高くすれば結晶化度を高くできるが、焼成時の最高温度を1700℃より高くすると、前述の通り、粗大結晶が成長する、あるいは窒化ケイ素粉末の一部またはすべてが分解するので、焼結性が良好な窒化ケイ素粉末は得られない。   On the other hand, regardless of the inner diameter of the core tube of the rotary kiln furnace, when the maximum thickness of the silicon nitride powder layer at the outlet of the core tube exceeds 8 cm, the crystallinity of the obtained silicon nitride powder becomes low. When the maximum temperature during firing is higher than 1700 ° C., the degree of crystallinity can be increased. However, when the maximum temperature during firing is higher than 1700 ° C., as described above, coarse crystals grow, or part of silicon nitride powder or Since everything decomposes, a silicon nitride powder with good sinterability cannot be obtained.

本発明に係る炉心管出口における窒化ケイ素粉末の粉末層の最大厚さとは、窒化ケイ素粉末が炉心管出口から取り出される直前の、窒化ケイ素粉末の粉末層の底から表面までの距離の最大値であり、窒化ケイ素粉末の炉心管出口からの排出に伴う粉末層の表面形状の崩壊が生じる直前の窒化ケイ素粉末の粉末層の厚さである。本発明に係る炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、以下のようにして算出することができる。   The maximum thickness of the silicon nitride powder layer at the core tube outlet according to the present invention is the maximum value of the distance from the bottom to the surface of the silicon nitride powder layer immediately before the silicon nitride powder is taken out from the core tube outlet. Yes, the thickness of the powder layer of the silicon nitride powder immediately before the collapse of the surface shape of the powder layer accompanying the discharge of the silicon nitride powder from the furnace core tube outlet occurs. The maximum thickness of the powder layer of silicon nitride powder at the core tube outlet according to the present invention can be calculated as follows.

図1は、炉心管出口からの排出に伴う粉末層の表面形状の崩壊が生じる直前の、窒化ケイ素粉末が層状に流動している様子を表すロータリーキルン炉の炉心管内の断面の模式図である。炉心管内を流動する窒化ケイ素粉末の粉末層の最大厚さ、すなわち、窒化ケイ素粉末の粉末層の底から表面までの距離の最大値は、窒化ケイ素粉末の粉末層の表面と直角に交差する炉心管内の断面の中心線(図1のA)上の、炉心管内壁から窒化ケイ素粉末の粉末層の表面までの距離である。   FIG. 1 is a schematic diagram of a cross section in a core tube of a rotary kiln furnace showing a state in which silicon nitride powder flows in a layered state immediately before the surface shape of the powder layer collapses due to discharge from the core tube outlet. The maximum thickness of the silicon nitride powder layer flowing in the core tube, that is, the maximum distance from the bottom to the surface of the silicon nitride powder layer, is perpendicular to the surface of the silicon nitride powder layer. This is the distance from the inner wall of the core tube to the surface of the powder layer of silicon nitride powder on the center line of the cross section in the tube (A in FIG. 1).

本発明においては、炉心管出口からの排出に伴う粉末層の表面形状の崩壊が生じる直前の位置における窒化ケイ素粉末の粉末層を、粉末層の厚さ方向に対して垂直な向きから観察できるように、炉心管出口側に覗き窓を設ける。そして、粉末層の表面形状の崩壊が生じる直前の位置における窒化ケイ素粉末の粉末層の、粉末層の表面と直角に交差する炉心管内の断面の中心線(図1のA)上の、粉末層の表面から粉末層の底ではない方の炉心管内壁までの距離(図1のBの長さ)を、覗き窓の外側に付けられたゲージで測定するか、覗き窓から撮影した画像の画像解析により測定する。炉心管内径から、測定された「図1のBの長さ」を差し引いた距離が窒化ケイ素粉末の粉末層の底から表面までの距離の最大値であり、本発明の窒化ケイ素粉末の粉末層の最大厚さである。   In the present invention, the powder layer of silicon nitride powder at a position immediately before the collapse of the surface shape of the powder layer accompanying discharge from the core tube outlet can be observed from a direction perpendicular to the thickness direction of the powder layer. In addition, a viewing window is provided on the outlet side of the core tube. And the powder layer of the powder layer of the silicon nitride powder at the position immediately before the collapse of the surface shape of the powder layer is on the center line (A in FIG. 1) of the cross section in the reactor core tube perpendicular to the surface of the powder layer The distance from the surface of the tube to the inner wall of the core tube that is not the bottom of the powder layer (the length of B in FIG. 1) is measured with a gauge attached to the outside of the viewing window, or an image taken from the viewing window Measure by analysis. The distance obtained by subtracting the measured “length of B in FIG. 1” from the inner diameter of the core tube is the maximum distance from the bottom to the surface of the powder layer of the silicon nitride powder, and the powder layer of the silicon nitride powder of the present invention Is the maximum thickness.

次に、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを特定の範囲に維持することを管理指標とすることで、結晶化度およびα分率が高い窒化ケイ素粉末が常に得られる理由を考察する。   Next, the reason why a silicon nitride powder having a high crystallinity and a high α fraction is always obtained by maintaining the maximum thickness of the powder layer of the silicon nitride powder at the core tube outlet within a specific range as a management index. Is considered.

本発明に係る窒化ケイ素粉末の結晶化度およびα分率に影響を与えるのは、非晶質Si−N(−H)系化合物粉末の結晶化挙動である。一方、炉心管出口における窒化ケイ素粉末は、結晶化が完了した粉末であり、炉心管出口より取り出される窒化ケイ素粉末、すなわち本発明で得られる窒化ケイ素粉末である。したがって、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを特定の範囲に維持することは、窒化ケイ素粉末の結晶化度およびα分率に影響を与える非晶質Si−N(−H)系化合物粉末の結晶化挙動に直接影響を与えるわけではない。   It is the crystallization behavior of the amorphous Si—N (—H) compound powder that affects the crystallinity and α fraction of the silicon nitride powder according to the present invention. On the other hand, the silicon nitride powder at the core tube outlet is a powder that has been crystallized, and is a silicon nitride powder taken out from the core tube outlet, that is, a silicon nitride powder obtained by the present invention. Therefore, maintaining the maximum thickness of the powder layer of silicon nitride powder at the core tube outlet within a specific range can affect the crystallinity and α fraction of the silicon nitride powder, which can affect the amorphous Si—N (—H ) Does not directly affect the crystallization behavior of the system compound powder.

しかし、次の理由により、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを特定の範囲に維持することが、窒化ケイ素粉末の結晶化度およびα分率に影響を与える非晶質Si−N(−H)系化合物粉末の結晶化挙動に間接的に影響を与えると考えられる。   However, for the following reasons, maintaining the maximum thickness of the silicon nitride powder layer at the core tube outlet in a specific range affects the crystallinity and α fraction of the silicon nitride powder. This is considered to indirectly affect the crystallization behavior of the —N (—H) compound powder.

原料の非晶質Si−N(−H)系化合物粉末の密度はほぼ一定であり、得られる窒化ケイ素粉末の密度も特定の高い結晶化度とα分率とを有する粉末ならばほぼ一定である。また、所定の炉心管内に投入される非晶質Si−N(−H)系化合物粉末の質量と得られる窒化ケイ素粉末の質量との比も、非晶質Si−N(−H)系化合物の結晶化時の分解に伴う質量減少率がほぼ一定であるので、ほぼ一定である。したがって、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さとの比は常にほぼ一定の値になる。つまり、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを特定の範囲に維持すれば、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さを特定の範囲に維持できることになる。したがって、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを特定の範囲に維持することは、間接的に非晶質Si−N(−H)系化合物粉末の結晶化挙動に影響を与えると考えられる。結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さは、その位置が炉心管の入口からも出口からも離れていて測定が困難であるので、本発明の窒化ケイ素粉末の製造方法は、これに替えて、測定が容易な炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを管理指標とするものである。   The density of the raw material amorphous Si—N (—H) compound powder is almost constant, and the density of the obtained silicon nitride powder is also almost constant if the powder has a specific high crystallinity and α fraction. is there. Further, the ratio of the mass of the amorphous Si—N (—H) -based compound powder put into a predetermined furnace core tube and the mass of the obtained silicon nitride powder is also the amorphous Si—N (—H) -based compound. Since the mass reduction rate accompanying the decomposition during crystallization of is almost constant, it is almost constant. Therefore, the ratio between the maximum thickness of the silicon nitride powder layer at the furnace tube outlet and the maximum thickness of the amorphous Si-N (-H) -based compound powder during crystallization is always a substantially constant value. Become. That is, if the maximum thickness of the powder layer of silicon nitride powder at the core tube outlet is maintained within a specific range, the maximum thickness of the powder layer of amorphous Si—N (—H) compound powder during crystallization is reduced. It can be maintained within a specific range. Therefore, maintaining the maximum thickness of the silicon nitride powder layer at the core tube outlet in a specific range indirectly affects the crystallization behavior of the amorphous Si—N (—H) compound powder. it is conceivable that. Since the maximum thickness of the powder layer of the amorphous Si—N (—H) compound powder at the time of crystallization is difficult to measure because the position is far from both the inlet and the outlet of the core tube, the present invention In this method of manufacturing silicon nitride powder, instead of this, the maximum thickness of the powder layer of silicon nitride powder at the outlet of the core tube, which is easy to measure, is used as a management index.

次に、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さを、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが1〜8cmになる場合に対応する特定の範囲に維持して、非晶質Si−N(−H)系化合物粉末を焼成して窒化ケイ素粉末を製造すると、結晶化度およびα分率が高い窒化ケイ素粉末をロータリーキルン炉の炉心管の内径に関わらず製造することができる理由について考察する。   Next, when the maximum thickness of the powder layer of amorphous Si—N (—H) -based compound powder during crystallization is 1 to 8 cm when the maximum thickness of the powder layer of silicon nitride powder at the core tube outlet is 1 to 8 cm When a silicon nitride powder is produced by firing amorphous Si—N (—H) compound powder while maintaining a specific range corresponding to the above, a silicon kiln powder having a high crystallinity and α fraction is converted into a rotary kiln furnace. The reason why the core tube can be manufactured regardless of the inner diameter of the core tube will be discussed.

炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが1cm未満の場合、すなわち、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さが小さい場合は、次のようなメカニズムによって、得られる窒化ケイ素粉末のα分率が低くなると考えられる。   When the maximum thickness of the powder layer of silicon nitride powder at the furnace tube outlet is less than 1 cm, that is, when the maximum thickness of the powder layer of amorphous Si—N (—H) compound powder during crystallization is small It is considered that the α fraction of the obtained silicon nitride powder is lowered by the following mechanism.

非晶質Si−N(−H)系化合物粉末の粉末層と炉心管内壁との間にすべりが生じて、非晶質Si−N(−H)系化合物粉末が渦巻運動をしなくなり、その流動性が悪くなる。非晶質Si−N(−H)系化合物粉末が、流動性が悪い状態で焼成されると、結晶化熱が粉末層から除去されにくくなって、非晶質Si−N(−H)系化合物粉末の粉末層の温度が急激に上昇し、非晶質Si−N(−H)系化合物粉末の粉末層の少なくとも一部が1700℃を超える。非晶質Si−N(−H)系化合物粉末の粉末層の温度が局所的にでも短時間でも1700℃を超えることで、窒化ケイ素の高温型結晶であるβ型結晶が析出し、得られる窒化ケイ素粉末のα分率が低くなる。   A slip occurs between the powder layer of the amorphous Si-N (-H) compound powder and the inner wall of the core tube, and the amorphous Si-N (-H) compound powder stops swirling, The fluidity becomes worse. If the amorphous Si—N (—H) compound powder is fired in a state of poor fluidity, the heat of crystallization is hardly removed from the powder layer, and the amorphous Si—N (—H) The temperature of the powder layer of the compound powder rises rapidly, and at least a part of the powder layer of the amorphous Si—N (—H) -based compound powder exceeds 1700 ° C. When the temperature of the powder layer of the amorphous Si—N (—H) compound powder exceeds 1700 ° C. even locally or in a short time, β-type crystal, which is a high-temperature crystal of silicon nitride, is precipitated and obtained. The α fraction of the silicon nitride powder is lowered.

以上が、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが1cm未満の場合、すなわち結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さが小さい場合に、得られる窒化ケイ素粉末のα分率が低くなるメカニズムと考えられる。   The above is the case where the maximum thickness of the silicon nitride powder layer at the outlet of the core tube is less than 1 cm, that is, the maximum thickness of the amorphous Si—N (—H) compound powder layer during crystallization is small. In this case, it is considered that the α fraction of the obtained silicon nitride powder is lowered.

一方、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが8cmより大きい場合、すなわち結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さが大きい場合は、次のようなメカニズムによって、得られる窒化ケイ素粉末の結晶化度が低くなると考えられる。   On the other hand, when the maximum thickness of the powder layer of silicon nitride powder at the core tube outlet is larger than 8 cm, that is, when the maximum thickness of the powder layer of amorphous Si—N (—H) compound powder during crystallization is large It is considered that the crystallinity of the obtained silicon nitride powder is lowered by the following mechanism.

外熱式ロータリーキルン炉における被焼成粉末への伝熱の形態には、粉末が接触している炉心管内壁からの伝導伝熱、対向壁面からの輻射伝熱、及び熱分解ガスからの対流伝熱がある。これらを合算したものが総伝熱であるが、熱分解ガスからの対流伝熱以外は粉末層の外周部からの伝熱である。被焼成粉末への伝熱の殆どが粉末層外周部からの伝熱であっても、外熱式ロータリーキルン炉では、炉心管の回転によって被焼成粉末に渦巻運動をさせることで、被焼成粉末への一様な加熱が可能になっている。   The form of heat transfer to the powder to be fired in the externally heated rotary kiln furnace includes conduction heat transfer from the inner wall of the furnace core tube in contact with the powder, radiation heat transfer from the opposite wall surface, and convection heat transfer from the pyrolysis gas. There is. The total of these is the total heat transfer, but the heat transfer from the outer periphery of the powder layer other than the convective heat transfer from the pyrolysis gas. Even if most of the heat transfer to the powder to be fired is from the outer periphery of the powder layer, in the externally heated rotary kiln furnace, the powder to be fired is swirled by the rotation of the furnace core tube. Can be heated uniformly.

それでも、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが8cmより大きい場合、すなわち結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さが大きい場合は、粉末の一部に渦巻運動する力が与えられずに流動性が悪い部分が生じる。図2に、窒化ケイ素粉末の粉末層の最大厚さが8cmより大きい場合の、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の断面の模式図を示す。被焼成粉末には炉心管の回転方向とは反対の方向へ渦巻運動する力が与えられるが、粉末層の最大厚さが大きいと、図2に示すように、粉末層の中央辺りに灰色の楕円状の領域として示す流動性が悪い部分が生じる。そして、粉末層中の流動性が悪い部分の非晶質Si−N(−H)系化合物粉末は、流動性が良い部分の粉末ほどには加熱されない状態で炉心管出口に達することになる。そうすると、得られる窒化ケイ素粉末は、結晶化に十分な加熱を受けていない窒化ケイ素粉末を含むので、得られる窒化ケイ素粉末の結晶化度が低くなる。   Still, when the maximum thickness of the powder layer of silicon nitride powder at the core tube outlet is larger than 8 cm, that is, when the maximum thickness of the powder layer of amorphous Si-N (-H) compound powder during crystallization is large In this case, a part having a poor flowability is generated because a part of the powder is not given a spiraling force. FIG. 2 shows a schematic diagram of a cross section of the powder layer of amorphous Si—N (—H) compound powder during crystallization when the maximum thickness of the powder layer of silicon nitride powder is larger than 8 cm. The powder to be fired is given a force that swirls in the direction opposite to the direction of rotation of the core tube, but when the maximum thickness of the powder layer is large, as shown in FIG. A portion with poor fluidity is generated as an elliptical region. Then, the amorphous Si—N (—H) -based compound powder having a poor fluidity in the powder layer reaches the core tube outlet in a state where it is not heated as much as the powder having a good fluidity. Then, since the obtained silicon nitride powder includes silicon nitride powder that has not been sufficiently heated for crystallization, the crystallinity of the obtained silicon nitride powder is lowered.

以上が、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さが8cmより大きい場合、すなわち結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の最大厚さが大きい場合に、得られる窒化ケイ素粉末の結晶化度が低くなるメカニズムと考えられる。   The above is the case where the maximum thickness of the silicon nitride powder layer at the core tube outlet is larger than 8 cm, that is, the maximum thickness of the amorphous Si—N (—H) -based compound powder during crystallization is large. In this case, it is considered that the crystallinity of the obtained silicon nitride powder is lowered.

炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを1〜8cmの範囲に維持することを管理指標として窒化ケイ素粉末を製造すれば、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層と炉心管内壁との間にすべりが生じないように、結晶化時の非晶質Si−N(−H)系化合物粉末の粉末層の中央辺りに渦巻運動が与えられずに流動性が悪い部分が生じないようにできるので、結晶化度およびα分率が高い窒化ケイ素粉末をロータリーキルン炉の炉心管の内径に関わらず製造することができるものと考えられる。   If silicon nitride powder is produced with the management index of maintaining the maximum thickness of the powder layer of silicon nitride powder at the furnace tube outlet in the range of 1 to 8 cm, amorphous Si-N (-H) during crystallization A spiral motion is given to the center of the powder layer of the amorphous Si-N (-H) compound powder during crystallization so that no slip occurs between the powder layer of the compound compound powder and the inner wall of the core tube. Therefore, it is considered that a silicon nitride powder having a high crystallinity and an α fraction can be produced regardless of the inner diameter of the core tube of the rotary kiln furnace.

本発明において、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、非晶質Si−N(−H)系化合物粉末の炉心管内への供給速度、炉心管の傾斜角度、および炉心管の回転速度によって制御することができる。非晶質Si−N(−H)系化合物粉末の炉心管内への供給速度を大きくすると窒化ケイ素粉末の粉末層の最大厚さは大きくなり、非晶質Si−N(−H)系化合物粉末の供給速度を小さくすると窒化ケイ素粉末の粉末層の最大厚さは小さくなる。炉心管の傾斜角度を大きくすると窒化ケイ素粉末の粉末層の最大厚さは小さくなり、炉心管の傾斜角度を小さくすると窒化ケイ素粉末の粉末層の最大厚さは大きくなる。また、炉心管の回転速度を大きくすると窒化ケイ素粉末の粉末層の最大厚さは小さくなり、炉心管の回転速度を小さくすると窒化ケイ素粉末の粉末層の最大厚さは大きくなる。   In the present invention, the maximum thickness of the powder layer of the silicon nitride powder at the outlet of the core tube is the supply speed of the amorphous Si—N (—H) -based compound powder into the core tube, the inclination angle of the core tube, and the core tube It can be controlled by the rotation speed of. When the supply rate of the amorphous Si—N (—H) compound powder into the core tube is increased, the maximum thickness of the powder layer of the silicon nitride powder increases, and the amorphous Si—N (—H) compound powder is increased. When the feed rate is reduced, the maximum thickness of the silicon nitride powder layer is reduced. Increasing the tilt angle of the core tube decreases the maximum thickness of the silicon nitride powder layer, and decreasing the tilt angle of the core tube increases the maximum thickness of the silicon nitride powder layer. Further, when the rotational speed of the core tube is increased, the maximum thickness of the powder layer of silicon nitride powder is decreased, and when the rotational speed of the core tube is decreased, the maximum thickness of the powder layer of silicon nitride powder is increased.

また、本発明においては、非晶質Si−N(−H)系化合物粉末の、炉心管内の加熱帯における滞留時間は、5分以上とすることが好ましい。ここで、加熱帯とは、ロータリーキルン炉の炉心管内の温度が1400℃以上最高温度以下の温度帯域のことである。滞留時間を5分未満にすると、得られる窒化ケイ素粉末の結晶化度が低くなることがあるからである。一方、滞留時間を長くしても、得られる窒化ケイ素粉末の品質が悪くなることはないが、得られる窒化ケイ素粉末の単位質量あたりに必要な電力量が多くなり、生産コストが相対的に大きくなるので、炉心管内の加熱帯での滞留時間は、20分以下にすることが好ましい。   Moreover, in this invention, it is preferable that the residence time in the heating zone in a furnace core tube of an amorphous Si-N (-H) type compound powder shall be 5 minutes or more. Here, the heating zone is a temperature zone in which the temperature in the core tube of the rotary kiln furnace is 1400 ° C. or more and the maximum temperature or less. This is because if the residence time is less than 5 minutes, the crystallinity of the resulting silicon nitride powder may be lowered. On the other hand, even if the residence time is increased, the quality of the obtained silicon nitride powder does not deteriorate, but the amount of electric power required per unit mass of the obtained silicon nitride powder increases, and the production cost is relatively large. Therefore, the residence time in the heating zone in the furnace core tube is preferably 20 minutes or less.

非晶質Si−N(−H)系化合物粉末の、炉心管内の加熱帯での滞留時間は、炉心管の傾斜角度および炉心管の回転速度によって制御することができる。炉心管の傾斜角度を大きくすると前記滞留時間は短くなる。また、炉心管の回転速度を大きくすると前記滞留時間は短くなる。   The residence time of the amorphous Si—N (—H) -based compound powder in the heating zone in the core tube can be controlled by the inclination angle of the core tube and the rotational speed of the core tube. Increasing the inclination angle of the core tube shortens the residence time. Further, when the rotational speed of the core tube is increased, the residence time is shortened.

以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

(非晶質Si−N(−H)系化合物の組成分析方法)
非晶質Si−N(−H)系化合物粉末のケイ素(Si)含有割合は、「JIS R1603 ファインセラミックス用窒化けい素微粉末の化学分析方法」の「7 全けい素の定量方法」に準拠したICP発光分析により測定した。非晶質Si−N(−H)系化合物粉末の窒素(N)含有割合は、「JIS R1603」の「8 全窒素の定量方法」に準拠した水蒸気蒸留分離中和滴定法により測定した。また非晶質Si−N(−H)系化合物粉末の酸素(O)含有割合は、「JIS R1603」の「10 酸素の定量方法」に準拠した不活性ガス融解−二酸化炭素赤外線吸収法により測定した。ただし、非晶質Si−N(−H)系化合物粉末の酸化を抑制するために、ケイ素含有割合の測定の場合、および素含有割合の測定の場合は、測定のための試料前処理直前までの試料保管時の雰囲気を窒素雰囲気とし、また酸素含有割合の測定の場合は、測定直前までの試料保管時及び測定時の雰囲気を窒素雰囲気とした。非晶質Si−N(−H)系化合物粉末の水素(H)含有割合は、非晶質Si−N(−H)系化合物粉末の全量より、ケイ素(Si)、窒素(N)および酸素(O)含有割合の合計を除いた残分として算出した。本発明に係る非晶質Si−N(−H)系化合物粉末は、微量の不純物以外は、ケイ素(Si)、窒素(N)、水素(H)および酸素(O)のみからなるからである。以上より、Si、N及びHの比を求めて、非晶質Si−N(−H)系化合物粉末の組成式を決定した。
(Composition analysis method of amorphous Si-N (-H) compound)
The silicon (Si) content ratio of the amorphous Si-N (-H) compound powder conforms to "7 Quantitative determination method of total silicon" in "JIS R1603 Chemical analysis method of fine silicon nitride powder for fine ceramics". Measured by ICP emission analysis. The nitrogen (N) content ratio of the amorphous Si—N (—H) compound powder was measured by a steam distillation separation neutralization titration method based on “8 Quantitative determination method of total nitrogen” of “JIS R1603”. In addition, the oxygen (O) content ratio of the amorphous Si—N (—H) compound powder is measured by an inert gas melting-carbon dioxide infrared absorption method according to “10 Oxygen determination method” of “JIS R1603”. did. However, in order to suppress oxidation of the amorphous Si—N (—H) compound powder, in the case of measurement of the silicon content ratio and in the case of measurement of the elementary content ratio, until immediately before the sample pretreatment for measurement. The atmosphere at the time of sample storage was a nitrogen atmosphere, and in the case of measuring the oxygen content ratio, the atmosphere at the time of sample storage and measurement immediately before the measurement was a nitrogen atmosphere. The proportion of hydrogen (H) contained in the amorphous Si—N (—H) compound powder is higher than the total amount of the amorphous Si—N (—H) compound powder in terms of silicon (Si), nitrogen (N) and oxygen. (O) Calculated as the remainder excluding the total content. This is because the amorphous Si—N (—H) compound powder according to the present invention is composed of only silicon (Si), nitrogen (N), hydrogen (H) and oxygen (O) except for a small amount of impurities. . From the above, the ratio of Si, N, and H was determined, and the composition formula of the amorphous Si—N (—H) compound powder was determined.

(窒化ケイ素粉末の酸素(O)含有割合の測定方法)
窒化ケイ素粉末の酸素(O)含有割合は、「JIS R1603 ファインセラミックス用窒化けい素微粉末の化学分析方法」の「10 酸素の定量方法」に準拠した不活性ガス融解−二酸化炭素赤外線吸収法により測定した。ただし、非晶質Si−N(−H)系化合物粉末の酸素(O)含有割合を測定する場合は、非晶質Si−N(−H)系化合物の酸化を抑制するために、測定直前までの試料保管時及び測定時の雰囲気を窒素雰囲気とした。
(Measurement method of oxygen (O) content ratio of silicon nitride powder)
The oxygen (O) content ratio of the silicon nitride powder is determined by the inert gas melting-carbon dioxide infrared absorption method according to “10 Quantitative determination method of oxygen” in “JIS R1603 Chemical analysis method of fine silicon nitride powder for ceramics”. It was measured. However, when measuring the oxygen (O) content ratio of the amorphous Si—N (—H) compound powder, in order to suppress oxidation of the amorphous Si—N (—H) compound, immediately before the measurement The atmosphere at the time of sample storage and measurement was a nitrogen atmosphere.

(非晶質Si−N(−H)系化合物粉末および窒化ケイ素粉末の比表面積の測定方法)
非晶質Si−N(−H)系化合物粉末および窒化ケイ素粉末の比表面積は窒素ガス吸着によるBET1点法(島津製作所社製、フローソーブ2300)で測定した。
(Measurement method of specific surface area of amorphous Si—N (—H) compound powder and silicon nitride powder)
The specific surface areas of the amorphous Si—N (—H) compound powder and the silicon nitride powder were measured by the BET one-point method (Shimadzu Corporation, Flowsorb 2300) by nitrogen gas adsorption.

(非晶質Si−N(−H)系化合物粉末の軽装密度と安息角の測定方法)
非晶質Si−N(−H)系化合物粉末の軽装密度は、「JIS R9301−2−3 アルミナ粉末−第2部:物性測定方法−3:軽装かさ密度及び重装かさ密度」に準拠した手法で求めた。具体的には、振動を防ぎ、静置した容量既知の容器中に非晶質Si−N(−H)系化合物粉末を自由に落下させて集めた同粉末の質量を求め、この質量を等量の水の体積で割った値から算出した。安息角は、「JIS R9301−2−2 アルミナ粉末−第2部:物性測定方法−2:安息角」に準拠した手法で求めた。具体的には、ガラスロートから非晶質Si−N(−H)系化合物粉末を自然落下させ、水平面に堆積させたときに粉末が作る角度を測定した。
(Measurement method of light packing density and angle of repose of amorphous Si-N (-H) compound powder)
The light packing density of the amorphous Si-N (-H) compound powder conformed to "JIS R9301-2-3 Alumina powder-Part 2: Physical property measurement method-3: Light packing heavy density and heavy loading bulk density". Obtained by method. Specifically, the mass of the same powder collected by dropping the amorphous Si—N (—H) compound powder freely into a container with a known capacity that was prevented from standing still was collected, and this mass was determined. Calculated from the value divided by the volume of water. The angle of repose was calculated | required by the method based on "JIS R9301-2-2 alumina powder-2nd part: Physical property measuring method-2: angle of repose". Specifically, an amorphous Si—N (—H) compound powder was spontaneously dropped from a glass funnel, and the angle formed by the powder when deposited on a horizontal surface was measured.

(炉心管内の加熱帯における被焼成粉末の滞留時間の測定方法)
炉心管内の加熱帯、すなわち炉心管の1400℃以上最高温度以下の温度帯域における被焼成粉末の滞留時間は、以下の方法で測定した。トレーサーとして、1個1個識別可能なφ5mmの窒化ケイ素ボール10個を、炉心管入口から順次原料粉末と一緒に炉心管内に投入して、各窒化ケイ素ボールが入口から投入されてから炉心管出口より排出されるまでの時間を測定し、その平均値を炉心管内の滞留時間とした。炉心管内での被焼成粉末の軸方向の移動速度は一定なので、炉心管長さに対する炉心管内の加熱帯長さの割合を炉心管内の滞留時間にかけた値を加熱帯での滞留時間とした。
(Measuring method of residence time of powder to be fired in heating zone in furnace tube)
The residence time of the powder to be fired in the heating zone in the furnace tube, that is, the temperature zone of 1400 ° C. or more and the maximum temperature or less of the furnace tube was measured by the following method. As a tracer, 10 φ5 mm silicon nitride balls that can be identified one by one are put into the core tube together with the raw material powder sequentially from the core tube inlet, and after each silicon nitride ball is introduced from the inlet, the core tube outlet The time until it was further discharged was measured, and the average value was taken as the residence time in the core tube. Since the moving speed of the powder to be fired in the furnace core tube in the axial direction is constant, the ratio of the heating zone length in the furnace core tube to the length of the furnace core tube multiplied by the residence time in the core tube is defined as the residence time in the heating zone.

(炉心管出口における窒化ケイ素粉末の粉末層の最大厚さの測定方法)
炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、図3に示すように、炉心管内の断面を垂直方向から観察できるよう炉心管出口側に設けられた覗き窓の外側に付けたゲージによって測定した。「炉心管内径」から、「粉末層の表面と垂直な向きの炉心管断面の中心線」における「粉末層表面から空間側(粉末層とは反対側)の炉心管内壁までの距離」を差し引くことで、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを算出した。
(Method for measuring the maximum thickness of the silicon nitride powder layer at the core tube outlet)
As shown in FIG. 3, the maximum thickness of the silicon nitride powder layer at the core tube outlet is a gauge attached to the outside of the viewing window provided on the core tube outlet side so that the cross section in the core tube can be observed from the vertical direction. Measured by. Subtract the “distance from the powder layer surface to the inner wall of the core tube on the space side (opposite the powder layer)” in the “center line of the core tube cross section perpendicular to the powder layer surface” from the “core tube inner diameter”. Thus, the maximum thickness of the silicon nitride powder layer at the outlet of the core tube was calculated.

(窒化ケイ素粉末のα分率の測定方法)
X線回折法において、ターゲットが銅の管球とグラファイトモノクロメーターを使用し、定時ステップ走査法により、得られた窒化ケイ素粉末の粉末X線回折パターンを測定した。回折角(2θ)15〜80゜の範囲を0.02゜刻みでステップスキャンし、リートベルト解析により窒化ケイ素粉末のα分率を求めた。
(Measurement method of α fraction of silicon nitride powder)
In the X-ray diffraction method, a powder X-ray diffraction pattern of the obtained silicon nitride powder was measured by a regular step scanning method using a copper tube and a graphite monochromator as a target. Step scan was performed in the range of diffraction angle (2θ) of 15-80 ° in steps of 0.02 °, and α fraction of silicon nitride powder was determined by Rietveld analysis.

(窒化ケイ素粉末の結晶化度の測定方法)
精秤した窒化ケイ素粉末を0.5NのNaOH水溶液に加えて100℃に加熱した。窒化ケイ素の分解により発生したNHガスを1%ホウ酸水溶液に吸収させ、得られた吸収液中のNH量を0.1N硫酸標準溶液で滴定した。吸収液中のNH量と窒化ケイ素粉末の質量から、分解窒素の窒化ケイ素に対する質量割合(窒化ケイ素が分解して生成した窒素の、窒化ケイ素に対する質量割合)を算出した。窒化ケイ素粉末の結晶化度は、分解窒素の窒化ケイ素に対する質量割合と、窒化ケイ素に含まれる窒素の、窒化ケイ素に対する理論質量割合39.94%から、下記の式(3)により算出した。
結晶化度(%)=100−(分解窒素の窒化ケイ素に対する質量割合×100/39.94)・・・・(3)
(Method for measuring crystallinity of silicon nitride powder)
The precisely weighed silicon nitride powder was added to a 0.5N NaOH aqueous solution and heated to 100 ° C. NH 3 gas generated by the decomposition of silicon nitride was absorbed in a 1% aqueous boric acid solution, and the amount of NH 3 in the obtained absorbent was titrated with a 0.1N sulfuric acid standard solution. From the amount of NH 3 in the absorbing solution and the mass of the silicon nitride powder, the mass ratio of decomposed nitrogen to silicon nitride (the mass ratio of nitrogen generated by decomposition of silicon nitride to silicon nitride) was calculated. The crystallinity of the silicon nitride powder was calculated from the mass ratio of decomposed nitrogen to silicon nitride and the theoretical mass ratio of 39.94% of nitrogen contained in silicon nitride to silicon nitride by the following equation (3).
Crystallinity (%) = 100− (mass ratio of decomposed nitrogen to silicon nitride × 100 / 39.94) (3)

(実施例1)
20℃に保たれた直径40cm、高さ60cmの縦型耐圧反応槽内の空気を窒素ガスで置換した後、反応槽内に40リットルの液体アンモニア及び5リットルのトルエンを仕込んだ。反応槽内で、液体アンモニア及びトルエンをゆっくり攪拌しながら、液体アンモニアを上層に、トルエンを下層に分離した。予め調製した2リットルの四塩化ケイ素と0.1質量%の水分を含む6リットルのトルエンとからなる溶液(反応液)を、導管を通じて、ゆっくり撹拌されている反応槽内の下層に供給した。このとき、反応槽内に供給された四塩化ケイ素と反応槽内の液体アンモニアの体積比は5/100である。前記溶液の供給と共に、上下層の界面近傍に白色の反応生成物が析出した。反応終了後、反応槽内の反応生成物及び残留液を濾過槽へ移送し、反応生成物を濾別して、液体アンモニアで4回バッチ洗浄し、約1kgの比表面積が1400m/gのシリコンジイミドを得た。
Example 1
After replacing air in a vertical pressure resistant reactor having a diameter of 40 cm and a height of 60 cm maintained at 20 ° C. with nitrogen gas, 40 liters of liquid ammonia and 5 liters of toluene were charged in the reactor. In the reaction vessel, while liquid ammonia and toluene were slowly stirred, liquid ammonia was separated into an upper layer and toluene was separated into a lower layer. A solution (reaction solution) consisting of 2 liters of silicon tetrachloride prepared in advance and 6 liters of toluene containing 0.1% by mass of water was supplied through a conduit to the lower layer in the reaction vessel being slowly stirred. At this time, the volume ratio of silicon tetrachloride supplied into the reaction tank and liquid ammonia in the reaction tank is 5/100. Along with the supply of the solution, a white reaction product was deposited in the vicinity of the interface between the upper and lower layers. After completion of the reaction, the reaction product and the residual liquid in the reaction tank are transferred to a filtration tank, the reaction product is separated by filtration, and batch-washed four times with liquid ammonia, and a silicon diimide having a specific surface area of about 1 kg and 1400 m 2 / g. Got.

得られたシリコンジイミドを、直径150mm、長さ2800mm(加熱長1000mm)のロータリーキルン炉の原料ホッパに充填し、ロータリーキルン炉内を13Pa以下に真空脱気した後、酸素を2%含有する窒素ガスを全ガス量流量250NL/時間で供給し、加熱を開始した。ロータリーキルン炉の炉内が最高温度(1000℃)に達したところで原料供給スクリューフィーダーを回転させ、シリコンジイミドを3kg/時間の供給速度で原料ホッパから炉内に供給した。キルンの傾斜角度を2度、回転数を1rpmとし、最高温度での保持時間を10分として、シリコンジイミドを加熱して実施例1に係る非晶質Si−N(−H)系化合物粉末を得た。実施例1に係る非晶質Si−N(−H)系化合物粉末は、表1に示す通り、比表面積が450m/gであり、酸素含有割合が0.73質量%の、組成式Si8.41.2で表される、すなわち前記組成式(1)のSi2x(NH)12−3xにおいて式中のxが3.6である化合物粉末であった。 The obtained silicon diimide was filled in a raw material hopper of a rotary kiln furnace having a diameter of 150 mm and a length of 2800 mm (heating length of 1000 mm), and the inside of the rotary kiln furnace was vacuum degassed to 13 Pa or less, and then nitrogen gas containing 2% oxygen was added. The total gas amount was supplied at a flow rate of 250 NL / hour, and heating was started. When the inside of the rotary kiln furnace reached the maximum temperature (1000 ° C.), the raw material supply screw feeder was rotated, and silicon diimide was supplied from the raw material hopper into the furnace at a supply rate of 3 kg / hour. The amorphous Si—N (—H) compound powder according to Example 1 was heated by setting the tilt angle of the kiln to 2 degrees, the rotation speed to 1 rpm, and the holding time at the maximum temperature to 10 minutes to heat the silicon diimide. Obtained. As shown in Table 1, the amorphous Si—N (—H) compound powder according to Example 1 has a specific surface area of 450 m 2 / g and an oxygen content ratio of 0.73 mass%. It was a compound powder represented by 6 N 8.4 H 1.2 , that is, in the Si 6 N 2x (NH) 12-3x of the composition formula (1), where x in the formula was 3.6.

得られたSi−N(−H)系化合物粉末を、内径16cm、長さ2mの炭化ケイ素製の炉心管を有するロータリーキルン炉の原料ホッパに充填した。炉心管の加熱体の長さは1mとした。ロータリーキルン炉の炉心管内を窒素ガスで十分に置換した後、窒素ガス流通雰囲気下で、炉心管内の最高温度が表1に示す焼成温度になるまで昇温し、炉心管内の温度分布が安定した後に、原料供給スクリューフィーダーを回転させ、非晶質Si−N(−H)系化合物粉末を1.0kg/時間の供給速度で原料ホッパから炉心管内に供給した。炉心管の回転数を2rpm、炉心管の水平方向に対する傾斜角度を2°として、非晶質Si−N(−H)系化合物を加熱し、1500℃で焼成して、窒化ケイ素粉末を製造した。昇温速度は、1000〜1400℃の範囲の昇温速度が40℃/minになるように、炉心管の温度分布と供給速度を調整した。上述の(粉末層の最大厚さの測定方法)で説明した方法によって、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを測定したところ、表1に示すように1.4cmであった。また、上述の方法によって、得られた窒化ケイ素粉末の物性を測定し、表1に示す結果を得た。得られた実施例1の窒化ケイ素粉末は、α分率が90.3%、結晶化度が100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。   The obtained Si—N (—H) -based compound powder was filled into a raw material hopper of a rotary kiln furnace having a silicon carbide core tube having an inner diameter of 16 cm and a length of 2 m. The length of the heating element of the core tube was 1 m. After sufficiently replacing the inside of the furnace core tube of the rotary kiln furnace with nitrogen gas, the temperature is raised until the maximum temperature in the furnace core tube reaches the firing temperature shown in Table 1 in a nitrogen gas circulation atmosphere, and the temperature distribution in the furnace core tube is stabilized The raw material supply screw feeder was rotated, and amorphous Si—N (—H) compound powder was supplied from the raw material hopper into the furnace core tube at a supply rate of 1.0 kg / hour. Amorphous Si—N (—H) -based compound was heated and fired at 1500 ° C. by setting the rotational speed of the core tube to 2 rpm and the inclination angle with respect to the horizontal direction of the core tube to 2 ° to produce silicon nitride powder. . The temperature increase rate was adjusted so that the temperature increase rate in the range of 1000 to 1400 ° C. was 40 ° C./min and the temperature distribution of the core tube and the supply rate were adjusted. When the maximum thickness of the powder layer of the silicon nitride powder at the core tube outlet was measured by the method described in the above (Method for measuring the maximum thickness of the powder layer), it was 1.4 cm as shown in Table 1. . Moreover, the physical property of the obtained silicon nitride powder was measured by the above-mentioned method, and the results shown in Table 1 were obtained. The obtained silicon nitride powder of Example 1 was a silicon nitride powder having an α fraction of 90.3% and a crystallinity of 100%, and both an α fraction and a high crystallinity.

(実施例2)
Si−N(−H)系化合物粉末を9.4kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例1と同様の方法によって実施例2の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは6.9cmであり、得られた実施例1の窒化ケイ素粉末は、α分率が96.5%、結晶化度が100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Example 2)
The silicon nitride powder of Example 2 was obtained in the same manner as in Example 1 except that Si—N (—H) -based compound powder was supplied into the furnace core tube of the rotary kiln furnace at a supply rate of 9.4 kg / hour and fired. Manufactured. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. The maximum thickness of the silicon nitride powder layer at the furnace tube outlet is 6.9 cm, and the obtained silicon nitride powder of Example 1 has an α fraction of 96.5% and a crystallinity of 100%. The silicon nitride powder had a high α fraction and high crystallinity.

(実施例3、4)
炉心管の内径が24cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、実施例3では2.6kg/時間、実施例4では18.4kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例1と同様の方法によって、実施例3および4の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、実施例3、4の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ1.8cm、6.9cmであり、得られた実施例3、4の窒化ケイ素粉末は、α分率がそれぞれ92.6%、96.8%、結晶化度がどちらも100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Examples 3 and 4)
In Example 3, the Si—N (—H) compound powder was fired using a rotary kiln furnace having an inner diameter of 24 cm and a length of 2 m, and the Si—N (—H) compound powder was 2 in Example 3. The silicon nitride powders of Examples 3 and 4 were produced in the same manner as in Example 1 except that it was fed into the core tube of the rotary kiln furnace at a feed rate of 18.4 kg / hour in Example 4. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the powder layers of the silicon nitride powder at the core tube outlets of Examples 3 and 4 were 1.8 cm and 6.9 cm, respectively. The silicon powder was a silicon nitride powder having a high α fraction and high crystallinity, with α fractions of 92.6% and 96.8%, respectively, and crystallinity of 100%.

(実施例5、6)
炉心管の内径が30cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、実施例5では5.2kg/時間、実施例6では39.0kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例1と同様の方法によって、実施例5および6の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、実施例5、6の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ1.7cm、7.7cmであり、得られた実施例5、6の窒化ケイ素粉末は、α分率がそれぞれ93.4%、97.0%、結晶化度がどちらも100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Examples 5 and 6)
In Example 5, the Si—N (—H) compound powder was fired using a rotary kiln furnace having an inner diameter of 30 cm and a length of 2 m. The silicon nitride powders of Examples 5 and 6 were produced in the same manner as in Example 1 except that the powder was fed into the core tube of the rotary kiln furnace at a feed rate of 2 kg / hour and in Example 6 at 39.0 kg / hour. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the powder layers of silicon nitride powder at the core tube outlets of Examples 5 and 6 were 1.7 cm and 7.7 cm, respectively, and nitriding of the obtained Examples 5 and 6 was performed. The silicon powder was a silicon nitride powder having a high α fraction and a high degree of crystallinity, with α fractions of 93.4% and 97.0%, and crystallinity of 100%, respectively.

(実施例7)
シリコンジイミドをロータリーキルン炉を用いて加熱する際に、導入するガスを酸素を1%含有する窒素ガスとし、最高温度を800℃とすることで、比表面積が1150m/gで、酸素含有割合が0.45質量%の、組成式Si10.98.7で表される、すなわち前記組成式(1)のSi2x(NH)12−3xにおいて式中のxが1.1である非晶質Si−N(−H)系化合物粉末を得たことと、得られたSi−N(−H)系化合物粉末を1.2kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例1と同様の方法によって、実施例7の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは1.4cmであり、得られた窒化ケイ素粉末は、α分率が88.5%、結晶化度が100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Example 7)
When silicon diimide is heated using a rotary kiln furnace, the gas to be introduced is nitrogen gas containing 1% oxygen, the maximum temperature is 800 ° C., the specific surface area is 1150 m 2 / g, and the oxygen content ratio is 0.45% by mass, represented by the composition formula Si 6 N 10.9 H 8.7 , that is, in the Si 6 N 2x (NH) 12-3x of the composition formula (1), x in the formula is 1. 1 amorphous Si—N (—H) compound powder was obtained, and the obtained Si—N (—H) compound powder was fed into the furnace tube of the rotary kiln at a supply rate of 1.2 kg / hour. A silicon nitride powder of Example 7 was produced in the same manner as in Example 1 except that the powder was fired. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thickness of the silicon nitride powder layer at the core tube outlet is 1.4 cm, and the obtained silicon nitride powder has an α fraction of 88.5% and a crystallinity of 100 %, And a silicon nitride powder having a high α fraction and high crystallinity.

(実施例8)
Si−N(−H)系化合物粉末を7.7kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例7と同様の方法によって実施例8の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは6.7cmであり、得られた窒化ケイ素粉末のα分率は94.5%、結晶化度は100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Example 8)
The silicon nitride powder of Example 8 was produced in the same manner as in Example 7 except that the Si—N (—H) -based compound powder was fed into the furnace core tube of the rotary kiln furnace at a feeding rate of 7.7 kg / hour and fired. Manufactured. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thickness of the powder layer of the silicon nitride powder at the core tube outlet is 6.7 cm, the α fraction of the obtained silicon nitride powder is 94.5%, and the crystallinity is 100%. The silicon nitride powder had a high α fraction and high crystallinity.

(実施例9、10)
炉心管の内径が24cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、実施例9では2.0kg/時間、実施例10では14.7kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例7と同様の方法によって、実施例9および10の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、実施例9、10の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ1.6cm、6.7cmであり、得られた実施例9、10の窒化ケイ素粉末は、α分率がそれぞれ91.4%、97.8%、結晶化度がどちらも100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Examples 9 and 10)
In Example 9, the Si—N (—H) compound powder was baked using a rotary kiln furnace having an inner diameter of 24 cm and a length of 2 m. The silicon nitride powders of Examples 9 and 10 were produced in the same manner as in Example 7 except that the powder was supplied into the furnace core tube of the rotary kiln furnace at a supply rate of 14.7 kg / hour in Example 10 and fired. Manufactured. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Examples 9 and 10 were 1.6 cm and 6.7 cm, respectively. The silicon powder was a silicon nitride powder having an α fraction and a crystallinity of 91.4% and 97.8%, both having a crystallinity of 100% and a high α fraction and a crystallinity.

(実施例11、12)
炉心管の内径が30cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、実施例11では3.8kg/時間、実施例12では30.2kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例7と同様の方法によって、実施例11および12の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、実施例11、12の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ1.8cm、7.6cmであり、得られた実施例11、12の窒化ケイ素粉末は、α分率がそれぞれ95.5%、96.6%、結晶化度がどちらも100%と、α分率と結晶化度がともに高い窒化ケイ素粉末であった。
(Examples 11 and 12)
The Si—N (—H) compound powder was fired using a rotary kiln furnace having an inner diameter of 30 cm and a length of 2 m, and the Si—N (—H) compound powder was changed to 3 in Example 11. The silicon nitride powders of Examples 11 and 12 were produced in the same manner as in Example 7, except that the powder was fed into the core tube of the rotary kiln furnace at a feed rate of 30.2 kg / hour in Example 12. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Examples 11 and 12 were 1.8 cm and 7.6 cm, respectively. The silicon powder was a silicon nitride powder with high α fraction and high crystallinity, with α fractions of 95.5% and 96.6%, respectively, and crystallinity of 100%.

(比較例1、2)
Si−N(−H)系化合物粉末を、比較例1では0.3kg/時間、比較例2では12.0kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例1と同様の方法によって比較例1および2の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例1、2の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.6cm、8.7cmであり、得られた比較例1、2の窒化ケイ素粉末は、α分率がそれぞれ83.7%、97.7%、結晶化度がそれぞれ100%、97.6%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 1 and 2)
Implementation was performed except that Si—N (—H) -based compound powder was supplied into the core tube of the rotary kiln furnace at a supply rate of 0.3 kg / hour in Comparative Example 1 and 12.0 kg / hour in Comparative Example 2. In the same manner as in Example 1, the silicon nitride powders of Comparative Examples 1 and 2 were produced. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Comparative Examples 1 and 2 were 0.6 cm and 8.7 cm, respectively. The silicon powder is a silicon nitride powder having an α fraction of 83.7% and 97.7%, a crystallinity of 100% and 97.6%, respectively, and a low α fraction or crystallinity. It was.

(比較例3、4)
炉心管の内径が24cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、比較例3では0.7kg/時間、比較例4では24.7kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例1と同様の方法によって、比較例3および4の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例3、4の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.7cm、8.9cmであり、得られた比較例3、4の窒化ケイ素粉末は、α分率がそれぞれ82.7%、97.7%、結晶化度がそれぞれ100%、97.3%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 3 and 4)
In the comparative example 3, the Si—N (—H) compound powder was baked using a rotary kiln furnace having an inner diameter of 24 cm and a length of 2 m. The silicon nitride powders of Comparative Examples 3 and 4 were produced in the same manner as in Example 1 except that it was fed into the core tube of the rotary kiln furnace at a feed rate of 24.7 kg / hour in Comparative Example 4. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the powder layers of silicon nitride powder at the core tube outlets of Comparative Examples 3 and 4 were 0.7 cm and 8.9 cm, respectively. The silicon powder is a silicon nitride powder having an α fraction of 82.7% and 97.7%, a crystallinity of 100% and 97.3%, respectively, and a low α fraction or crystallinity. It was.

(比較例5、6)
炉心管の内径が30cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、比較例5では2.4kg/時間、比較例6では50.3kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例1と同様の方法によって、比較例5および6の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例5、6の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.9cm、9.4cmであり、得られた比較例3、4の窒化ケイ素粉末は、α分率がそれぞれ80.6%、98.0%、結晶化度がそれぞれ100%、96.4%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 5 and 6)
In the comparative example 5, the Si—N (—H) compound powder was fired using a rotary kiln furnace having an inner diameter of 30 cm and a length of 2 m. .4 kg / hour, Comparative Example 6 produced silicon nitride powders of Comparative Examples 5 and 6 in the same manner as in Example 1 except that they were fed into the core tube of the rotary kiln furnace at a feed rate of 50.3 kg / hour. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Comparative Examples 5 and 6 were 0.9 cm and 9.4 cm, respectively. The silicon powder is a silicon nitride powder having an α fraction of 80.6% and 98.0%, respectively, and a crystallinity of 100% and 96.4%, respectively. It was.

(比較例7、8)
Si−N(−H)系化合物粉末を、比較例7では0.4kg/時間、比較例8では10.4kg/時間の供給速度でロータリーキルン炉の炉心管内に供給して焼成したこと以外は実施例7と同様の方法によって比較例7および8の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例7、8の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.8cm、8.8cmであり、得られた比較例7、8の窒化ケイ素粉末は、α分率がそれぞれ78.7%、96.6%、結晶化度がそれぞれ100%、97.8%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 7 and 8)
Implementation was performed except that Si—N (—H) -based compound powder was supplied into the core tube of the rotary kiln furnace at a supply rate of 0.4 kg / hour in Comparative Example 7 and 10.4 kg / hour in Comparative Example 8. The silicon nitride powders of Comparative Examples 7 and 8 were produced in the same manner as in Example 7. The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Comparative Examples 7 and 8 were 0.8 cm and 8.8 cm, respectively. The silicon powder is a silicon nitride powder having an α fraction of 78.7% and 96.6%, a crystallinity of 100% and 97.8%, respectively, and a low α fraction or crystallinity. It was.

(比較例9、10)
炉心管の内径が24cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、比較例9では0.8kg/時間、比較例10では23.6kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例7と同様の方法によって、比較例9および10の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例9、10の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.8cm、9.7cmであり、得られた比較例9、10の窒化ケイ素粉末は、α分率がそれぞれ80.8%、97.4%、結晶化度がそれぞれ100%、96.4%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 9 and 10)
In the comparative example 9, the Si—N (—H) compound powder was baked using a rotary kiln furnace having an inner diameter of 24 cm and a length of 2 m. The silicon nitride powders of Comparative Examples 9 and 10 were produced in the same manner as in Example 7 except that the powder was fed into the core tube of the rotary kiln furnace at a feed rate of 23.6 kg / hour in Comparative Example 10. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Comparative Examples 9 and 10 were 0.8 cm and 9.7 cm, respectively. The silicon powder is a silicon nitride powder having an α fraction of 80.8% and 97.4%, respectively, and a crystallinity of 100% and 96.4%, respectively. It was.

(比較例11、12)
炉心管の内径が30cm、長さが2mのロータリーキルン炉を用いてSi−N(−H)系化合物粉末を焼成したことと、Si−N(−H)系化合物粉末を、比較例11では1.3kg/時間、比較例12では41.0kg/時間の供給速度でロータリーキルン炉の炉心管内に供給したこと以外は実施例7と同様の方法によって、比較例11および12の窒化ケイ素粉末を製造した。炉心管出口における窒化ケイ素粉末の粉末層の最大厚さと、得られた窒化ケイ素粉末の物性を、実施例1と同様の方法によって測定し、表1に示す結果を得た。表1に示すように、比較例11、12の炉心管出口における窒化ケイ素粉末の粉末層の最大厚さは、それぞれ0.7cm、9.8cmであり、得られた比較例11、12の窒化ケイ素粉末は、α分率がそれぞれ79.6%、97.7%、結晶化度がそれぞれ100%、95.8%と、α分率と結晶化度のいずれかが低い窒化ケイ素粉末であった。
(Comparative Examples 11 and 12)
In the comparative example 11, the Si—N (—H) compound powder was fired using a rotary kiln furnace having an inner diameter of 30 cm and a length of 2 m. .3 kg / hour, Comparative Example 12 produced silicon nitride powders of Comparative Examples 11 and 12 in the same manner as in Example 7, except that the feed rate was 41.0 kg / hour in the core tube of the rotary kiln furnace. . The maximum thickness of the powder layer of silicon nitride powder at the outlet of the furnace core tube and the physical properties of the obtained silicon nitride powder were measured by the same method as in Example 1, and the results shown in Table 1 were obtained. As shown in Table 1, the maximum thicknesses of the silicon nitride powder layers at the core tube outlets of Comparative Examples 11 and 12 were 0.7 cm and 9.8 cm, respectively. The silicon powder is a silicon nitride powder having a low α fraction and a crystallinity of 79.6% and 97.7%, respectively, and a crystallinity of 100% and 95.8%, respectively. It was.

Figure 0006179288
Figure 0006179288

本発明により、ロータリーキルン炉の炉心管の内径に関わらず、焼結特性に優れた窒化ケイ素粉末を常に製造することが可能になるので、ロータリーキルン炉の設備規模を大きくしても、焼結特性に優れた窒化ケイ素粉末を提供することが可能になる。また、焼結特性に優れた窒化ケイ素粉末を提供することを維持しながら、生産量を調整することが容易になる。   The present invention makes it possible to always produce silicon nitride powder having excellent sintering characteristics regardless of the inner diameter of the core tube of the rotary kiln furnace. Therefore, even if the equipment scale of the rotary kiln furnace is increased, the sintering characteristics are improved. It becomes possible to provide excellent silicon nitride powder. In addition, the production amount can be easily adjusted while maintaining the provision of the silicon nitride powder having excellent sintering characteristics.

Claims (2)

内径が16〜30cmの円筒状の炉心管を備える外熱式ロータリーキルン炉を用いて、比表面積が400〜1200m/gである非晶質Si−N(−H)系化合物粉末を、前記炉心管内に前記炉心管入口より投入し、前記炉心管内で層状に流動させながら、窒素含有不活性ガス雰囲気下又は窒素含有還元性ガス雰囲気下、1400〜1700℃の最高温度で焼成し、前記炉心管出口より取り出す窒化ケイ素粉末の製造方法であって、前記炉心管出口における窒化ケイ素粉末の粉末層の最大厚さを1〜8cmの範囲に維持することを管理指標として窒化ケイ素粉末を製造することを特徴とする窒化ケイ素粉末の製造方法。 Using an externally heated rotary kiln furnace having a cylindrical core tube having an inner diameter of 16 to 30 cm , an amorphous Si—N (—H) compound powder having a specific surface area of 400 to 1200 m 2 / g is used as the core. The furnace core tube is fired at a maximum temperature of 1400 to 1700 ° C. in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere while flowing into the tube from the furnace core inlet and flowing in layers in the furnace core tube. A method for producing a silicon nitride powder to be taken out from an outlet, wherein the silicon nitride powder is produced using a management index to maintain the maximum thickness of the powder layer of the silicon nitride powder at the outlet of the core tube in a range of 1 to 8 cm. A method for producing a silicon nitride powder. 前記最高温度が1450〜1550℃であることを特徴とする請求項1記載の窒化ケイ素粉末の製造方法。   The method for producing silicon nitride powder according to claim 1, wherein the maximum temperature is 1450 to 1550 ° C.
JP2013186941A 2013-09-10 2013-09-10 Method for producing silicon nitride powder Expired - Fee Related JP6179288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186941A JP6179288B2 (en) 2013-09-10 2013-09-10 Method for producing silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186941A JP6179288B2 (en) 2013-09-10 2013-09-10 Method for producing silicon nitride powder

Publications (2)

Publication Number Publication Date
JP2015054786A JP2015054786A (en) 2015-03-23
JP6179288B2 true JP6179288B2 (en) 2017-08-16

Family

ID=52819429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186941A Expired - Fee Related JP6179288B2 (en) 2013-09-10 2013-09-10 Method for producing silicon nitride powder

Country Status (1)

Country Link
JP (1) JP6179288B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115072677A (en) * 2022-06-22 2022-09-20 大连理工大学 High-quality silicon nitride powder synthesis method
CN115924863A (en) * 2022-11-22 2023-04-07 洛阳中硅高科技有限公司 Device and method for producing silicon nitride powder by liquid phase method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
US4619905A (en) * 1984-12-24 1986-10-28 Gte Laboratories Incorporated Process for the synthesis of silicon nitride
JP2578022B2 (en) * 1990-12-04 1997-02-05 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP2696732B2 (en) * 1991-10-25 1998-01-14 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP2696733B2 (en) * 1991-11-26 1998-01-14 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP2747462B2 (en) * 1991-11-26 1998-05-06 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP2907366B2 (en) * 1993-05-18 1999-06-21 宇部興産株式会社 Method for producing crystalline silicon nitride powder
JP3282456B2 (en) * 1995-07-27 2002-05-13 宇部興産株式会社 Silicon nitride powder and method for producing the same
JP2008094661A (en) * 2006-10-12 2008-04-24 Ngk Insulators Ltd Structural member for ceramic furnace
JP2008122043A (en) * 2006-11-15 2008-05-29 Sumitomo Heavy Ind Ltd Rotary kiln furnace
SG191391A1 (en) * 2010-12-28 2013-08-30 Ube Industries Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same

Also Published As

Publication number Publication date
JP2015054786A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5862765B2 (en) Method for producing silicon nitride powder, silicon nitride powder, and method for producing silicon nitride sintered body
JP6483508B2 (en) Hexagonal boron nitride powder and method for producing the same
JPWO2015194552A1 (en) Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
US20160159648A1 (en) Silicon nitride powder for mold release agent of casting mold for casting polycrystalline silicon ingot and method for manufacturing said silicon nitride powder, slurry containing said silicon nitride powder, casting mold for casting polycrystalline silicon ingot and method for manufacturing same, and method for manufacturing polycrystalline silicon ingot using said casting mold
US5110565A (en) Apparatus for producing uniform, fine ceramic powder
CN108290736B (en) Aluminum nitride particles
WO2015197498A1 (en) Fluidized bed reactor and method for producing polycrystalline silicon granules
JPS6048474B2 (en) Silicon nitride sintered body and its manufacturing method
JP6179288B2 (en) Method for producing silicon nitride powder
KR101574888B1 (en) Method of continuous manufacturing silicon nitride powder having uniform in size
GB2040902A (en) High purity silicon nitride and its production
US5194234A (en) Method for producing uniform, fine boron-containing ceramic powders
JP2021116202A (en) Hexagonal boron nitride powder, and sintered body raw material composition
CN109088056B (en) Synthesis of silicon-carbon composites in a gas phase reactor
JPH1129307A (en) Hexagonal boron nitride powder
CN104016316B (en) A kind of continuous preparation method of aluminum nitride powder and equipment thereof
JP5407999B2 (en) Method for producing crystalline silicon nitride powder
JP3900589B2 (en) Magnesium siliconitride powder and method for producing the same
WO2024195605A1 (en) Silicon nitride calcined body and production method therefor, and production method for silicon nitride powder
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
KR101253426B1 (en) Preparation method of aluminum nitride powder
AU616950B2 (en) Apparatus and method for producing uniform, fine boron-containing ceramic powders
JP2021116204A (en) Sintered body of hexagonal boron nitride
JP4341415B2 (en) Manufacturing method of high purity sponge iron
JP2022080053A (en) Silicon nitride powder and its production method, and method for producing sintered silicon nitride body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees