JP6172122B2 - 亜鉛系めっき鋼板およびその製造方法 - Google Patents

亜鉛系めっき鋼板およびその製造方法 Download PDF

Info

Publication number
JP6172122B2
JP6172122B2 JP2014233398A JP2014233398A JP6172122B2 JP 6172122 B2 JP6172122 B2 JP 6172122B2 JP 2014233398 A JP2014233398 A JP 2014233398A JP 2014233398 A JP2014233398 A JP 2014233398A JP 6172122 B2 JP6172122 B2 JP 6172122B2
Authority
JP
Japan
Prior art keywords
steel sheet
fluororesin
acidic solution
zinc
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014233398A
Other languages
English (en)
Other versions
JP2016098380A (ja
Inventor
古谷 真一
真一 古谷
克弥 星野
克弥 星野
平 章一郎
章一郎 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014233398A priority Critical patent/JP6172122B2/ja
Publication of JP2016098380A publication Critical patent/JP2016098380A/ja
Application granted granted Critical
Publication of JP6172122B2 publication Critical patent/JP6172122B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する亜鉛系めっき鋼板を安定して製造する方法および優れたプレス成形性を有する亜鉛系めっき鋼板に関する。
亜鉛系めっき鋼板は自動車車体用途を中心に広範な分野で広く利用される。通常、亜鉛系めっき鋼板は、プレス成形を施した後に使用に供される。しかし、亜鉛系めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での亜鉛系めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で、摺動抵抗が大きい亜鉛系めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
そのため、亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法として、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油が高粘性であるため、塗装工程で脱脂不良による塗装欠陥が発生する。また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。このため、亜鉛系めっき鋼板自身のプレス成形性の改善が要求されている。
上記の問題を解決する方法として、特許文献1には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、亜鉛を主体とする酸化膜を形成させてプレス加工性を向上させる技術が開示されている。
特許文献2には、鋼板を溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施した後にpH緩衝作用を有する酸性溶液と接触させ、所定時間保持した後水洗することでめっき表層に酸化物層を形成させ、プレス成形性を向上させる技術が開示されている。
特許文献3には、調質圧延後の溶融亜鉛めっき鋼板を、pH緩衝作用を有する酸性溶液と接触させ、鋼板表面に酸性溶液の液膜が形成された状態で所定時間保持した後水洗、乾燥し、めっき表面に酸化物層を形成したプレス成形性に優れる溶融亜鉛めっき鋼板が開示されている。
特許文献4には、電気亜鉛めっき鋼板を、pH緩衝作用を有する酸性溶液もしくは酸性の電気亜鉛めっき浴と接触させ、その後に所定時間保持した後水洗、乾燥し、めっき表面にZn系酸化物を形成した、プレス成形性に優れる電気亜鉛めっき鋼板が開示されている。
特許文献5には、亜鉛系めっき鋼板を酸性溶液に接触させ、所定時間保持し、水洗・乾燥を行うことにより表面に酸化物層及び/又は水酸化物層を形成する亜鉛系めっき鋼板の製造方法において、酸性溶液中に酸化物コロイドを含有させることにより、優れたプレス成形性を得る技術が開示されている。
特開平2−190483号公報 特許第3807341号公報 特許第4329387号公報 特開2005−248262号公報 特許第5386842号公報
上記特許文献1〜5に記載の技術を適用した場合、通常の亜鉛系めっき鋼板と比較すると良好なプレス成形性を得ることができる。しかし、近年では自動車車体の軽量化の観点から高強度の亜鉛系めっき鋼板が広く用いられるようになり、従来以上のプレス成形性が求められるようになっている。
また、比較的強度の低い亜鉛系めっき鋼板に対しても、より複雑な成形を可能とするため、更なるプレス成形性の向上が必要である。
上記特許文献1〜5に記載の技術を高強度の亜鉛系めっき鋼板に適用した場合には必ずしも十分な効果を得ることができず、比較的強度の低い亜鉛系めっき鋼板に対しても、複雑な成形を可能とするには十分ではなかった。
本発明は、かかる事情に鑑みてなされたものであって、高強度の亜鉛系めっき鋼板、複雑な成形を施される亜鉛系めっき鋼板に対しても安定的に優れたプレス成形性を有する亜鉛系めっき鋼板を製造する方法および優れたプレス成形性を有する亜鉛系めっき鋼板を提供することを目的とする。
発明者らは、上記課題を解決するために、亜鉛系めっき鋼板の表面処理に関する種々の検討を行った。その結果、フッ素樹脂を酸性溶液中に含有させ、酸化物及び/又は水酸化物を含む層にフッ素樹脂を分散、付着させることで、摩擦係数を大幅に低下させ、プレス成形性を向上させることが可能となることを見出し、本発明を完成させた。
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]亜鉛系めっき鋼板の表面にフッ素樹脂を含む酸性溶液を接触させた状態で1〜60秒間保持し、その後、水洗、乾燥を行うことにより、平均厚さが10nm以上であり、酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜を形成する皮膜形成工程を備える亜鉛系めっき鋼板の製造方法。
[2]前記フッ素樹脂は、平均粒子径が50〜3000nmである粒子状のフッ素樹脂を含有することを特徴とする[1]に記載の亜鉛系めっき鋼板の製造方法。
[3]前記フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)のうち、少なくとも1種類以上を合計で0.1〜50g/L含有することを特徴とする[1]または[2]に記載の亜鉛系めっき鋼板の製造方法。
[4]前記酸性溶液は、pH緩衝作用を有し、かつ、1リットルの酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/L水酸化ナトリウム溶液の量(L)で定義するpH上昇度が0.05〜0.5の範囲であることを特徴とする[1]〜[3]のいずれかに記載の亜鉛系めっき鋼板の製造方法。
[5]前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくとも1種類以上を合計で5〜50g/L含有し、前記酸性溶液のpHが0.5〜6.0であり、前記酸性溶液の液温が20〜70℃であることを特徴とする[1]〜[4]のいずれかに記載の亜鉛系めっき鋼板の製造方法。
[6]前記皮膜形成工程において、前記接触させた状態は、亜鉛系めっき鋼板の表面に前記酸性溶液により液膜を形成させた状態であり、前記液膜の付着量が30g/m以下であることを特徴とする[1]〜[5]のいずれかに記載の亜鉛系めっき鋼板の製造方法。
[7][1]〜[6]のいずれかに記載の亜鉛系めっき鋼板の製造方法により生産され、Znおよびフッ素樹脂を含み、酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜を有し、前記フッ素樹脂含有皮膜の平均厚さが、10nm以上であることを特徴とする亜鉛系めっき鋼板。
本発明によれば、亜鉛系めっき鋼板と金型等との摩擦係数が顕著に低下する。このため、高強度の亜鉛めっき鋼板のプレス成形時や、比較的強度の低い亜鉛系めっき鋼板に対して、バックドアなどの複雑形状化に必要とされる深絞り加工などの難成形時においても、プレス成形時の割れ危険部位での摺動抵抗が小さく張り出し性が良好である。即ち、本発明によれば、優れたプレス成形性を有する亜鉛系めっき鋼板を得ることができる。
なお、本発明において、「高強度」とは引張強度(TS)が440MPa以上を想定しており、「比較的強度の低い」とはTSが440MPa未満を想定している。
摩擦係数測定装置を示す概略正面図である。 条件1のビード形状・寸法を示す概略斜視図である。 条件2のビード形状・寸法を示す概略斜視図である。
本発明の亜鉛系めっき鋼板の製造方法は、表面にフッ素樹脂含有皮膜を有する亜鉛系めっき鋼板の製造方法である。本発明では、フッ素樹脂含有皮膜を形成するための溶液は酸性溶液であり、この酸性溶液がフッ素樹脂を含有する。また、本発明では、フッ素樹脂含有皮膜を形成するための方法として、亜鉛系めっき鋼板に酸性溶液を接触させた後1〜60秒間保持し、その後、水洗と乾燥を行う皮膜形成工程を有する方法を採用する。
本発明では、上記皮膜形成工程を行うことにより、亜鉛系めっき鋼板表面に、酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜を形成する。酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜とすることで、良好なプレス成形性を実現できる。このメカニズムは以下のように考えることができる。
亜鉛系めっき鋼板を酸性溶液に接触させると、鋼板側では亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生を生じるため、亜鉛の溶解が進行すると、酸性溶液中の水素イオン濃度が減少する。その結果、酸性溶液のpHが上昇し、酸化物及び/又は水酸化物を含む層が安定となるpH領域に達すると、亜鉛系めっき鋼板表面に酸化物及び/又は水酸化物を含む層を形成すると考えられる。この際にフッ素樹脂を含有する酸性溶液を使用すると、皮膜中又は皮膜表層にフッ素樹脂が分散及び/又は付着する。また、このフッ素樹脂含有の皮膜の形成は、めっき層表面をわずかに溶解させながら進行するものである。このため、このフッ素樹脂含有皮膜は、フッ素樹脂を分散させた溶媒を用いた塗布処理などにより得られる皮膜と比較して密着性(めっき層表面と皮膜との密着性)も良好である。また、本発明では、酸化物及び/又は水酸化物を含む層の沈殿反応を利用するため、加熱処理などにより表面を完全被覆することで得られる皮膜と比較すると、厚い皮膜を形成できる。
本発明では、酸性溶液中のフッ素樹脂は、酸性溶液中に分散させる必要がある。攪拌等により所望の分散状態にすればよい。
フッ素樹脂はそれ自身の摩擦係数が低く、潤滑剤として広く用いられている。このような性質を持つフッ素樹脂が分散及び/又は付着したフッ素樹脂含有皮膜が金型と鋼板の間に存在することで、摩擦係数が著しく低下し、優れたプレス成形性を得ることが可能である。
フッ素樹脂を効率よく皮膜中に含有させるためには、平均粒子径が50〜3000nmの範囲にある粒子状のフッ素樹脂を用いることが好ましい。平均粒子径が50nm未満でも摩擦係数を低減する効果は見込まれるが、粒子の作製が困難であり、液中で凝集を起こしやすくなり、フッ素樹脂を含む酸性溶液の管理が困難となる場合がある。粒子径が3000nmを超えると、フッ素樹脂が皮膜中に取り込まれ難くなり、また密着性(めっき層表面と皮膜との密着性)が劣る傾向がある。本発明では、平均粒子径が100〜500nmの粒子状フッ素樹脂を、酸性処理液に含有させることが好ましい。平均粒子径はレーザー回折法で測定して得られた値を採用する。
フッ素樹脂は、フッ素樹脂含有皮膜を構成する酸化物及び/又は水酸化物を含む層に分散して含まれる。
本発明におけるフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)のうち、少なくとも1種類以上を合計で0.1〜50g/L含有することが好ましい。その含有量が0.1g/L未満では、亜鉛系めっき鋼板表面に存在するフッ素樹脂量が少ないため、十分な摩擦係数の低下効果が得られない場合がある。また、その含有量が50g/Lを超えると、十分な摺動特性は得られるが、亜鉛系めっき鋼板表面に存在するフッ素樹脂量は飽和し、フッ素樹脂のコストが増加する場合がある。
使用する酸性溶液は、pH=0.5〜6.0の領域においてpH緩衝作用を有するものが好ましい。これは、上記pH範囲でpH緩衝作用を有する酸性溶液を使用すると、所定時間保持することで、酸性溶液とめっき層の反応によりZnの溶解とZn系酸化物の形成反応が十分に生じ、亜鉛系めっき鋼板表面に酸化物及び/又は水酸化物を含む層を安定して得ることができるためである。
また、このようなpH緩衝作用を、1リットルの酸性溶液のpHを2.0〜5.0まで上昇させるのに要する1.0mol/L水酸化ナトリウム水溶液の量(L)で定義するpH上昇度で評価できる。本発明では、この値が0.05〜0.5の範囲にあるとよい。pH上昇度が0.05未満であると、pHの上昇が速やかに起こって酸化物及び/又は水酸化物を含む層の形成に十分な亜鉛の溶解が得られない場合がある。一方で、pH上昇度が0.5を超えると、Znの溶解が促進され、酸化物及び/又は水酸化物を含む層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失う場合がある。ここで、pHが2.0を超える酸性溶液のpH上昇度は、硫酸などのpH=2.0〜5.0の範囲でほとんど緩衝性を有しない無機酸を酸性溶液に添加してpHを一旦2.0に低下させて評価することとする。
このようなpH緩衝作用を有する酸性溶液としては、酢酸ナトリウム(CHCOONa)などの酢酸塩やフタル酸水素カリウム((KOOC))などのフタル酸塩、クエン酸ナトリウム(Na)やクエン酸二水素カリウム(KH)などのクエン酸塩、コハク酸ナトリウム(Na)などのコハク酸塩、乳酸ナトリウム(NaCHCHOHCO)などの乳酸塩、酒石酸ナトリウム(Na)などの酒石酸塩、ホウ酸塩、リン酸塩が挙げられ、これらのうち少なくとも1種類以上を合計で5〜50g/L含有する水溶液を使用することができる。濃度が5g/L未満であると、Znの溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物及び/又は水酸化物を含む層を形成することができない場合がある。また、濃度が50g/Lを超えると、Znの溶解が促進され、酸化物及び/又は水酸化物を含む層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失う場合がある。
酸性溶液のpHは0.5〜6.0の範囲にあることが望ましい。これはpHが6.0を超えると、溶液中でZnの溶解が十分に生じず、酸化物及び/又は水酸化物を含む層の形成が十分でなくなる場合があるためである。一方、pHが低すぎると、亜鉛の溶解が促進され、めっき付着量の減少だけでなく、めっき皮膜に亀裂が生じ加工時に剥離が生じやすくなる。このため、pHが0.5以上であることが望ましい。
酸性溶液の温度については、20〜70℃の範囲であることが好ましい。これは20℃未満であると、酸化物及び/又は水酸化物を含む層の生成反応に長時間を有し、生産性の低下を招く場合があるためである。一方、温度が高い場合には、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなる。このため、酸性溶液の温度は70℃以下の温度に制御することが望ましい。
亜鉛系めっき鋼板を酸性溶液に接触させる方法には特に制限はなく、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等があるが、保持は、液膜状の酸性溶液が亜鉛系めっき鋼板表面に存在する状態で行うことが望ましい。これは、鋼板表面に存在する酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物及び/又は水酸化物を含む層を形成するまでに長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。この観点から、亜鉛系めっき鋼板表面に形成する酸性溶液の液膜の量は、30g/m以下に調整することが好ましく有効である。より好ましくは、液膜の乾燥を防ぐ目的で1g/m以上の液膜量が適している。溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。
また、酸性溶液を接触させた状態での保持時間は、1〜60秒間必要である。これは水洗までの時間が1秒未満であると、溶液のpHが上昇し酸化物及び/又は水酸化物を含む層が形成される前に、酸性溶液が洗い流されるために、摺動性の向上効果が得られず、また60秒を超えても、酸化物層の量に変化が見られないためである。
なお、本発明では、使用する酸性溶液中にフッ素樹脂を含有していれば摺動性に優れた酸化物層を安定して形成できるため、酸性溶液中にその他の金属イオンや無機化合物などを不純物として、あるいは故意に含有していても本発明の効果が損なわれるものではない。
本発明におけるフッ素樹脂含有皮膜は、Znおよびフッ素樹脂を必須成分として含み、平均厚さが10nm以上であることが必要である。フッ素樹脂含有皮膜の平均厚さが10nm未満であると摺動抵抗を低下させる効果が不十分となる。一方、フッ素樹脂含有皮膜の平均厚さが200nmを超えると、プレス加工中に皮膜が破壊し摺動抵抗が上昇し、また溶接性が低下する傾向にあるため好ましくない。
上記フッ素樹脂含有皮膜形成後の水洗は、主に酸性溶液除去のために行われ、乾燥は皮膜上の水分除去の目的で行われる。一般的な水洗、乾燥方法を採用すればよい。
本発明を実施例により更に詳細に説明する。
板厚0.8mmの電気亜鉛めっき鋼板(EG)、合金化溶融亜鉛めっき鋼板(GA)および溶融亜鉛めっき鋼板(GI)上に、皮膜形成工程として、表1に示すように、フッ素樹脂粒子を各濃度添加し、pHを硫酸で調整した各種の酸性溶液に3秒浸漬した。その後、ロール絞りを行い、液量を調整した後、1〜60秒間大気中、室温にて放置し、十分水洗を行った後、乾燥を実施した。
次に、以上により得られた鋼板に対して、プレス成形性を簡易的に評価する手法として摩擦係数を測定し、亜鉛系めっき鋼板表面に形成されたフッ素樹脂含有皮膜の膜厚を測定した。さらに、フッ素樹脂が皮膜中に含まれていることを確認するため、表面フッ素強度を測定した。
なお、摩擦係数の測定方法、膜厚測定方法、フッ素強度測定方法は以下の通りである。
摺動性評価試験(摩擦係数の測定)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。図1は摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることによりビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7がスライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させた際の摺動抵抗力Fを測定するために第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。
図2、3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ4mm、摺動方向両端の下部は曲率0.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。
摩擦係数測定試験は下に示す2条件で行った。
[条件1]
図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):100cm/minとした。
[条件2]
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
酸化(水酸化)膜厚の測定
膜厚が96nmの熱酸化SiO膜が形成されたSiウエハを参照物質として用い、蛍光X線分析装置でO−Kα線を測定することで、SiO換算のフッ素樹脂含有皮膜の平均厚さを求めた。分析面積は35mmφである。
フッ素強度の測定
蛍光X線分析装置でF−Kα線を測定することでフッ素強度を求めた。分析面積は35mmφである。
以上より得られた試験結果を条件と併せて表1〜3に示す。
Figure 0006172122
Figure 0006172122
Figure 0006172122
表1〜3に示す試験結果から下記事項が明らかとなった。
表1は電気亜鉛めっき(EG)に適用した例である。No.1は酸性溶液による処理を行っていない比較例である。条件1・条件2において摩擦係数が高い。No.2〜6はフッ素樹脂を含まない酸性溶液で処理をした比較例である。No.1と比較すると摩擦係数が低い。No.7〜25、27〜47、49〜52はフッ素樹脂を含有する酸性溶液で処理を行った発明例であり、いずれの条件でもフッ素樹脂を含まない比較例No.2〜6と比較して摩擦係数が低下している。No.26、48では皮膜の形成がほとんど見られず、酸化膜厚が適用範囲外の比較例であり、摩擦係数の低下がほとんど認められない。
表2は合金化溶融亜鉛めっき鋼板(GA)、表3は溶融亜鉛めっき鋼板(GI)に対する実施例である。いずれの発明例においても摩擦係数の低下が認められ、めっき種によらず、フッ素樹脂含有により摩擦係数が低下することが確認された。
本発明の亜鉛系めっき鋼板はプレス成形性に優れることから、自動車車体用途を中心に広範な分野で適用できる。
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力

Claims (6)

  1. 亜鉛系めっき鋼板の表面に、平均粒子径が50〜500nmである粒子状のフッ素樹脂を含む酸性溶液を接触させた状態で1〜60秒間保持し、その後、水洗、乾燥を行うことにより、平均厚さが10nm以上であり、酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜を形成する皮膜形成工程を備える亜鉛系めっき鋼板の製造方法。
  2. 前記フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン−テトラフルオロエチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)のうち、少なくとも1種類以上を合計で0.1〜50g/L含有することを特徴とする請求項1に記載の亜鉛系めっき鋼板の製造方法。
  3. 前記酸性溶液は、pH緩衝作用を有し、かつ、1リットルの酸性溶液のpHを2.0から5.0まで上昇させるのに必要な1.0mol/L水酸化ナトリウム溶液の量(L)で定義するpH上昇度が0.05〜0.5の範囲であることを特徴とする請求項1又は2に記載の亜鉛系めっき鋼板の製造方法。
  4. 前記酸性溶液は、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち少なくとも1種類以上を合計で5〜50g/L含有し、
    前記酸性溶液のpHが0.5〜6.0であり、
    前記酸性溶液の液温が20〜70℃であることを特徴とする請求項1〜のいずれかに記載の亜鉛系めっき鋼板の製造方法。
  5. 前記皮膜形成工程において、前記接触させた状態は、亜鉛系めっき鋼板の表面に前記酸性溶液により液膜を形成させた状態であり、前記液膜の付着量が30g/m以下であることを特徴とする請求項1〜のいずれかに記載の亜鉛系めっき鋼板の製造方法。
  6. Znおよび平均粒子径が50〜500nmである粒子状のフッ素樹脂を含み、酸化物及び/又は水酸化物を含む層から構成されるフッ素樹脂含有皮膜を有し、
    前記フッ素樹脂含有皮膜の平均厚さが、10nm以上であることを特徴とする亜鉛系めっき鋼板。
JP2014233398A 2014-11-18 2014-11-18 亜鉛系めっき鋼板およびその製造方法 Active JP6172122B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233398A JP6172122B2 (ja) 2014-11-18 2014-11-18 亜鉛系めっき鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014233398A JP6172122B2 (ja) 2014-11-18 2014-11-18 亜鉛系めっき鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2016098380A JP2016098380A (ja) 2016-05-30
JP6172122B2 true JP6172122B2 (ja) 2017-08-02

Family

ID=56077118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233398A Active JP6172122B2 (ja) 2014-11-18 2014-11-18 亜鉛系めっき鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP6172122B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494591B (zh) 2017-03-30 2022-02-25 杰富意钢铁株式会社 镀锌系钢板及其制造方法
JP7375794B2 (ja) * 2020-09-09 2023-11-08 Jfeスチール株式会社 鋼板
JP7375795B2 (ja) * 2020-09-09 2023-11-08 Jfeスチール株式会社 プレス成形品の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136081A (ja) * 1997-07-18 1999-02-09 Nippon Parkerizing Co Ltd 金属材料用水系樹脂含有クロメート組成物および機能性亜鉛めっき鋼板の製造方法
JP3807341B2 (ja) * 2002-04-18 2006-08-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP5463609B2 (ja) * 2005-03-31 2014-04-09 Jfeスチール株式会社 クロムフリー表面処理亜鉛系めっき鋼板およびその製造方法ならびに表面処理液
US8268095B2 (en) * 2006-05-02 2012-09-18 Jfe Steel Corporation Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet

Also Published As

Publication number Publication date
JP2016098380A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5044976B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
KR101788950B1 (ko) 아연계 도금 강판의 제조 방법
JP5884207B2 (ja) 亜鉛系めっき鋼板およびその製造方法
WO2007129678A1 (ja) 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP6172122B2 (ja) 亜鉛系めっき鋼板およびその製造方法
JP6256407B2 (ja) 鋼板およびその製造方法
JP5347295B2 (ja) 亜鉛系めっき鋼板およびその製造方法
JP6551270B2 (ja) 亜鉛系めっき鋼板の製造方法
JP5044924B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP5386842B2 (ja) 亜鉛系めっき鋼板およびその製造方法
JP5434036B2 (ja) Zn−Al系めっき鋼板およびその製造方法
JP5648309B2 (ja) 溶融亜鉛系めっき鋼板の製造方法
JP4826486B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
WO2010070943A1 (ja) 亜鉛系めっき鋼板およびその製造方法
JP6229686B2 (ja) 亜鉛系めっき鋼板およびその製造方法
JP4998658B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP5927995B2 (ja) 亜鉛系めっき鋼板の製造方法
JP2009174047A (ja) 亜鉛系めっき鋼板およびその製造方法
US10907255B2 (en) Galvanized steel sheet and manufacturing method therefor
JP5961967B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP2009235432A (ja) 亜鉛系めっき鋼板およびその製造方法
JP5119734B2 (ja) 亜鉛系めっき鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250