JP6174219B2 - 新規多糖体 - Google Patents

新規多糖体 Download PDF

Info

Publication number
JP6174219B2
JP6174219B2 JP2016190529A JP2016190529A JP6174219B2 JP 6174219 B2 JP6174219 B2 JP 6174219B2 JP 2016190529 A JP2016190529 A JP 2016190529A JP 2016190529 A JP2016190529 A JP 2016190529A JP 6174219 B2 JP6174219 B2 JP 6174219B2
Authority
JP
Japan
Prior art keywords
polysaccharide
hair
galactose
action
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016190529A
Other languages
English (en)
Other versions
JP2016216750A (ja
Inventor
佐藤 剛毅
剛毅 佐藤
李 貞範
貞範 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panac Co Ltd
Original Assignee
Panac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panac Co Ltd filed Critical Panac Co Ltd
Priority to JP2016190529A priority Critical patent/JP6174219B2/ja
Publication of JP2016216750A publication Critical patent/JP2016216750A/ja
Application granted granted Critical
Publication of JP6174219B2 publication Critical patent/JP6174219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cosmetics (AREA)

Description

本発明は、新規多糖体及びその製造方法、並びに当該新規多糖体を含有する皮膚外用剤、育毛剤、美白剤等に関する。
多糖類は、医薬品、食品、工業品等幅広い分野で利用されている。医薬品や食品分野等でよく知られている酸性多糖類として、コンドロイチン硫酸やヒアルロン酸等のグリコサミノグリカン、キサンタンガム等;中性多糖類としてβ1,3グルカン、シクロデキストリン等が挙げられる。サメ軟骨やトリ鶏冠等に含まれているコンドロイチン硫酸や微生物生産が可能となったヒアルロン酸は、膝関節痛改善作用等を有することが知られている。またβ1,3グルカンは免疫賦活作用等を有することが知られている。
また、キサンタンガムは、Xanthomonas campestris細菌が生産する多糖であり、その糖の構成はD−グルコース、D−マンノース、D−グルクロン酸を構成糖にもつ分岐多糖であり、現在では工業的に大量生産可能であるため、増粘剤等として世界中で利用されている(例えば特許文献1)。
また、クロレラ属単細胞緑藻が細胞外に産生するガラクトース81.4〜91.9%含有の多糖体が、マウス肉腫細胞株に対して抗腫瘍作用を有することが記載されている(例えば特許文献2)。
さらに、種々の用途に利用可能な新規多糖体が、産業界において望まれているのが実状である。
特公昭61−11596号公報 特開平6−248003号公報
そこで、本発明は、斯かる実状に鑑み、種々の用途に利用可能な新規多糖体を提供しようとするものである。
本発明者らは、種々の用途に利用可能な新規多糖体を鋭意検討した結果、ガラクトース及びマンノースを主な構成糖とする新規多糖体を見出した。さらに、本発明の新規多糖体は、優れた育毛作用があること及び美白作用があることも見出した。本発明の新規多糖体は、皮膚外用剤、化粧料、食品、医薬品等にも利用可能であることを見出した。しかも、本発明の新規多糖体は、パラクロレラ属(Parachlorella)単細胞緑藻類がその細胞外で生産可能な多糖体であるので、工業的に大量生産可能であり、幅広い分野での利用が期待できる物質である。
ところで、近年、ストレスの増加や食生活の変化など様々な要因によって、薄毛や抜け毛で悩む男女は増加傾向にあり、育毛剤への期待が高まっている。
例えば、特開2010−150203号公報には、ダイジン、ゲスチニン及びフラボステロンSEから選ばれる大豆イソフラボン配糖体と、6−ベンジルアミノピリンとを含有する育毛剤組成物が、抜け毛を低減すること及び硬毛化することが開示されている。
特開2012−097008号公報には、パイナップル可食部を90体積%エタノールで80℃2時間抽出して得られた糖不含有のパイナップル抽出物が、毛乳頭細胞増殖促進作用があることが開示されている。
特開2010−100536号公報には、アメリカンアンジェリカ(Angelica atropurpurea)の抽出物に含まれる所定の構造を有するアンギュラー型フロクマリン骨格を有する化合物が、ブタ毛包の毛伸長が認められたことが開示されている。
このように、幅広い化合物による様々な作用機序からの有効な育毛剤の検討が行われているのが実状である。しかしながら、本発明の多糖体は高分子系でありながら優れた育毛作用を有することは全くの意外であり、そして優れた育毛剤を提供することも可能である。
よって、本発明は、上記課題を解決するために、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を提供するものである。
また、本発明は、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体及び/又はパラクロレラ由来の細胞外多糖体を含有する、毛母細胞増殖賦活剤、FGF−7産生促進剤、VEGF産生促進剤、育毛剤、メラニン産生抑制剤、美白剤又は皮膚外用剤を提供するものである。
また、本発明は、パラクロレラ属単細胞藻類又は改変体を炭素源含有培養培地で好気的な条件下で従属培養し、生産される多糖体を回収する多糖体の製造方法を提供するものである。
また、本発明は、Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体を提供するものである。
本発明によれば、種々の用途に利用可能な新規な多糖体を提供することができる。
墨汁染色による細胞(藻体)外の多糖体の可視化を行った図である。 藻体PNC1株の18S rRNA遺伝子配列に基づく分子系統樹である。 本開示の多糖体のGPC分析の結果を示す。
1.本開示の多糖体
2.本開示の多糖体の製造方法
3.本開示の多糖体の用途
1.本開示の多糖体
本開示の多糖体は、多糖の基本構造の糖残基が少なくともガラクトース(以下「Gal」ともいう)とマンノース(以下「Man」ともいう)で構成される。当該ガラクトースには、少なくともフラノース型が存在するのが好適である。
前記マンノースとガラクトースとの糖残基の比率が、マンノースを1としたときに、好ましくはMan 1:Gal 2〜4、より好ましくはMan 1:Gal 2.5〜3.5であるのが好適である。
前記ガラクトースの含有量は、多糖体の中性単糖組成の全量を100質量%としたとき(以下、「全中性糖中」とする)に、好ましくは50〜79質量%であり、より好ましくは60〜79質量%である。
本開示の多糖体の中性単糖組成は、マンノース及びガラクトースの他に、アラビノース(以下、「Ara」ともいう)、ラムノース(以下、「Rha」ともいう)及びキシロール(以下、「Xyl」ともいう)が含まれてもよい。
これらの含有量は、多糖体の中性単糖組成の全量を100質量%としたとき(以下、「全中性糖中」とする)に、好ましくは0〜16質量%、より好ましくは5〜16質量%である。さらに、アラビノース、ラムノース及びキシロースの含有量は、全中性糖中、それぞれ、アラビノース 3〜7質量%、ラムノース 2〜6質量%、キシロース 0〜3質量%であるのが好適である。
このときマンノース及びガラクトースのこれら含有量は、全中性糖中、好ましくは84〜100質量%である。このマンノースの含有量は、全中性糖中、好ましくは19〜25質量%であり、またガラクトースの含有量は、全中性糖中、好ましくは65〜75質量%である。
本開示の多糖体の分子量は、GPC測定において、好ましくは3〜9×10、より好ましくは5〜8×10である。
また、本開示の多糖体は水溶性のものが、様々な分野の用途で利用しやすいので、好適である。
2.本開示の多糖体の製造方法
本開示の多糖体の製造方法は、本開示の多糖体を産生することが可能であれば、その手段は特に限定されず、例えば、細菌や藻類等の微生物及びこの改変体を用いることが挙げられる。当該改変体とは、本開示の多糖体を産生することが可能な機能をする微生物の遺伝子組み換え体、突然変異体等であり、必要に応じて生産性や耐久性等を向上させている微生物である。
好適な本開示の多糖体の製造方法として、本開示の多糖体は、パラクロレラ属(Parachlorella)単細胞緑藻類又は改変体を独立的培養法又は従属的培養法等の任意の培養方法により培養することで製造することが可能である。
当該緑藻類を用いることで、本開示の多糖体は、藻類の細胞外に生産させて回収することが可能である。細胞外に産出させることで、遠心分離等の物理的手段等により藻体と多糖体とを分離させることが容易となる。これによって、培養培地交換等による連続培養による多糖体の生産も容易である。よって、本開示のパラクロレラ属単細胞緑藻類又は改変体を用いることは、多糖体の生産性を非常に向上させることができ、工業的生産に適しており、本開示の多糖体の安定的供給を可能とする。安定的供給性が可能となるため、本開示の多糖体は幅広い分野での利用も可能となる。
前記パラクロレラ属単細胞緑藻類のうち、好ましくはパラクロレラ属ケッセリ(Parachlorella kessreli)であり、より好ましくはParachlorella kessleri-PNC1株(FERM BP-11493)が好適である。
独立行政法人 国立環境研究所 微生物系統保存施設(NIESコレクション)から、NIES-2152〜NIES-2162、2177、2178、2179の14株を、パナック株式会社新規事業開発第二部が入手した。この入手した株を継代培養しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を探索した。
具体的には、NIES-2152株を複数に分けて、後記実施例に示す従属培養条件下にて、継代培養を繰り返した。他の株についても同様に継代培養を繰り返し行った。継代培養を繰り返しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を見出し、これをPNC1株とした。
当該PNC1株に関する形態観察及びrRNA遺伝子配列に基づく分子系統樹により、パラクロレラ属ケッセリ(Parachlorella kessreli)単細胞緑藻類と判断し、Parachlorella kessleri-PNC1株と命名した。この株は、新規な藻類として、2012年7月19日、〒305-8566 茨城県つくば市東1-1-1 つくばセンター中央第6、独立行政法人 製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD(登録商標))に、Parachlorella kessleri-PNC1株(FERM BP-11493)として寄託した。
本開示のパラクロレラ属単細胞緑藻類を培養して多糖体を製造させる際に用いる培地として、一般的な単細胞緑藻類が培養可能な基礎培地に、グルコース等の炭素源を含有させた炭素源含有の培養培地が好適である。単細胞緑藻類が培養可能な基礎培地とは、例えば、〔Appl Microbiol Biotechnol. 2011 Jul;91(1):31-46. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations.Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K〕に記載されている培地が挙げられる。
基礎培地中の無機塩としてKHPO、MgSO等の微量無機成分が挙げられ、窒素源としては硫酸アンモニウム、尿素等が挙げられる。この基礎培地として、本開示のパラクロレラ属単細胞緑藻類を培養する際に好適なものとしては表1に示す培地の組成が挙げられ、各成分の含有量は±10%の範囲であることが好ましい。
前記炭素源として、グルコース、果糖等の単糖類;ショ糖等のオリゴ糖等が挙げられる。これらから1種又は2種以上選択して基礎培地に添加してもよい。
前記炭素源の濃度は、特に限定されないが、培養培地中、好ましくは0.1〜30質量%、より好ましくは1〜10質量%とするのが好適である。
本開示の多糖体を製造するための培養に際し、好気的な条件下で培養することが、上記多糖体を安定的に生産させることができるので好適である。通気培養することが、多糖体の生産性を向上させる点で、好ましい。通気手段として、例えば、撹拌、振盪、通気及びバブリング等が挙げられる。これらを単独で又は2種以上組み合わせて行うことが可能である。これにより、培養培地中に適度な気体が混合されるようになる。
培養培地中の溶存酸素(DO)は、好気的な条件になるように調整すればよく、好ましくは3ppm以上、より好ましくは5〜13ppmとするのが好適である。
培養温度は、特に限定されないが、5〜40℃の常温程度であればよい。
また、培養培地中のpH(20℃)は、好ましくは4〜9、より好ましくは5〜8とするのが好適である。
培養期間は、特に限定されないが、4日〜2週間程度を1サイクルとするのが、多糖体を産出させるのが好適である。また、前培養及び本培養を行う際には、本培養の期間は、4日〜1週間程度であればよい。この際、光照射を行なってもよいが、光照射を行わなくとも、多糖体を生産することが可能である。
また、独立栄養培養条件下にて藻体数を多くする場合、太陽光;植物栽培用ランプ、LED等の人工光源等の光を用いることが可能であり、炭酸ガスの補給と撹拌をすることが好ましい。
また、本開示の多糖の生産方法は、バッチ式、連続式の何れでもよいが、連続式が生産性向上のため好ましい。また、開放系培養及び閉鎖系培養の何れでもよく、例えば、培養タンク内の密閉培養及び開放系の露天培養等が挙げられる。培養条件管理の点で、閉鎖系培養が好ましい。
本開示の多糖体を前記単細胞緑藻類又は改変体に産生させた後に、水溶液洗浄、超音波、遠心分離、ろ過等の物理的手段及び化学的手段にて、藻体から多糖体を分離し、本開示の多糖体が含まれる上清液を得るのが好適である。このとき、培養後の藻体表面から多糖体を分離することがその藻体を用いて連続的に多糖体を生産することも可能であるので好ましい。例えば、遠心分離の際には、5000〜9000rpm、5分間程度でよい。さらに濾過助剤及びろ過フィルター等を単独で又は組み合わせて用いてろ過を行うことが不純物をより除去できるので好ましい。
得られた本開示の多糖体は、希釈液、濃縮液又は乾燥物等の状態に適宜調整してもよい。乾燥手段として凍結乾燥が好ましい。
本開示の多糖体は、適宜公知の分離・精製技術、例えば液々分液、固液分液、濾過膜、活性炭、吸着樹脂、イオン交換樹脂等の方法によって不活性な不純物を除去し、更に精製してもよい。
本開示の多糖体を水溶液に溶解後、不溶性画分を除去し、水溶性画分を回収することが好適である。水に溶解の際に混合することが好ましく、この水温は、5〜40℃であるのが好ましい。溶解後、低温(例えば1〜10℃)に放置(例えば5〜15時間)することが好ましい。
不溶性画分の除去は、遠心分離及び限界ろ過膜等の物理的手段にて行うことが好ましい。これにより、より水溶性の高い多糖体を得ることができるので、種々の用途に利用可能である。さらに得られた水溶性多糖体を、凍結乾燥することが好ましい。
3.本開示の多糖体の用途
本開示の多糖体は、後記実施例に示すように、線維芽細胞増殖因子のファミリーの一つである線維芽細胞増殖因子−7(FGF−7)の量が増加することが認められている。よって、本開示の多糖体は、FGF−7産生促進作用、線維芽細胞増殖賦活作用、皮膚の抗老化防止作用、シワ改善作用、毛母細胞増殖作用及び育毛作用等を有する。
ここで、線維芽細胞増殖因子は、血管新生作用、コラーゲンやフィブロネクチンの合成抑制作用等を有することや、ヘパリンに対して強い親和性を有していることが知られている。
また、線維芽細胞は、真皮に含まれており、線維芽細胞の増殖機能が維持されることによって、皮膚の水分量、柔軟性、弾力性等が良好な状態に保たれ、美しく健康的な皮膚(肌)の状態が維持される。また、線維芽細胞の増殖機能が低下することによって、皮膚の線維成分及び基質の産生量が減少する。これは、皮膚の表面形状及び物理的性状に変化を及ぼす要因となり、皮膚のガサつき、肌荒れ、しわ、たるみ等の原因となる。よって、線維芽細胞増殖賦活作用を有すると、皮膚の抗老化防止作用、シワ改善作用等に寄与すると考えられる。
また、FGF−7は毛乳頭細胞から分泌される因子であり、このFGF−7が毛母細胞に作用し、毛母細胞の増殖を促進し、毛髪成長が促進すると考えられている。よって、FGF−7産生促進作用を有すると、毛母細胞増殖作用、育毛作用等に寄与すると考えられる。
さらに、本開示の多糖体は、上述のように、FGF−7産生促進作用及び線維芽細胞増殖賦活作用等を有することで、FGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減、線維芽細胞増殖能の低減等に起因する疾患や症状の予防、改善又は治療が可能と考えられる。
本開示のFGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減等に起因する各種疾患や症状として、例えば、皮膚の老化、シワ形成、脱毛症等が挙げられる。この脱毛症としては、男性型脱毛症、女性のびまん性脱毛症、円形脱毛症等が挙げられる。
また、本開示の多糖体は、後記実施例に示すように血管内皮増殖因子(VEGF)の量が増加することが認められている。よって、本開示の多糖体は、VEGF産生促進作用、血管内皮増殖賦活作用、血管新生促進作用、毛母細胞活性化作用、発毛促進作用等を有する。
ここで、血管内皮増殖因子は、血管内皮細胞に働き、細胞の増殖、遊走を促進させたり、血管新生を促進させたり、また血管透過性を亢進させたりすることが知られている。このように、血管内皮増殖賦活作用を有すると、血管内皮細胞増殖促進作用、血管新生促進作用等に寄与すると考えられる。
また、本開示の多糖体は、血管内皮増殖因子(VEGF)を有するが、このVEGFは、毛乳頭細胞から分泌され、このVEGFが血管新生を促進し、それにより毛母細胞が活性化することで発毛が促進されると考えられている。このように、VEGF産生促進作用を有すると、毛母細胞活性化作用、発毛促進作用等に寄与すると考えられる。
さらに、本開示の多糖体は、上述のように、VEGF産生促進作用及び血管内皮増殖賦活作用を有することで、VEGF産生量減少、血管内皮増殖抑制、毛母細胞活性低下等に起因する各種疾患や症状の予防、改善又は治療が可能と考える。
本開示のVEGF産生抑制、血管内皮増殖抑制、毛母細胞活性低下等に起因する各種疾患や症状として、脈管形成不全、血管系の発達異常、脱毛症等が挙げられる。
本開示の多糖体は、後記実施例に示すように、毛乳頭の細胞を賦活することが認められている。よって、本開示の多糖体は、上述のように、FGF−7産生促進作用及びVEGF産生促進作用も有していることから、非常に良好に毛母細胞増殖賦活作用、育毛作用等に寄与すると考えられる。
一般的に、育毛作用物質の探索は、アデノシンのような低分子化合物又は植物等由来の有機溶媒抽出物等から行われているが、これとは本開示の多糖体は分子量や性質も異なる高分子かつ多糖体であり、さらに新規である本開示の多糖体に優れた育毛作用があることは全くの意外である。
よって、本開示の多糖体は、上述のような、FGF−7産生促進作用、線維芽細胞増殖賦活作用、細胞賦活作用、毛乳頭細胞賦活作用、育毛作用、皮膚の抗老化防止作用、シワ改善作用、VEGF産生促進作用、血管内皮増殖賦活作用等のために使用してもよく、また、FGF−7産生促進剤、線維芽細胞増殖賦活剤、細胞増殖賦活剤、毛乳頭細胞増殖賦活剤、育毛剤、皮膚の抗老化防止剤、シワ改善剤、VEGF産生促進剤、血管内皮増殖賦活剤等の上述のような使用を目的とした各種製剤に使用することができ、これら各種製剤を製造するために使用することができる。
なお、本開示における「育毛剤」とは、毛を発育させること、毛の発育を促進させること、毛の健康状態を保つこと、脱毛を予防すること、及び脱毛を低減させること等の効果を発揮することを意味し、「養毛剤」をも包含する。
通常、皮膚においてメラニンは紫外線から生体を保護する役目も果たしているが、過剰生成や不均一な蓄積は、皮膚の黒化やシミの原因となる。一般的に、メラニンは色素細胞中で生成されるチロシナーゼの酵素の働きによって、チロシンからドーパ、ドーパからトーパキノンに変化し、次いで、5,6―ジヒドロキシインドフェノール等の中間体を経て形成される。従って、皮膚の色黒(皮膚色素沈着症)を予防又は改善するため、すなわち、美白のためには、メラニン産生過程を阻害すること、又は既に産生したメラニンを淡色化漂白することが有効と考えられている。
このようなチロキシナーゼ活性阻害作用を有する物質として、例えば、特開2002−370962号公報には、藤茶枝葉部からのエタノール抽出物に優れたチロシナーゼ活性があることが開示されている。
また、特開2001−026530号公報には、スフィンゴ脂質という脂質に、メラノーマB16細胞のメラニン生成抑制作用があることが開示されている。
このように、従来植物抽出物やスフィンゴ脂質等の低分子系について美白作用が多く報告されているため、高分子で中性の多糖体に美白作用があるとの知見はほとんど見出されていない。
本開示の多糖体は、後記実施例に示すように、B16メラノーマ細胞におけるメラニンの蓄積抑制作用が認められている。よって、本開示の多糖体は、メラニン産生抑制作用及び美白作用を有する。
さらに、本開示の多糖体は、メラニン産生抑制作用を有することで、メラニン蓄積やメラニン産生量増加等に起因する疾患や症状の予防、改善又は治療が可能と考えられる。
本開示のメラニン産生量増加等に起因する各種疾患や症状として、例えば、皮膚がん、皮膚の色黒化(皮膚色素沈着症、悪性黒色腫)等が挙げられる。
よって、本開示の多糖体は、上述のような、メラニン産生抑制作用及び美白作用等のために使用してもよく、また、メラニン産生抑制剤、美白剤等の上述のような使用を目的とした各種製剤に使用することができ、これら各種製剤を製造するために使用することができる。
また、本開示の多糖体は、ヒトを含む動物に摂取、投与又は接触させて、上述のような、線維芽細胞増殖賦活作用、FGF−7産生促進作用、皮膚の抗老化防止作用、シワ改善作用、血管内皮増殖賦活作用、VEGF産生促進作用、育毛作用、メラニン産生抑制作用及び美白作用等を図るために、使用することができる物質である。
従って、本開示の多糖体は、上述のような、線維芽細胞増殖賦活、FGF−7産生促進、皮膚の抗老化防止、シワ改善、血管内皮増殖賦活、VEGF産生促進、育毛、メラニン産生抑制及び美白等のために、皮膚外用剤、化粧品、医薬品、医薬部外品、食品や機能性食品(例えば特定保健用食品等)等に配合することが可能であり、本開示の育毛剤、美白剤等は、これら皮膚外用剤、化粧品等として有用である。
本開示の多糖体は、特に皮膚外用剤、化粧品、医薬部外品に用いるのが好ましく、皮膚に塗布などに接触させる製剤が好適である。
前記育毛剤、美白剤等の製剤中における多糖体の含有量は、好ましくは0.001〜0.01質量%、より好ましくは0.01〜0.1質量%であり、さらに好ましくは0.1〜1質量%である。
なお、前記育毛剤及び美白剤等には、本開示の多糖体に、必要に応じて、任意の成分を組み合わせて使用してもよい。好ましい他の成分としては、薬学的に又は食品的に許容される成分であればよく、例えば、細胞賦活剤、抗酸化剤、保湿剤、紫外線防止剤、溶剤(水、アルコール類等)、油剤、界面活性剤、増粘剤、粉体、キレート剤、pH調整剤、乳化剤、安定化剤、着色剤、光沢剤、矯味剤、矯臭剤、賦形剤、結合剤、崩壊剤、滑沢剤、希釈剤、浸透圧調整剤、香料等が挙げられ、これらを目的とする製剤に応じて配合すればよい。
また、前記育毛剤及び美白剤等の形態は、特に限定されず、液状、ペースト状、ゲル状、固形状、粉末状等の何れの形態でもよい。
本技術は、以下の構成を採用することが可能である。
〔1〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体。
〔2〕前記ガラクトースの含有量が、全中性糖中、50〜79質量%である前記〔1〕記載の多糖体。
〔3〕前記多糖体の分子量が、GPC測定において3〜9×10である前記〔1〕又は〔2〕記載の多糖体。
〔4〕 前記ガラクトースとマンノースの糖残基の比率が2.5〜3.5:1である前記〔1〕〜〔3〕の何れか1項記載の多糖体。
〔5〕 パラクロレラ由来の細胞外多糖体である前記〔1〕〜〔4〕の何れか1項記載の多糖体。好適にはパラクロレラ属ケッセリ(Parachlorella kessreli)由来の多糖体である。また、前記多糖体は水溶性であるのが好適である。
〔7〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有するFGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤、血管新生促進剤。
〔8〕 前記〔2〕〜〔5〕の何れか1項記載のパラクロレラ細胞外多糖体を含有するFGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤、又は血管新生促進剤。
〔9〕 前記細胞増殖賦活が、毛乳頭細胞増殖賦活である前記〔7〕又は〔8〕記載の細胞増殖賦活剤。
〔10〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体を含有する皮膚外用剤。
〔11〕好適には、前記〔7〕〜〔13〕に記載の各種製剤の多糖体は、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
〔12〕 FGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤又は血管新生促進剤の製造のための、多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体の使用。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
〔13〕 多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体の、FGF−7産生促進剤、VEGF産生促進剤、線維芽細胞増殖賦活剤、血管内皮増殖賦活剤、細胞増殖賦活剤、育毛剤、メラニン産生抑制剤、美白剤、シワ改善剤、皮膚の抗老化剤又は血管新生促進剤への使用。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
〔14〕 FGF−7産生量減少、線維芽細胞増殖能の低減、毛母細胞増殖能の低減、線維芽細胞増殖能の低減、VEGF産生量減少、血管内皮増殖抑制、毛母細胞活性低下、及びメラニン産生量増加等に起因する疾患の、予防、改善又は治療のための、〕多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体。
好適には、前記〔2〕〜〔5〕の何れか1項記載の多糖体である。
また、本技術は、以下の構成を採用することが可能である。
(1) パラクロレラ属単細胞藻類又は改変体を炭素源含有培養培地で好気的な条件下で従属培養し、生産される多糖体を回収する多糖体の製造方法。
(2) 前記多糖体が、前記〔1〕多糖の基本構造の糖残基が少なくともガラクトースとマンノースで構成されており、当該ガラクトースにフラノース型が存在する多糖体である、前記(1)〜(10)の何れか1項記載の多糖体の製造方法。好適には前記(2)〜(5)の多糖体である。
(3)パラクロレラ属単細胞藻類が、パラクロレラ属ケッセリ(Parachlorella kessreli)である前記(1)又は(2)記載の多糖体の製造方法。
(4)前記炭素源の培地中の濃度が、0.1〜10質量%である前記(1)〜(3)の何れか1項記載の多糖体の製造方法。
(5) 前記炭素原が、グルコース、果糖及びショ糖から選ばれる1種又は2種以上のものである前記(1)〜(4)記載の多糖体の製造方法。
(6) 前記培養が、通気条件下の従属的培養である前記(1)〜(5)の何れか1項記載の多糖体の製造方法。
(7) 前記培養の溶存酸素濃度が、3〜13ppmである前記(1)〜(6)の何れか1項記載の多糖体の製造方法。
(8) 前記培養の温度が、5〜40℃である前記(1)〜(7)の何れか1項記載の多糖体の製造方法。
(9) 前記培養のpHが、4〜9である前記(1)〜(8)の何れか1項記載の多糖体の製造方法。
(10) 前記培養後、遠心分離及びろ過を単独で又は2種組み合わせて藻体を除去する前記(1)〜(9)の何れか1項記載の多糖体の製造方法。
(11) 前記藻体を除去した後に凍結乾燥し、さらに水溶液に溶解後、水溶性画分を回収する前記(1)〜(10)の何れか1項記載の多糖体の製造方法。
(12) 前記(1)〜(11)の何れか1項記載の多糖体の製造方法にて得られた多糖体。
(13)Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体である前記(1)〜(12)の何れか1項記載の多糖体の製造方法。
(14) Parachlorella kessleri-PNC1と命名され、FERM BP-11493として寄託された藻体。
以下、本発明(本技術)を具体的に説明するために実施例及び比較例等を挙げるが、本発明(本技術)は実施例等に限定されるものではない。
独立行政法人 国立環境研究所 微生物系統保存施設(NIESコレクション)から、NIES-2152〜NIES-2162、2177、2178、2179の14株を、パナック株式会社新規事業開発第二部が入手した。各1株を複数に分けて、表1に示す培地にて継代培養しながら、これらの中から、光学顕微鏡において、細胞体の細胞外に墨汁に染まらない部分が非常に多く認められるものを、細胞外多糖体の生産性が高い株として探索した。
ここで、多糖体が細胞外に多く生産されること;藻体と多糖体との分離が容易であると、多糖体の回収が容易であること;藻体が多糖体生産に再利用可能なものであること;従属培養に適していると、大型タンクでの培養も可能であることが、工業的生産に適している藻体と考える。
継代培養を繰り返しながら、これらの中から、細胞外多糖体の生産性が高く、かつ従属培養に適した株を見出し、これをPNC1株とした。
藻体PNC1株を、表1に示す培地にて従属培養を行い、光学顕微鏡において、墨汁染色を行った。細胞体の細胞外に墨汁に染まらない部分が認められた。その墨汁に染まらない部分について、以下の製造例1〜3に示す方法にて多糖体を分離し、分析を行った結果、藻体の細胞外に多糖体が生産されていることを見出した(図1)。
さらに、前記PNC1株に関する形態観察及びrRNA遺伝子配列に基づく分子系統樹により(図2)、パラクロレラ属ケッセリ(Parachlorella kessreli)単細胞緑藻類と判断し、Parachlorella kessleri-PNC1株と命名した。独立行政法人 製品評価技術基盤機構 特許
生物寄託センター(NITE-IPOD(登録商標))に、Parachlorella kessleri-PNC1株(FERM BP-11493)と
して寄託した。
製造例1:本開示の多糖体の製造方法
Parachlorella kessleri-PNC1株(FERM BP-11493)を含むスラント状培地(50ml)を、グルコース含有培養培地250mlを含む3L容バッフル付き三角フラスコに添加し、照度8000〜10000lux、28℃で、160rpmにて4日間前培養した。なお、前培養前に、予備的に藻体数を増やしてもよい。
なお、グルコース含有培養培地は、表1の基礎培地1L当たりにグルコース10gを含有させたものである。
前培養物240mlを30L容のジャーファメンターに移して12日間本培養を行い、これを本培養物とした。このときの培養条件は、30℃、230rpm、通気0.56vvm、内圧0.3kgf/cm、pH7.2の好気的な条件下であり、光照射は行わなかった。
本培養物を、遠心分離(7000rpm(6500G)、25℃)し、目的とする多糖体を含有する上清液と藻体とに分離した。さらに分画分子量6000のUF膜(SIP1013)を用いて、原液を2Lまで濃縮した。濃縮物(2L)に、陰イオン交換樹脂200mLを添加し、ブリックス0.1まで回収し、UF膜ろ過にて、500mL濃縮し、凍結乾燥して、パラクロレラ由来の多糖体を得た。収率は、培養液1L当たり、0.2〜0.4gであった。
製造例2:多糖体の精製
パラクロレラ由来の多糖体1gに蒸留水40mLを添加して混合撹拌し、懸濁液を得た。この懸濁液を4℃にて一晩放置し、この懸濁液を遠心分離(7000rpm、6500g、5分間)し、上清と沈殿部とに分けた。上清について凍結乾燥し、水溶性のパラクロレラ由来の多糖体(以下、「水溶性パラクロレラ多糖」という)を得た(0.4〜0.5g)。
実施例1:水溶性パラクロレラ多糖体の構造解析
〔多糖体の分子量〕
水溶性パラクロレラ多糖体の分子量(Mw)を、GPC分析にて測定した結果、6.2×10、Mw(重量平均分子量)/Mn(数平均分子量)=1.5あった(図3のP1参照)。また、上述の製造例1及び2と同様にして得られた水溶性パラクロレラ多糖体の分子量(Mw)を、GPC分析にて測定した結果、6.7×10、Mw(重量平均分子量)/Mn(数平均分子量)=1.5あった(図3のP2参照)。
<GPC分析>
測定カラム:TSKgel GMPWXL(7.6mmID x 300 mm:東ソー株式会社)の2本直列
測定温度:40℃
移動相:0.1 M NaNO3
HPLCシステム:島津 LC-20システム
検出器:示差屈折計 LaboSystem RI-2000
標準物質:プルラン(昭和電工 P-52)
使用ソフト(GPC計算):LC Solutions, GPC software(島津)
〔多糖体の組成〕
水溶性パラクロレラ多糖体を、2M−TFA(トリフルオロ酢酸)、120℃、2時間で加水分解した。この加水分解物を、室温、NaBHにて還元し、さらに(無水酢酸:1−メチルイミダゾール 9:1)にてアセテート化し、アルジトールアセテート誘導体を得た。アルジトールアセテート誘導体は、GCで分析を行った。
GC測定は、GL Science GC-353ガスクロマトグラフ(カラム SP-2330 (Spelco);検
出器 FID;220 ℃の恒温分析)にて、行った。
アラビノース(4.7%)、ラムノース(4.0%)、キシロース(1.7%)、マンノース(22.5%)、ガラクトース(67.1%)であった。
また、水溶性パラクロレラ多糖体について、メチル化分析を行った。
多糖試料をDMSOに溶解後、粉末NaOHを加え撹拌した後、CHIを加え多糖をメチル化した。メチル化多糖を回収後、2M−TFA中120℃で2時間加水分解し、NaBDで還元後、無水酢酸と1−メチルイミダゾールでアセチル化した。得られた誘導体はGC−MSで分析した。
GC-MSは、Shimadzu QP-5000 GC-MS ガスクロマトグラフ質量分析装置〔カラム:SPB-50
(0.32 x 30 m)〕を行った。
本多糖体のマンノース残基として、非還元末端、1,2−結合、1,3−結合した残基が認められた。また、本多糖体のガラクトース残基の大部分はフラノースである、また本多糖体のガラクトース残基として、非還元末端、1,2−結合フラノース、1,5−結合フラノース、1,6−結合フラノース, 1,2,6−結合フラノース、そして1,3−結合ピラノースが認められた。
また、H-NMR分析(Varian Unity plus 500、1H:500MHz,13C:125MHz、〔溶媒:重水(DO)、測定温度は30℃、内部標準:DSS〕)により、水溶性パラクロレラ多糖体のガラクトース残基の多くは、フラノース型で存在することが認められた。
水溶性パラクロレラ多糖体のタンパク質含量(ローリー法)及びウロン酸含量(カルバゾール−硫酸法)にて測定を行った結果、タンパク質及びウロン酸の存在は、多量ではないが、認められた。
水溶性パラクロレラ多糖体に存在するガラクトース及びマンノースのDLを調べた。
水溶性パラクロレラ多糖体の試料を2M TFA中、120℃で2時間加水分解した後、酸を窒素気流下で除去した。
加水分解物に(S)−(+)−2−butanol(100μL)と塩化アセチル(7.5μL)を加え、60℃で一晩加熱し、ブチルグリコシドとした。試薬を窒素気流下で除去後、トリメチルシリル化し得られた誘導体をGCで分析した。このとき、既知のD−Gal,L−Gal,D−Man及びL−Manも同様に誘導体を調製し、それぞれの保持時間との比較により、構成糖の絶対配置を確認した。D−ガラクトース及びD−マンノースが認められた。
<GC条件>
Column: SPB−1 (Spelco, 0.32 mm x 30 m)
GC: GL Science GC−353ガスクロマトグラフ(検出器 FID)
キャリアガス:窒素
オーブン温度: 135−200℃(1℃/min)
このことから、本開示の多糖の基本構造の糖残基は、少なくともガラクトースとマンノースを主体として構成されており、当該ガラクトースのほとんどがフラノース型で存在するものと推定した。
実施例2:毛乳頭細胞賦活試験
〔ヒト正常毛乳頭細胞〕
凍結保存ヒト正常毛乳頭細胞(TOYOBO, Code No.CA60205a)の起眠時、継代培養、必要細胞数までの増殖には、毛乳頭細胞専用培地を使用した。培養はインキュベーター(5%CO、37℃)内で行った。
なお、実施例2及び後述の実施例3で使用する試薬等について、以下に示す。
<試薬>
DMEM 培地 (Nacalai tesque, 14242-65)
FBS (Invitrogen, Cat. No. 10091-148)
Penicillin-streptmycin solution (Nacalai tesque, Cat.No.26253-84)
0.25% trypsin-EDTA solution (Nacalai tesque、32777-44)
PBS (日水製薬株式会社, Code No. 05913)
Melanin (Sigma, Cat. No. M8631-100MG)
Phenyl-1-thiourea (PTU) (Wako, Cat. No. 166-13702)
Dimethyl sulfoxide (Nacalai tesque Cat. No. 13445-74)
Theophyline (Wako, Cat. No. 209-09932)
毛乳頭細胞増殖培地(TOYOBO, Code No.TMTPGM-250)添加剤含
毛乳頭細胞専用サブカルチャーセット(TOYOBO, Code No.CA090K)
生細胞数測定試薬SF(nacalai tesque, Cat.No. 07553)
Adenosine (Wako, Cat. No. 016-10493)
<その他>
Minisart 0.2 μm (Sartorius, Code No. 16534)
96 well culture plate (SUMILON, Cat. No. MS-8096F)
24 well cell culture cluster (TPP, Code No. 92424)
15 ml centrifuge tube (Corning, Code No. 430766)
Precision microplate reader (Molecular Devices)
Thermo Alumi Bath (IWAKI, ALB-121)
<標品等>
[1]メラニン生成を促進させるためテオフィリンを使用した。テオフィリンはDMSOに溶解・濾過滅菌し、36mg/ml溶液を調製した。使用時は培地にて希釈し、90μg/mLに調整した。
[2] Adenosine
毛乳頭細胞賦活試験の陽性コントロールとしてアデノシンを使用した。アデノシンはDMSOに溶解・濾過滅菌し、100mM溶液を調製した。使用時は培地にて希釈し、100μMに調整した。
〔毛乳頭毒性試験〕
毛乳頭細胞を1.4x10個/100μL/wellの濃度で96ウェルプレートに播種し、翌日(80%コンフルエント)、各濃度(0.01、0.1、1質量%)の水溶性パラクロレラ多糖体を含む試験培地に交換し、24時間培養した。
細胞の増殖性を、生細胞数測定試薬SFにて、測定した。生細胞数測定試薬を10%含む増殖培地を100μL/wellで添加し、37℃、5%COでインキュベートした。30、90分後にマイクロプレートリーダーを用いて反応培地の吸光度を測定した(測定波長:450nm、対照波長:595nm)。試験数3にて行った。
水溶性パラクロレラ多糖体の0.01、0.1及び1質量%の何れの濃度でも、毛乳頭細胞に対して細胞毒性がほとんど認められなかった。
〔毛乳頭細胞・細胞賦活試験〕
毛乳頭細胞を5x10個/100μL/wellの濃度で96ウェルプレートに播種し、翌日(50%コンフルエント)、各濃度(0.00001、0.001、0.1質量%)の被験物質を含む試験培地に交換し、24時間、72時間培養した。細胞増殖性を、生細胞数測定試薬SFを用いて測定した。生細胞数測定試薬を10%含む増殖培地を100μL/wellで添加し、37℃、5%COでインキュベートした。30、90分後にマイクロプレートリーダーを用いて反応培地の吸光度を測定した(測定波長:450nm、対照波長:595nm)。試験数5にて行った。
表2に示すように、水溶性パラクロレラ多糖体の0.00001質量%以上の濃度で、優れた毛乳頭細胞増殖賦活作用が認められた。
<有意差検定>
比較試験区間では有意差検定を行った。検定はStudent T−testとして行いP<0.05(帰無仮説が5%未満)のものを有意差ありと判断した。
一般に細胞増殖過程では分裂が盛んな指数増殖期と分裂を停止し安定的に細胞を維持する維持期に大別できる。本試験において各時期における水溶性パラクロレラ多糖の効果を検証するため細胞密度(コンフルエント)が40〜60%の状態で水溶性パラクロレラ多糖を添加し、24時間培養後の生細胞数を測定した。また、さらに48時間培養(合計3日間)により維持期における細胞へ与える影響を検証した。
指数増殖期(培養1日)、維持期(培養3日)において水溶性クロレラ多糖体の最低濃度区において無添加区と比較して約1.1〜1.4倍の増殖促進を示した。これは被験物質に細胞分裂促進効果と維持促進効果があることが考えられる。
一方、陽性対照であるアデノシンは指数増殖期において増殖促進作用を示したものの、維持期では無添加区と同程度の生細胞数であった。これはアデノシンが細胞分裂を促進するものの細胞密度が100%となった後では細胞維持には作用しないことが考えられる。
よって、本開示の多糖体は、優れた細胞増殖賦活作用及び優れた毛乳頭細胞増殖賦活作用を有することが認められた。
実施例3:美白作用(メラニン産生抑制)試験
〔細胞培養〕
B16 melanoma細胞を3x10個/ml/wellで24ウェルプレートに播種し、翌日、各濃度(0.01、0.1質量%)の水溶性パラクロレラ多糖体を含む試験培地1mlに交換し、48時間培養した。その後、全細胞の細胞内メラニン量を測定した。試験数5にて行った。
〔細胞内メラニンの測定〕
培地上清を除去後、ウェルに接着している細胞をPBS、1mlで洗浄する。細胞に0.25% trypsin−EDTA solutionを100μlを加え37℃、5%CO条件下で1分間静置する。トリプシン処理によって剥離した細胞をPBS1mlにて回収し、1.5mlチューブに移した。その後、1,000rpm、4℃で5分間遠心し、上清を除去後、PBSにて細胞ペレットを2回洗浄した。細胞懸濁液を3,000rpmで5分間遠心した後、PBSを除去し、1N水酸化ナトリウム溶液110μlに細胞を懸濁した。剥離した細胞を含むすべてのメラニン量を測定するため、培地上清、洗浄後のPBSを回収し3,000rpmで5分間遠心した後、得られた沈殿と細胞懸濁液を混ぜ、100℃で30分インキュベートして細胞を溶解し、この溶解液80μlを96ウェルプレートに移し、405nmにおける吸光度をマイクロプレートリーダーにて測定し、細胞内のメラニン量を算出した。メラニンの標準品として、市販合成メラニンを用いた。1N水酸化ナトリウム溶液にて2.5〜160μg/ml溶液を調製し、それぞれの吸光度から検量線を作成した。この標準検量線をもとに、各検体におけるメラニン量を算出した。
メラニン産生抑制試験の結果を表4に示す。水溶性パラクロレラ多糖体にてメラニン産生抑制を有意に示した。
よって、本開示の多糖体は、優れたメラニン産生抑制作用及び優れた美白作用を有することが認められた。
実施例4:線維芽細胞増殖賦活試験
〔培養上清〕
毛乳頭細胞の培養条件及び被験物質処理条件などは、上述の実施例1及び2と同様に行った。培養上清は測定まで冷凍保存した。
〔試薬〕
FGF7 Human ELISA kit(abcam、Code No.ablOO519)
〔分析装置〕
Precision microplate reader(Molecular Devices)
〔試薬等の調製〕
FGF−7測定において必要量100μL、VEGF測定において必要量200μLである。
実施例2で得られた培養上清量が約90μLを、1×PBSを用いて約4倍に希釈しFGF−7測定に使用した。
〔培養上清中のFGF−7量の測定〕
[1]FGF−7の測定はキットのプロトコールに順じて行った。以下にその詳細を述べる。
[2]FGF−7標準原液(50ng/ml)をもとに、反応緩衝液を用いて400、133.3、44.44、14.81、4.94、1.65、0.55pg/mlのFGF−7標準溶液を調製する。
[3]FGF−7標準溶液および検体(培養上清)100μlをFGF−7固相化マイクロプレートの各ウェルに添加し、室温にて2時間30分反応した(一次反応)。
ウェル内の溶液を除去し、洗浄液で4回洗浄する。
[4]ビオチン標識抗FGF−7抗体溶液を各ウェルに100μlずつ添加し、室温で60分間反応させる(二次反応)。
[5]ウェル内の溶液を除去し、洗浄液で4回洗浄する。
[6]ストレプトアピジン溶液100μlを各ウェルに添加し、室温で45分反応する。[7]酵素基質溶液100μlを各ウェルに添加し、遮光・室温下で30分間静置する(発色反応)。
[8]反応停止溶液を各ウェルに50μlずつ添加し、プレートミキサーで1分間混和後、プレートリーダーで各ウェルの吸光度を測定する(測定波長450nm)。
[9]標準曲線から、検体中のFGF−7濃度を算出する。
実施例2で回収した毛乳頭細胞培養上清中のFGF−7産生量を測定した。
表5及び6に示すように、毛乳頭細胞培養1日間では、陽性対照であるアデノシンにおいてFGF−7が未検出であった。しかし、水溶性パラクロレラ多糖体において、FGF−7産生促進効果が認められた。さらに、3日間では、水溶性パラクロレラ多糖体の0.01〜1質量%の濃度において、アデノシンと比較しても高いFGF−7産生促進効果が認められた。
よって、本開示の多糖体に非常に優れたFGF−7の産生促進作用、線維芽細胞増殖賦活作用を有することが認められた。
実施例5:血管内皮増殖賦活試験
〔培養上清〕
毛乳頭細胞の培養条件及び被験物質処理条件などは、上述の実施例1及び2と同様に行った。培養上清は測定まで冷凍保存した。
〔試薬〕
Human VEGF Quantikine ELISA(R&D Systems,Cat.No.DVEOO)
〔分析装置〕
Precision microplate reader(Molecular Devices)
〔培養上清中のVEGF量の測定〕
VEGFの測定はキットのプロトコールに順じて行った。以下にその詳細を述べる。
[1]VEGF標準原液(2000pg/ml)をもとに、反応緩衝液を用いて1000、500、250、125、62.5、31.2、15.6pg/mlのVEGF標準溶液を調製する。
[2]VEGF標準溶液および検体(培養上清)200μlを50μlの希釈溶液を各ウェルに添加したVEGF固相化マイクロプレートに添加し、室温にて2時間反応した(一次反応)。
[3]ウェル内の溶液を除去し、洗浄液で3回洗浄する。
[4]西洋ワサビベルオキシダーゼ結合VEGF抗体溶液を各ウェルに200μlずつ添加し、室温で2時間反応させる(二次反応)。
[5]ウェル内の溶液を除去し、洗浄液で3回洗浄する。
[6]基質溶液200μLを各ウェルに添加し、室温で20分反応する。
[7]反応停止溶液を各ウェルに50μlずつ添加し、プレートミキサーで1分間混和後、プレートリーダーで各ウェルの吸光度を測定する(測定波長450nm)。
[8]標準曲線から、検体中のVEGF濃度を算出する。
〔有意差検定〕
比較試験区間では有意差検定を行った。検定はStudentT−testとして行いPく0.05(帰無仮説が5%未満)のものを有意差ありと判断した。
実施例2で回収した毛乳頭細胞培養上清中のVEGF産生量を測定した。
表7及び8に示すように、陽性対照であるアデノシンのVEGF産生促進効果はあまりなかった。しかし、水溶性パラクロレラ多糖体いずれも高濃度試験区でVEGF産生促進効果が認められた。
よって、本開示の多糖体に非常に優れたVEGFの産生促進作用及び血管内皮増殖賦活作用を有することが認められた。
実際の毛髪組織では毛乳頭細胞は3次元的に増殖していることから、産生促進されたFGF−7及びVEGFが十分に機能すると考えられ、さらに毛乳頭細胞増殖賦活作用も認められているので、本開示の多糖体は、非常に優れた育毛作用を発揮すると考えられる。
本開示の多糖体は、種々の効能が認められ、また大量生産も可能であるため、幅広い分野での応用が可能である。また、本開示の多糖体の製造方法にて、高付加価値の多糖体を効率良く生産することが可能であるため、製造コストの点や安定供給の点からも、産業上の利用可能性が非常に高い。
(1)Parachlorella kessleri-PNC1株(FERM BP-11493)(受託日:2012年 7月19日)
寄託先:〒305-8566 茨城県つくば市東1-1-1 つくばセンター中央第6、独立行政法人
製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD(登録商標))。

Claims (7)

  1. 多糖体の基本構造の糖残基が少なくともガラクトースとマンノースで構成され、このガラクトース:マンノースの糖残基の比率が2〜4:1であり、当該ガラクトースにフラノース型が存在し、このガラクトースの含有量が、全中性糖中、50〜79質量%である、パラクロレラ属ケッセリ(Parachlorella kessleri-PNC1株(FERM BP-11493)由来の多糖体。
  2. 請求項1記載の多糖体を含有する育毛剤。
  3. 請求項1記載の多糖体を含有する毛乳頭細胞増殖賦活剤。
  4. 請求項1記載の多糖体を含有するFGF−7産生促進剤。
  5. 請求項1記載の多糖体を含有するVEGF産生促進剤。
  6. 請求項1記載の多糖体を含有するメラニン産生抑制剤。
  7. 請求項1記載の多糖体を含有する皮膚外用剤。
JP2016190529A 2016-09-29 2016-09-29 新規多糖体 Active JP6174219B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016190529A JP6174219B2 (ja) 2016-09-29 2016-09-29 新規多糖体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016190529A JP6174219B2 (ja) 2016-09-29 2016-09-29 新規多糖体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012168776A Division JP6118519B2 (ja) 2012-07-30 2012-07-30 新規多糖体

Publications (2)

Publication Number Publication Date
JP2016216750A JP2016216750A (ja) 2016-12-22
JP6174219B2 true JP6174219B2 (ja) 2017-08-02

Family

ID=57579906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016190529A Active JP6174219B2 (ja) 2016-09-29 2016-09-29 新規多糖体

Country Status (1)

Country Link
JP (1) JP6174219B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377675B2 (en) 2019-01-16 2022-07-05 Kuehnle Agrosystems, Inc. Subterranean microalgae for production of microbial biomass, substances, and compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171335A (zh) * 2020-01-08 2021-07-27 田咏轩 晚香玉多糖
EP4361254A1 (en) 2021-06-23 2024-05-01 Tokyo Women's Medical University Method for producing composition for culturing animal cells, composition for culturing animal cells obtained by said method, and method for culturing animal cells using said composition for culturing animal cells
CN116535532B (zh) * 2023-02-07 2024-03-29 广西中医药大学 一种小球藻甘露半乳聚糖或其硫酸酯化合物和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111710A1 (en) * 2009-03-27 2010-09-30 Solazyme, Inc. Microalgal polysaccharide compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377675B2 (en) 2019-01-16 2022-07-05 Kuehnle Agrosystems, Inc. Subterranean microalgae for production of microbial biomass, substances, and compositions

Also Published As

Publication number Publication date
JP2016216750A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6174219B2 (ja) 新規多糖体
Zhang et al. Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity
Li et al. Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa
Vishchuk et al. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity
Nakayasu et al. Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum
Anand et al. Bioactive potential and composition analysis of sulfated polysaccharide from Acanthophora spicifera (Vahl) Borgeson
Novoa-Carballal et al. By-products of Scyliorhinus canicula, Prionace glauca and Raja clavata: A valuable source of predominantly 6S sulfated chondroitin sulfate
Coste et al. Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract
Muhamad et al. Bioactive algal-derived polysaccharides: Multi-functionalization, therapeutic potential and biomedical applications
JP5270122B2 (ja) 酸性ムコ多糖産生微生物、酸性ムコ多糖の製造法、ならびに酸性ムコ多糖を有効成分として配合した美白剤
EP2511302B1 (en) Method for manufacturing purified hyaluronic acids
Sen et al. Structural and immunological studies of an exopolysaccharide from Acinetobacter junii BB1A
Rani et al. Prebiotic chondroitin sulfate disaccharide isolated from chicken keel bone exhibiting anticancer potential against human colon cancer cells
CN1133654C (zh) 灵芝α-(1→3)-D-葡聚糖羧甲基化衍生物及其用途和制备方法
CN109415682A (zh) 新型鱼孢菌科微生物及其用途
Liu et al. Effect of intake pattern of sulfated polysaccharides on its biological activity in high fat diet-fed mice
JP6118519B2 (ja) 新規多糖体
Li et al. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: Cell antioxidant, anticancer and immune-modulatory activities
JP2013035806A (ja) 弾性線維形成促進剤
JP2014105202A (ja) 免疫賦活剤
JP3802011B2 (ja) 美白剤
JP2009024075A (ja) 多糖体、その製造方法及びその用途
KR101727251B1 (ko) 녹조류 유래 다당류 분해능을 갖는 슈도모나스 제니귤라타 균주 kctc12651bp
Turło et al. Selenium-enriched polysaccharide fraction isolated from mycelial culture of Lentinula edodes (Berk.)-preliminary analysis of the structure and biological activity.
JP4944412B2 (ja) 前駆脂肪細胞分化抑制剤及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6174219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250