JP6171566B2 - Extension method - Google Patents

Extension method Download PDF

Info

Publication number
JP6171566B2
JP6171566B2 JP2013110219A JP2013110219A JP6171566B2 JP 6171566 B2 JP6171566 B2 JP 6171566B2 JP 2013110219 A JP2013110219 A JP 2013110219A JP 2013110219 A JP2013110219 A JP 2013110219A JP 6171566 B2 JP6171566 B2 JP 6171566B2
Authority
JP
Japan
Prior art keywords
building
extension
upper structure
seismic isolation
existing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013110219A
Other languages
Japanese (ja)
Other versions
JP2014227777A (en
Inventor
浩 神道
浩 神道
文明 遠藤
文明 遠藤
慎一 西原
慎一 西原
恵美 高田
恵美 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013110219A priority Critical patent/JP6171566B2/en
Publication of JP2014227777A publication Critical patent/JP2014227777A/en
Application granted granted Critical
Publication of JP6171566B2 publication Critical patent/JP6171566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、免震構造の既存建物に隣接させて免震構造の建物を増築する方法に関する。   The present invention relates to a method for extending a building having a base isolation structure adjacent to an existing building having a base isolation structure.

免震構造の建物として、地盤を掘削して形成された免震ピットに設置された免震装置上に上部構造体が構築された建物や、中間階の柱の途中に免震装置が設置された建物が知られている。また、既存の免震建物に隣接させて免震建物を増築する方法として、まず、既存の免震建物から独立して増築免震建物を構築し、その後、既存の免震建物の基礎と増築免震建物の基礎とを連結し(上部構造体の下端側同士を連結し)、その連結部分に上部構造体を構築することで、既存の免震建物と増築免震建物を完全に一体化する方法が提案されている。(例えば、特許文献1参照)。   Buildings with an upper structure built on seismic isolation devices installed in seismic isolation pits formed by excavating the ground as seismic isolation structures, or seismic isolation devices installed in the middle of pillars on intermediate floors The building is known. In addition, as a method of extending the seismic isolation building adjacent to the existing seismic isolation building, first, the extension seismic isolation building is constructed independently from the existing seismic isolation building, and then the foundation and extension of the existing seismic isolation building are built. By connecting the base of the base-isolated building (connecting the lower ends of the upper structure to each other) and constructing the upper structure at the connecting part, the existing base-isolated building and the extension base-isolated building are completely integrated A method has been proposed. (For example, refer to Patent Document 1).

特開平10−292643号公報Japanese Patent Laid-Open No. 10-292643

免震構造の建物では、免震層の剛心と上部構造体の重心とが一致しないこと(偏心)により、捩じれ振動が発生して耐震性が低下してしまう。そのため、増築完成時を想定して免震層の設計が行われる。特許文献1には、上記の手順で免震建物を増築すれば、増築途中にも免震層の剛心と上部構造体の重心とを一致させながら施工できると記載されている。しかし、特許文献1の増築方法では、既存の免震建物の上部構造体と増築免震建物の上部構造体の重量差が大きく、且つ、両建物間に構築する上部構造体の重量が大きい場合に、その両建物の基礎を連結した時点での重心が、増築完成時の重心に比べて、上部構造体の重量が大きい方の建物側にずれてしまう。つまり、増築中に免震層の剛心と上部構造体の重心とがずれるため、増築中に地震が起こると建物に捩じれ振動が発生する虞がある。   In a building with a base isolation structure, the rigid center of the base isolation layer and the center of gravity of the superstructure do not coincide (eccentricity), which causes torsional vibration and reduces earthquake resistance. Therefore, the seismic isolation layer is designed on the assumption that the extension will be completed. Patent Document 1 describes that if a seismic isolation building is extended by the above-described procedure, it can be constructed while making the seismic isolation layer rigid center and the center of gravity of the upper structure coincide with each other even during the extension. However, in the extension method of Patent Document 1, when the weight difference between the upper structure of the existing base isolation building and the upper structure of the extension base isolation building is large and the weight of the upper structure constructed between the two buildings is large In addition, the center of gravity at the time when the foundations of the two buildings are connected is shifted to the building side where the weight of the upper structure is larger than the center of gravity when the extension is completed. In other words, since the stiffness of the seismic isolation layer and the center of gravity of the upper structure are shifted during the extension, there is a risk that the building will be twisted and vibrated if an earthquake occurs during the extension.

本発明はかかる従来の課題に鑑みてなされたもので、免震構造の既存建物に隣接する免震構造の建物の増築中の耐震性を向上させる増築方法を提供することを目的とする。   This invention is made | formed in view of this conventional subject, and it aims at providing the extension method which improves the earthquake resistance in the extension of the building of the seismic isolation structure adjacent to the existing building of a seismic isolation structure.

かかる目的を達成するための増築方法は、第1上部構造体と第1下部構造体との間に第1免震層が介在された既存建物に間隔を空けて隣接するように、第2上部構造体と第2下部構造体との間に第2免震層が介在された増築建物であって、前記第2上部構造体の重量が前記第1上部構造体の重量と異なる前記増築建物を構築する工程と、
前記第1上部構造体と前記第2上部構造体の上端側同士を剛性部材にて連結し、前記第1上部構造体と前記第2上部構造体の下端側同士を剛性部材にて連結し、前記剛性部材にて連結される前記上端側と、前記剛性部材にて連結される前記下端側との間の階は前記剛性部材にて連結しない工程と、
有し、
前記既存建物の外壁を壊すことなくそのまま利用することを特徴とする増築方法である。
The extension method for achieving the object is to add the second upper part so as to be adjacent to the existing building with the first seismic isolation layer interposed between the first upper structure and the first lower structure. An extension building in which a second seismic isolation layer is interposed between the structure and the second lower structure, wherein the weight of the second upper structure is different from the weight of the first upper structure. Building process;
The upper ends of the first upper structure and the second upper structure are connected by a rigid member, and the lower ends of the first upper structure and the second upper structure are connected by a rigid member , The floor between the upper end side connected by the rigid member and the lower end side connected by the rigid member is not connected by the rigid member ;
Have
It is an extension method characterized in that it is used as it is without breaking the outer wall of the existing building .

このような増築方法によれば、既存建物から分離して増築建物を構築するため、既存建物は増築の影響を受けず、増築中も増築前と同様に既存建物に免震機能が働く。また、免震層の剛心と上部構造体の重心とが一致している既存建物に、既存建物とは独立して免震層の剛心と上部構造体の重心とが一致している増築建物を部分連結した時点で、その一体化した建物における免震層の剛心と上部構造体の重心とが一致するため、増築中の捩じれ振動の発生を抑制できる。従って、増築中の耐震性を向上させることができる。   According to such an extension method, since the extension building is constructed separately from the existing building, the existing building is not affected by the extension and the seismic isolation function works on the existing building during the extension as before. In addition, the existing building where the center of gravity of the base isolation layer and the center of gravity of the upper structure coincide with the extension of the center of gravity of the base isolation layer and the center of gravity of the upper structure independently of the existing building. When the buildings are partially connected, the rigidity of the seismic isolation layer in the integrated building and the center of gravity of the upper structure coincide with each other, so that the generation of torsional vibration during extension can be suppressed. Therefore, the earthquake resistance during the extension can be improved.

かかる増築方法であって、前記上端側の前記剛性部材と前記下端側の前記剛性部材とのうちの少なくとも一方を、水平面上に設けることを特徴とする増築方法である。
このような増築方法によれば、水平方向の地震力を、第1上部構造体と第2上部構造体のうちの一方から他方へ効率よく伝達させることができ、剛性部材に余分な力を掛けることなく第1上部構造体と第2上部構造体とを一体に振動させることができる。
In this extension method, at least one of the rigid member on the upper end side and the rigid member on the lower end side is provided on a horizontal plane.
According to such an extension method, the horizontal seismic force can be efficiently transmitted from one of the first upper structure and the second upper structure to the other, and an extra force is applied to the rigid member. The first upper structure and the second upper structure can be vibrated together without any problem.

かかる増築方法であって、前記上端側の前記剛性部材と前記下端側の前記剛性部材とのうちの少なくとも一方を、水平面上にて回動可能なように前記上部構造体に連結することを特徴とする増築方法である。
このような増築方法によれば、第1上部構造体と第2上部構造体の振動方向が異なり交差する場合にも、第1上部構造体と第2上部構造体の交差する方向への相対変位が可能であるため、建物の捩じれを抑えることができる。
In this extension method, at least one of the rigid member on the upper end side and the rigid member on the lower end side is coupled to the upper structure so as to be rotatable on a horizontal plane. It is an extension method.
According to such an extension method, even when the vibration directions of the first upper structure and the second upper structure are different and intersect, the relative displacement in the direction in which the first upper structure and the second upper structure intersect. Therefore, it is possible to suppress the twisting of the building.

かかる増築方法であって、前記増築建物の免震周期を前記既存建物の免震周期と同一周期に設定することを特徴とする増築方法である。
このような増築方法によれば、剛性部材に余分な力を掛けることなく第1上部構造体と第2上部構造体とを一体に振動させることができる。
This extension method is an extension method characterized in that the seismic isolation period of the extension building is set to the same period as the seismic isolation period of the existing building.
According to such an extension method, the first upper structure and the second upper structure can be vibrated integrally without applying an extra force to the rigid member.

かかる増築方法であって、前記第2免震層を前記第1免震層と同一レベルに設けることを特徴とする増築方法である。
このような増築方法によれば、剛性部材を水平面上に設け易くなり、また、増築建物の免震周期を既存建物の免震周期と同一周期に設定し易くなる。
In this extension method, the second seismic isolation layer is provided at the same level as the first seismic isolation layer.
According to such an extension method, it becomes easy to provide the rigid member on the horizontal plane, and it becomes easy to set the seismic isolation period of the extension building to the same period as that of the existing building.

かかる増築方法であって、前記増築建物の強軸を前記既存建物の強軸に交差させることを特徴とする増築方法である。
このような増築方法によれば、第1上部構造体と第2上部構造体のうちの一方の上部構造体の弱軸方向に沿う地震力に対して、その一方の上部構造体の変位を他方の上部構造体で抑えることができ、耐震性を向上させることができる。
In this extension method, the strong axis of the extension building intersects the strong axis of the existing building.
According to such an extension method, the displacement of one of the upper structures is reduced with respect to the seismic force along the weak axis direction of one of the first upper structure and the second upper structure. It can be suppressed by the superstructure of the structure, and the earthquake resistance can be improved.

かかる増築方法であって、前記既存建物と前記増築建物との間に採光通風空間を形成することを特徴とする増築方法である。
このような増築方法によれば、既存建物及び増築建物の採光通風を良好に確保することができる。
In this extension method, a daylighting ventilation space is formed between the existing building and the extension building.
According to such an extension method, it is possible to satisfactorily ensure the lighting ventilation of the existing building and the extension building.

本発明によれば、免震構造の既存建物に隣接する免震構造の建物の増築中の耐震性を向上させる増築方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the extension method which improves the earthquake resistance during the extension of the building of the seismic isolation structure adjacent to the existing building of a seismic isolation structure.

図1Aから図1Cは本実施形態の増築方法の説明図である。1A to 1C are explanatory diagrams of the extension method of the present embodiment. 図2Aは既存建物及び増築建物の屋上階の概略平面図であり、図2Bは剛性部材の説明図である。FIG. 2A is a schematic plan view of a rooftop floor of an existing building and an extension building, and FIG. 2B is an explanatory diagram of a rigid member. 既存建物及び増築建物の2階,3階の概略平面図である。It is a schematic plan view of the second and third floors of an existing building and an extension building. 既存建物及び増築建物の1階の概略平面図である。It is a schematic plan view of the first floor of an existing building and an extension building. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. シミュレーション結果を示すグラフである。It is a graph which shows a simulation result. シミュレーション対象とした既存建物及び増築建物の概略断面図である。It is a schematic sectional drawing of the existing building and the extension building made into the simulation object. シミュレーション対象とした既存建物及び増築建物の屋上階の概略平面図である。It is a schematic plan view of the rooftop floor of the existing building and the extension building which were made into the simulation object.

以下、本発明の一実施形態を、図を用いて説明する。図1Aから図1Cは、本実施形態の増築方法の説明図であり、既存建物10や増築建物20をY方向から見た概略断面図である。図2Aは、既存建物10及び増築建物20の屋上階の概略平面図であり、図2Bは、剛性部材30の説明図である。図3は、既存建物10及び増築建物20の2階,3階の概略平面図である。図4は、既存建物10及び増築建物20の1階の概略平面図である。本実施形態は、3階建ての免震構造の既存建物10に対してX方向に所定の間隔を空けて隣接するように、3階建ての免震構造の増築建物20を増築する方法を例に挙げる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1A to 1C are explanatory diagrams of the extension method of the present embodiment, and are schematic cross-sectional views of the existing building 10 and the extension building 20 as seen from the Y direction. FIG. 2A is a schematic plan view of the roof floor of the existing building 10 and the extension building 20, and FIG. 2B is an explanatory diagram of the rigid member 30. FIG. 3 is a schematic plan view of the second and third floors of the existing building 10 and the extension building 20. FIG. 4 is a schematic plan view of the first floor of the existing building 10 and the extension building 20. This embodiment is an example of a method of extending a three-story seismic isolation extension building 20 so as to be adjacent to the existing three-story seismic isolation structure 10 with a predetermined interval in the X direction. To

既存建物10は、上部構造体と下部構造体との間に免震層が介在された建物であり、地盤を掘削して形成された免震ピット11(第1下部構造体)と、免震ピット11の底部11aに設置された複数の免震装置12と、免震装置12の上に構築された上部構造体13(第1上部構造体)とを有する。免震装置12は、上部構造体13を地盤から絶縁して支持すると共に、上部構造体13の振動を長周期化し、上部構造体13の揺れを緩和するためのものであり、例えば、積層ゴム支承やすべり支承等が挙げられる。免震ピット11は、地盤に打ち込まれた杭で支持される底部11aと、底部11aの周囲に設けられた側壁11bとを有し、地震発生時に側壁11bと上部構造体13とが接触しないように、側壁11bと上部構造体13との間に空間が設けられている。   The existing building 10 is a building in which a seismic isolation layer is interposed between the upper structure and the lower structure, and the seismic isolation pit 11 (first lower structure) formed by excavating the ground, and the seismic isolation It has a plurality of seismic isolation devices 12 installed on the bottom 11 a of the pit 11 and an upper structure 13 (first upper structure) constructed on the seismic isolation device 12. The seismic isolation device 12 is for insulating and supporting the upper structure 13 from the ground, extending the vibration of the upper structure 13 and mitigating shaking of the upper structure 13, for example, laminated rubber Examples include support and sliding support. The seismic isolation pit 11 has a bottom part 11a supported by a pile driven into the ground and a side wall 11b provided around the bottom part 11a so that the side wall 11b and the upper structure 13 do not come into contact with each other when an earthquake occurs. In addition, a space is provided between the side wall 11 b and the upper structure 13.

そして、既存建物10と同様に上部構造体と下部構造体との間に免震層が介在された増築建物20を既存建物10に隣接させて構築するために、まず、図1Aに示すように、既存建物10に隣接する土地に、増築建物20用の免震ピット21(第2下部構造体)を形成する。増築建物20用の免震ピット21も、既存建物10用の免震ピット11と同様に、地盤に打ち込まれた杭で支持される底部21aと、底部21aの周囲に設けられた側壁21bとを有する。つまり、既存建物10の免震層10a(第1免震層)と増築建物20の免震層20a(第2免震層)は共に地下部分に設けられ、両建物10,20の免震層のレベル(上下方向における位置)が同じになっている。なお、建物の基礎部分に免震層を設けるに限らず、例えば1階と2階の間等の中間階に免震層を設けてもよい。   And in order to construct the extension building 20 in which the seismic isolation layer is interposed between the upper structure and the lower structure like the existing building 10 so as to be adjacent to the existing building 10, first, as shown in FIG. 1A. The seismic isolation pit 21 (second lower structure) for the extension building 20 is formed on the land adjacent to the existing building 10. As with the seismic isolation pit 11 for the existing building 10, the seismic isolation pit 21 for the extension building 20 includes a bottom portion 21a supported by a pile driven into the ground, and a side wall 21b provided around the bottom portion 21a. Have. That is, the seismic isolation layer 10a (first seismic isolation layer) of the existing building 10 and the seismic isolation layer 20a (second seismic isolation layer) of the extension building 20 are both provided in the underground portion, and the seismic isolation layers of both buildings 10 and 20 are provided. Level (position in the vertical direction) is the same. In addition, you may provide a seismic isolation layer in intermediate | middle floors, such as between the 1st floor and the 2nd floor, for example, without providing a base isolation layer in the foundation part of a building.

次に、図1Bに示すように、増築建物20用の免震ピット21の底部21a上に複数の免震装置22を設置し、免震装置22上に増築建物20の上部構造体23(第2上部構造体)を構築する。つまり、既存建物10から独立した単独で自立可能な免震構造の建物として増築建物20を構築する。なお、本実施形態では、図2Aに示すように、既存建物10の上部構造体13(以下「既存上部構造体13」)のY方向の長さと増築建物20の上部構造体23(以下「増築上部構造体23」)のY方向の長さを等しくし、既存上部構造体13のX方向の長さを増築上部構造体23のX方向の長さよりも長くし、既存上部構造体13の重量の方が増築上部構造体23の重量よりも重いとする。また、増築建物20の免震周期が既存建物10の免震周期と同一周期となるように、増築建物20の免震層20aの設計が行われている。また、図4に示すように、既存建物10の強軸方向をY方向とし、増築建物20の強軸方向を既存建物10の強軸方向と交差する方向(ここでは直交する方向)であるX方向とする。なお、強軸とは構造強度的に強い方の軸であり、例えば、より多くの耐震壁に沿う方向が強軸方向となる。   Next, as shown in FIG. 1B, a plurality of seismic isolation devices 22 are installed on the bottom portion 21 a of the seismic isolation pit 21 for the extension building 20, and the upper structure 23 (first structure) of the extension building 20 is placed on the seismic isolation device 22. 2 superstructure). In other words, the extension building 20 is constructed as a seismically isolated building that is independent from the existing building 10 and can be independent. In the present embodiment, as shown in FIG. 2A, the length in the Y direction of the upper structure 13 of the existing building 10 (hereinafter “existing upper structure 13”) and the upper structure 23 of the extension building 20 (hereinafter “extension”). The length of the upper structure 23 ") in the Y direction is made equal, the length of the existing upper structure 13 in the X direction is made longer than the length of the extension upper structure 23 in the X direction, and the weight of the existing upper structure 13 is increased. Is assumed to be heavier than the weight of the extension superstructure 23. In addition, the seismic isolation layer 20 a of the extension building 20 is designed so that the base isolation cycle of the extension building 20 is the same as the base isolation cycle of the existing building 10. Further, as shown in FIG. 4, the strong axis direction of the existing building 10 is the Y direction, and the strong axis direction of the extension building 20 is a direction that intersects the strong axis direction of the existing building 10 (in this case, the orthogonal direction). The direction. In addition, a strong axis is an axis | shaft with a stronger structural strength, for example, the direction along more earthquake-resistant walls turns into a strong-axis direction.

最後に、図1Cに示すように、既存上部構造体13と増築上部構造体23の上端側同士を剛性部材30にて連結し、既存上部構造体13と増築上部構造体23の下端側同士を剛性部材30にて連結して、既存建物10と増築建物20を一体化することで、増築が完了する。なお、必要に応じて、既存建物10と増築建物20の間を行き来するための渡り廊下40を設けてもよい。つまり、本実施形態の増築方法では、既存建物10と増築建物20を部分的に連結して既存建物10と増築建物20との間に外部と連通する採光通風空間Aを形成する。   Finally, as shown in FIG. 1C, the upper ends of the existing upper structure 13 and the extension upper structure 23 are connected to each other by the rigid member 30, and the lower ends of the existing upper structure 13 and the extension upper structure 23 are connected to each other. The extension is completed by connecting the rigid building 30 and integrating the existing building 10 and the extension building 20 together. Note that a crossing corridor 40 for moving between the existing building 10 and the extension building 20 may be provided as necessary. That is, in the extension method of the present embodiment, the existing building 10 and the extension building 20 are partially connected to form the daylighting ventilation space A that communicates with the outside between the existing building 10 and the extension building 20.

具体的には、図2Aに示すように、既存上部構造体13と増築上部構造体23の上端側同士として、各建物10,20の屋上階部分を、複数の鉄骨ブレース31にて連結する。詳しくは、図2Bに示すように、既存上部構造体13と増築上部構造体23の対向位置にてそれぞれY方向に並ぶ柱131,231間に掛け渡された梁132,232が埋設された外壁133,233の同じ高さの位置にガセットプレート33を設ける。ガセットプレート33にはピン32が貫通される貫通孔(不図示)が設けられている。鉄骨ブレース31は、鋼製の円筒部材311の両端に平板でなる羽子板312が一体に設けられたものであり、羽子板312にもピン32が貫通される貫通孔(不図示)が設けられている。そして、鉄骨ブレース31の一端側の羽子板312が既存上部構造体13側のガセットプレート33に重ねられ、他端側の羽子板312が増築上部構造体23側のガセットプレート33に重ねられ、それぞれ重ねられた羽子板312とガセットプレート33の各貫通孔にピン32が上下方向に貫通されて連結されている。つまり、鉄骨ブレース31は、水平面上に設けられると共に、ピン32を支点に水平面上にて回動可能なようにガセットプレート33を介して上部構造体13,23に連結されている。   Specifically, as shown in FIG. 2A, the roof top portions of the buildings 10 and 20 are connected by a plurality of steel braces 31 as the upper ends of the existing upper structure 13 and the extension upper structure 23. Specifically, as shown in FIG. 2B, an outer wall in which beams 132 and 232 spanned between columns 131 and 231 arranged in the Y direction at positions opposite to the existing upper structure 13 and the extension upper structure 23 are embedded. Gusset plates 33 are provided at the same height positions 133 and 233. The gusset plate 33 is provided with a through hole (not shown) through which the pin 32 passes. The steel brace 31 is formed by integrally providing a flat plate 312 at both ends of a steel cylindrical member 311, and the through plate (not shown) through which the pin 32 passes is also provided in the plate 312. . Then, the brace plate 312 on one end side of the steel brace 31 is overlaid on the gusset plate 33 on the existing upper structure 13 side, and the battledore plate 312 on the other end side is overlaid on the gusset plate 33 on the extension upper structure 23 side. Pins 32 are vertically penetrated and connected to the through holes of the wing plate 312 and the gusset plate 33. That is, the steel brace 31 is provided on the horizontal plane, and is connected to the upper structures 13 and 23 via the gusset plate 33 so as to be rotatable on the horizontal plane with the pin 32 as a fulcrum.

同様に、図4に示すように、既存上部構造体13と増築上部構造体23の下端側同士として、各建物10,20の1階床の部分も、複数の鉄骨ブレース31にて連結されている。但し、図3に示すように、各建物10,20の2階床及び3階床の部分は鉄骨ブレース31にて連結されていない。このように、本実施形態の増築方法では、既存建物10と増築建物20を部分的に連結する。なお、既存上部構造体13と増築上部構造体23を鉄骨ブレース31にて連結するに限らず、例えば、既存上部構造体13の梁132と増築上部構造体23の梁232との間にH型鋼材(剛性部材)をX方向に掛け渡し、そのH型鋼材が埋設されるようにコンクリート(剛性部材)を打設することによって、既存上部構造体13と増築上部構造体23を連結してもよい。   Similarly, as shown in FIG. 4, as the lower ends of the existing upper structure 13 and the extension upper structure 23, the first floor portions of the buildings 10 and 20 are also connected by a plurality of steel braces 31. Yes. However, as shown in FIG. 3, the second and third floor portions of the buildings 10 and 20 are not connected by a steel brace 31. Thus, in the extension method of this embodiment, the existing building 10 and the extension building 20 are partially connected. The existing upper structure 13 and the extension upper structure 23 are not limited to being connected by the steel brace 31, and, for example, an H-shape is formed between the beam 132 of the existing upper structure 13 and the beam 232 of the extension upper structure 23. Even if the existing upper structure 13 and the extension upper structure 23 are connected by placing the steel (rigid member) in the X direction and placing concrete (rigid member) so that the H-shaped steel material is buried. Good.

ところで、免震構造の建物では、免震層の剛心と上部構造体の重心とが一致しないこと(偏心)により、捩じれ振動が発生し、建物の耐震性が低下してしまう。そのため、既存建物10は、既存建物10の免震層の剛心S1と既存上部構造体13の重心G1とが一致するように構築されている。また、増築する場合には、増築完成時の免震層の剛心と上部構造体の重心とが一致するように、免震層の設計が行われる。   By the way, in a building having a base-isolated structure, a torsional vibration is generated due to the rigid center of the base-isolating layer and the center of gravity of the upper structure not matching (eccentricity), and the earthquake resistance of the building is lowered. Therefore, the existing building 10 is constructed so that the rigid center S1 of the seismic isolation layer of the existing building 10 and the center of gravity G1 of the existing upper structure 13 coincide. In addition, the seismic isolation layer is designed so that the rigidity of the seismic isolation layer when the extension is completed matches the center of gravity of the upper structure.

ここで、仮に、本実施形態の増築方法のように既存建物10と増築建物20とを部分的に連結するのではなく、既存建物10と増築建物20の各階を剛性部材にて連結し、既存建物10と増築建物20との接続部分を外壁で覆う等して既存建物10と増築建物20とを完全に一体化したとする。即ち、既存建物用の免震ピットの側壁を壊して既存建物用の免震ピットと増築建物用の免震ピットを一体化し、既存建物から独立して増築建物を構築し、その後、既存建物の基礎と増築建物の基礎とを連結し(上部構造体の下端側同士を連結し)、その連結部分に重量の大きい上部構造体を構築したとする。この場合、既存建物の上部構造体と増築建物の上部構造体の重量差が大きいと、その両建物の基礎を連結した時のX方向の重心位置が、増築完成時のX方向の重心位置に比べて、上部構造体の重量が大きい方の建物側にずれてしまう。つまり、増築中に免震層の剛心と上部構造体の重心とがずれるため、増築中に地震が起こると建物に捩じれ振動が発生する虞があり危険である。   Here, it is assumed that the existing building 10 and the extension building 20 are not partially connected as in the extension method of the present embodiment, but the existing building 10 and each floor of the extension building 20 are connected by a rigid member. It is assumed that the existing building 10 and the extension building 20 are completely integrated by covering the connecting portion between the building 10 and the extension building 20 with an outer wall. In other words, the side walls of the seismic isolation pit for the existing building were broken to integrate the seismic isolation pit for the existing building and the seismic isolation pit for the extension building, and built the extension building independently from the existing building. Assume that the foundation and the foundation of the extension building are connected (the lower ends of the upper structure are connected to each other), and a heavy upper structure is constructed at the connection part. In this case, if the weight difference between the upper structure of the existing building and the upper structure of the extension building is large, the center of gravity in the X direction when the foundations of the two buildings are connected becomes the center of gravity in the X direction when the extension is completed. In comparison, the weight of the upper structure is shifted to the building side where the weight is larger. In other words, since the stiffness of the seismic isolation layer and the center of gravity of the upper structure are shifted during the extension, there is a risk that if the earthquake occurs during the extension, the building may be twisted and vibrated.

これに対して、本実施形態の増築方法では、既存建物10に間隔を空けて隣接するように増築建物20を構築し、既存上部構造体13と増築上部構造体23の上端側同士(例:屋上階同士)を剛性部材30にて連結し、既存上部構造体13と増築上部構造体23の下端側同士(例:1階床同士)を剛性部材30にて連結する。つまり、既存建物10から分離して増築建物20を構築するため、既存建物10は増築の影響を受けず、増築中も増築前と同様に既存建物10に免震機能が働く。また、既存建物10と増築建物20を完全に一体化するときのように既存建物10と増築建物20の間に重量物が存在しないため、免震層の剛心S1と上部構造体13の重心G1とが一致している既存建物10に、既存建物13とは独立して免震層の剛心S2と上部構造体23の重心G2とが一致している増築建物20を部分連結した時点で、その一体化した建物における免震層の剛心と上部構造体の重心とが一致する。つまり、本実施形態の増築方法によれば、増築中の偏心(免震層の剛心と上部構造体の重心とのずれ)を抑えることができるため、捩じれ振動の発生を抑制して増築中の耐震性を向上させることができる。   On the other hand, in the extension method of the present embodiment, the extension building 20 is constructed so as to be adjacent to the existing building 10 with a space therebetween, and the upper ends of the existing upper structure 13 and the extension upper structure 23 (for example, The roof top floors) are connected by the rigid member 30, and the lower ends of the existing upper structure 13 and the extension upper structure 23 (eg, the first floors) are connected by the rigid member 30. That is, since the extension building 20 is constructed separately from the existing building 10, the existing building 10 is not affected by the extension, and the seismic isolation function works on the existing building 10 during the extension as in the case before the extension. Further, since there is no heavy object between the existing building 10 and the extension building 20 as when the existing building 10 and the extension building 20 are completely integrated, the center of gravity of the seismic isolation layer rigid core S1 and the upper structure 13 is obtained. When the extension building 20 in which the rigid center S2 of the seismic isolation layer and the center of gravity G2 of the upper structure 23 are partially connected to the existing building 10 in which G1 is matched independently of the existing building 13 The rigid center of the seismic isolation layer in the integrated building and the center of gravity of the superstructure coincide. In other words, according to the extension method of the present embodiment, since the eccentricity during the extension (displacement between the stiffness of the seismic isolation layer and the center of gravity of the upper structure) can be suppressed, the generation of torsional vibration is suppressed and the extension is being performed. Can improve the earthquake resistance.

また、既存建物10と増築建物20を完全に一体化する場合、既存建物10の免震層10aに応じて増築建物20の設計に制限がかかったり、逆に、既存建物10の免震層を再調整し直したりする必要がある。これに対して、本実施形態の増築方法では、既存建物10の免震層10aから独立して増築建物20やその免震層20aを設計することができるため、設計自由度が高く、施工を簡略化できる。   Further, when the existing building 10 and the extension building 20 are completely integrated, the design of the extension building 20 is restricted according to the seismic isolation layer 10a of the existing building 10, or conversely, the seismic isolation layer of the existing building 10 is changed. It is necessary to readjust. On the other hand, in the extension method of this embodiment, since the extension building 20 and its seismic isolation layer 20a can be designed independently from the seismic isolation layer 10a of the existing building 10, design freedom is high and construction is performed. It can be simplified.

また、既存建物10と増築建物20を完全に一体化する場合、既存建物10用の免震ピット11の側壁11bや既存建物10の外壁を壊したり、各階を剛性部材にて連結したりする必要があるため、施工性が悪く、既存建物10にも使用制限が生じる。これに対して、本実施形態の増築方法では、増築建物20用の免震ピット21を独立して構築したり既存建物10の外壁をそのまま利用したりすることができ、また、既存建物10と増築建物20を部分的にしか連結しないため、施工性が良く低コスト化を図ることができる。また、既存建物10の使用制限も生じない。   Moreover, when integrating the existing building 10 and the extension building 20 completely, it is necessary to destroy the side wall 11b of the seismic isolation pit 11 for the existing building 10 and the outer wall of the existing building 10, or to connect each floor with a rigid member. Therefore, the workability is poor, and the existing building 10 is restricted in use. On the other hand, in the extension method of this embodiment, the seismic isolation pit 21 for the extension building 20 can be independently constructed, or the outer wall of the existing building 10 can be used as it is. Since the extension building 20 is only partially connected, the workability is good and the cost can be reduced. Moreover, the use restriction of the existing building 10 does not arise.

また、本実施形態の増築方法では、既存建物10と増築建物20との間に採光通風空間Aを形成する。そのため、その採光通風空間Aに面する各建物10,20の壁面に窓等を設けることで、既存建物10と増築建物20を完全に一体化する場合に比べて、各建物10,20の採光通風を良好に確保することができる。   Moreover, in the extension method of this embodiment, the lighting ventilation space A is formed between the existing building 10 and the extension building 20. FIG. Therefore, by providing windows or the like on the wall surfaces of the buildings 10 and 20 facing the daylight ventilation space A, the lighting of the buildings 10 and 20 can be obtained as compared with the case where the existing building 10 and the extension building 20 are completely integrated. Good ventilation can be secured.

また、免震構造である既存建物10と増築建物20は、免震装置12,22により、振動が長周期化され、上部構造体13,23の変位が大きくなる。そのため、仮に、既存建物10と増築建物20を剛性部材にて連結せずに、例えば、渡り廊下で接続するだけであると、各上部構造体13,23が互いに異なる周期や変位にて大きく振動した場合に、上部構造体13,23同士が衝突して危険である。よって、既存建物10と増築建物20の設置間隔を離したり、上部構造体13,23同士の衝突を避けるために可動範囲の大きいエキスパンションジョイントを渡り廊下に設けたりする必要がある。   In addition, the existing building 10 and the extension building 20 having the seismic isolation structure are subjected to a long period of vibration by the seismic isolation devices 12 and 22, and the displacement of the upper structures 13 and 23 is increased. Therefore, if the existing building 10 and the extension building 20 are not connected by a rigid member, for example, if they are simply connected by a passageway, the upper structures 13 and 23 vibrate greatly with different periods and displacements. In such a case, the upper structures 13 and 23 collide with each other, which is dangerous. Therefore, it is necessary to separate the installation interval between the existing building 10 and the extension building 20, or to provide an expansion joint with a large movable range in the corridor in order to avoid collision between the upper structures 13 and 23.

これに対して、本実施形態の増築方法では、既存上部構造体13と増築上部構造体23の上端側同士及び下端側同士をそれぞれ剛性部材30にて連結する。そのため、地震発生時には、既存上部構造体13と免震上部構造体23とが一体となって振動するため、上部構造体13,23同士の衝突を防止することができ安全である。ゆえに、既存建物10に近接させて増築建物20を構築することができる。また、渡り廊下40に設けるエキスパンションジョイントの可動範囲を小さくすることができるため、低コスト化を図ることができる。   On the other hand, in the extension method of this embodiment, the upper end sides and the lower end sides of the existing upper structure 13 and the extension upper structure 23 are connected by the rigid members 30 respectively. For this reason, when the earthquake occurs, the existing upper structure 13 and the seismic isolation upper structure 23 vibrate together, so that the upper structures 13 and 23 can be prevented from colliding with each other and it is safe. Therefore, the extension building 20 can be constructed close to the existing building 10. Moreover, since the movable range of the expansion joint provided in the crossing corridor 40 can be made small, cost reduction can be achieved.

また、本実施形態の増築方法では、既存建物10と増築建物20を連結する剛性部材30を水平面上に設けている、即ち、鉄骨ブレース31を水平に設置している。そのため、水平方向の地震力を、既存上部構造体13と増築上部構造体23のうちの一方から他方へ効率よく伝達させることができ、剛性部材30に余分な力(水平方向の分力)を掛けることなく、両上部構造体13,23を一体に振動させることができる。よって、例えば、剛性部材30を細くする等して剛性を弱めることができ、低コスト化を図ることができる。   Moreover, in the extension method of this embodiment, the rigid member 30 which connects the existing building 10 and the extension building 20 is provided on the horizontal surface, that is, the steel brace 31 is installed horizontally. Therefore, the horizontal seismic force can be efficiently transmitted from one of the existing upper structure 13 and the extension upper structure 23 to the other, and an extra force (horizontal component force) is applied to the rigid member 30. The two upper structures 13 and 23 can be vibrated together without being hung. Therefore, for example, the rigidity can be reduced by thinning the rigid member 30 and the cost can be reduced.

また、本実施形態の増築方法では、剛性部材30(鉄骨ブレース31)を、水平面上にて回動可能なように上部構造体13,23に連結している。そのため、既存上部構造体13と増築上部構造体23の振動方向が異なり交差する場合にも、既存上部構造体13と増築上部構造体23の交差する方向への相対変位が可能であり、両上部構造体13,23の捩じれを抑えることができる。   Moreover, in the extension method of this embodiment, the rigid member 30 (steel brace 31) is connected with the upper structures 13 and 23 so that rotation is possible on a horizontal surface. Therefore, even when the vibration directions of the existing upper structure 13 and the extension upper structure 23 are different and intersect, relative displacement in the direction in which the existing upper structure 13 and the extension upper structure 23 intersect is possible. Twist of the structures 13 and 23 can be suppressed.

また、本実施形態の増築方法では、増築建物20の免震周期を既存建物10の免震周期と同一周期となるように設定している。そのため、剛性部材30に余分な力(引っ張り力や圧縮力)を掛けることなく、既存上部構造体13と免震上部構造体23を一体に振動させることができる。よって、例えば、剛性部材30を細くしたり、剛性部材30の数を減らしたりすることができ、低コスト化を図ることができる。   Moreover, in the extension method of this embodiment, the seismic isolation cycle of the extension building 20 is set to be the same cycle as the seismic isolation cycle of the existing building 10. Therefore, the existing upper structure 13 and the seismic isolation upper structure 23 can be vibrated integrally without applying an extra force (tensile force or compressive force) to the rigid member 30. Therefore, for example, the rigid member 30 can be thinned or the number of the rigid members 30 can be reduced, and cost reduction can be achieved.

また、本実施形態の増築方法では、増築建物20の免震層20aを既存建物10の免震層10aと同一レベル(ここでは建物の基礎部分)に設ける。そうすることで、既存上部構造体13と増築上部構造体23を連結する剛性部材30(鉄骨ブレース31)を水平面上に設け易くなる。また、増築建物20の免震周期が既存建物10の免震周期と同一周期となるように増築建物20の免震層を設計することが容易になる。   Moreover, in the extension method of this embodiment, the seismic isolation layer 20a of the extension building 20 is provided at the same level as the seismic isolation layer 10a of the existing building 10 (here, the foundation portion of the building). By doing so, it becomes easy to provide the rigid member 30 (steel brace 31) which connects the existing upper structure 13 and the extension upper structure 23 on a horizontal surface. In addition, it becomes easy to design the seismic isolation layer of the extension building 20 so that the base isolation period of the extension building 20 is the same as that of the existing building 10.

また、本実施形態の増築方法では、増築建物20の強軸を既存建物10の強軸に交差させる。そのため、既存上部構造体13と増築上部構造体23は互いに相手の変位を抑えるように支え合うことができる。つまり、既存上部構造体13と増築上部構造体23のうちの一方の上部構造体の弱軸方向に沿う地震力に対して、その一方の上部構造体の変位を他方の上部構造体により抑えることができ、耐震性を向上させることができる。   Further, in the extension method of the present embodiment, the strong axis of the extension building 20 intersects the strong axis of the existing building 10. Therefore, the existing upper structure 13 and the extension upper structure 23 can support each other so as to suppress the displacement of the other party. That is, with respect to the seismic force along the weak axis direction of one of the existing upper structure 13 and the extension upper structure 23, the displacement of the one upper structure is suppressed by the other upper structure. Can improve the earthquake resistance.

図5及び図6は、シミュレーション結果を示すグラフであり、図7は、シミュレーション対象とした既存建物50及び増築建物60の概略断面図であり、図8は、シミュレーション対象とした既存建物50及び増築建物60の屋上階の概略平面図である。以下、部分連結された既存建物50及び増築建物60に地震が発生した場合のシミュレーション結果について説明する。シミュレーション対象とした既存建物50及び増築建物60は、図7及び図8に示すように、13階建てRC構造の建物であり、1階と2階との間にそれぞれ免震層52,62が介在され、上方から見たときの外形形状が長方形状をなし、既存建物50の長手方向における一方の端部側と増築建物60の長手方向における中央近傍とが対向して平面視T字状をなすように配置されている。また、既存建物50の強軸方向(耐震壁53に沿う方向)と増築建物60の強軸方向(耐震壁63に沿う方向)は互いに直交している。また、既存建物50及び増築建物60の各上部構造体51,61の上端側となる屋上階(R階)の部位同士が複数の鉄骨ブレース71にて連結され、各上部構造体51,61の下端側となる2階床以下の部位同士がRC躯体70(既存建物50の梁と増築建物60の梁に掛け渡されたH型鋼材が埋設されるようにコンクリートが打設され躯体)にて連結されている。   5 and 6 are graphs showing simulation results, FIG. 7 is a schematic cross-sectional view of the existing building 50 and the extension building 60 to be simulated, and FIG. 8 is the existing building 50 and extension to be simulated. 3 is a schematic plan view of a rooftop floor of a building 60. FIG. Hereinafter, simulation results when an earthquake occurs in the partially connected existing building 50 and the extension building 60 will be described. As shown in FIGS. 7 and 8, the existing building 50 and the extension building 60 to be simulated are buildings with a 13-story RC structure, and seismic isolation layers 52 and 62 are respectively provided between the first and second floors. When viewed from above, the outer shape is rectangular, and one end side in the longitudinal direction of the existing building 50 and the vicinity of the center in the longitudinal direction of the extension building 60 are opposed to each other to form a T shape in plan view. It is arranged to make. Further, the strong axis direction of the existing building 50 (direction along the seismic wall 53) and the strong axis direction of the extension building 60 (direction along the seismic wall 63) are orthogonal to each other. Further, the upper floors (R floors) on the upper ends of the upper structures 51 and 61 of the existing building 50 and the extension building 60 are connected to each other by a plurality of steel braces 71, and the upper structures 51 and 61 are connected to each other. The lower part of the second floor or lower floors on the lower end side is an RC frame 70 (concrete is cast so that the H-shaped steel material spanned between the beam of the existing building 50 and the beam of the extension building 60 is buried) It is connected.

また、増築建物60の平面視における外形形状の長手方向が26.5m、耐震壁63に沿う方向が12.7m、重量が73490kNであり、既存建物50の平面視における外形形状の長手方向が35.4m、耐震壁53に沿う方向が11.5m、重量が85486kNであるとする。また、レベル2変形時における増築建物60の等価周期は4.62秒であり、既存建物50の等価周期は4.55秒であるとする。そして、増築建物60の強軸方向に、模擬地震動として告示波神戸EWを入力したときの増築建物60及び既存建物50に作用する層せん断力と絶対変位を図5及び図6のグラフに示す。   Further, the longitudinal direction of the outer shape in plan view of the extension building 60 is 26.5 m, the direction along the earthquake-resistant wall 63 is 12.7 m, the weight is 73490 kN, and the longitudinal direction of the outer shape in plan view of the existing building 50 is 35. .4 m, the direction along the seismic wall 53 is 11.5 m, and the weight is 85486 kN. Further, it is assumed that the equivalent period of the extension building 60 at the time of level 2 deformation is 4.62 seconds, and the equivalent period of the existing building 50 is 4.55 seconds. The layer shear force and the absolute displacement acting on the extension building 60 and the existing building 50 when the notification wave Kobe EW is input as the simulated seismic motion in the strong axis direction of the extension building 60 are shown in the graphs of FIGS.

図5の(a)は地震発生時に増築建物60に作用する層せん断力の結果を示すグラフであり、図5の(b)は地震発生時に既存建物50に作用する層せん断力の結果を示すグラフである。図6の(a)は地震発生時に増築建物60に作用する絶対変位の結果を示すグラフであり、図6の(b)は地震発生時に既存建物50に作用する絶対変位の結果を示すグラフである。なお、各グラフでは、増築建物60及び既存建物50の各上部構造体61、51の2階床以下の部位(下端側同士)のみを連結したときの結果を「連結無し」とし、2階床以下の部位に加えて屋上階(上端側同士)も連結したときの結果を「R階連結」(本発明)とし、各階床を連結したときの結果を「各層連結」とする。   FIG. 5A is a graph showing the result of the layer shear force acting on the extension building 60 when the earthquake occurs, and FIG. 5B shows the result of the layer shear force acting on the existing building 50 when the earthquake occurs. It is a graph. 6A is a graph showing the result of absolute displacement acting on the extension building 60 when an earthquake occurs, and FIG. 6B is a graph showing the result of absolute displacement acting on the existing building 50 when an earthquake occurs. is there. In each graph, the result when the upper structure 61, 51 of the extension building 60 and the upper structure 61, 51 of the existing building 50 is connected to the second floor or lower part (lower end sides) is “no connection”. In addition to the following parts, the result when the roof floors (upper end sides) are connected is referred to as “R floor connection” (the present invention), and the result when each floor is connected is referred to as “each layer connection”.

シミュレーションの結果、図5に示すように、2階床以下の部位のみを連結した場合(連結無し)、強軸方向が地震動の入力方向と一致している強軸側建物(増築建物60)に比べて、弱軸方向が地震動の入力方向と一致している弱軸側建物(既存建物50)に作用する層せん断力が大きくなってしまっている。一方、各階床を連結した場合(各層連結)、弱軸側建物に作用する層せん断力を抑えることができているが、強軸側建物の下階での層せん断力が大幅に大きくなってしまっている。これに対して、2階床以下の部位と屋上階を連結した場合(R階連結)、弱軸側建物に作用する層せん断力を、2階床以下の部位のみを連結した場合(連結無し)よりも抑えつつ、強軸側建物の下階での層せん断力が大幅に大きくなってしまうことを防止できることが確認された。   As a result of the simulation, as shown in FIG. 5, when only the parts below the second floor are connected (no connection), the strong axis direction coincides with the input direction of the earthquake motion (extension building 60). In comparison, the laminar shear force acting on the weak axis side building (existing building 50) whose weak axis direction coincides with the input direction of the ground motion is increased. On the other hand, when each floor is connected (each layer connection), the layer shear force acting on the weak shaft side building can be suppressed, but the layer shear force on the lower floor of the strong shaft side building is greatly increased. I'm stuck. On the other hand, when connecting the part below the second floor and the rooftop floor (R floor connection), when connecting the layer shear force acting on the weak shaft side building only the part below the second floor (no connection) It was confirmed that the layer shear force on the lower floor of the strong shaft side building can be prevented from becoming significantly large.

また、図6に示すように、2階床以下の部位と屋上階を連結した場合(R階連結)、2階床以下の部位のみを連結した場合(連結無し)に比べて弱軸側建物の変形(特に上階の変形)を抑えることができ、また、各階床を連結した場合(各層連結)と同等に弱軸側建物の変形を抑えられることが確認された。   In addition, as shown in FIG. 6, the building on the weak shaft side is compared to the case where the part below the second floor is connected to the rooftop floor (R floor connection) and the case where only the part below the second floor is connected (no connection). It is confirmed that the deformation of the building on the weak shaft side can be suppressed as well as the case where each floor is connected (each layer connection).

従って、このシミュレーション結果から、本実施形態の増築方法のように、増築建物60の上部構造体61と既存建物50の上部構造体51の上端側同士を連結し且つ下端側同士も連結することで、各階を連結する場合や下端側同士のみを連結する場合に比べて、強軸側建物及び弱軸側建物(特に下階)に作用する層せん断力が大幅に大きくなってしまうことを防止しつつ、弱軸側建物の変形を抑えることができると言える。   Therefore, from this simulation result, like the extension method of the present embodiment, the upper structures 61 of the extension building 60 and the upper structures 51 of the existing building 50 are connected to each other and the lower ends are also connected to each other. Compared with connecting each floor or connecting only the lower ends, it prevents the layer shear force acting on the strong shaft side building and the weak shaft side building (especially the lower floor) from becoming significantly large. However, it can be said that the deformation of the weak shaft side building can be suppressed.

以上、上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。   As mentioned above, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof.

例えば、既存建物の重量を増築建物の重量よりも軽くしてもよい。また、既存上部構造体と増築上部構造体を連結する剛性部材(例えば鉄骨ブレース)を水平面に対して傾斜させて設けてもよいし、剛性部材が水平面上にて回動しないように固定してもよい。また、増築建物の免震周期と既存建物の免震周期を異ならせてもよいし、増築建物の免震層を既存建物の免震層と異なるレベルに設けてもよい。また、増築建物の強軸と既存建物の強軸を交差させずに同じ方向の軸にしてもよい。   For example, the weight of the existing building may be lighter than the weight of the extension building. In addition, a rigid member (for example, a steel brace) that connects the existing upper structure and the extension upper structure may be provided to be inclined with respect to the horizontal plane, and fixed so that the rigid member does not rotate on the horizontal plane. Also good. Further, the seismic isolation cycle of the extension building may be different from the seismic isolation cycle of the existing building, or the seismic isolation layer of the extension building may be provided at a level different from that of the existing building. Moreover, you may make it the axis | shaft of the same direction, without making the strong axis of an extension building cross the strong axis of an existing building.

10 既存建物、10a 免震層(第1免震層)、11 免震ピット(第1下部構造体)、
12 免震装置、13 上部構造体(第1上部構造体)、
20 増築建物、20a 免震層(第2免震層)、21 免震ピット(第2下部構造体)、
22 免震装置、23 上部構造体(第2上部構造体)、
30 剛性部材、31 鉄骨ブレース、32 ピン、33 ガセットプレート、
40 渡り廊下、50 既存建物、51 上部構造体、52 免震層、53 耐震壁、
60 増築建物、61 上部構造体、62 免震層、63 耐震壁、70 RC躯体、
71 鉄骨ブレース、A 採光通風空間、
10 existing building, 10a base isolation layer (first base isolation layer), 11 base isolation pit (first substructure),
12 seismic isolation device, 13 superstructure (first superstructure),
20 extension building, 20a base isolation layer (second base isolation layer), 21 base isolation pit (second substructure),
22 seismic isolation device, 23 superstructure (second superstructure),
30 rigid members, 31 steel braces, 32 pins, 33 gusset plates,
40 passage corridor, 50 existing building, 51 superstructure, 52 base isolation layer, 53 seismic wall,
60 extension building, 61 superstructure, 62 base isolation layer, 63 earthquake resistant wall, 70 RC frame,
71 Steel brace, A Daylighting ventilation space,

Claims (7)

第1上部構造体と第1下部構造体との間に第1免震層が介在された既存建物に間隔を空けて隣接するように、第2上部構造体と第2下部構造体との間に第2免震層が介在された増築建物であって、前記第2上部構造体の重量が前記第1上部構造体の重量と異なる前記増築建物を構築する工程と、
前記第1上部構造体と前記第2上部構造体の上端側同士を剛性部材にて連結し、前記第1上部構造体と前記第2上部構造体の下端側同士を剛性部材にて連結し、前記剛性部材にて連結される前記上端側と、前記剛性部材にて連結される前記下端側との間の階は前記剛性部材にて連結しない工程と、
有し、
前記既存建物の外壁を壊すことなくそのまま利用することを特徴とする増築方法。
Between the second upper structure and the second lower structure so as to be adjacent to the existing building with the first seismic isolation layer interposed between the first upper structure and the first lower structure with a space therebetween. A step of constructing the extension building having a second seismic isolation layer interposed therein, wherein the weight of the second upper structure is different from the weight of the first upper structure;
The upper ends of the first upper structure and the second upper structure are connected by a rigid member, and the lower ends of the first upper structure and the second upper structure are connected by a rigid member , The floor between the upper end side connected by the rigid member and the lower end side connected by the rigid member is not connected by the rigid member ;
Have
An extension method characterized by using the existing building without breaking the outer wall .
請求項1に記載の増築方法であって、
前記上端側の前記剛性部材と前記下端側の前記剛性部材とのうちの少なくとも一方を、水平面上に設けることを特徴とする増築方法。
The extension method according to claim 1,
At least one of the rigid member on the upper end side and the rigid member on the lower end side is provided on a horizontal plane.
請求項1又は請求項2に記載の増築方法であって、
前記上端側の前記剛性部材と前記下端側の前記剛性部材とのうちの少なくとも一方を、水平面上にて回動可能なように前記上部構造体に連結することを特徴とする増築方法。
The extension method according to claim 1 or 2,
An extension method comprising connecting at least one of the rigid member on the upper end side and the rigid member on the lower end side to the upper structure so as to be rotatable on a horizontal plane.
請求項1から請求項3の何れか1項に記載の増築方法であって、
前記増築建物の免震周期を前記既存建物の免震周期と同一周期に設定することを特徴とする増築方法。
The extension method according to any one of claims 1 to 3,
An extension method, wherein the seismic isolation period of the extension building is set to the same period as that of the existing building.
請求項1から請求項4の何れか1項に記載の増築方法であって、
前記第2免震層を前記第1免震層と同一レベルに設けることを特徴とする増築方法。
The extension method according to any one of claims 1 to 4,
The extension method, wherein the second seismic isolation layer is provided at the same level as the first seismic isolation layer.
請求項1から請求項5の何れか1項に記載の増築方法であって、
前記増築建物の強軸を前記既存建物の強軸に交差させることを特徴とする増築方法。
The extension method according to any one of claims 1 to 5,
An extension method comprising crossing a strong axis of the extension building with a strong axis of the existing building.
請求項1から請求項6の何れか1項に記載の増築方法であって、
前記既存建物と前記増築建物との間に採光通風空間を形成することを特徴とする増築方法。
The extension method according to any one of claims 1 to 6,
An extension method, wherein a daylighting ventilation space is formed between the existing building and the extension building.
JP2013110219A 2013-05-24 2013-05-24 Extension method Expired - Fee Related JP6171566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110219A JP6171566B2 (en) 2013-05-24 2013-05-24 Extension method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110219A JP6171566B2 (en) 2013-05-24 2013-05-24 Extension method

Publications (2)

Publication Number Publication Date
JP2014227777A JP2014227777A (en) 2014-12-08
JP6171566B2 true JP6171566B2 (en) 2017-08-02

Family

ID=52127890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110219A Expired - Fee Related JP6171566B2 (en) 2013-05-24 2013-05-24 Extension method

Country Status (1)

Country Link
JP (1) JP6171566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850555B2 (en) * 2016-06-03 2021-03-31 株式会社竹中工務店 Seismic isolation repair method for existing structures
KR102608439B1 (en) * 2021-09-27 2023-12-01 한국건설기술연구원 Method for post-casting connection part between existing structure and horizontal extension part during remodeling construction, and remodeling building using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2591336B2 (en) * 1990-11-19 1997-03-19 鹿島建設株式会社 Elasto-plastic damper twist prevention device
JP3816183B2 (en) * 1997-04-17 2006-08-30 大成建設株式会社 How to add a base-isolated building and how to build a base-isolated building
JP2988470B2 (en) * 1998-05-29 1999-12-13 鹿島建設株式会社 Reinforcement structure of existing structure and reinforcement structure
JP3767224B2 (en) * 1999-01-19 2006-04-19 株式会社大林組 Extension method of seismic isolation structure
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP2002013296A (en) * 2000-06-30 2002-01-18 Kajima Corp Earthquake resistant reinforced structure for existing construction and earthquake resistant reinforced construction
JP4722451B2 (en) * 2004-10-26 2011-07-13 株式会社竹中工務店 Building construction method
JP2010037905A (en) * 2008-08-08 2010-02-18 Takenaka Komuten Co Ltd Connected seismic control structure and building
JP5458370B2 (en) * 2009-03-05 2014-04-02 清水建設株式会社 Connected vibration control structure
IT1395591B1 (en) * 2009-09-10 2012-10-16 Balducci STRUCTURAL SYSTEM FOR SEISMIC PROTECTION OF BUILDINGS.
JP5523071B2 (en) * 2009-12-01 2014-06-18 トヨタホーム株式会社 Damping structure of buildings

Also Published As

Publication number Publication date
JP2014227777A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP2008115567A (en) Seismic-control reinforcing method for building, and building with seismic-control reinforcing structure
JP2018080569A (en) Woody earthquake-proof wall
JP6171566B2 (en) Extension method
JP6245890B2 (en) building
KR102309544B1 (en) Connecting structure of beam and column of a building and method of manufacturing using the same
JP5866689B1 (en) PC lampway building
JP5827804B2 (en) Structure
JP5827805B2 (en) Structure
JP6427315B2 (en) Column reinforcement structure
JP6368551B2 (en) Seismic isolation method for existing buildings
JP6247117B2 (en) Temporary structure during seismic isolation of existing building
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP6917720B2 (en) How to build a composite suspended structure
JP3381066B2 (en) Existing building seismic isolation method and seismic isolation building
JP5456461B2 (en) Seismic isolation structure
JP6123184B2 (en) Connection structure of adjacent structures
JP5541520B2 (en) Underground construction
JP7087255B2 (en) Structure
JP2009013579A (en) Rebuilding method
JP6422802B2 (en) Building frame structure
JP2017110418A (en) Building structure
JP6095358B2 (en) Seismic reinforcement structure
JP6386855B2 (en) Exterior wall mounting structure
JP6682781B2 (en) Damping building and damping method
JP6440942B2 (en) Bearing wall structure using braces of steel building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees