JP6176804B2 - Method for producing bronze composite iron powder and method for producing sintered metal - Google Patents

Method for producing bronze composite iron powder and method for producing sintered metal Download PDF

Info

Publication number
JP6176804B2
JP6176804B2 JP2016000131A JP2016000131A JP6176804B2 JP 6176804 B2 JP6176804 B2 JP 6176804B2 JP 2016000131 A JP2016000131 A JP 2016000131A JP 2016000131 A JP2016000131 A JP 2016000131A JP 6176804 B2 JP6176804 B2 JP 6176804B2
Authority
JP
Japan
Prior art keywords
powder
iron powder
copper
bronze composite
bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016000131A
Other languages
Japanese (ja)
Other versions
JP2017122245A (en
Inventor
広樹 遠藤
広樹 遠藤
克芳 丹内
克芳 丹内
Original Assignee
平和産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平和産業株式会社 filed Critical 平和産業株式会社
Priority to JP2016000131A priority Critical patent/JP6176804B2/en
Publication of JP2017122245A publication Critical patent/JP2017122245A/en
Application granted granted Critical
Publication of JP6176804B2 publication Critical patent/JP6176804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、鉄系および銅系の性質を併せ持つ青銅複合鉄粉の製造方法および焼結金属の製造方法に関する。   The present invention relates to a method for producing a bronze composite iron powder having both iron and copper properties and a method for producing a sintered metal.

焼結含油軸受は、金属粉を焼結させてなる焼結体の多孔性を利用して、容積比で10〜25%の潤滑油を含浸させて自己給油の状態で使用することができるため、潤滑油をつぎ足す必要がなく発煙している状態であっても焼付くことなく運転できるという優れた特徴を有している。こうした焼結含油軸受は、電気機器や音響機器、土木機械や自動車など、環境的又は機構的に十分な給油が望めない箇所において広く用いられている。   Sintered oil-impregnated bearings can be used in a self-lubricated state by impregnating 10-25% by volume of lubricating oil by utilizing the porosity of a sintered body obtained by sintering metal powder. In addition, it has an excellent feature that it can be operated without being seized even in a smoked state without the need to add lubricating oil. Such sintered oil-impregnated bearings are widely used in places where environmentally or mechanically sufficient oil supply cannot be expected, such as electrical equipment, acoustic equipment, civil engineering machines, and automobiles.

この焼結含油軸受の材料に用いられる金属粉には種々のものがあるが、主要なものとして銅系と鉄系とがある。鉄系は、鉄を主成分としており、金属鉄やFe−C、Fe−Pb−C等の合金が例示でき、機械的強度は高いが硬度が高いので軸材に対するなじみ性に劣り、軸材を摩耗させやすくまた耐食性にも劣るという性質を有する。
そうした一方で銅系は、銅を主成分としており、金属銅やCu−Sn等の合金が例示でき、鉄系のものに比較してコスト高であって、高荷重に耐え得る強度が不足しがちであるが、優れた潤滑特性を有するという性質を有する。
There are various kinds of metal powders used for the material of the sintered oil-impregnated bearing, and the main ones are copper and iron. The iron-based material is mainly composed of iron, and examples thereof include metallic iron and alloys such as Fe-C and Fe-Pb-C. The mechanical strength is high but the hardness is high, so that the conformability to the shaft material is inferior. It is easy to wear and has a property of being inferior in corrosion resistance.
On the other hand, copper-based materials are mainly composed of copper, and can be exemplified by alloys such as metallic copper and Cu-Sn, which are more expensive than iron-based materials and lack sufficient strength to withstand high loads. However, it has the property of having excellent lubricating properties.

そこで、双方の利点を備えるべく鉄系の原料粉と銅系の原料粉とを適当な配合量で混合してなる焼結含油軸受の製造も行われている。しかながら、焼結材は原料粉が完全に合金化するものではなく、摺動面にもある程度の割合で鉄系材料が表出するため、鉄系と銅系の双方の良いところを十分に引き出すことは困難であった。   Therefore, in order to provide both advantages, a sintered oil-impregnated bearing in which iron-based raw material powder and copper-based raw material powder are mixed in an appropriate blending amount is also manufactured. However, the sintered material does not completely alloy the raw material powder, and the iron-based material is exposed to a certain degree on the sliding surface. It was difficult to pull out.

こうした不具合を解消するため、強度の強い鉄系材の表面を、なじみ性に優れた銅系材で覆う原料粉の開発もなされている。
例えば、特開2003−184882号公報(特許文献1)や特開平8−92604号公報(特許文献2)には、鉄粉粒子の表面を銅被覆した銅被覆鉄粉が記載されている。
In order to solve such problems, raw material powders have been developed that cover the surface of a strong iron-based material with a copper-based material having excellent conformability.
For example, Japanese Patent Application Laid-Open No. 2003-184882 (Patent Document 1) and Japanese Patent Application Laid-Open No. 8-92604 (Patent Document 2) describe copper-coated iron powder in which the surface of iron powder particles is coated with copper.

特開2003−184882号公報JP 2003-184882 A 特開平8−92604号公報JP-A-8-92604

特開2003−184882号公報(特許文献1)には、既知の鉄粉粒子表面に対して銅メッキ加工を施して銅被覆鉄粉を製造する技術が記載されている。しかしながら、こうしたメッキ法による銅被覆鉄粉は、廃液処理等の環境に対する対策が必要となり、コストが高くなる。   Japanese Patent Application Laid-Open No. 2003-184882 (Patent Document 1) describes a technique for producing a copper-coated iron powder by subjecting a known iron powder particle surface to copper plating. However, the copper-coated iron powder by such a plating method requires measures against the environment such as waste liquid treatment, and the cost is increased.

これに対し特開平8−92604号公報(特許文献2)には、鉄粉と酸化銅粉を混合して還元性雰囲気化で酸化銅粉を還元し、鉄粉の表面に銅を付着させる技術が記載されている。しかしながら、この銅被覆鉄粉の製造方法を行うには、二次粒子の平均粒径が5μm以下で0.1μm以下の一次粒子が凝集したものであり比表面積が10m/g以上であるという特殊な酸化銅粉を用いる必要があり、また得られた銅被覆鉄粉についても銅の密着性が好ましくなく、銅が剥離し易いものであった。 On the other hand, JP-A-8-92604 (Patent Document 2) discloses a technique in which iron powder and copper oxide powder are mixed, the copper oxide powder is reduced in a reducing atmosphere, and copper is adhered to the surface of the iron powder. Is described. However, in order to perform this method for producing copper-coated iron powder, the average particle size of secondary particles is 5 μm or less and primary particles of 0.1 μm or less are aggregated, and the specific surface area is 10 m 2 / g or more. It is necessary to use a special copper oxide powder, and the obtained copper-coated iron powder is also unfavorable in terms of copper adhesion, and copper is easily peeled off.

一方、鉄粉と銅粉とを混合した混合粉を熱処理して鉄粉表面に銅被膜を付着させて銅被膜鉄粉を製造する方法もあるが、この銅被覆鉄粉の製造方法では、原料となる鉄粉に比べて銅粉の比重が高いため、鉄粉と銅粉の混合時に偏析が起きやすいという欠点がある。また鉄粉と銅粉の混合粉を高温で処理する必要があり、加熱後に得られた粉体の密着性が高くなる。そのため、固まった粉体を細かな粒子に再粉化するのに過大な労力がかかっていた。   On the other hand, there is also a method for producing a copper-coated iron powder by heat-treating a mixed powder obtained by mixing iron powder and copper powder and attaching a copper film to the surface of the iron powder. Since the specific gravity of the copper powder is higher than that of the iron powder, the segregation is liable to occur when the iron powder and the copper powder are mixed. Moreover, it is necessary to process the mixed powder of iron powder and copper powder at high temperature, and the adhesiveness of the powder obtained after heating becomes high. For this reason, excessive effort is required to re-pulverize the solidified powder into fine particles.

本発明は、こうした課題について検討し、鉄粉表面に銅成分を複合してなる銅複合鉄粉の製造に関し、鉄に対する銅の密着性に優れ、偏析のない銅複合鉄粉を得ることを目的とするものである。   The present invention examines such problems and relates to the production of copper composite iron powder formed by combining a copper component on the surface of the iron powder, and has an object to obtain copper composite iron powder having excellent adhesion to copper and free from segregation. It is what.

上記の課題を解決するために、本発明は次の構成を有する。
[1] 鉄粉に錫粉と平均粒径が20μm以下の酸化銅粉とを混合し加熱して還元性ガスで酸化銅を還元し、鉄粉表面に銅と錫を付着させた青銅複合鉄粉を製造する青銅複合鉄粉の製造方法であって、前記錫粉を前記鉄粉含量に対して0.4〜4.0wt%混合し、前記酸化銅粉を前記鉄粉含量に対して金属銅換算で10〜50wt%混合して原料粉を調製し、この原料粉を200℃から330℃に昇温して酸化銅を還元する第1熱処理と、700℃〜950℃の温度範囲内で焼成する第2熱処理を行う青銅複合鉄粉の製造方法である。
In order to solve the above problems, the present invention has the following configuration.
[1] Bronze composite iron in which tin powder and copper oxide powder with an average particle size of 20 μm or less are mixed with iron powder, heated to reduce copper oxide with a reducing gas, and copper and tin adhered to the iron powder surface a method of manufacturing a bronze composite iron powder to produce a powder, the tin powder were mixed 0.4 to 4.0 wt% with respect to the iron powder content, the copper oxide powder to the iron powder content A first heat treatment for preparing a raw material powder by mixing 10 to 50 wt% in terms of metallic copper, raising the temperature of the raw material powder from 200 ° C. to 330 ° C. to reduce copper oxide, and within a temperature range of 700 ° C. to 950 ° C. It is the manufacturing method of the bronze composite iron powder which performs the 2nd heat processing baked by.

[2] 前記昇温前の鉄粉含量に対して3〜25wt%の青銅粉をさらに混合して原料粉を調製する青銅複合鉄粉の製造方法である。
[] 上記何れかの青銅複合鉄粉の製造方法により製造された青銅複合鉄粉を圧粉成形後、焼結してなる焼結金属を製造する焼結金属の製造方法である。
[2 ] A method for producing a bronze composite iron powder in which a raw material powder is prepared by further mixing 3 to 25 wt% bronze powder with respect to the iron powder content before the temperature rise .
[ 3 ] A sintered metal production method for producing a sintered metal obtained by sintering a bronze composite iron powder produced by any one of the above-described bronze composite iron powder after compacting.

本発明によれば、鉄に対する銅の密着性に優れた青銅複合鉄粉を製造できる。
また、本発明によれば、偏析のない青銅複合鉄粉を製造できる。
ADVANTAGE OF THE INVENTION According to this invention, the bronze composite iron powder excellent in the adhesiveness of copper with respect to iron can be manufactured.
Moreover, according to this invention, the bronze composite iron powder without segregation can be manufactured.

本発明の青銅複合鉄粉の製造方法とその青銅複合鉄粉を用いた焼結含油軸受について実施形態に基づいて詳しく説明する。
本発明は、鉄粉に錫粉と平均粒径が20μm以下の酸化銅粉とを混合し加熱して還元性ガスで酸化銅を還元し、鉄粉表面に銅と錫を付着させた青銅複合鉄粉を製造する青銅複合鉄粉の製造方法であって、前記錫粉を前記鉄粉に対して0.4〜4.0wt%混合し、前記酸化銅粉を前記鉄粉に対して金属銅換算で10〜50wt%混合し、200℃から330℃に昇温して酸化銅を還元する第1熱処理と、700℃〜950℃の温度範囲内で焼成する第2熱処理を行うことを特徴とした青銅複合鉄粉の製造方法である。
The manufacturing method of the bronze composite iron powder of the present invention and the sintered oil-impregnated bearing using the bronze composite iron powder will be described in detail based on the embodiments.
The present invention is a bronze composite in which tin powder and copper oxide powder having an average particle size of 20 μm or less are mixed with iron powder, heated to reduce copper oxide with a reducing gas, and copper and tin are adhered to the iron powder surface. A method for producing a bronze composite iron powder for producing an iron powder, wherein the tin powder is mixed in an amount of 0.4 to 4.0 wt% with respect to the iron powder, and the copper oxide powder is metal with respect to the iron powder. The first heat treatment is performed by mixing 10 to 50 wt% in terms of copper, raising the temperature from 200 ° C. to 330 ° C. to reduce copper oxide, and performing the second heat treatment for firing within a temperature range of 700 ° C. to 950 ° C. It is the manufacturing method of the bronze composite iron powder which was made.

鉄粉は、焼結含油軸受製造に用いることができる市販の鉄粉を利用することができ、電解鉄粉や、還元鉄粉、アトマイズ鉄粉等を用いることができる。
比表面積としては、50〜4000cm/g程度のものを好適に用いることができる。比表面積が50cm/gより小さいと、粒径も小さくなり焼結含油軸受用の粉末としては小さく使い難いものとなる。比表面積が4000cm/gより大きいと、粒径も大きくなりがちで焼結含油軸受用の粉末としては大きく使い難いものとなる。
平均粒径としては、30〜200μm程度のものとすることが好ましい。焼結含油軸受用の原料粉として適当な大きさだからである。
As the iron powder, commercially available iron powder that can be used for producing a sintered oil-impregnated bearing can be used, and electrolytic iron powder, reduced iron powder, atomized iron powder, and the like can be used.
A specific surface area of about 50 to 4000 cm 2 / g can be preferably used. When the specific surface area is less than 50 cm 2 / g, the particle size also becomes small and the powder for a sintered oil-impregnated bearing becomes small and difficult to use. When the specific surface area is larger than 4000 cm 2 / g, the particle size tends to be large, and the powder for a sintered oil-impregnated bearing becomes large and difficult to use.
The average particle size is preferably about 30 to 200 μm. This is because it is a suitable size as a raw material powder for sintered oil-impregnated bearings.

酸化銅粉は、平均粒径で20μm以下である。平均粒径が20μmを超えると、鉄粉と酸化銅粉との接触が緻密にならず、鉄粉の周囲の空隙が大きくなるからであり、鉄粉を完全に覆うことができず、またその密着性も悪くなる。平均粒径が細かいほど鉄粉の表面に酸化銅粉を接触させる面積が大きくなり、鉄粉表面への銅の被覆性、密着性とも向上する。   The copper oxide powder has an average particle size of 20 μm or less. If the average particle size exceeds 20 μm, the contact between the iron powder and the copper oxide powder will not be dense, and the voids around the iron powder will become large, and the iron powder cannot be completely covered, and Adhesion also deteriorates. The smaller the average particle diameter, the larger the area where the copper oxide powder is brought into contact with the surface of the iron powder, and the copper coverage and adhesion to the iron powder surface are improved.

酸化銅粉を用いることとしたのは、水素ガスやアンモニア分解ガス等の還元性ガスを含んだ雰囲気において、250℃程度の非常に低い温度で還元されることや、金属銅は延性を有するため微粉化が困難であるのに対して酸化銅とすればもろいため微粉末形状の粉体が金属銅に比べて容易に入手できるからである。さらに、鉄粉と他の微粒子を混合した混合粉とする際に、金属銅は比重が鉄よりも高いため微粉とすれば偏析が起きやすいのに対し、酸化銅は比重が鉄よりもかなり低いため偏析が起きにくいからである。   The reason for using copper oxide powder is that it is reduced at a very low temperature of about 250 ° C. in an atmosphere containing a reducing gas such as hydrogen gas or ammonia decomposition gas, and metallic copper has ductility. This is because, although it is difficult to make fine powder, it is brittle if copper oxide is used, so that a powder in the form of fine powder can be obtained more easily than metal copper. Furthermore, when making a mixed powder in which iron powder and other fine particles are mixed, metallic copper has a higher specific gravity than iron, so segregation is likely to occur if fine powder is used, whereas copper oxide has a specific gravity much lower than iron. This is because segregation hardly occurs.

酸化銅としては、酸化銅(I)でも酸化銅(II)でも良い。酸化銅粉の製造は、電解銅粉やアトマイズ銅粉などの銅粉を空気酸化して行うことができる。   Copper oxide may be copper oxide (I) or copper oxide (II). The production of copper oxide powder can be performed by air-oxidizing copper powder such as electrolytic copper powder or atomized copper powder.

酸化銅粉の混合量は、鉄粉に対して金属銅換算で10〜50wt%であり、好ましくは15〜40wt%である酸化銅粉が10wt%より少ないと、鉄粉表面への完全被覆が困難になる。また、酸化銅粉が50wt%を超えると、過剰な銅が青銅複合鉄粉とは遊離して生じるおそれがある。   The mixing amount of the copper oxide powder is 10 to 50 wt% in terms of metallic copper with respect to the iron powder, and preferably 15 to 40 wt% when the copper oxide powder is less than 10 wt%, the iron powder surface is completely covered. It becomes difficult. Moreover, when copper oxide powder exceeds 50 wt%, there exists a possibility that excess copper may be liberated from bronze composite iron powder.

錫粉は、焼結含油軸受製造に用いることができる市販の錫粉を利用することができる。
この錫粉の粒径としては、最大粒径が45μm以下であり、平均粒径が10〜20μm程度であることが好ましい。あまり細かすぎると他の粉体との混合時に偏析を起こし易くて好ましくなく、あまり大きすぎると、錫粉自体の添加量が多くないことから、錫が行き渡らない部分が生じて好ましくない。
As the tin powder, a commercially available tin powder that can be used for producing a sintered oil-impregnated bearing can be used.
The tin powder preferably has a maximum particle size of 45 μm or less and an average particle size of about 10 to 20 μm. If it is too fine, segregation is likely to occur during mixing with other powders, which is not preferable, and if it is too large, the amount of tin powder itself is not large, and therefore, a portion where tin does not spread is generated.

錫粉の混合量は、鉄粉に対して0.4〜4.0wt%である。錫粉が0.4wt%より少ないと、混合粉全体への錫成分の十分な浸透が困難になる
Mixing amount of tin powder is 0.4 to 4.0 wt% with respect to iron powder. When the tin powder is less than 0.4 wt%, it is difficult to sufficiently penetrate the tin component into the entire mixed powder .

塩化亜鉛を加える場合は、酸化銅に対して0.2〜1.5wt%添加することが好ましく、0.5〜1.0wt%添加することがより好ましい。
塩化亜鉛の混合量が0.2wt%より少ないと、塩化亜鉛添加の効果が表れず、1.5wt%を超えて添加すると、原料の鉄粉が酸化しやすくなる。
When adding zinc chloride, it is preferable to add 0.2-1.5 wt% with respect to copper oxide, and it is more preferable to add 0.5-1.0 wt%.
When the mixing amount of zinc chloride is less than 0.2 wt%, the effect of adding zinc chloride does not appear, and when it exceeds 1.5 wt%, the raw iron powder is easily oxidized.

鉄粉に対して3〜25wt%の青銅粉をさらに混合することができる。
青銅粉を添加することで、鉄粉を芯材とする粉体とともに青銅粉を芯材とする粉体が混合された青銅複合鉄粉を得ることができる。この混合粉は、何れの粉体の表面も銅で被覆されているため、その表面特性は鉄粉を芯材とする粉体のみの場合と変わらない。即ち、焼結含油軸受に加工した際の摺動面に銅を表出する点で、鉄粉を芯材とする粉体のみの場合と、それに青銅粉を芯材とする粉体が混合された場合で同等である。しかしながら、この混合粉では、全体としての硬度がやや低くなるとともに、鉄に対するよりも青銅に対する方が銅の密着性に優れていると考えられることから、焼結含油軸受に加工した際の軸体とのなじみ性により優れた青銅複合鉄粉が得られる。
3-25 wt% bronze powder can be further mixed with the iron powder.
By adding bronze powder, it is possible to obtain a bronze composite iron powder in which a powder having iron powder as a core material and a powder having bronze powder as a core material are mixed. In this mixed powder, since the surface of any powder is coated with copper, the surface characteristics are the same as in the case of only the powder having iron powder as a core material. In other words, in terms of exposing copper to the sliding surface when processed into a sintered oil-impregnated bearing, only powder with iron powder as the core and powder with bronze powder as the core are mixed. The case is equivalent. However, with this mixed powder, the overall hardness is slightly lower, and it is considered that the adhesion to bronze is superior to iron than to iron, so the shaft body when processed into a sintered oil-impregnated bearing Excellent bronze composite iron powder is obtained due to the familiarity with it.

青銅粉の混合割合を、鉄粉に対して3〜25wt%としたのは、3wt%よりも少なければ青銅粉を混合した特性を引き出すことができず、25wt%を超えて添加すると、コスト高となるからである。   The mixing ratio of the bronze powder is 3 to 25 wt% with respect to the iron powder. If the content is less than 3 wt%, the mixed characteristics of the bronze powder cannot be extracted. Because it becomes.

上記各種粉体は、ヘンシェルミキサーや、V型ミキサー、W型ミキサー等の公知の混合器を用いて攪拌し混合する。こうして得た混合粉は、トレイ等に敷き詰めて以下に説明する加熱処理を行う。   The various powders are stirred and mixed using a known mixer such as a Henschel mixer, V-type mixer, or W-type mixer. The mixed powder thus obtained is spread on a tray or the like and subjected to the heat treatment described below.

加熱処理は、200℃から330℃に昇温して酸化銅を還元する第1熱処理と、700℃〜950℃の温度範囲内で焼成する第2熱処理を行う。
第1熱処理は、水素ガスやアンモニア分解ガス等の還元性ガスを通した雰囲気で200℃から330℃に昇温する熱処理工程である。この過程では、錫粉を溶解し、酸化銅が還元されて生じる銅と鉄との他に錫を介在させた液相焼結の準備段階となる。
酸化銅が還元されると水素ガスを有する雰囲気中では水蒸気が発生するため、酸化雰囲気となる。そうすると、鉄粉の表面が酸化されて酸化鉄の被膜が形成され易い。ところがこの酸化鉄の被膜が形成されると、鉄粉表面への銅の好適な付着が阻害されるおそれがある。しかしながら、錫の融点は230℃と酸化銅の還元温度である約250℃よりも低いため、第1熱処理を行うことで、酸化銅の還元が進むよりも前に錫の鉄粉表面への拡散が進むため、酸化鉄被膜の形成が抑制されると考えられる。
In the heat treatment, a first heat treatment for reducing copper oxide by raising the temperature from 200 ° C. to 330 ° C. and a second heat treatment for firing within a temperature range of 700 ° C. to 950 ° C. are performed.
The first heat treatment is a heat treatment step in which the temperature is raised from 200 ° C. to 330 ° C. in an atmosphere through which a reducing gas such as hydrogen gas or ammonia decomposition gas is passed. This process is a preparatory stage for liquid phase sintering in which tin powder is dissolved and tin is interposed in addition to copper and iron produced by reducing copper oxide.
When the copper oxide is reduced, water vapor is generated in an atmosphere containing hydrogen gas, so that an oxidizing atmosphere is formed. If it does so, the surface of iron powder will be oxidized and the film of iron oxide will be easy to be formed. However, when this iron oxide film is formed, there is a possibility that suitable adhesion of copper to the iron powder surface may be hindered. However, since the melting point of tin is 230 ° C., which is lower than the reduction temperature of copper oxide, which is about 250 ° C., the first heat treatment diffuses tin to the iron powder surface before the reduction of copper oxide proceeds. Therefore, it is considered that the formation of the iron oxide film is suppressed.

第2熱処理は、やはり還元性ガスを通した還元性雰囲気において、700℃〜950℃の温度範囲内で焼成する熱処理工程である。この過程では、鉄粉の表面で鉄、銅、錫により液相焼結が生じると考えられる。これにより、鉄粉の表面に銅が強固に付着した青銅複合鉄粉が得られると考えられる。
この場合、加熱温度が高温でも950℃を超えないこととしたため、熱処理後の粉体同士の結合力が、950℃を超えて加熱する場合よりも弱いため、加熱後の粉砕が容易である。
The second heat treatment is a heat treatment step in which baking is performed in a temperature range of 700 ° C. to 950 ° C. in a reducing atmosphere through a reducing gas. In this process, it is considered that liquid phase sintering is caused by iron, copper, and tin on the surface of the iron powder. Thereby, it is thought that the bronze composite iron powder with which copper adhered firmly to the surface of the iron powder is obtained.
In this case, since the heating temperature does not exceed 950 ° C. even at a high temperature, the bonding strength between the powders after the heat treatment is weaker than that in the case of heating exceeding 950 ° C., and thus the pulverization after the heating is easy.

塩化亜鉛を加えた場合には、融点が275℃であり、第1熱処理で錫と同様に溶解する。この塩化亜鉛は酸化銅が還元される過程で生じた水蒸気により加水分解され酸性雰囲気を形成することで、先の錫の溶解と協働して酸化鉄被膜の形成を抑制する方向に働くと考えられる。
なお、第1熱処理を経ずにいきなり高温にさらすと、塩化亜鉛は酸化亜鉛に変化して溶融しなくなり、表面に析出するおそれがあるため好ましくない。
When zinc chloride is added, it has a melting point of 275 ° C. and dissolves in the same manner as tin in the first heat treatment. This zinc chloride is hydrolyzed by water vapor generated in the process of reducing copper oxide to form an acidic atmosphere, which is considered to work in the direction of inhibiting the formation of iron oxide film in cooperation with the dissolution of tin. It is done.
In addition, if it exposes to high temperature suddenly without passing through 1st heat processing, since zinc chloride will change to a zinc oxide and will not melt | dissolve and there exists a possibility of depositing on the surface, it is unpreferable.

第1熱処理の段階では、酸化鉄被膜を形成し難くするため、水蒸気の発生を抑えるように、還元性ガスとしてのアンモニア分解ガスをそのまま用いずにN:H比を変えるなどして、水素の分率を下げることとするのは好ましい態様として採用することができる。   In the first heat treatment stage, in order to make it difficult to form an iron oxide film, the N: H ratio is changed without using the ammonia decomposition gas as a reducing gas so as to suppress the generation of water vapor. Decreasing the fraction can be adopted as a preferred embodiment.

こうした温度処理を経た後、得られた混合粉(ケーキ)は、粉砕した後、篩いにかけて所望の粒径の焼結含油軸受用原料粉として利用することができる。
この青銅複合鉄粉は、銅複合鉄粉の一種であるが、従来の方法により製造された銅被覆鉄粉と比べて、鉄粉の表面への銅の付着性と密着性に優れている。
After passing through such a temperature treatment, the obtained mixed powder (cake) can be used as raw powder for a sintered oil-impregnated bearing having a desired particle size after pulverization and sieving.
This bronze composite iron powder is a kind of copper composite iron powder, but is superior in the adhesion and adhesion of copper to the surface of the iron powder as compared with the copper-coated iron powder produced by the conventional method.

次に、この青銅複合鉄粉を用いた焼結金属の中で焼結含油軸受の製造方法について説明する。焼結金属は、金属粉を焼結して得られる成形体であり、油を含ませて用いる焼結含油軸受や、油を含ませずに用いる焼結部品を含む概念である。
原料となる青銅複合鉄粉を金型内に充填してプレス機にて圧縮した後、これを焼結炉で焼結する。そして、得られた焼結体をサイジングして所定の形状の軸受を得る。その後、洗浄、油含浸等の後処理工程を順次行う。こうして焼結含油軸受を製造する。
Next, the manufacturing method of a sintered oil-impregnated bearing in the sintered metal using this bronze composite iron powder is demonstrated. The sintered metal is a molded body obtained by sintering metal powder, and is a concept including a sintered oil-impregnated bearing used by containing oil and a sintered part used without containing oil.
Bronze composite iron powder as a raw material is filled in a mold and compressed by a press machine, and then sintered in a sintering furnace. Then, the obtained sintered body is sized to obtain a bearing having a predetermined shape. Thereafter, post-treatment steps such as washing and oil impregnation are sequentially performed. In this way, a sintered oil-impregnated bearing is manufactured.

上記実施形態は本発明の一例であり、こうした形態に限定されるものではなく、本発明の趣旨に反しない限度において、他の金属材料粉や、種々の添加剤の混合を行い得るものである。   The above embodiment is an example of the present invention, and the present invention is not limited to such a form, and other metal material powders and various additives can be mixed as long as not departing from the spirit of the present invention. .

実験例Experimental example

以下に、より具体的な本発明の実施例を比較例と共に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, more specific examples of the present invention will be described together with comparative examples. However, the present invention is not limited to the following examples.

<青銅複合鉄粉の製造>
[試料1]:
平均粒径90μmの鉄粉80重量部に対して、酸化銅粉1(酸化銅(II)平均粒径5μm)19重量部と、平均粒径15μmの錫粉1.6重量部とを混合し、十分に攪拌して混合粉を得た。これらの原料粉は何れも市販のものである。
<Manufacture of bronze composite iron powder>
[Sample 1]:
To 80 parts by weight of iron powder having an average particle diameter of 90 μm, 19 parts by weight of copper oxide powder 1 (copper oxide (II) average particle diameter of 5 μm) and 1.6 parts by weight of tin powder having an average particle diameter of 15 μm are mixed. And mixed well to obtain a mixed powder. All of these raw material powders are commercially available.

そして、この混合物をトレイに敷き詰めて焼結炉に入れ、アンモニア分解ガスを導入した還元雰囲気中で、室温から昇温させた。途中、200℃から330℃に徐々に昇温させる第1処理を行い、また、その後820℃まで昇温させる第2熱処理を行った。その後、炉から取り出した混合粉(ケーキ)の状態を観察した。
焼結して固まった混合粉は、粉砕器で粉砕することで焼結含油軸受用の青銅複合鉄粉である試料1を得た。
The mixture was spread on a tray and placed in a sintering furnace, and the temperature was raised from room temperature in a reducing atmosphere into which ammonia decomposition gas was introduced. In the middle, a first treatment for gradually raising the temperature from 200 ° C. to 330 ° C. was performed, and then a second heat treatment for raising the temperature to 820 ° C. was performed. Then, the state of the mixed powder (cake) taken out from the furnace was observed.
The mixed powder solidified by sintering was pulverized by a pulverizer to obtain Sample 1 which is a bronze composite iron powder for a sintered oil-impregnated bearing.

[試料2〜試料15]:
上記試料1の青銅複合鉄粉の作製に用いた各種原料粉の種類や配合量、および熱処理等の条件を、表1および表2に示した条件に変えた以外は試料1と同様の条件で、試料2〜試料15の青銅複合鉄粉を得た。比較のため試料1も併せて表1に示した。(なお、試料5は錫粉を含まないため青銅複合鉄粉は生じていないが、便宜上、青銅複合鉄粉と称するものとする。)
[Sample 2 to Sample 15]:
Under the same conditions as Sample 1 except that the conditions and the conditions of the various raw material powders used in the production of the bronze composite iron powder of Sample 1 and the heat treatment were changed to the conditions shown in Tables 1 and 2 Samples 2 to 15 of bronze composite iron powder were obtained. Sample 1 is also shown in Table 1 for comparison. (In addition, since the sample 5 does not contain tin powder, bronze composite iron powder is not generated, but for convenience, it is referred to as bronze composite iron powder.)

表1、表2に示した各種原料粉や、熱処理等の条件の詳細は以下のとおりである。
酸化銅粉2は平均粒径が20μmであり、酸化銅粉3は平均粒径が30μmである酸化銅粉であり平均粒径が酸化銅粉1と異なる。
塩化亜鉛は、市販の塩化亜鉛であるが、その性質上、潮解性があり、また配合量も微量である。そのため、塩化亜鉛を添加した試料は、保存ビンから取り出し後、直ちに計量し、他の原料粉と混合する工程を採用した。
青銅粉は、平均粒径50μmの市販の青銅粉である。
Details of various raw material powders shown in Tables 1 and 2 and conditions such as heat treatment are as follows.
The copper oxide powder 2 has an average particle diameter of 20 μm, and the copper oxide powder 3 is a copper oxide powder having an average particle diameter of 30 μm. The average particle diameter is different from that of the copper oxide powder 1.
Zinc chloride is commercially available zinc chloride, but is deliquescent due to its nature, and the blending amount is very small. Therefore, the sample added with zinc chloride was immediately weighed after being taken out of the storage bottle and mixed with other raw material powders.
Bronze powder is a commercially available bronze powder having an average particle size of 50 μm.

表1、表2の「第1熱処理」覧および「第2熱処理」覧は、それぞれ各処理を行ったものを「DO」とし、行わなかったものを「−」とした。第1熱処理を行わない試料10は、室温から昇温する工程に代えて、350℃の炉内に混合粉を入れ、その後、820℃まで昇温させた。混合粉の炉への投入から搬出までの時間は試料1と同じである。また、第2熱処理を行わない試料11は、室温から昇温させ600℃にした後、600℃を維持した。この試料11も混合粉の炉への投入から搬出までの時間は試料1と同じである。さらにまた、第2熱処理を行わない試料15は、室温から昇温させた後、1050℃にまで温度を上げて焼成した。試料15も混合粉の炉への投入から搬出までの時間は試料1と同じである。   In the “first heat treatment” and “second heat treatment” lists in Tables 1 and 2, “DO” indicates that each treatment was performed, and “−” indicates that no treatment was performed. In the sample 10 not subjected to the first heat treatment, the mixed powder was put in a 350 ° C. furnace instead of the step of raising the temperature from room temperature, and then heated to 820 ° C. The time from charging the mixed powder into the furnace to carrying it out is the same as for Sample 1. Sample 11 that was not subjected to the second heat treatment was maintained at 600 ° C. after the temperature was raised from room temperature to 600 ° C. This sample 11 also has the same time as the sample 1 from the introduction of the mixed powder into the furnace to the carrying out. Furthermore, Sample 15 that was not subjected to the second heat treatment was fired by raising the temperature from room temperature to 1050 ° C. Sample 15 is the same as Sample 1 in terms of the time from the introduction of the mixed powder into the furnace to the removal.

<焼結含油軸受の製造>
試料1〜試料15の各青銅複合鉄粉を用い、次に説明する工程を経て、それぞれ試料1〜試料15の焼結含油軸受を製造した。
各青銅複合鉄粉をそれぞれ金型に入れ、円筒状に圧縮成形した後、水素雰囲気焼結炉にて850℃、20分間の条件で焼結を行った。得られた焼結体を、内径×外径×全長=3mm×6mm×4mmにサイジングし、潤滑油(「平和産業製、合成油HS−32(商品名)」)含浸を行った。こうして、焼結含油軸受である試料1〜試料15を得た。
<Manufacture of sintered oil-impregnated bearings>
Using the bronze composite iron powders of Samples 1 to 15, sintered oil-impregnated bearings of Samples 1 to 15 were manufactured through the steps described below.
Each bronze composite iron powder was put in a mold and compressed into a cylindrical shape, and then sintered in a hydrogen atmosphere sintering furnace at 850 ° C. for 20 minutes. The obtained sintered body was sized to an inner diameter × outer diameter × full length = 3 mm × 6 mm × 4 mm, and impregnated with a lubricating oil (“Heiwa Sangyo, synthetic oil HS-32 (trade name)”). Thus, samples 1 to 15 which are sintered oil-impregnated bearings were obtained.

<加速試験>
試料1〜試料15の各焼結含油軸受に対し軸体を通し、軸体の周速(V値)を90m/min.;軸受にかかる面圧(P値)を5.56kg/cmとして、60分間、軸体を回転させた。試験後に軸受の摺動面を肉眼および光学顕微鏡で観察した。
<Acceleration test>
The shaft body was passed through each of the sintered oil-impregnated bearings of Samples 1 to 15, and the peripheral speed (V value) of the shaft body was 90 m / min. The surface pressure (P value) applied to the bearing was 5.56 kg / cm 2 and the shaft was rotated for 60 minutes. After the test, the sliding surface of the bearing was observed with the naked eye and an optical microscope.

<評 価>
上記のようにして得られた試料1〜試料15の各種青銅複合鉄粉、および試料1〜試料15の各種焼結含油軸受について以下の評価を行った。
<Evaluation>
The following evaluation was performed on the various bronze composite iron powders of Sample 1 to Sample 15 and the various sintered oil-impregnated bearings of Sample 1 to Sample 15 obtained as described above.

[青銅複合鉄粉の生成(ケーキの状態)について(1)]:
焼結炉から取り出した際の青銅複合鉄粉の表面状態について肉眼および光学顕微鏡で観察した。
表面の状態が均一で銅色をしているものを「◎」、表面は銅色をしているもののややむらが見られたものを「〇」、銅が被覆してない鉄や周囲とは異なる部位が生じたものがある場合を「×」と、それぞれ評価した。その評価結果を表1、表2に「ケーキの状態」として示す。
[Production of bronze composite iron powder (cake state) (1)]:
The surface state of the bronze composite iron powder when taken out from the sintering furnace was observed with the naked eye and an optical microscope.
"◎" if the surface is uniform and copper-colored, "○" if the surface is copper-colored but slightly uneven, and what is iron and surroundings not covered by copper? A case where a different part occurred was evaluated as “x”. The evaluation results are shown in Tables 1 and 2 as “cake state”.

[青銅複合鉄粉の生成(ケーキの粉砕し易さ)について(2)]:
青銅複合鉄粉を焼結炉から取り出すと、焼結して固まった状態になっているため、これを粉砕する必要がある。そのため、この粉砕のし易さを比較した。
ケーキ状の青銅複合鉄粉を人手で簡単にいくつものブロックに割ることができ、平和産業社製のハンマー式粉砕機(刃の直径φ250、回転数850rpm)にこのブロックを入れて粉砕することで、いくつかの粒が凝集したような塊が無くなるものを「〇」、大きな塊は無くなるものの、篩いで篩い分け可能な程度の小さな塊が残るものを「△」、小さな塊だけでなく、再粉砕が必要な程度な大きな塊も残るものを「×」と評価した。その評価結果を表1、表2に「粉砕し易さ」として示す。
[Production of bronze composite iron powder (ease of crushing cake) (2)]:
When the bronze composite iron powder is taken out from the sintering furnace, it is in a sintered and solidified state, so it is necessary to grind it. Therefore, the ease of pulverization was compared.
Cake-like bronze composite iron powder can be easily broken into several blocks by hand. By putting this block into a hammer-type crusher (blade diameter φ250, rotation speed 850 rpm) made by Heiwa Sangyo Co., Ltd. , “○” indicates that there are no lumps such that some grains are aggregated. Those that remained large lumps that needed to be crushed were evaluated as “x”. The evaluation results are shown in Tables 1 and 2 as “Ease of grinding”.

[軸受特性について]:
加速試験後の焼結含油軸受の摺動面の観察により、加速試験前とみかけはほとんど変わらない場合を「◎」、変色が生じたものの軸体の回転状態に変化が見られず良好なものを「〇」、鉄表面が表出したり、加速試験中に軸体の回転が重くなったりするなどの変化が生じたものを「×」と、それぞれ評価した。その評価結果を表1、表2に「軸受特性」として示す。
[Bearing characteristics]:
According to the observation of the sliding surface of the sintered oil-impregnated bearing after the acceleration test, the case where the appearance is almost the same as before the acceleration test is “◎”. Was evaluated as “◯”, and “×” was evaluated for changes that occurred such as the iron surface being exposed or the rotation of the shaft becoming heavy during the acceleration test. The evaluation results are shown as “Bearing characteristics” in Tables 1 and 2.

<考 察>
上記試験結果より、試料1〜3,6,7,9,12,14の焼結含油軸受は、実用に適したものであるが、試料4,5,8,10,11,13,15の焼結含油軸受は好ましいものではないことがわかる。

<Discussion>
From the above test results, the sintered oil-impregnated bearings of Samples 1 to 3, 6, 7, 9, 12, and 14 are suitable for practical use, but Samples 4, 5, 8, 10, 11, 13, and 15 It can be seen that the sintered oil-impregnated bearing is not preferable.

Claims (3)

鉄粉に錫粉と平均粒径が20μm以下の酸化銅粉とを混合し加熱して還元性ガスで酸化銅を還元し、鉄粉表面に銅と錫を付着させた青銅複合鉄粉を製造する青銅複合鉄粉の製造方法であって、
前記錫粉を前記鉄粉含量に対して0.4〜4.0wt%混合し、前記酸化銅粉を前記鉄粉含量に対して金属銅換算で10〜50wt%混合して原料粉を調製し、この原料粉を200℃から330℃に昇温して酸化銅を還元する第1熱処理と、700℃〜950℃の温度範囲内で焼成する第2熱処理を行う青銅複合鉄粉の製造方法。
Produces bronze composite iron powder in which tin powder and copper oxide powder with an average particle size of 20 μm or less are mixed with iron powder, heated to reduce copper oxide with a reducing gas, and copper and tin adhered to the iron powder surface. A method for producing bronze composite iron powder,
The tin powder is mixed with 0.4 to 4.0 wt% with respect to the iron powder content , and the copper oxide powder is mixed with 10 to 50 wt% in terms of metallic copper with respect to the iron powder content to prepare a raw material powder. And the manufacturing method of the bronze composite iron powder which performs the 1st heat processing which heats up this raw material powder from 200 degreeC to 330 degreeC, and reduces a copper oxide, and the 2nd heat processing baked within the temperature range of 700 to 950 degreeC. .
前記昇温前の前記鉄粉含量に対して3〜25wt%の青銅粉をさらに混合して原料粉を調製する請求項1記載の青銅複合鉄粉の製造方法。 Method for producing bronze composite iron powder according to claim 1 Symbol placement to prepare a raw material powder was further mixed 3~25Wt% of bronze powder to the iron powder content in the pre said heating. 請求項1または請求項2記載の青銅複合鉄粉の製造方法により製造された青銅複合鉄粉を圧粉成形後、焼結してなる焼結金属を製造する焼結金属の製造方法。
The manufacturing method of the sintered metal which manufactures the sintered metal formed by compacting the bronze composite iron powder manufactured by the manufacturing method of the bronze composite iron powder of Claim 1 or Claim 2 , and sintering.
JP2016000131A 2016-01-04 2016-01-04 Method for producing bronze composite iron powder and method for producing sintered metal Active JP6176804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000131A JP6176804B2 (en) 2016-01-04 2016-01-04 Method for producing bronze composite iron powder and method for producing sintered metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000131A JP6176804B2 (en) 2016-01-04 2016-01-04 Method for producing bronze composite iron powder and method for producing sintered metal

Publications (2)

Publication Number Publication Date
JP2017122245A JP2017122245A (en) 2017-07-13
JP6176804B2 true JP6176804B2 (en) 2017-08-09

Family

ID=59306478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000131A Active JP6176804B2 (en) 2016-01-04 2016-01-04 Method for producing bronze composite iron powder and method for producing sintered metal

Country Status (1)

Country Link
JP (1) JP6176804B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327133B2 (en) * 2014-02-18 2018-05-23 住友金属鉱山株式会社 Method for producing iron-copper composite powder for powder metallurgy
JP2016000132A (en) * 2014-06-12 2016-01-07 株式会社大都技研 Game machine

Also Published As

Publication number Publication date
JP2017122245A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
KR100982611B1 (en) Copper alloy extruded material and method for producing same
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
WO2008059855A1 (en) Iron/copper composite powder for powder metallurgy and process for producing the same
CN101775521A (en) Ultrahigh rotating speed oil bearing for powder metallurgy and manufacturing method thereof
TW200936780A (en) Iron-containing mixed powder for powder metallurgy and sintered iron powder compact
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
CN107252888B (en) Sintered bearing
WO2007103193A2 (en) Low cost bronze powder for high performance bearings
JP5995389B1 (en) Method for producing copper composite iron powder and method for producing sintered metal
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JP2009114486A (en) Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder
JP6327133B2 (en) Method for producing iron-copper composite powder for powder metallurgy
JP6176804B2 (en) Method for producing bronze composite iron powder and method for producing sintered metal
EP3686307B1 (en) Sintered oil-retaining bearing
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
TWI465589B (en) Production method of sintered bronze alloy powder
JPH0140907B2 (en)
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
JP6330581B2 (en) Copper coated iron powder
JP2016211690A (en) Sintered bearing and method for manufacturing the same
WO2016148137A1 (en) Machine component and production method therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6176804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250