JP6163878B2 - Non-woven fabric and leather-like sheet using the same - Google Patents

Non-woven fabric and leather-like sheet using the same Download PDF

Info

Publication number
JP6163878B2
JP6163878B2 JP2013112432A JP2013112432A JP6163878B2 JP 6163878 B2 JP6163878 B2 JP 6163878B2 JP 2013112432 A JP2013112432 A JP 2013112432A JP 2013112432 A JP2013112432 A JP 2013112432A JP 6163878 B2 JP6163878 B2 JP 6163878B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
nonwoven fabric
leather
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013112432A
Other languages
Japanese (ja)
Other versions
JP2014005585A (en
Inventor
雅紀 遠藤
雅紀 遠藤
正人 増田
正人 増田
祥二 船越
祥二 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013112432A priority Critical patent/JP6163878B2/en
Publication of JP2014005585A publication Critical patent/JP2014005585A/en
Application granted granted Critical
Publication of JP6163878B2 publication Critical patent/JP6163878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Description

本発明は、極細繊維で構成された、人工皮革、高性能研磨布、洗浄加工布、或いはワイピングクロス等に好適に用いられる不織布に関するものであり、さらに詳しくは、従来の極細繊維では達成し得なかった、微細化されたものから数μmオーダーのものまで幅広く分布する異物を基板表面等から効率的に除去することが可能な、不織布とこれを用いた皮革様シート状物に関するものである。   The present invention relates to a nonwoven fabric composed of ultrafine fibers and suitably used for artificial leather, high-performance abrasive cloth, cleaning cloth, wiping cloth, etc., and more specifically, it can be achieved with conventional ultrafine fibers. The present invention relates to a non-woven fabric and a leather-like sheet-like material using the non-woven fabric, which can efficiently remove foreign matters widely distributed from a micronized to a few μm order.

近年では、ハードディスクの研磨/クリーニング用途として、不織布に高分子弾性体がクッションとして付与されたシート状物が好適に用いられている。ハードディスクの大容量化に伴い、磁気記録媒体の高記録密度化は加速的に進んでおり、読書きヘッドの浮上高さも著しく低くなっている。これに伴い、これまで問題視されていなかった数十nmオーダーの微細な異物がヘッドの浮上高さに影響し、読書きの際のエラーとなることを惹起している。このため、基板表面の鏡面加工およびその後の洗浄加工が重要視されている。   In recent years, as a hard disk polishing / cleaning application, a sheet-like material in which a polymer elastic body is applied as a cushion to a nonwoven fabric is suitably used. As the capacity of hard disks increases, the recording density of magnetic recording media is accelerating, and the flying height of the read / write head is significantly reduced. Along with this, fine foreign matter of the order of several tens of nm, which has not been regarded as a problem, affects the flying height of the head and causes an error in reading and writing. For this reason, mirror processing of the substrate surface and subsequent cleaning processing are regarded as important.

磁気記録媒体用の基板としては、Ni−Pメッキ等の非磁性メッキ処理を施したアルミ系基板やガラス系基板が用いられている。いずれの基板も、パッドポリッシング等により1次研磨と2次研磨を行った後、基板に1〜2オングストロームレベルの平滑性を付与する目的で、研磨布を用いた鏡面加工を施すことが行われている。その後、基板表面に付着した有機物や微少なゴミと、基板表面上に残存するダイヤモンド砥粒や研磨屑などの加工残渣とを除去するために、洗浄加工布を用いた洗浄加工が行われ、その後乾燥されて、下地層、磁性層および保護層の成膜工程に供される。このとき、加工残渣が除去しきれないまま磁気記録媒体を仕上げると、残渣物に起因する磁気欠点やエラー欠陥などの不具合が発生する。   As a substrate for a magnetic recording medium, an aluminum substrate or a glass substrate subjected to a nonmagnetic plating process such as Ni-P plating is used. Each substrate is subjected to mirror polishing using a polishing cloth for the purpose of imparting smoothness of 1-2 angstrom level to the substrate after performing primary polishing and secondary polishing by pad polishing or the like. ing. After that, a cleaning process using a cleaning cloth is performed in order to remove organic matter and minute dust adhering to the substrate surface and processing residues such as diamond abrasive grains and polishing scraps remaining on the substrate surface. After being dried, it is subjected to a film forming process of an underlayer, a magnetic layer, and a protective layer. At this time, if the magnetic recording medium is finished without completely removing the processing residue, problems such as a magnetic defect and an error defect due to the residue occur.

このような背景から、磁気記録媒体用基板表面を洗浄するため、不織布の少なくとも一面に平均単繊維径5μm以下の極細繊維立毛を有し、その不織布の内部に弾性重合体が含有された洗浄加工布が提案されている(例えば、特許文献1参照。)。この提案によれば、極細繊維の掻き出し効果が大幅に向上し、磁気欠点とエラー欠陥が良好に抑えられる。しかしながら、近年の著しい高密度化によって基板表面の平滑さの精度が益々向上することに伴い、除去すべき異物の極少化はさらに進み、文献中に記載の平均単繊維径1.4μm程度の極細繊維では、異物の除去効果が十分なものではなかった。   From such a background, in order to clean the surface of the magnetic recording medium substrate, at least one surface of the nonwoven fabric has ultrafine fibers with an average single fiber diameter of 5 μm or less, and an elastic polymer is contained inside the nonwoven fabric. A cloth has been proposed (see, for example, Patent Document 1). According to this proposal, the scraping effect of ultrafine fibers is greatly improved, and magnetic defects and error defects can be satisfactorily suppressed. However, as the precision of the smoothness of the substrate surface has been further improved due to the remarkable increase in density in recent years, the minimization of foreign matters to be removed has further progressed, and the average single fiber diameter described in the literature is about 1.4 μm. In the fiber, the effect of removing foreign matters was not sufficient.

上記背景を鑑み、平均単繊維の直径が1〜400nmの極細繊維を用いた洗浄加工布が提案されている(例えば、特許文献2参照。)。この提案によれば、ナノオーダーの超極細繊維により異物の拭取り性能が向上するものの、比表面積の著しい増加により極細繊維同士が凝集し易く、ナノオーダーの極細繊維としての特性を生かしきれていなかった。   In view of the above background, a cleaning cloth using ultrafine fibers having an average single fiber diameter of 1 to 400 nm has been proposed (see, for example, Patent Document 2). According to this proposal, the wiping performance of foreign substances is improved by nano-order ultra-fine fibers, but the ultra-fine fibers tend to aggregate due to a significant increase in specific surface area, and the characteristics as nano-order ultra-fine fibers are not fully utilized. It was.

一方、上記の特許文献1に記載されているような公知の海島型複合紡糸法によれば、例えば図2に示すように、平均単繊維の直径を1μm以下に、例えば0.8μm程度に設定することも可能である。しかしながら、単繊維の直径を小さくすると微細な異物の掻き出し効果は向上するものの、例えば数μmオーダーなど、大きめの異物がこれらの繊維から落下し易くなり、これらの異物を充分に除去することが容易でない。   On the other hand, according to the known sea-island type composite spinning method as described in Patent Document 1, the diameter of the average single fiber is set to 1 μm or less, for example, about 0.8 μm, as shown in FIG. It is also possible to do. However, although the effect of scraping out fine foreign matter is improved by reducing the diameter of the single fiber, large foreign matters such as the order of several μm are likely to fall from these fibers, and it is easy to sufficiently remove these foreign matters. Not.

また図3に示すように、例えば公知の混紡紡糸法により、極細繊維の繊維径分布を、例えば0.5以下から1μm以上など、幅広く設定した不織布を製造し、これを用いることで、微細な異物から大きめの異物までを除去することも考えられる。しかしながら、繊維径分布を広く設定した場合は、極細繊維全体に占める直径の細い繊維や太い繊維の本数が、例えばそれぞれ5%程度以下など、相対的少なくなるので、かえって微細な異物や大きめの異物の除去が容易でなくなる問題がある。   Also, as shown in FIG. 3, for example, by using a known mixed spinning method, a non-woven fabric having a fiber diameter distribution of ultrafine fibers set to a wide range, for example, 0.5 to 1 μm or more, is used, and a fine nonwoven fabric is used. It is also conceivable to remove foreign matter to large foreign matter. However, when the fiber diameter distribution is set wide, the number of thin fibers and thick fibers occupying the entire ultrafine fiber is relatively small, for example, about 5% or less, respectively. There is a problem that it becomes difficult to remove.

このため、近年、除去すべき異物の極小サイズ化に伴い、異物のサイズが数十nmオーダー〜数μmオーダーと幅広く分布するようになった残渣物等を効率的に除去できる洗浄加工布が求められていた。   For this reason, in recent years, with the miniaturization of foreign matter to be removed, there is a need for a cleaning cloth that can efficiently remove residues and the like whose foreign matter size has become widely distributed on the order of several tens of nm to several μm. It was done.

特許第4457758号公報Japanese Patent No. 4457758 特開2008−55411号公報JP 2008-55411 A

そこで本発明の目的は、磁気記録媒体用基板表面等に残存する研磨砥粒の小片、研磨屑およびスラリー液などの加工残渣など、微細化されたものから数μmオーダーのものまで幅広く分布する異物を基板表面等から効率的に除去することが可能な、不織布とこれを用いた皮革様シート状物を提供することにある。   Accordingly, an object of the present invention is to provide a wide range of foreign substances such as small pieces of polishing abrasive grains remaining on the surface of a magnetic recording medium substrate, processing residues such as polishing debris and slurry liquid, and the like, which are widely distributed from a finer one to several μm order. An object of the present invention is to provide a non-woven fabric and a leather-like sheet material using the non-woven fabric that can efficiently remove the substrate from the surface of the substrate.

すなわち本発明は上記の課題を解決せんとするものであり、本発明1は不織布に関し、繊維直径が0.05〜5.0μmの極細繊維で構成されたシート状物であって、前記極細繊維の直径の0.1μm刻みで作成した分布が互いに異なる2つ以上のピークを有し、より大径側に位置するピークの中心値は、その小径側に隣接するピークの中心値の1.3倍よりも大きく、かつ、各ピークの中心値±30%の範囲内に存在する繊維本数の合計が総繊維本数の90%以上を占めることを特徴とする。   That is, the present invention is to solve the above-mentioned problems, and the present invention 1 relates to a nonwoven fabric, which is a sheet-like material composed of ultrafine fibers having a fiber diameter of 0.05 to 5.0 μm, and the ultrafine fibers The center value of a peak located on the larger diameter side is 1.3 of the center value of the peak adjacent to the smaller diameter side. It is characterized in that the total number of fibers larger than twice and within the range of the center value ± 30% of each peak occupies 90% or more of the total number of fibers.

本発明2は皮革様シート状物に関し、本発明1の不織布を有し、上記の不織布の内部に弾性重合体が含有されていることを特徴とする。   The present invention 2 relates to a leather-like sheet material, characterized by having the nonwoven fabric of the present invention 1 and containing an elastic polymer inside the nonwoven fabric.

ここで、上記の「繊維直径」とは、極細繊維が円形断面の場合はその直径をいい、異形断面の場合は同じ断面積を有する円形の直径をいう。また上記の「ピーク」とは、上記の単繊維直径について0.1μm刻みで度数分布を作成し、この度数分布を直線もしくは曲線でグラフ化した際、上に凸となる点をいい、その点での繊維直径の値をピーク中心値という。ただし、あるピークの中心値から1.3倍の値の範囲内に他のピークが存在する場合は、それらを含めて一つのピークとして扱う。この場合のピーク中心値は、個々のピークでの度数が異なる場合は最も度数の大きいピークの中心値をいい、個々のピークでの度数が等しい場合はそれらのピーク中心値の平均値をいう。   Here, the above-mentioned “fiber diameter” refers to the diameter when the ultrafine fiber has a circular cross section, and refers to the circular diameter having the same cross-sectional area when the ultrafine fiber has a cross section. In addition, the above “peak” means a point that is convex upward when a frequency distribution is created in increments of 0.1 μm with respect to the single fiber diameter, and the frequency distribution is graphed by a straight line or a curve. The value of the fiber diameter at is called the peak center value. However, when other peaks exist within the range of 1.3 times the center value of a certain peak, they are treated as one peak including them. The peak center value in this case refers to the center value of the peak with the highest frequency when the frequencies of the individual peaks are different, and refers to the average value of the peak center values when the frequencies of the individual peaks are equal.

上記の不織布は、極細繊維直径の分布が互いに異なる2つ以上のピークを有しており、しかも各ピークの中心値±30%の範囲内に存在する繊維本数の合計が総繊維本数の90%以上を占めることから、それぞれ多くの本数の、より細い直径の極細繊維とより太い直径の極細繊維とを備えている。このため、例えば数十nmオーダーなどの微細な異物は、より細い直径の極細繊維で良好に掻き出され、例えば数μmオーダーなどの大きめの異物は、より太い直径の極細繊維で良好に掻き出され、その後、?き出された異物は、より太い直径の極細繊維に確りと把持される。   The non-woven fabric has two or more peaks in which the distribution of the ultrafine fiber diameters is different from each other, and the total number of fibers existing within the range of the center value ± 30% of each peak is 90% of the total number of fibers. In view of the above, each has a large number of finer fibers having a smaller diameter and a thicker fiber having a larger diameter. For this reason, fine foreign matters, for example, of the order of several tens of nm are favorably scraped with ultrafine fibers having a smaller diameter, and large foreign matters, for example, of the order of several μm, are favorably scraped with ultrafine fibers having a larger diameter. After that, the squeezed out foreign matter is firmly held by ultrafine fibers having a larger diameter.

上記の極細繊維の直径の分布は、好ましくは0.05〜1.0μmの範囲に少なくとも1つのピーク中心値を備えるとともに、1.0〜5.0μmの範囲に少なくとも1つのピーク中心値を備えると、数十nmオーダー〜数μmオーダーと幅広く分布する異物を一層効果的に除去できるので、より好ましい。   The diameter distribution of the ultrafine fibers preferably has at least one peak center value in the range of 0.05 to 1.0 μm and at least one peak center value in the range of 1.0 to 5.0 μm. In addition, it is more preferable because foreign substances distributed widely in the order of several tens of nm to several μm can be more effectively removed.

上記の極細繊維は、1本の複合繊維から互いに太さの異なる極細繊維を発生させる海島型複合繊維に由来すると、上記の不織布を構成する極細繊維は、この海島型複合繊維に由来する繊維束に、太さが互いに異なる極細繊維が含まれた状態となる。この結果、上記の不織布には、より太い極細繊維とより細い極細繊維とが所定の比率で均一に分散された状態となるので、基板表面等から異物をムラなく除去することができ、より好ましい。   When the ultrafine fiber is derived from a sea-island type composite fiber that generates ultrafine fibers having different thicknesses from one composite fiber, the ultrafine fiber constituting the nonwoven fabric is a fiber bundle derived from the sea-island type composite fiber. Thus, ultrafine fibers having different thicknesses are included. As a result, the above-mentioned nonwoven fabric is in a state in which thicker and finer fine fibers are uniformly dispersed at a predetermined ratio, so that foreign substances can be removed from the substrate surface and the like more uniformly, which is more preferable. .

本発明の不織布は、それぞれ多くの本数の、より細い直径の極細繊維とより太い直径の極細繊維とを備えているので、これを洗浄加工布に用いると、例えば数十nmオーダーなどの微細な異物を、より細い直径の極細繊維で良好に掻き出すことができ、しかも、例えば数μmオーダーなどの大きめの異物を、より太い直径の極細繊維で確りと把持することができる。即ち、本発明の不織布を用いることにより、磁気記録媒体用基板表面に残存する微細化された異物や、研磨砥粒の小片、研磨屑およびスラリー液などの加工残渣などの、数十nmオーダーから数μmオーダーと幅広く分布する異物を効率的に除去できる、洗浄加工布を得ることができる。   Since the nonwoven fabric of the present invention includes a large number of fine fibers having a smaller diameter and a fine fiber having a larger diameter, when the nonwoven fabric is used for a cleaning processed cloth, for example, a fine number such as an order of several tens of nm is used. Foreign matters can be scraped out with fine fibers having a smaller diameter, and larger foreign matters, for example, of the order of several μm can be securely grasped with ultra fine fibers having a larger diameter. That is, by using the nonwoven fabric of the present invention, fine foreign matter remaining on the surface of the magnetic recording medium substrate, small abrasive particles, processing residues such as polishing scraps and slurry liquid, etc. A cleaning cloth can be obtained that can efficiently remove foreign matters widely distributed in the order of several μm.

また本発明の皮革様シート状物が洗浄加工布である場合は、数十nmオーダーから数μmオーダーと幅広く分布する残渣物等の異物に対して、拭取り性と把持性が優れているので、基板表面等からの異物の除去効率が極めて高く、これを用いて洗浄することにより、磁気記録媒体用基板の不良率を良好に抑えることができる。   In addition, when the leather-like sheet-like material of the present invention is a cleaning cloth, it has excellent wiping and gripping properties against foreign matters such as residues widely distributed on the order of several tens of nm to several μm. The removal efficiency of the foreign matter from the substrate surface and the like is extremely high, and cleaning using this can satisfactorily suppress the defect rate of the magnetic recording medium substrate.

本発明の不織布の、これを構成する極細繊維の代表的な繊維直径分布図である。It is a typical fiber diameter distribution figure of the ultrafine fiber which comprises this of the nonwoven fabric of this invention. 公知の海島型複合紡糸法により作製した不織布の、これを構成する極細繊維の代表的な繊維直径分布図である。It is a typical fiber diameter distribution figure of the ultrafine fiber which comprises the nonwoven fabric produced by the well-known sea-island type composite spinning method. 公知の混紡紡糸法により作製した不織布の、これを構成する極細繊維の代表的な繊維直径分布図である。It is a typical fiber diameter distribution figure of the ultrafine fiber which comprises the nonwoven fabric produced by the well-known mixed spinning method.

本発明の不織布は、繊維直径が0.05〜5.0μmの極細繊維で構成されたシート状物であって、例えば図1に示すように、前記極細繊維の直径の0.1μm刻みで作成した分布が互いに異なる2つ以上のピークを有し、より大径側に位置するピークの中心値は、その小径側に隣接するピークの中心値の1.3倍よりも大きく、かつ、各ピークの中心値±30%の範囲内に存在する繊維本数の合計が総繊維本数の90%以上を占めるものである。   The nonwoven fabric of the present invention is a sheet-like material composed of ultrafine fibers having a fiber diameter of 0.05 to 5.0 μm. For example, as shown in FIG. The center value of the peak located on the larger diameter side has two or more peaks whose distributions are different from each other, and is greater than 1.3 times the center value of the peak adjacent to the smaller diameter side, and each peak The total number of fibers existing within the range of the center value of ± 30% occupies 90% or more of the total number of fibers.

本発明では、上記の複数のピーク中心値は特定の値に限定されないが、例えば、0.05〜1.0μmの範囲の超極細繊維を採用することにより、数十〜数百nmオーダーの微細な残渣物の除去性能が向上すると共に、1.0〜5.0μmの範囲の極細繊維も同時に採用することにより、数百nm〜数μmオーダーの比較的大きめの残渣物の除去性能も維持することができる。よって異なる2つ以上のピークを有する繊維直径分布の極細繊維を用いることにより、例えば数十nm〜数μm等の幅広いサイズ分布を有する残渣物や他の異物に対して、拭き取り・把持効果が向上するものである。   In the present invention, the plurality of peak center values are not limited to specific values, but for example, by using ultrafine fibers in the range of 0.05 to 1.0 μm, fineness on the order of several tens to several hundreds of nanometers. In addition to improving the removal performance of residual residues, the removal performance of relatively large residues on the order of several hundreds of nanometers to several micrometers is also maintained by simultaneously adopting ultrafine fibers in the range of 1.0 to 5.0 μm. be able to. Therefore, by using ultrafine fibers with a fiber diameter distribution having two or more different peaks, the wiping and gripping effect is improved against residues and other foreign matters having a wide size distribution such as several tens of nm to several μm. To do.

本発明でいう極細繊維の直径の分布のピークとは、不織布を構成する極細繊維直径について、0.1μm刻みの度数分布(ヒストグラム)を直線もしくは曲線でグラフ化した際、図1に示すように、上に凸となる点をいう。   The peak of the distribution of the diameter of the ultrafine fiber referred to in the present invention means that when the frequency distribution (histogram) in increments of 0.1 μm is graphed by a straight line or a curve with respect to the diameter of the ultrafine fiber constituting the nonwoven fabric, as shown in FIG. The point which becomes convex upwards.

本発明で用いられる極細繊維を形成するポリマーとしては、例えば、ポリエステル、ポリアミド、ポリオレフィンおよびポリフェニレンスルフィド(PPS)等を挙げることができる。ポリエステルやポリアミドに代表される重縮合系ポリマーは、融点が高いものが多く洗浄加工時に発生する熱に対する耐熱性に優れており、本発明で好ましく用いられる。ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポリトリメチレンテレフタレート等を挙げることができる。また、ポリアミドの具体例としては、ナイロン6、ナイロン66およびナイロン12等を挙げることができる。
また、本発明で用いられる極細繊維を構成するポリマーには、他の成分が共重合されていても良いし、粒子、難燃剤、帯電防止剤等の添加剤を含有させても良い。
Examples of the polymer forming the ultrafine fiber used in the present invention include polyester, polyamide, polyolefin, polyphenylene sulfide (PPS), and the like. Many polycondensation polymers represented by polyester and polyamide have a high melting point and are excellent in heat resistance against heat generated during washing processing, and are preferably used in the present invention. Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate. Specific examples of the polyamide include nylon 6, nylon 66, nylon 12, and the like.
In addition, the polymer constituting the ultrafine fiber used in the present invention may be copolymerized with other components, and may contain additives such as particles, flame retardants and antistatic agents.

本発明において用いられる極細繊維の直径は、0.05〜5.0μmとすることが重要である。繊維径を5.0μm以下、好ましくは4.0μm以下とすることにより、拭き取り対象に傷を付けることなく、サイズの大きい残渣物や他の異物に対する除去性能を確保することができる。一方、繊維径を0.05μm以上、好ましくは0.1μm以上とすることにより、極小サイズの残渣物や他の異物に対する除去性能を確保することができるとともに、繊維強度および剛性を維持することができるため、洗浄加工を効率的に行うことができる。   It is important that the diameter of the ultrafine fiber used in the present invention is 0.05 to 5.0 μm. By setting the fiber diameter to 5.0 μm or less, preferably 4.0 μm or less, it is possible to ensure removal performance for large-size residues and other foreign matters without damaging the object to be wiped. On the other hand, by making the fiber diameter 0.05 μm or more, preferably 0.1 μm or more, it is possible to ensure the removal performance with respect to extremely small-sized residues and other foreign matters, and to maintain the fiber strength and rigidity. Therefore, the cleaning process can be performed efficiently.

本発明の不織布としては、短繊維をカードおよびクロスラッパーを用いて積層繊維ウェブを形成させた後にニードルパンチやウォータジェットパンチを施して得られる短繊維不織布や、スパンボンド法やメルトブロー法などから得られる長繊維不織布、或いは抄紙法で得られる不織布などを適宜採用することができる。なかでも、ニードルパンチやウォータジェットパンチを施して繊維を絡合させることにより得られる短繊維不織布は、極細繊維束の態様をニードルパンチ処理により制御することが可能であるため、本発明では好ましく用いられる。   The nonwoven fabric of the present invention is obtained from a short fiber nonwoven fabric obtained by forming a laminated fiber web using a card and a cross wrapper and then needle punching or water jet punching, a spunbond method or a melt blow method. It is possible to appropriately employ a long-fiber nonwoven fabric obtained or a nonwoven fabric obtained by a papermaking method. Among them, a short fiber nonwoven fabric obtained by entanglement of fibers by applying a needle punch or a water jet punch is preferably used in the present invention because the aspect of the ultrafine fiber bundle can be controlled by the needle punch process. It is done.

上記の不織布を有する本発明の皮革様シート状物は、洗浄加工布に好ましく用いられるが、前記の不織布が弾性重合体を含有している。不織布に弾性重合体を含有させることによって、弾性重合体のバインダー効果により極細繊維が不織布から抜け落ちるのを防止し、起毛時に均一な立毛を形成することが可能となる。また、弾性重合体を含有させることによって、皮革様シート状物にクッション性を付与し、洗浄加工布として使用した時にスクラッチ欠点等の発生を抑制することができる。   Although the leather-like sheet-like material of the present invention having the above-mentioned nonwoven fabric is preferably used for a washed cloth, the nonwoven fabric contains an elastic polymer. By containing the elastic polymer in the nonwoven fabric, it is possible to prevent the ultrafine fibers from falling out of the nonwoven fabric due to the binder effect of the elastic polymer, and to form uniform napping at the time of raising. Moreover, by containing an elastic polymer, cushioning properties can be imparted to the leather-like sheet material, and the occurrence of scratch defects and the like can be suppressed when used as a washed cloth.

本発明で用いられる弾性重合体としては、例えば、ポリウレタン、ポリウレア、ポリウレタン・ポリウレアエラストマー、ポリアクリル酸、アクリロニトリル・ブタジエンエラストマーおよびスチレン・ブタジエンエラストマー等を挙げることができる。中でも、ポリウレタンやポリウレタン・ポリウレアエラストマーなどのポリウレタン系エラストマーが好ましく用いられる。   Examples of the elastic polymer used in the present invention include polyurethane, polyurea, polyurethane / polyurea elastomer, polyacrylic acid, acrylonitrile / butadiene elastomer, and styrene / butadiene elastomer. Among these, polyurethane elastomers such as polyurethane and polyurethane / polyurea elastomer are preferably used.

ポリウレタン系エラストマーのポリオール成分としては、ポリエステル系、ポリエーテル系或いはポリカーボネート系のジオール、もしくはこれらの共重合物などを用いることができる。また、ジイソシアネート成分としては、芳香族ジイソシアネート、脂環式イソシアネート或いは脂肪族系イソシアネートなどを使用することができる。   As the polyol component of the polyurethane-based elastomer, a polyester-based, polyether-based or polycarbonate-based diol, or a copolymer thereof can be used. Moreover, as a diisocyanate component, aromatic diisocyanate, alicyclic isocyanate, aliphatic isocyanate, etc. can be used.

ポリウレタン系エラストマーの重量平均分子量は、好ましくは50,000〜300,000である。重量平均分子量を50,000以上、より好ましくは100,000以上、さらに好ましくは150,000以上とすることにより、不織布の強度を保持し、また極細繊維の脱落を防ぐことができる。また、重量平均分子量を300,000以下、より好ましくは250,000以下とすることにより、ポリウレタン溶液の粘度の増大を抑えて極細繊維層への含浸を行いやすくすることができる。   The weight average molecular weight of the polyurethane elastomer is preferably 50,000 to 300,000. By setting the weight average molecular weight to 50,000 or more, more preferably 100,000 or more, and further preferably 150,000 or more, the strength of the nonwoven fabric can be maintained, and dropping of the ultrafine fibers can be prevented. Further, by setting the weight average molecular weight to 300,000 or less, more preferably 250,000 or less, it is possible to suppress the increase in the viscosity of the polyurethane solution and facilitate the impregnation of the ultrafine fiber layer.

また、弾性重合体には、ポリエステル系、ポリアミド系或いはポリオレフィン系などのエラストマー樹脂、アクリル樹脂或いはエチレン−酢酸ビニル樹脂などの他の樹脂が含まれていてもよい。また、これらの他の樹脂の含有率は、ポリウレタンの特性を損なわない範囲で含有することが好ましく、含有率としては、0〜30質量%の範囲が好ましく、より好ましくは0〜20質量%の範囲である。
また、弾性重合体には、必要に応じて着色剤、酸化防止剤、帯電防止剤、分散剤、柔軟剤、凝固調整剤、難燃剤、抗菌剤、防臭剤などの添加剤が配合されていてもよい。
The elastic polymer may contain other resins such as polyester resins, polyamide resins or polyolefin elastomer resins, acrylic resins or ethylene-vinyl acetate resins. Moreover, it is preferable to contain in the range which does not impair the characteristic of a polyurethane, as a content rate of these other resin, the range of 0-30 mass% is preferable, More preferably, it is 0-20 mass%. It is a range.
In addition, additives such as colorants, antioxidants, antistatic agents, dispersants, softeners, coagulation modifiers, flame retardants, antibacterial agents, and deodorants are blended in the elastic polymer as necessary. Also good.

弾性重合体の含有率は、上記の不織布(質量)に対し、好ましくは5〜200質量%である。弾性重合体の含有量によって、皮革様シート状物の表面状態、クッション性、硬度および強度などを調節することができる。弾性重合体の含有量を5質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上とすることにより、極細繊維の脱落を少なくすることができる。一方、弾性重合体の含有量を200質量%以下、より好ましくは100質量%以下、さらに好ましくは80質量%以下とすることにより、加工性および生産性が向上するとともに、表面上において極細繊維が均一分散した状態を得ることができる。   The content of the elastic polymer is preferably 5 to 200% by mass with respect to the nonwoven fabric (mass). Depending on the content of the elastic polymer, the surface state, cushioning properties, hardness, strength, etc. of the leather-like sheet can be adjusted. By setting the content of the elastic polymer to 5% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, dropping of ultrafine fibers can be reduced. On the other hand, when the content of the elastic polymer is 200% by mass or less, more preferably 100% by mass or less, and further preferably 80% by mass or less, processability and productivity are improved, and ultrafine fibers are formed on the surface. A uniformly dispersed state can be obtained.

本発明の不織布を有してなる皮革様シート状物の目付は、好ましくは100〜600g/mである。目付を100g/m以上、より好ましくは150g/m以上とすることにより、洗浄加工布として使用した時の形態安定性・寸法安定性に優れ、洗浄加工時の不織布の伸びによる加工ムラ、スクラッチ欠点の発生を抑えることができる。一方、目付を600g/m以下、より好ましくは300g/m以下とすることにより、皮革様シート状物の取扱い性が容易となり、また、皮革様シート状物のクッション性を適度に抑え、洗浄加工時において非研磨面からのゴムローラーによる押付圧を洗浄加工表面に適度に伝播させ、効率的な洗浄加工を行うことができる。 The basis weight of the leather-like sheet having the nonwoven fabric of the present invention is preferably 100 to 600 g / m 2 . By making the basis weight 100 g / m 2 or more, more preferably 150 g / m 2 or more, it is excellent in form stability and dimensional stability when used as a cleaning cloth, and processing unevenness due to elongation of the nonwoven fabric during the cleaning process, Occurrence of scratch defects can be suppressed. On the other hand, by making the basis weight 600 g / m 2 or less, more preferably 300 g / m 2 or less, the handleability of the leather-like sheet is facilitated, and the cushioning property of the leather-like sheet is moderately suppressed, At the time of the cleaning process, the pressing pressure by the rubber roller from the non-polished surface can be appropriately propagated to the surface of the cleaning process, and an efficient cleaning process can be performed.

本発明の不織布を有してなる皮革様シート状物は、洗浄加工に供する側の面の表面に起毛処理が施され立毛を有していていることが好ましい態様である。皮革様シート状物の表面に立毛を形成することにより、異形断面の極細繊維の分散を得ることができ、さらに表面繊維に適度なクッション性が得られるため、繊維間の空隙に残渣物等の異物を把持することが可能となり、異物保持特性が向上する。   The leather-like sheet-like material comprising the nonwoven fabric of the present invention is preferably a surface having a raised surface on the surface on the side subjected to the cleaning process and having raised hairs. By forming napping on the surface of the leather-like sheet material, it is possible to obtain a dispersion of ultrafine fibers having an irregular cross section, and furthermore, an appropriate cushioning property can be obtained for the surface fibers, so that residues such as residues are formed in the gaps between the fibers. A foreign object can be gripped, and the foreign object retention characteristics are improved.

本発明の不織布を有する皮革様シート状物やこれを用いた洗浄加工布において、表面の極細繊維束が構成する表面繊維立毛部分の構造の形態としては、極細繊維が均一に揃っていてもよく、また、極細繊維同士が多少離れていてもよいし、部分的に結合していてもよいし、凝集していてもよい。ここで、結合とは、化学的な反応や物理的な融着等によるものを指し、凝集とは、水素結合等の分子間力によるものを指す。   In the leather-like sheet-like material having the nonwoven fabric of the present invention and the cleaning cloth using the same, as the form of the structure of the surface fiber raised portion constituting the surface ultrafine fiber bundle, the ultrafine fibers may be evenly arranged. Further, the ultrafine fibers may be somewhat separated from each other, may be partially bonded, or may be aggregated. Here, the bond refers to a chemical reaction or physical fusion, and the aggregation refers to a molecular force such as a hydrogen bond.

次に、本発明の不織布を製造する方法について説明する。
極細繊維束が絡合した繊維絡合体等の不織布を得る手段としては、極細繊維発生型繊維を用いることが好ましい。極細繊維から直接繊維絡合体等の不織布を製造することは困難であるが、極細繊維発生型繊維から繊維絡合体を製造し、この繊維絡合体における海島型複合繊維から極細繊維を発生させることにより、極細繊維束が絡合してなる不織布を得ることができる。
Next, a method for producing the nonwoven fabric of the present invention will be described.
As a means for obtaining a nonwoven fabric such as a fiber entangled body in which ultrafine fiber bundles are entangled, it is preferable to use ultrafine fiber generating fibers. Although it is difficult to produce a nonwoven fabric such as a fiber entanglement directly from an ultrafine fiber, by producing a fiber entanglement from an ultrafine fiber generating fiber and generating an ultrafine fiber from a sea-island composite fiber in this fiber entanglement A nonwoven fabric formed by entanglement of ultrafine fiber bundles can be obtained.

極細繊維発生型繊維としては、溶剤溶解性の異なる2成分の熱可塑性樹脂の一方を海成分、他方を島成分とし、溶剤などを用いて海成分を溶解除去することによって島成分を極細繊維とする海島型繊維や、2成分の熱可塑性樹脂を繊維断面に放射状または多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。   As the ultrafine fiber generation type fiber, one of two thermoplastic resins having different solvent solubility is used as a sea component, the other as an island component, and the sea component is dissolved and removed using a solvent or the like, thereby converting the island component into an ultrafine fiber. The sea-island-type fibers, or the two-component thermoplastic resin arranged alternately in a radial or multi-layer fashion on the fiber cross-section, and the release-type composite fiber that splits the components into ultra-fine fibers by splitting and separating each component. it can.

海島型繊維には、海島型複合用口金を用い海成分と島成分の2成分を相互配列して紡糸する海島型複合繊維や、海成分と島成分の2成分を混合して紡糸する混合紡糸繊維などがある。ただし、高精度に制御された極細繊維が得られる点、また十分な長さの極細繊維が得られ、不織布および不織布を有してなる皮革様シート状物の強度にも寄与する点から、海島型複合繊維が好ましく用いられる。   For sea-island type fibers, sea-island type composite fibers that use a sea-island type composite base to spun two components of the sea component and the island component, and mixed spinning that mixes and spins the two components of the sea component and the island component are spun. There are fibers. However, from the point that ultrafine fibers controlled with high accuracy can be obtained, and a sufficiently long ultrafine fiber can be obtained, which contributes to the strength of the nonwoven fabric and the leather-like sheet-like material comprising the nonwoven fabric. A type composite fiber is preferably used.

本発明の不織布は、構成する極細繊維の直径の分布がピーク個数を2つ以上有することが重要である。ピーク個数を2個以上とすることにより、数nm〜数μmにサイズ分布を有する残渣物等の異物に対する除去・把持性能に優れる。ピーク個数は拭き取る異物のサイズおよび個数の分布により適宜設定することができる。また、ピーク個数の上限は特に限定はないが、後述する分配板の生産性およびそれぞれのピークにおける極細繊維の均一性、各ピークに含まれる繊維本数等の観点から、10個以下に設定することが望ましい。   In the nonwoven fabric of the present invention, it is important that the distribution of the diameters of the ultrafine fibers constituting it has two or more peaks. By setting the number of peaks to 2 or more, the removal / gripping performance with respect to foreign matters such as residues having a size distribution of several nm to several μm is excellent. The number of peaks can be set as appropriate depending on the size and number distribution of foreign matters to be wiped off. The upper limit of the number of peaks is not particularly limited, but should be set to 10 or less from the viewpoint of the productivity of the distribution plate described later, the uniformity of the ultrafine fibers in each peak, the number of fibers contained in each peak, and the like. Is desirable.

本発明の不織布を構成する極細繊維は、直径の分布が複数のピークを有しておればよく、この複数のピークは、例えば、互いに太さの異なる数種類の海島型複合繊維を混綿して構成することも可能である。しかし、1本の複合繊維から互いに太さの異なる極細繊維を発生させる海島型複合繊維を用いて上記のピークを形成するように構成すると、それらの互いに太さの異なる極細繊維が不織布中に均一に分散するので、この不織布の均一性に寄与でき、均一な表面と断面構造と力学物性を有する不織布を得ることができて好ましい。   The ultrafine fibers constituting the nonwoven fabric of the present invention need only have a plurality of peaks in the distribution of diameters, and the plurality of peaks are formed by blending several types of sea-island composite fibers having different thicknesses, for example. It is also possible to do. However, when the above-mentioned peak is formed by using sea-island type composite fibers that generate ultrafine fibers having different thicknesses from one composite fiber, the ultrafine fibers having different thicknesses are uniform in the nonwoven fabric. Therefore, it is possible to contribute to the uniformity of the nonwoven fabric and to obtain a nonwoven fabric having a uniform surface, cross-sectional structure and mechanical properties, which is preferable.

本発明の不織布に好適に用いられる、上記の極細繊維を発生させる海島型複合繊維は、例えば、特開2011−174215号公報に記載の、ポリマー流を吐出するための複合口金を用いることにより作製することができる。この複合口金は、海島成分のポリマー流を計量する複数の計量孔を有する計量板と、複数の計量孔からの吐出ポリマー流を合流させる合流溝に複数の分配孔を有する分配板とを組み合わせてあり、得られた海島型複合繊維から、所望またはその近傍の直径の極細繊維を発生させることができる。   The sea-island type composite fiber that generates the above-mentioned ultrafine fiber, which is preferably used for the nonwoven fabric of the present invention, is prepared by using, for example, a composite base for discharging a polymer stream described in JP2011-174215A can do. This composite base is a combination of a measuring plate having a plurality of measuring holes for measuring the polymer flow of the sea-island component, and a distribution plate having a plurality of distributing holes in a merging groove for joining the discharged polymer flow from the plurality of measuring holes. In addition, from the obtained sea-island type composite fiber, it is possible to generate ultrafine fibers having a desired diameter or a vicinity thereof.

このとき、上記の分配板により均一に分配されたポリマーのうちの一部を、任意の個数ずつ再度合流させる合流板を組み合わせることで、上記の海島型複合繊維を、1本の複合繊維から互いに太さの異なる極細繊維を発生させる海島型複合繊維にすることができる。そしてこの海島型複合繊維を用いることで、上記の極細繊維の直径の分布に、互いに異なる2つ以上のピークを形成することができる。   At this time, the sea-island type composite fibers can be combined with each other from one composite fiber by combining a merge plate that recombines a part of the polymer uniformly distributed by the distribution plate. A sea-island type composite fiber that generates ultrafine fibers having different thicknesses can be obtained. By using this sea-island type composite fiber, two or more different peaks can be formed in the diameter distribution of the ultrafine fiber.

海成分と島成分の比率は、海島型複合繊維に対する島繊維の質量比が0.2〜0.8であることが好ましく、より好ましくは0.3〜0.7である。質量比を0.2以上とすることにより、海成分の除去率を少なくなり、生産性が向上する。また、質量比を0.8以下とすることにより、島繊維の開繊性の向上、および島成分の合流を防止できる。   As for the ratio of the sea component to the island component, the mass ratio of the island fiber to the sea-island type composite fiber is preferably 0.2 to 0.8, and more preferably 0.3 to 0.7. By setting the mass ratio to 0.2 or more, the removal rate of sea components is reduced and productivity is improved. Further, by setting the mass ratio to 0.8 or less, it is possible to improve the spreadability of the island fibers and prevent the island components from joining.

海島型繊維の海成分としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコールなどを共重合した共重合ポリエステル、或いはポリ乳酸等を用いることができる。   As the sea component of the sea-island fiber, polyethylene, polypropylene, polystyrene, copolymer polyester obtained by copolymerizing sodium sulfoisophthalic acid, polyethylene glycol, or the like, or polylactic acid can be used.

上記の不織布を得る方法としては、前述のとおり、繊維ウェブをニードルパンチやウォータジェットパンチにより絡合させる方法、スパンボンド法、メルトブロー法、或いは抄紙法などを採用することができる。なかでも前述のような極細繊維束の態様とする上で、ニードルパンチやウォータジェットパンチ等の処理を経る方法が好ましく用いられる。   As a method for obtaining the above nonwoven fabric, as described above, a method of entanglement of a fiber web with a needle punch or a water jet punch, a spun bond method, a melt blow method, or a paper making method can be employed. In particular, in order to obtain the above-described form of the ultrafine fiber bundle, a method that undergoes processing such as needle punching or water jet punching is preferably used.

ニードルパンチ処理に用いられるニードルにおいて、ニードルバーブ(切りかき)の数は好ましくは1〜9本である。ニードルバーブを1本以上とすることにより、効率的な繊維の絡合が可能となる。一方、ニードルバーブを9本以下とすることにより、繊維損傷を抑えることができる。   In the needle used for the needle punching process, the number of needle barbs is preferably 1-9. By using one or more needle barbs, efficient fiber entanglement becomes possible. On the other hand, when the number of needle barbs is 9 or less, fiber damage can be suppressed.

パンチング本数は、好ましくは1000〜7000本/cmである。パンチング本数を1000本/cm以上とすることにより、緻密性が得られ高精度の仕上げを得ることができる。一方、パンチング本数を7000本/cm以下とすることにより、加工性の悪化、繊維損傷および強度低下を防ぐことができる。 The number of punching is preferably 1000 to 7000 / cm 2 . By setting the number of punching to 1000 pieces / cm 2 or more, denseness can be obtained and a highly accurate finish can be obtained. On the other hand, by setting the number of punching to 7000 / cm 2 or less, deterioration of workability, fiber damage, and strength reduction can be prevented.

また、ウォータジェットパンチ処理を行う場合には、水は柱状流の状態で行うことが好ましい。具体的には、直径0.05〜1.0mmのノズルから圧力2〜60MPaで水を噴出させると良い。   Moreover, when performing a water jet punch process, it is preferable to perform water in the state of a columnar flow. Specifically, water may be ejected from a nozzle having a diameter of 0.05 to 1.0 mm at a pressure of 2 to 60 MPa.

ニードルパンチ処理或いはウォータジェットパンチ処理後の、極細繊維発生型繊維で構成された不織布の見掛け密度は、0.15〜0.45g/cmであることが好ましい。見掛け密度を0.15g/cm以上とすることにより、形態安定性と寸法安定性が優れた不織布にでき、洗浄加工時の洗浄加工布の伸びによる加工ムラ、およびスクラッチ欠点の発生を抑えることができる。一方、見掛け密度を0.45g/cm以下とすることにより、弾性重合体を付与するための十分な空間を繊維間に維持することができる。 It is preferable that the apparent density of the nonwoven fabric composed of ultrafine fiber-generating fibers after the needle punching process or the water jet punching process is 0.15 to 0.45 g / cm 3 . By setting the apparent density to 0.15 g / cm 3 or more, it can be made into a nonwoven fabric with excellent shape stability and dimensional stability, and suppress processing unevenness due to elongation of the cleaning processed cloth during the cleaning processing, and generation of scratch defects. Can do. On the other hand, when the apparent density is 0.45 g / cm 3 or less, a sufficient space for applying the elastic polymer can be maintained between the fibers.

このようにして得られた極細繊維発生型繊維で構成された不織布は、緻密化の観点から、乾熱もしくは湿熱、またはその両者によって収縮させ、さらに高密度化することが好ましい。また、カレンダー処理等により厚み方向に圧縮してもよい。   From the viewpoint of densification, the nonwoven fabric composed of the ultrafine fiber-generating fibers thus obtained is preferably shrunk by dry heat or wet heat, or both, and further densified. Moreover, you may compress in the thickness direction by a calendar process etc.

海島型複合繊維から海成分を溶解するなど、極細繊維発生型繊維から易溶解性ポリマーを溶解除去する極細繊維発生加工は、上記の不織布に弾性重合体を付与する前、付与した後、或いは起毛(立毛)処理の前後の、いずれのタイミングで行ってもよい。
上記の易溶解性ポリマー(海成分)を溶解する溶剤としては、海成分がポリエチレンなどのポリオレフィンやポリスチレン等であればトルエンやトリクロロエチレン等の有機溶媒が用いられ、海成分がポリ乳酸や共重合ポリエステルであれば水酸化ナトリウム等のアルカリ水溶液を用いることができる。また、極細繊維発生加工(脱海処理)は、溶剤中に極細繊維発生型繊維からなる不織布を浸漬し、窄液することによって行うことができる。
また、極細繊維発生加工には、連続染色機、バイブロウォッシャー型脱海機、液流染色機、ウィンス染色機或いはジッガー染色機等の公知の装置を用いることができる。
The ultrafine fiber generation processing for dissolving and removing the easily soluble polymer from the ultrafine fiber generation type fiber, such as dissolving sea components from the sea-island type composite fiber, is performed before or after applying the elastic polymer to the nonwoven fabric, or raising (Napping) may be performed at any timing before and after the treatment.
As the solvent for dissolving the above-mentioned easily soluble polymer (sea component), an organic solvent such as toluene or trichloroethylene is used if the sea component is polyolefin such as polyethylene or polystyrene, and the sea component is polylactic acid or copolymer polyester. If so, an alkaline aqueous solution such as sodium hydroxide can be used. The ultrafine fiber generation processing (sea removal treatment) can be performed by immersing a nonwoven fabric made of ultrafine fiber generation type fibers in a solvent and squeezing it.
For the ultrafine fiber generation processing, a known apparatus such as a continuous dyeing machine, a vibro-washer type seawater removing machine, a liquid dyeing machine, a Wins dyeing machine or a jigger dyeing machine can be used.

本発明の不織布に、ポリウレタンを主成分とする等の弾性重合体が含浸されて皮革様シート状物にされる。このとき、不織布表面の繊維分布の緻密性および均一性を得るためには、上記の弾性重合体は、極細繊維で構成されてなる不織布において、極細繊維の繊維束内部には実質的に存在しないことが好ましい。繊維束内部にまで弾性重合体が存在すると、弾性重合体が各極細繊維と接着して存在することになるため、バフィング処理の際に表面繊維が引きちぎられやすく、かつ、立毛を形成し難い。   The nonwoven fabric of the present invention is impregnated with an elastic polymer such as polyurethane as a main component to form a leather-like sheet. At this time, in order to obtain denseness and uniformity of the fiber distribution on the surface of the nonwoven fabric, the elastic polymer is not substantially present in the fiber bundle of the ultrafine fibers in the nonwoven fabric composed of the ultrafine fibers. It is preferable. When the elastic polymer is present even inside the fiber bundle, the elastic polymer is present by adhering to each ultrafine fiber, so that the surface fibers are easily torn during the buffing process and it is difficult to form napped hairs.

弾性重合体が極細繊維の繊維束内部には実質的に存在しない形態を得る方法としては、例えば、弾性重合体をジメチルホルムアミドなどの溶剤により溶液とし、
(1)極細繊維発生型の海島型複合繊維で構成された不織布に、前記弾性重合体溶液を含浸し、水もしくは有機溶媒水溶液中で凝固させた後、海島型複合繊維の海成分を、弾性重合体は溶解しない溶剤で溶解除去する方法や、
(2)極細繊維発生型の海島型複合繊維で構成された不織布に、鹸化度が好ましくは80%以上のポリビニルアルコールを付与し、繊維の周囲の大部分を保護した後、海島型複合繊維の海成分を、ポリビニルアルコールは溶解しない溶剤で溶解除去し、次いで弾性重合体の溶液を含浸し、水もしくは有機溶剤水溶液中で凝固させた後、ポリビニルアルコールを除去する方法、
などを好ましく用いることができる。
As a method of obtaining a form in which the elastic polymer does not substantially exist inside the fiber bundle of ultrafine fibers, for example, the elastic polymer is made into a solution with a solvent such as dimethylformamide,
(1) A nonwoven fabric composed of ultra-fine fiber-generating sea-island composite fibers is impregnated with the elastic polymer solution and coagulated in water or an organic solvent aqueous solution. A method of dissolving and removing the polymer with a solvent that does not dissolve,
(2) Polyvinyl alcohol having a saponification degree of preferably 80% or more is applied to the nonwoven fabric composed of the ultra-fine fiber-generating sea-island composite fiber, and after protecting most of the periphery of the fiber, the sea-island composite fiber A method of removing the polyvinyl alcohol after dissolving the sea component with a solvent that does not dissolve the polyvinyl alcohol, then impregnating the elastic polymer solution and coagulating it in water or an organic solvent aqueous solution.
Etc. can be preferably used.

前記の弾性重合体を不織布に付与する際に好ましく用いられる溶媒としては、N,N’−ジメチルホルムアミドやジメチルスルホキシド等が挙げられる。また、ポリウレタンの場合、水中にエマルジョンとして分散させた水系ポリウレタンとしてもよい。   Examples of the solvent preferably used when the elastic polymer is applied to the nonwoven fabric include N, N'-dimethylformamide and dimethyl sulfoxide. In the case of polyurethane, a water-based polyurethane dispersed as an emulsion in water may be used.

溶媒に溶解した弾性重合体溶液に不織布を浸漬する等して弾性重合体を付与し、その後、乾燥することによって弾性重合体を実質的に凝固し固化させる。乾燥にあたっては、不織布および弾性重合体の性能が損なわれない程度の温度で加熱してもよい。   The elastic polymer is applied by, for example, immersing the nonwoven fabric in an elastic polymer solution dissolved in a solvent, and then dried to substantially solidify and solidify the elastic polymer. In drying, you may heat at the temperature which does not impair the performance of a nonwoven fabric and an elastic polymer.

本発明の不織布を有してなる皮革様シート状物の起毛処理は、サンドペーパーやロールサンダーなどを用いて行うことができる。特に、サンドペーパーを用いることにより、均一かつ緻密な立毛を形成することができる。さらに、上記の不織布に弾性重合体を付与したシート状物の表面に前記のような均一な極細繊維の立毛を形成させるためには、極細繊維の直径と用いられるサンドペーパーの砥粒径との比率、サンドペーパーと皮革様シート状物との速度の比率、研削量および研削負荷等を適切な範囲に制御することが好ましい。また、研削負荷を低減するために、バフ段数が3段以上の多段バッフィングとし、前半の1〜2段以上でトータル研削量の70〜90%、最終の1段で30〜10%の研削を行い、表面を整えることが好ましい。   The raising | fluff process of the leather-like sheet-like thing which has the nonwoven fabric of this invention can be performed using sandpaper, a roll sander, etc. In particular, by using sandpaper, uniform and dense napping can be formed. Furthermore, in order to form the above-mentioned uniform ultrafine fiber napping on the surface of the sheet-like material obtained by applying an elastic polymer to the nonwoven fabric, the diameter of the ultrafine fiber and the abrasive grain size of the sandpaper used are It is preferable to control the ratio, the speed ratio between the sandpaper and the leather-like sheet, the grinding amount, the grinding load, and the like within an appropriate range. In order to reduce the grinding load, multi-stage buffing with 3 or more buff stages is used, with 70 to 90% of the total grinding amount in the first and second stages or more and 30 to 10% in the final stage. It is preferable to carry out and prepare the surface.

上記条件でシート状物をバッフィング研削することにより、ポリウレタン等の弾性重合体と結合した極細繊維が効率的に掘り起こされ、表面繊維の分散性が確保される。バッフィング研削により、前述した極細繊維束からなる立毛が表面に緻密に配列した表面状態を形成することが可能となる。   By buffing the sheet-like material under the above conditions, the ultrafine fibers combined with an elastic polymer such as polyurethane are efficiently dug up, and the dispersibility of the surface fibers is ensured. By buffing grinding, it becomes possible to form a surface state in which the above-mentioned nappings composed of the ultrafine fiber bundles are densely arranged on the surface.

本発明の不織布を有する皮革様シート状物から作製された洗浄加工布は、例えば、ハードディスクのサイズに対する加工効率、安定性の観点から、30〜50mm幅のテープ状にカットして用いることができる。
そして基板を連続回転させた状態で、上記のテープ状とした洗浄加工布を研磨加工後の基板に押し付けながら、基板の径方向に洗浄加工布または基板を往復運動させ、連続的に洗浄加工布を走行させる。その際に、水および/または有機酸系洗浄剤の水溶液を洗浄加工布表面に供給し、表面の極細繊維にて基板表面を洗浄する方法が好適である。
The cleaning cloth produced from the leather-like sheet-like material having the nonwoven fabric of the present invention can be used by cutting into a tape shape having a width of 30 to 50 mm, for example, from the viewpoint of processing efficiency and stability with respect to the size of the hard disk. .
Then, while the substrate is continuously rotated, the cleaning cloth or substrate is reciprocated in the radial direction of the substrate while pressing the cleaning cloth in the form of tape on the polished substrate, and the cleaning cloth is continuously moved. To run. At this time, a method of supplying an aqueous solution of water and / or an organic acid cleaning agent to the surface of the cleaning cloth and cleaning the substrate surface with ultrafine fibers on the surface is preferable.

ここで使用される有機酸系洗浄剤は、スルホン酸、クエン酸、リンゴ酸および酢酸の、少なくとも1つを含有するものであることが好ましい。洗浄加工方法としては、上記のような洗浄加工用テープと洗浄剤を用い、ガラス等からなる磁気記録ディスク基板の洗浄加工を行うことができる。   The organic acid cleaning agent used here preferably contains at least one of sulfonic acid, citric acid, malic acid and acetic acid. As a cleaning method, the magnetic recording disk substrate made of glass or the like can be cleaned using the cleaning tape and the cleaning agent as described above.

[測定方法と評価用加工方法]
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、各物性の測定と評価に用いる加工は、以下の方法による。
[Measuring method and processing method for evaluation]
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In addition, the process used for measurement and evaluation of each physical property is based on the following method.

(1)融点
パーキンエルマー社(Perkin Elmer)製DSC−7を用いて、2nd runでポリマーの溶融を示すピークトップ温度をポリマーの融点とした。このときの昇温速度は16℃/分で、サンプル量は10mgとした。
(1) Melting point Using DSC-7 manufactured by Perkin Elmer, the peak top temperature at which the polymer melted at 2nd run was defined as the melting point of the polymer. At this time, the rate of temperature increase was 16 ° C./min, and the sample amount was 10 mg.

(2)メルトフローレイト(MFR)
試料ペレット4〜5gを、MFR計電気炉のシリンダーに入れ、株式会社東洋精機製作所製、メルトインデクサー(S101)を用いて、荷重2160gf、温度285℃の条件で、10分間に押し出される樹脂の質量(g)を測定した。同様の測定を3回繰り返し、平均値をMFRとした。
(2) Melt flow rate (MFR)
4-5 g of sample pellets are placed in a cylinder of an MFR meter electric furnace, and a resin made of Toyo Seiki Seisakusho Co., Ltd., melt indexer (S101), is used for 10 minutes under a load of 2160 gf and a temperature of 285 ° C. Mass (g) was measured. The same measurement was repeated 3 times, and the average value was defined as MFR.

(3)極細繊維の繊維直径ピーク個数測定
シート状物の極細繊維を含む厚み方向に垂直な断面を、走査型電子顕微鏡(SEM、株式会社キーエンス製、VE−7800型)を用いて3000倍で観察し、30μm×30μmの視野内で観察可能な1つの極細繊維束を抽出し、その極細繊維束を構成する全ての単繊維直径をμm単位でそれぞれ有効数字3桁で測定し、四捨五入により有効数字2桁で求めた。ただし、これを10カ所で行った。極細繊維が異形断面の場合は、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めた。このようにして求めた単繊維直径について、さらに小数点第2位を四捨五入し、0.1μm単位とした後、0.1μm刻みで繊維直径分布の度数分布を作成した。この度数分布を直線もしくは曲線でグラフ化した際、上に凸となる点を繊維直径分布のピークと定義し、その際の繊維直径を0.1μm単位で求め、さらにその個数をカウントした。この時、ある1つのピークの中心値+30%の範囲に他のピークが存在する場合は、両者のうち度数の大きい方をピークとして採用し、他方はピークにカウントしないものとした。また、両者の度数が等しい場合は、各ピーク中心値の平均値をピーク中心値として採用した。
(3) Measurement of the number of fiber diameter peaks of ultrafine fibers A cross section perpendicular to the thickness direction including the ultrafine fibers of a sheet-like material is 3000 times using a scanning electron microscope (SEM, manufactured by Keyence Corporation, model VE-7800). Observe and extract one ultrafine fiber bundle that can be observed within a 30 μm × 30 μm field of view, measure the diameter of all the single fibers constituting the ultrafine fiber bundle in μm units, each with three significant figures, and round off to be effective Obtained with two digits. However, this was done at 10 locations. When the ultrafine fiber had an irregular cross section, first, the cross sectional area of the single fiber was measured, and the diameter of the single fiber was calculated by calculating the diameter when the cross section was assumed to be circular. The single fiber diameter thus obtained was further rounded to the second decimal place to obtain a unit of 0.1 μm, and then a frequency distribution of the fiber diameter distribution was created in increments of 0.1 μm. When this frequency distribution was graphed as a straight line or a curve, the upwardly convex point was defined as the peak of the fiber diameter distribution, the fiber diameter at that time was determined in units of 0.1 μm, and the number was counted. At this time, when another peak is present in the range of the center value of one peak + 30%, the higher frequency is adopted as the peak, and the other is not counted as a peak. Moreover, when both frequency was equal, the average value of each peak center value was employ | adopted as a peak center value.

(4)極細繊維の本数測定
上記(3)で求めた各ピークの中心値から、ピーク中心値±30%の範囲内に存在する極細繊維の本数を測定し、重複分を除いたこれらの合計本数が総繊維本数に占める割合を算出した。
(4) Measurement of the number of ultrafine fibers From the center value of each peak determined in (3) above, the number of ultrafine fibers existing within the range of the peak center value ± 30% was measured, and the total of these excluding the overlapping portion The ratio of the number of fibers to the total number of fibers was calculated.

(5)研磨加工
本発明の不織布を有する皮革様シート状物を、30mm幅のテープとし、研磨布として用いた。研磨対象として、表面粗さが0.2nm以下に制御されたコニカミノルタガラステック株式会社製のアモルファスガラスからなる基板を用いた。基板の両面を一度に研磨すべく、上記のテープ状研磨布を基板の両面にセットして、洗浄加工布表面に1次粒子径1〜10nmの単結晶ダイヤモンド粒子が平均径50nmにクラスター化した遊離砥粒を0.01%含む研磨剤を、15mL/分で両面側に滴下し、基板へのテープの押付圧を1000g重、基板回転数を400rpm、基板揺動数を5Hz、テープ走行速度2.5cm/分として、10秒間研磨した。
(5) Polishing The leather-like sheet material having the nonwoven fabric of the present invention was used as a 30 mm wide tape and used as a polishing cloth. As a polishing target, a substrate made of amorphous glass manufactured by Konica Minolta Glass Tech Co., Ltd., whose surface roughness was controlled to 0.2 nm or less was used. In order to polish both surfaces of the substrate at once, the above tape-like polishing cloth was set on both surfaces of the substrate, and single crystal diamond particles having a primary particle diameter of 1 to 10 nm were clustered to an average diameter of 50 nm on the surface of the cleaning cloth. An abrasive containing 0.01% of free abrasive grains is dropped on both sides at 15 mL / min, the pressure of pressing the tape against the substrate is 1000 g, the substrate rotation speed is 400 rpm, the substrate swinging frequency is 5 Hz, and the tape running speed Polishing was performed at 2.5 cm / min for 10 seconds.

(6)洗浄加工
上記のテープ状皮革様シート状物を洗浄加工布として用い、研磨加工直後の基板を、研磨剤を洗浄剤(三洋化成株式会社製、ケミクリーンPR−122)に代えて、テープ状洗浄加工布の押付圧を750g重、加工時間を30秒とする以外は研磨加工と同じ条件で洗浄加工し、流水で洗浄した。
(6) Cleaning process Using the tape-like leather-like sheet-like material as a cleaning cloth, the substrate immediately after the polishing process is replaced with a cleaning agent (Sanyo Chemical Co., Ltd., Chemiclean PR-122), The tape was washed under the same conditions as in the polishing process except that the pressing pressure of the cloth for cleaning with a tape was 750 g and the processing time was 30 seconds, and washed with running water.

(7)エラー数
洗浄加工後のガラス基板に磁性層を形成し、磁気欠点やエラー欠陥という、基板表面上に残存する異物起因の不良ディスク発生率を算出した。測定は、ディスク100枚を1セットとし、計3セット実施した。それぞれのセット毎に、ディスク表面の異物起因の不良ディスク発生率を算出し、3セットにおける発生率の平均値を、不良ディスク発生率とした。不良ディスク発生率が1%以下を加工性良好とし、1%を超える場合は加工性不良とした。
(7) Number of errors A magnetic layer was formed on the glass substrate after the cleaning process, and the incidence of defective disks due to foreign matters remaining on the substrate surface, such as magnetic defects and error defects, was calculated. The measurement was performed for a total of 3 sets, with 100 discs as one set. For each set, the defective disk occurrence rate due to foreign matter on the disk surface was calculated, and the average value of the occurrence rates in the three sets was defined as the defective disk occurrence rate. When the defective disk occurrence rate is 1% or less, the workability is good, and when it exceeds 1%, the workability is bad.

[実施例1]
(原綿の海成分と島成分)
融点220℃、MFR58.3g/10分のナイロン6を島成分とし、融点53℃、MFR300g/10分のアクリル酸2−エチルヘキシルを22mol%共重合した共重合ポリスチレン(co−PSt)を海成分とした。
[Example 1]
(Sea component and island component of raw cotton)
Nylon 6 having a melting point of 220 ° C. and an MFR of 58.3 g / 10 min was used as an island component, and a copolymer polystyrene (co-PSt) obtained by copolymerizing 22 mol% of 2-ethylhexyl acrylate having a melting point of 53 ° C. and an MFR of 300 g / 10 min was used as a sea component. did.

(紡糸・延伸)
上記の島成分と海成分を用い、計量する複数の計量孔を有する計量板と、複数の計量孔からの吐出ポリマー流を合流する合流溝に複数の分配孔を有する分配板と、均一に分配したポリマー流の一部を8個ずつ合流させることで、繊維直径が互いに異なる2種類の極細繊維を、本数比率1:1で作製可能な400島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.2g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、単繊維繊度が3.6dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
(Spinning / drawing)
Uniform distribution between the measuring plate having a plurality of measuring holes to be measured using the island component and the sea component, and the distributing plate having a plurality of distribution holes in the merging groove for joining the discharged polymer flow from the plurality of measuring holes Using a 400 island / hole sea-island type composite die that can produce two types of ultrafine fibers with different fiber diameters by joining 8 parts of each polymer stream 8 parts each, Melt spinning was carried out under the conditions of a temperature of 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 1.2 g / min / hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and single fiber fineness is 3.6 dtex, fiber A raw cotton of a sea-island type composite fiber having a length of 51 mm was obtained.

(不織布)
上記の海島型複合繊維の原綿を用い、カード工程とクロスラッパー工程を経て、積層繊維ウェブを形成した。次いで、得られた積層繊維ウェブを、スロートデプス60μm、キックアップ0μm、アンダーカットアングル27度、スロートレングス0.8mmのニードル1本を植込んだニードルパンチ機を用いて、針深度8mm、パンチ本数3200本/cmでニードルパンチし、目付が710g/m、見掛け密度が0.223g/cmの極細繊維発生型不織布を作製した。この極細繊維発生型不織布を95℃の温度で熱水収縮処理させたのち、ポリビニルアルコールを繊維質量に対し34質量%付与し、その後乾燥させた。次に、この極細繊維発生型不織布に、トリクロロエチレンを含浸させ、海成分を溶解除去する極細繊維発生加工を施して、極細繊維で構成された不織布を得た。
(Nonwoven fabric)
A laminated fiber web was formed through the carding process and the cross wrapping process using the raw cotton of the above-mentioned sea-island type composite fibers. Next, the obtained laminated fiber web was subjected to a needle depth of 8 mm and the number of punches using a needle punch machine in which one needle having a throat depth of 60 μm, a kick-up of 0 μm, an undercut angle of 27 degrees, and a throat length of 0.8 mm was implanted. Needle punching was performed at 3200 pieces / cm 2 , and an ultrafine fiber generating nonwoven fabric having a basis weight of 710 g / m 2 and an apparent density of 0.223 g / cm 3 was produced. The ultrafine fiber generating nonwoven fabric was subjected to hot water shrinkage treatment at a temperature of 95 ° C., and then 34% by mass of polyvinyl alcohol was added to the fiber mass, and then dried. Next, this ultrafine fiber generation type nonwoven fabric was impregnated with trichlorethylene and subjected to ultrafine fiber generation processing for dissolving and removing sea components to obtain a nonwoven fabric composed of ultrafine fibers.

(皮革様シート状物)
上記のようにして得られた不織布に、ポリマージオールがポリエーテル系75質量%とポリエステル系25質量%とからなるポリウレタンを、繊維質量に対して固形分で31質量%付与し、液温35℃の30%DMF水溶液でポリウレタンを凝固させ、約85℃の温度の熱水で処理し、DMFおよびポリビニルアルコールを除去した。その後、エンドレスのバンドナイフを有する半裁機により厚み方向に半裁してシートを得た。得られたシートの非半裁面を、JIS#320番のサンドペーパーを用いて、サンドペーパーの回転と逆方向にシートを進行させ、シート速度5m/分で、3段バッフィングにて研削し、立毛を有する、実施例1の皮革様シート状物を作製した。
(Leather-like sheet)
The non-woven fabric obtained as described above is provided with a polyurethane having a polymer diol of 75% by mass of a polyether and 25% by mass of a polyester based on a solid content of 31% by mass with respect to the fiber mass, and a liquid temperature of 35 ° C. The polyurethane was coagulated with a 30% aqueous DMF solution and treated with hot water at a temperature of about 85 ° C. to remove DMF and polyvinyl alcohol. Thereafter, the sheet was cut in the thickness direction by a half-cutting machine having an endless band knife. Using the JIS # 320 sandpaper, the non-semi-finished surface of the obtained sheet is advanced in the opposite direction to the rotation of the sandpaper, and is ground by three-stage buffing at a sheet speed of 5 m / min. A leather-like sheet-like material of Example 1 was prepared.

得られた実施例1の皮革様シート状物は、2つある繊維直径分布のピークの中心が0.3μmと0.9μmである極細繊維の立毛を有し、厚さが0.55mm、目付が185g/m、見かけ密度が0.336g/cmであった。両ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の97.9%を占めていた。
得られた実施例1の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.5%と加工性が良好であり、満足のいくものであった。結果を表1に示す。
The obtained leather-like sheet-like material of Example 1 has napped fibers with ultrafine fibers whose centers of two fiber diameter distribution peaks are 0.3 μm and 0.9 μm, and has a thickness of 0.55 mm. Was 185 g / m 2 and the apparent density was 0.336 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of both peaks accounted for 97.9% of the total number.
Using the leather-like sheet-like material of Example 1 thus obtained, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 0.5% and the workability was good. It was satisfying. The results are shown in Table 1.

[実施例2]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、合流板にて島成分のポリマー流の一部を4個ずつ合流させることで、繊維直径が互いに異なる2種類の極細繊維を本数比率1:1で作製可能な36島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量2.1g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、単繊維繊度が6.6dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Example 2]
(raw cotton)
Using the same island component and sea component as used in Example 1, four pieces of the polymer flow of the island component are merged by four at the merge plate, so that the number of two types of ultrafine fibers having different fiber diameters is obtained. Using a 36 island / hole sea-island type composite die that can be produced at a ratio of 1: 1, a spinning temperature of 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 2.1 g / min / hole, and a spinning speed of 1240 m / min. The melt spinning was performed under the following conditions. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and single fiber fineness is 6.6 dtex, fiber A raw cotton of a sea-island type composite fiber having a length of 51 mm was obtained.

(不織布と皮革様シート状物)
実施例1と同様にして、目付が650g/m、見掛け密度が0.230g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例2の皮革様シート状物を得た。
得られた実施例2の皮革様シート状物は、2つある繊維直径分布のピークの中心が1.8μmと3.6μmである極細繊維の立毛を有し、厚さが0.52mm、目付が182g/m、見かけ密度が0.350g/cmであった。両ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の94.5%を占めていた。
得られた実施例2の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は0.6%と加工性が良好であり、実施例1より若干悪かったものの、満足のいくものであった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
In the same manner as in Example 1, an ultrafine fiber-generating nonwoven fabric having a basis weight of 650 g / m 2 and an apparent density of 0.230 g / cm 3 was prepared, and an ultrafine fiber generation process was performed to obtain a nonwoven fabric composed of ultrafine fibers. Thereafter, in the same manner as in Example 1, the leather-like sheet of Example 2 was obtained.
The obtained leather-like sheet-like material of Example 2 has naps of ultrafine fibers whose centers of two fiber diameter distribution peaks are 1.8 μm and 3.6 μm, has a thickness of 0.52 mm, and a basis weight. Was 182 g / m 2 and the apparent density was 0.350 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of both peaks accounted for 94.5% of the total number.
Using the obtained leather-like sheet-like material of Example 2, polishing processing and cleaning processing were performed, and error performance evaluation was performed. The defective disk occurrence rate was 0.6% and the workability was good. Although it was slightly worse than Example 1, it was satisfactory. The results are shown in Table 1.

[実施例3]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、合流板にて島成分のポリマー流の一部を4個ずつ合流させ、他の一部を8個ずつ合流させることで、繊維直径が互いに異なる3種類の極細繊維を本数比率1:1:1で作製可能な480島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.4g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、単繊維繊度が4.4dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Example 3]
(raw cotton)
The same island component and sea component used in Example 1 are used, and four of the polymer flows of the island component are merged by four at the merge plate, and the other part is merged by eight, thereby producing fibers. Using a 480 island / hole sea-island type composite die capable of producing three types of ultrafine fibers with different diameters at a 1: 1: 1 ratio, a spinning temperature of 280 ° C., an island / sea mass ratio of 40/60, and a discharge rate The melt spinning was performed under the conditions of 1.4 g / min · hole, spinning speed 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and single fiber fineness is 4.4 dtex, fiber A raw cotton of a sea-island type composite fiber having a length of 51 mm was obtained.

(不織布と皮革様シート状物)
実施例1と同様にして、目付が720g/m、見掛け密度が0.221g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例3の皮革様シート状物を得た。
得られた実施例3の皮革様シート状物は、3つある繊維直径分布のピークの中心が0.3μmと0.6μmと1.0μmである極細繊維の立毛を有し、厚さが0.55mm、目付が185g/m、見かけ密度が0.336g/cmであった。各ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の95.7%を占めていた。
得られた実施例3の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.4%と加工性が良好であり、実施例1より良い結果となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
In the same manner as in Example 1, an ultrafine fiber-generating nonwoven fabric having a basis weight of 720 g / m 2 and an apparent density of 0.221 g / cm 3 was prepared, and an ultrafine fiber generation process was performed to obtain a nonwoven fabric composed of ultrafine fibers. After that, the leather-like sheet of Example 3 was obtained in the same manner as Example 1.
The obtained leather-like sheet of Example 3 has naps of ultrafine fibers whose centers of the three fiber diameter distribution peaks are 0.3 μm, 0.6 μm and 1.0 μm, and the thickness is 0 It was 0.55 mm, the basis weight was 185 g / m 2 , and the apparent density was 0.336 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of each peak accounted for 95.7% of the total number.
Using the leather-like sheet-like material of Example 3 obtained, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 0.4% and the workability was good. The result was better than Example 1. The results are shown in Table 1.

[実施例4]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、合流板にて島成分のポリマー流の一部を4個ずつ合流させ、他の一部を8個ずつ合流させ、さらに他の一部を64個ずつを合流させることで、繊維直径が互いに異なる4種類の極細繊維を本数比率1:1:1:1で作製可能な120島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.7g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、単繊維繊度が5.3dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Example 4]
(raw cotton)
The same island component and sea component used in Example 1 are used, and a part of the polymer stream of the island component is merged by four at the merge plate, the other part is merged by eight, and another Using a 120 island / hole sea-island type composite die that can produce four types of ultrafine fibers with different fiber diameters by 1: 1: 1: 1 by merging 64 parts of each part, spinning Melt spinning was performed under the conditions of a temperature of 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 1.7 g / min · hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and single fiber fineness is 5.3 dtex, fiber A raw cotton of a sea-island type composite fiber having a length of 51 mm was obtained.

(不織布と皮革様シート状物)
実施例1と同様にして、目付が700g/m、見掛け密度が0.222g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例4の皮革様シート状物を得た。
得られた実施例4の皮革様シート状物は、4つある繊維直径分布のピークの中心が0.3μmと0.6μmと1.0μmと2.7μmである極細繊維の立毛を有し、厚さが0.53mm、目付が185g/m、見かけ密度が0.349g/cmであった。各ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の94.7%を占めていた。
得られた実施例4の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.2%と加工性が良好であり、実施例1より若干良い数値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
In the same manner as in Example 1, an ultrafine fiber generating nonwoven fabric having a basis weight of 700 g / m 2 and an apparent density of 0.222 g / cm 3 was prepared, and an ultrafine fiber generating process was performed to obtain a nonwoven fabric composed of ultrafine fibers. After that, a leather-like sheet of Example 4 was obtained in the same manner as Example 1.
The obtained leather-like sheet-like material of Example 4 has napped fibers with ultrafine fibers whose centers of four fiber diameter distribution peaks are 0.3 μm, 0.6 μm, 1.0 μm, and 2.7 μm, The thickness was 0.53 mm, the basis weight was 185 g / m 2 , and the apparent density was 0.349 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of each peak accounted for 94.7% of the total number.
Using the leather-like sheet-like material of Example 4 obtained, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 0.2% and the workability was good. The numerical value was slightly better than Example 1. The results are shown in Table 1.

[実施例5]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、合流板にて島成分のポリマー流の一部を4個ずつ合流させ、他の一部を16個ずつ合流させ、さらに他の一部を64個ずつ合流させ、さらに他の一部を128個ずつ合流させることで、繊維直径が互いに異なる5種類の極細繊維を本数比率1:1:1:1:1で作製可能な100島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量2.0g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、繊度が6.2dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Example 5]
(raw cotton)
Using the same island component and sea component as used in Example 1, a part of the polymer stream of the island component is joined by four at the junction plate, the other part is joined by 16 pieces, and another 5 types of ultrafine fibers having different fiber diameters can be produced at a ratio of 1: 1: 1: 1: 1 by merging 64 portions and merging each other portion by 128. Using an island / hole sea-island type composite die, melt spinning was performed at a spinning temperature of 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 2.0 g / min / hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and has a fineness of 6.2 dtex and a fiber length of A 51 mm sea-island composite fiber raw cotton was obtained.

(不織布と皮革様シート状物)
実施例1と同様にして、目付が710g/m、見掛け密度が0.228g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例5の皮革様シート状物を得た。
得られた実施例5の皮革様シート状物は、5つある繊維直径分布のピークの中心が0.3μmと0.7μmと1.3μmと2.6μmと3.7μmである極細繊維の立毛を有し、厚さが0.54mm、目付が180g/m、見かけ密度が0.333g/cmであった。各ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の96.5%を占めていた。
得られた実施例5の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.1%と加工性がさらに良好であり、実施例1に比べて良い数値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
In the same manner as in Example 1, an ultrafine fiber-generating nonwoven fabric having a basis weight of 710 g / m 2 and an apparent density of 0.228 g / cm 3 was prepared, and an ultrafine fiber generation process was performed to obtain a nonwoven fabric composed of ultrafine fibers. After that, a leather-like sheet of Example 5 was obtained in the same manner as Example 1.
The obtained leather-like sheet-like material of Example 5 has napped fibers with ultrafine fibers whose centers of the five fiber diameter distributions are 0.3 μm, 0.7 μm, 1.3 μm, 2.6 μm and 3.7 μm. The thickness was 0.54 mm, the basis weight was 180 g / m 2 , and the apparent density was 0.333 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of each peak accounted for 96.5% of the total number.
Using the leather-like sheet-like material of Example 5 thus obtained, polishing and cleaning were carried out, and error performance evaluation was carried out. As a result, the defective disk occurrence rate was 0.1% and the workability was even better. There was a good numerical value as compared with Example 1. The results are shown in Table 1.

[実施例6]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、繊維直径が互いにほぼ等しい1種類の極細繊維を島成分が作製可能な450島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量0.7g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、繊度が2.2dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
さらに、上記の島成分と海成分を用い、繊維直径が上記の極細繊維とは異なるが、互いにほぼ等しい1種類の極細繊維を島成分が作製可能な18島/ホールの海島複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.3g/ホール、紡糸速度1240m/分の条件で溶融紡糸した。ついで上記と同じ延伸条件を適用して、繊度が4.0dtex、繊維長が51mmの、第2の原綿を得た。
[Example 6]
(raw cotton)
Using the same island component and sea component as used in Example 1 and using a 450 island / hole sea-island type composite die capable of producing an island component of one type of ultrafine fiber having approximately the same fiber diameter, spinning temperature Melt spinning was performed at 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 0.7 g / min / hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and the fineness is 2.2 dtex and the fiber length is A 51 mm sea-island composite fiber raw cotton was obtained.
Furthermore, using the above-mentioned island component and sea component, using an 18 island / hole sea-island composite base that can produce one type of ultra-fine fiber that is different from the above-mentioned ultra-fine fiber in the fiber diameter. The melt spinning was carried out under the conditions of a spinning temperature of 280 ° C., an island / sea mass ratio of 40/60, a discharge amount of 1.3 g / hole, and a spinning speed of 1240 m / min. Subsequently, the same drawing conditions as above were applied to obtain a second raw cotton having a fineness of 4.0 dtex and a fiber length of 51 mm.

(不織布と皮革様シート状物)
上記の2種類の海島型複合繊維を質量比率1:1の割合で混綿したこと以外は実施例1と同様にして、目付が750g/m、見掛け密度が0.233g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例6の皮革様シート状物を得た。
得られた実施例6の皮革様シート状物は、2つある繊維直径分布のピークの中心が0.5μmと3.1μmである極細繊維の立毛を有し、厚さが0.55mm、目付が184g/m、見かけ密度が0.345g/cmであった。各ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の96.6%を占めていた。
得られた実施例6の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.8%と加工性が良好であり、実施例1に比べて若干悪い値となったが、満足のいく結果であった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
Ultrafine fiber having a basis weight of 750 g / m 2 and an apparent density of 0.233 g / cm 3 in the same manner as in Example 1 except that the above two types of sea-island composite fibers were blended at a mass ratio of 1: 1. A generation type non-woven fabric was prepared and subjected to ultra-fine fiber generation processing to obtain a non-woven fabric composed of ultra-fine fibers, and then a leather-like sheet material of Example 6 was obtained in the same manner as Example 1.
The obtained leather-like sheet-like material of Example 6 has naps of ultrafine fibers whose centers of two fiber diameter distribution peaks are 0.5 μm and 3.1 μm, and has a thickness of 0.55 mm. Was 184 g / m 2 and the apparent density was 0.345 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of each peak accounted for 96.6% of the total number.
Using the obtained leather-like sheet-like material of Example 6, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 0.8% and the workability was good. Although it was a slightly worse value compared with Example 1, it was a satisfactory result. The results are shown in Table 1.

[実施例7]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、合流板にて島成分のポリマー流の一部を64個ずつ合流させることで、繊維直径が互いに異なる2種類の極細繊維を本数比率1:1で作製可能な120島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率30/70、吐出量0.8g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、単繊維繊度が2.4dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Example 7]
(raw cotton)
Using the same island component and sea component used in Example 1, 64 pieces of polymer flow of island components are merged by 64 at the merge plate, so that the number of two types of ultrafine fibers having different fiber diameters is the number. Using a 120 island / hole sea-island type composite die that can be produced at a ratio of 1: 1, a spinning temperature of 280 ° C., an island / sea mass ratio of 30/70, a discharge rate of 0.8 g / min / hole, and a spinning speed of 1240 m / min. The melt spinning was performed under the following conditions. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and single fiber fineness is 2.4 dtex, fiber A raw cotton of a sea-island type composite fiber having a length of 51 mm was obtained.

(不織布と皮革様シート状物)
実施例1と同様にして、目付が800g/m、見掛け密度が0.220g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例7の皮革様シート状物を得た。
得られた実施例7の皮革様シート状物は、2つある繊維直径分布のピークの中心が0.2μmと1.3μmである極細繊維の立毛を有し、厚さが0.51mm、目付が180g/m、見かけ密度が0.353g/cmであった。両ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の98.2%を占めていた。
得られた実施例7の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は0.3%と加工性が良好であり、満足のいくものであった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
In the same manner as in Example 1, an ultrafine fiber-generating nonwoven fabric having a basis weight of 800 g / m 2 and an apparent density of 0.220 g / cm 3 was prepared, and an ultrafine fiber generation process was performed to obtain a nonwoven fabric composed of ultrafine fibers. Thereafter, in the same manner as in Example 1, the leather-like sheet of Example 7 was obtained.
The obtained leather-like sheet-like material of Example 7 has napped fibers of ultrafine fibers whose centers of two fiber diameter distribution peaks are 0.2 μm and 1.3 μm, and has a thickness of 0.51 mm. Was 180 g / m 2 and the apparent density was 0.353 g / cm 3 . The total number of fibers included in the range of the center value ± 30% of both peaks accounted for 98.2% of the total number.
Using the obtained leather-like sheet-like material of Example 7, polishing and cleaning were performed, and error performance evaluation was performed. The defect disk occurrence rate was 0.3% and the workability was good. It was satisfactory. The results are shown in Table 1.

[実施例8]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、繊維直径が互いにほぼ等しい1種類の極細繊維を島成分が作製可能な2500島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.1g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、繊度が3.3dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
(不織布と皮革様シート状物)
上記の海島型複合繊維と、実施例6で得た第2の原綿を質量比率1:1の割合で混綿したこと以外は実施例1と同様にして、目付が780g/m、見掛け密度が0.232g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、実施例8の皮革様シート状物を得た。
得られた実施例8の皮革様シート状物は、2つある繊維直径分布のピークの中心が0.2μmと3.1μmである極細繊維の立毛を有し、厚さが0.55mm、目付が189g/m2、見かけ密度が0.344g/cm3であった。各ピークの中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の97.1%を占めていた。
得られた実施例8の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、0.7%と加工性が良好であり、満足のいく結果であった。結果を表1に示す。
[Example 8]
(raw cotton)
Using the same island component and sea component as used in Example 1 and using a sea island type composite base of 2500 islands / hole that can produce one type of ultrafine fiber having almost the same fiber diameter, spinning temperature Melt spinning was performed at 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 1.1 g / min / hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and the fineness is 3.3 dtex and the fiber length is A 51 mm sea-island composite fiber raw cotton was obtained.
(Nonwoven fabric and leather-like sheet)
The basis weight is 780 g / m 2 and the apparent density is the same as in Example 1 except that the sea-island type composite fiber and the second raw cotton obtained in Example 6 are mixed at a mass ratio of 1: 1. After producing a 0.232 g / cm 3 ultrafine fiber-generating nonwoven fabric and performing ultrafine fiber generation processing to obtain a nonwoven fabric composed of ultrafine fibers, the leather-like sheet of Example 8 was obtained in the same manner as Example 1. A product was obtained.
The obtained leather-like sheet of Example 8 has naps of ultrafine fibers whose center of the two fiber diameter distribution peaks are 0.2 μm and 3.1 μm, has a thickness of 0.55 mm, and a basis weight. Was 189 g / m 2 and the apparent density was 0.344 g / cm 3. The total number of fibers included in the range of the center value ± 30% of each peak accounted for 97.1% of the total number.
Using the leather-like sheet-like material of Example 8 obtained, polishing and cleaning were performed, and error performance evaluation was performed. The defective disk occurrence rate was 0.7% and the workability was good. It was a satisfactory result. The results are shown in Table 1.

[比較例1]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、繊維直径が互いにほぼ等しい1種類の極細繊維を島成分が作製可能な450島/ホールの海島型複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量0.7g/分・ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、繊度が2.2dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Comparative Example 1]
(raw cotton)
Using the same island component and sea component as used in Example 1 and using a 450 island / hole sea-island type composite die capable of producing an island component of one type of ultrafine fiber having approximately the same fiber diameter, spinning temperature Melt spinning was performed at 280 ° C., an island / sea mass ratio of 40/60, a discharge rate of 0.7 g / min / hole, and a spinning speed of 1240 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, and the fineness is 2.2 dtex and the fiber length is A 51 mm sea-island composite fiber raw cotton was obtained.

(不織布と皮革様シート状物)
上記の海島型複合繊維の原綿を用いたこと以外は、実施例1と同様にして極細繊維発生型不織布を作成し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、比較例1の皮革様シート状物を得た。
得られた比較例1の皮革様シート状物は、0.5μmに1つの繊維直径分布のピークを有する極細繊維の立毛を有し、厚さが0.55mm、目付が181g/m、見かけ密度が0.329g/cmであった。上記のピーク中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の97.0%を占めていた。
得られた比較例1の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は1.2%と加工性が不良であり、本発明の実施例1〜8のいずれと比べても悪い値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
Except for using the raw cotton of the above-mentioned sea-island type composite fiber, after creating an ultrafine fiber generation type nonwoven fabric in the same manner as in Example 1, and performing ultrafine fiber generation processing to obtain a nonwoven fabric composed of ultrafine fibers, In the same manner as in Example 1, a leather-like sheet material of Comparative Example 1 was obtained.
The obtained leather-like sheet-like material of Comparative Example 1 has napped fibers having a single fiber diameter distribution at 0.5 μm, a thickness of 0.55 mm, a basis weight of 181 g / m 2 , and an appearance. The density was 0.329 g / cm 3 . The total number of fibers included in the range of the above peak center value ± 30% accounted for 97.0% of the total number.
Using the leather-like sheet-like material of Comparative Example 1 obtained, polishing and cleaning were performed, and error performance evaluation was performed. The defective disk occurrence rate was 1.2% and the workability was poor. It became a bad value compared with any of Examples 1-8 of the present invention. The results are shown in Table 1.

[比較例2]
(原綿)
(海成分と島成分)
実施例1で用いたものと同じ島成分と海成分を用い、繊維直径が互いにほぼ等しい1種類の極細繊維を島成分が作製可能な18島/ホールの海島複合口金を用いて、紡糸温度280℃、島/海質量比率40/60、吐出量1.3g/ホール、紡糸速度1240m/分の条件で溶融紡糸した。次いで実施例1と同じ延伸条件を適用して、繊度が4.0dtex、繊維長が51mmの海島型複合繊維の原綿を得た。
[Comparative Example 2]
(raw cotton)
(Sea component and island component)
Using the same island component and sea component as used in Example 1 and using an 18 island / hole sea-island composite die capable of producing one type of ultrafine fiber having substantially the same fiber diameter, a spinning temperature of 280 Melt spinning was carried out under the conditions of ° C, an island / sea mass ratio of 40/60, a discharge rate of 1.3 g / hole, and a spinning speed of 1240 m / min. Next, the same drawing conditions as in Example 1 were applied to obtain a sea-island composite fiber raw cotton having a fineness of 4.0 dtex and a fiber length of 51 mm.

(不織布と皮革様シート状物)
上記の海島型複合繊維の原綿を用いたこと以外は、実施例1と同様にして極細繊維発生型不織布を作成し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、比較例2の皮革様シート状物を得た。
得られた比較例2の皮革様シート状物は、3.1μmに1つの繊維直径分布のピークを有する極細繊維の立毛を有し、厚さが0.53mm、目付が187g/m、見かけ密度が0.353g/cmであった。上記のピーク中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の98.0%を占めていた。
得られた比較例2の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は3.9%と加工性が不良であり、本発明の実施例1〜8に比べて大幅に悪い値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
Except for using the raw cotton of the above-mentioned sea-island type composite fiber, after creating an ultrafine fiber generation type nonwoven fabric in the same manner as in Example 1, and performing ultrafine fiber generation processing to obtain a nonwoven fabric composed of ultrafine fibers, In the same manner as in Example 1, the leather-like sheet material of Comparative Example 2 was obtained.
The obtained leather-like sheet-like material of Comparative Example 2 has naps of ultrafine fibers having one fiber diameter distribution peak at 3.1 μm, a thickness of 0.53 mm, a basis weight of 187 g / m 2 , and an appearance. The density was 0.353 g / cm 3 . The total number of fibers included in the range of the above peak center value ± 30% accounted for 98.0% of the total number.
Using the leather-like sheet material of Comparative Example 2 obtained, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 3.9%, and the workability was poor. Compared with Examples 1 to 8 of the present invention, the values were significantly worse. The results are shown in Table 1.

[比較例3]
(原綿)
実施例1で用いたものと同じ島成分と海成分を、それぞれ50重量%ずつ混合して、紡糸温度280℃で海島型繊維を溶融紡糸する、いわゆる混合紡糸法により海成分中に島成分が約1000個配置された極細繊維発生型繊維を紡糸速度1000m/分の条件で溶融紡糸した。次いで、85℃の温度の紡糸用の油剤液浴中で3.0倍に延伸し、押し込み型捲縮機を用いて捲縮を付与し、カットして、繊度が9.8dtexで、繊維長が51mmの海島型複合繊維の原綿を得た。
[Comparative Example 3]
(raw cotton)
The same island component and sea component used in Example 1 are mixed by 50% by weight, and the island component is mixed in the sea component by a so-called mixed spinning method in which sea-island fiber is melt-spun at a spinning temperature of 280 ° C. About 1000 ultrafine fiber-generating fibers were melt spun at a spinning speed of 1000 m / min. Next, it is stretched 3.0 times in an oil solution bath for spinning at a temperature of 85 ° C., crimped using an indentation type crimping machine, cut, fineness is 9.8 dtex, fiber length Was obtained as a raw cotton of a sea-island type composite fiber having a thickness of 51 mm.

(不織布と皮革様シート状物)
上記の海島型複合繊維の原綿を用いたこと以外は、実施例1と同様にして極細繊維発生型不織布を作成し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、比較例3の皮革様シート状物を得た。
得られた比較例3の皮革様シート状物は、0.8μmに1つの繊維直径分布のピークを有する極細繊維の立毛を有し、厚さが0.55mm、目付が195g/m、見かけ密度が0.355g/cmであった。上記のピーク中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の66.8%を占めていた。
得られた比較例3の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は4.5%と加工性が不良であり、本発明の実施例1〜8に比べて大幅に悪い値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
Except for using the raw cotton of the above-mentioned sea-island type composite fiber, after creating an ultrafine fiber generation type nonwoven fabric in the same manner as in Example 1, and performing ultrafine fiber generation processing to obtain a nonwoven fabric composed of ultrafine fibers, In the same manner as in Example 1, the leather-like sheet material of Comparative Example 3 was obtained.
The obtained leather-like sheet of Comparative Example 3 has napped fibers of ultrafine fibers having one fiber diameter distribution peak at 0.8 μm, a thickness of 0.55 mm, and a basis weight of 195 g / m 2 . The density was 0.355 g / cm 3 . The total number of fibers included in the range of the above peak center value ± 30% accounted for 66.8% of the total number of fibers.
Using the leather-like sheet-like material of Comparative Example 3 obtained, polishing and washing were performed, and error performance evaluation was performed. The defective disk occurrence rate was 4.5%, and the workability was poor. Compared with Examples 1 to 8 of the present invention, the values were significantly worse. The results are shown in Table 1.

[比較例4]
(原綿)
実施例1で用いたものと同じ島成分と海成分を用い、比較例2と同様にして得た原綿と、比較例3と同様にして得た第2の原綿とを用いた。
[Comparative Example 4]
(raw cotton)
Using the same island component and sea component used in Example 1, raw cotton obtained in the same manner as in Comparative Example 2 and second raw cotton obtained in the same manner as in Comparative Example 3 were used.

(不織布と皮革様シート状物)
上記の2種類の海島型複合繊維の原綿を、質量比率1:1の割合で混綿したこと以外は実施例1と同様にして、目付が800g/m、見掛け密度が0.239g/cmの極細繊維発生型不織布を作製し、極細繊維発生加工を施して極細繊維で構成された不織布を得たのち、実施例1と同様にして、比較例4の皮革様シート状物を得た。
得られた比較例4の皮革様シート状物は、2つある繊維直径分布のピークの中心が0.8μmと3.1μmである極細繊維の立毛を有し、厚さが0.54mm、目付が189g/m、見かけ密度が0.350g/cmであった。上記の両ピーク中心値±30%の範囲内に含まれる繊維の合計本数は、総本数の75.3%を占めていた。
得られた比較例4の皮革様シート状物を用いて、研磨加工と洗浄加工を実施し、エラー性能評価を実施したところ、不良ディスク発生率は、2.8%と加工性が不良であり、本発明の実施例1〜8に比べて悪い値となった。結果を表1に示す。
(Nonwoven fabric and leather-like sheet)
The basis weight is 800 g / m 2 and the apparent density is 0.239 g / cm 3 in the same manner as in Example 1 except that the raw cotton of the above two types of sea-island type composite fibers is blended at a mass ratio of 1: 1. After producing an ultrafine fiber generation type nonwoven fabric and performing an ultrafine fiber generation process to obtain a nonwoven fabric composed of ultrafine fibers, a leather-like sheet material of Comparative Example 4 was obtained in the same manner as in Example 1.
The obtained leather-like sheet-like material of Comparative Example 4 has napped fibers of ultrafine fibers whose centers of two fiber diameter distribution peaks are 0.8 μm and 3.1 μm, and has a thickness of 0.54 mm. Was 189 g / m 2 and the apparent density was 0.350 g / cm 3 . The total number of fibers included in the range of both peak center values ± 30% described above accounted for 75.3% of the total number of fibers.
Using the leather-like sheet material of Comparative Example 4 obtained, polishing and cleaning were performed, and error performance evaluation was performed. As a result, the defective disk occurrence rate was 2.8% and the workability was poor. It became a bad value compared with Examples 1-8 of the present invention. The results are shown in Table 1.

Figure 0006163878
Figure 0006163878

上記の各実施例で説明した不織布や皮革様シート状物、洗浄加工布は、本発明の技術的思想を具体化するために例示したものであり、極細繊維の直径やその分布状態、ピーク中心値、極細繊維の材質や製造方法、弾性重合体の材質、比率等を、上記の実施形態や実施例のものに限定するものではなく、本発明の特許請求の範囲内において種々の変更を加え得るものである。   The non-woven fabric, leather-like sheet-like material, and washed cloth described in each of the above-described examples are examples for embodying the technical idea of the present invention. The value, the material and manufacturing method of the ultrafine fiber, the material and ratio of the elastic polymer, etc. are not limited to those of the above embodiments and examples, and various modifications are made within the scope of the claims of the present invention. To get.

例えば上記の実施例では、いずれも極細繊維発生型繊維として海島型複合繊維を用いたが、本発明では剥離型複合繊維など、他の構造の極細繊維発生型繊維を用いても良い。
また上記の実施例では、ニードルパンチにより繊維を絡合させた繊維絡合体の不織布を用いた。しかし本発明では、ウォータジェットパンチによる繊維絡合体の不織布を用いてもよく、或いはスパンボンド法やメルトブロー法、抄紙法等で得られる不織布を用いてもよい。
上記の極細繊維や弾性重合体を構成する材質は、上記の実施例のものに限定されないことは、言うまでもない。
For example, in the above-described embodiments, sea-island type composite fibers are used as the ultrafine fiber generating fibers, but in the present invention, ultrafine fiber generating fibers having other structures such as peelable composite fibers may be used.
Further, in the above-described embodiment, a fiber entangled nonwoven fabric in which fibers are entangled by a needle punch is used. However, in the present invention, a fiber entangled nonwoven fabric by water jet punch may be used, or a nonwoven fabric obtained by a spunbond method, a melt blow method, a papermaking method, or the like may be used.
Needless to say, the materials constituting the ultrafine fibers and the elastic polymer are not limited to those of the above embodiments.

本発明の不織布とこれを用いた皮革様シート状物および洗浄加工布は、数十nmオーダーから数μmオーダーと幅広く分布する異物を効率的に除去できるので、磁気記録媒体用基板の表面を洗浄する洗浄加工布として特に好適であるが、ダイヤモンド砥粒等の遊離砥粒を用いた高性能研磨布として、テープ研磨加工にも好ましく用いることができ、また、ワイピングクロス、各種研磨材、フィルター、有害物質除去製品等の工業材料用途としても好適に用いられる。   The nonwoven fabric of the present invention and the leather-like sheet-like material and cleaning cloth using the same can effectively remove foreign substances widely distributed from several tens of nm to several μm, so the surface of the magnetic recording medium substrate is washed. Particularly suitable as a cleaning cloth to be used, but as a high-performance polishing cloth using free abrasive grains such as diamond abrasive grains, it can be preferably used for tape polishing, and also includes a wiping cloth, various abrasives, a filter, It is also suitably used for industrial material applications such as hazardous substance removal products.

Claims (4)

繊維の直径の0.1μm刻みで作成した分布が、0.10〜1.0μmの範囲に少なくとも1つのピーク中心値を備えるとともに、1.0〜5.0μmの範囲に少なくとも1つのピーク中心値を備え、より大径側に位置するピークの中心値は、その小径側に隣接するピークの中心値の1.3倍よりも大きく、かつ、各ピークの中心値±30%の範囲内に存在する繊維本数の合計が総繊維本数の90%以上を占めることを特徴とする、ハードディスクの研磨加工および洗浄加工用不織布。 The distribution created in 0.1 μm increments of the fiber diameter has at least one peak center value in the range of 0.10 to 1.0 μm and at least one peak center value in the range of 1.0 to 5.0 μm. the provided, the center value of the peak located at a larger diameter side, 1.3 times greater than the center value of the peak adjacent to the small diameter side, and within range of the center value ± 30% of each peak A non-woven fabric for polishing and cleaning hard disks, wherein the total number of fibers occupies 90% or more of the total number of fibers. 上記の繊維は、1本の複合繊維から互いに太さの異なる繊維を発生させる海島型複合繊維に由来する、請求項1に記載のハードディスクの研磨加工および洗浄加工用不織布。 The above fibers one from sea-island type composite fiber to generate a thickness of different fibers from each other from the composite fibers of polishing and cleaning process for nonwoven hard disk according to claim 1. 請求項1または2に記載のハードディスクの研磨加工および洗浄加工用不織布を有し、上記の不織布の内部に弾性重合体が含有されていることを特徴とする、皮革様シート状物。 A leather-like sheet-like product comprising the non-woven fabric for polishing and cleaning hard disks according to claim 1 or 2 , wherein an elastic polymer is contained inside the non-woven fabric. 皮革様シート状物が洗浄加工布であることを特徴とする、請求項3に記載の皮革様シート状物。 The leather-like sheet-like material according to claim 3 , wherein the leather-like sheet-like material is a washed cloth.
JP2013112432A 2012-05-29 2013-05-29 Non-woven fabric and leather-like sheet using the same Expired - Fee Related JP6163878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112432A JP6163878B2 (en) 2012-05-29 2013-05-29 Non-woven fabric and leather-like sheet using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012121768 2012-05-29
JP2012121768 2012-05-29
JP2013112432A JP6163878B2 (en) 2012-05-29 2013-05-29 Non-woven fabric and leather-like sheet using the same

Publications (2)

Publication Number Publication Date
JP2014005585A JP2014005585A (en) 2014-01-16
JP6163878B2 true JP6163878B2 (en) 2017-07-19

Family

ID=50103555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112432A Expired - Fee Related JP6163878B2 (en) 2012-05-29 2013-05-29 Non-woven fabric and leather-like sheet using the same

Country Status (1)

Country Link
JP (1) JP6163878B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405654B2 (en) * 2014-03-13 2018-10-17 東レ株式会社 Sheet material and method for producing the same
CN113818255B (en) * 2021-09-09 2023-08-22 东风汽车集团股份有限公司 Base cloth and synthetic leather, and preparation method and application thereof
JP7241222B1 (en) 2022-07-06 2023-03-16 何乃繊維株式会社 fiber structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046901B2 (en) * 1999-07-16 2008-02-13 株式会社クラレ Multicomponent fiber and leather-like sheet using the same
JP4821127B2 (en) * 2004-02-13 2011-11-24 東レ株式会社 Nanofiber nonwoven fabric

Also Published As

Publication number Publication date
JP2014005585A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5780040B2 (en) Abrasive cloth and method for producing the same
JP4645361B2 (en) Polishing cloth
JP5810802B2 (en) Polishing cloth
JP2008155359A (en) Abrasive cloth for mirror-finishing glass substrate and manufacturing method thereof
JP2008088563A (en) Method for producing abrasive cloth
JP2009083093A (en) Polishing cloth
JP6163878B2 (en) Non-woven fabric and leather-like sheet using the same
JP5033238B2 (en) Polishing pad and manufacturing method thereof
JP2008144287A (en) Polishing cloth and method for producing the same
JP5970801B2 (en) Cleaning cloth and cleaning method of substrate surface for magnetic recording medium
JP6398467B2 (en) Sheet
JP2008173759A (en) Abrasive cloth and its manufacturing method
JP2003094320A (en) Polishing cloth
JP2005074576A (en) Polishing cloth
JP6405654B2 (en) Sheet material and method for producing the same
JP5510151B2 (en) Abrasive cloth and method for producing the same
JP4254115B2 (en) Manufacturing method of polishing cloth
JP2007283420A (en) Abrasive cloth
JP2006175571A (en) Polishing cloth
JP4457758B2 (en) Washed cloth
JP2007069304A (en) Abrasive cloth
JP2010029981A (en) Abrasive cloth
JP3704992B2 (en) Magnetic recording medium texture processing tape and method of manufacturing magnetic recording medium
JP2019099930A (en) Sheet-like article
JP2008055411A (en) Fabric processed for cleaning and method for cleaning surface of substrate for magnetic recording medium using the fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6163878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees