JP6159912B1 - Fresh water production equipment - Google Patents

Fresh water production equipment Download PDF

Info

Publication number
JP6159912B1
JP6159912B1 JP2016255928A JP2016255928A JP6159912B1 JP 6159912 B1 JP6159912 B1 JP 6159912B1 JP 2016255928 A JP2016255928 A JP 2016255928A JP 2016255928 A JP2016255928 A JP 2016255928A JP 6159912 B1 JP6159912 B1 JP 6159912B1
Authority
JP
Japan
Prior art keywords
moisture
housing
condensate
fresh water
moisture condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016255928A
Other languages
Japanese (ja)
Other versions
JP2018105095A (en
Inventor
青木 一彦
一彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016255928A priority Critical patent/JP6159912B1/en
Application granted granted Critical
Publication of JP6159912B1 publication Critical patent/JP6159912B1/en
Publication of JP2018105095A publication Critical patent/JP2018105095A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 水分凝縮体の吸湿能力をできるだけ最大限に活用し、さらに効率良く空気中から淡水を回収するための装置を提供する。【解決手段】 本願発明に係る淡水製造装置1は、水を吸脱着する、例えばシリカゲルのような水分凝縮体20と、ほぼ密閉された内部空間11を形成し得る筐体10と、前記内部空間11内で排出された水分を含む空気を冷却して淡水として回収する水分回収機構50と、無端軌道式の搬送装置であるコンベア30を備え、前記筐体10は前記水分凝縮体20を出し入れする2つの開口部12,13を有し、前記コンベア30の無端軌道31の一部は前記開口部12,13を通して筐体10内に配置される。【選択図】図1PROBLEM TO BE SOLVED: To provide an apparatus for recovering fresh water from the air more efficiently by utilizing the moisture absorption capacity of the moisture condensate as much as possible. SOLUTION: A fresh water producing apparatus 1 according to the present invention includes a moisture condensate 20 such as silica gel that absorbs and desorbs water, a housing 10 that can form a substantially sealed internal space 11, and the internal space. 11 includes a moisture recovery mechanism 50 that cools and recovers air containing moisture discharged in the inside as fresh water, and a conveyor 30 that is an endless track type transfer device, and the housing 10 takes in and out the moisture condensate 20. Two openings 12 and 13 are provided, and a part of the endless track 31 of the conveyor 30 is disposed in the housing 10 through the openings 12 and 13. [Selection] Figure 1

Description

本発明は淡水製造装置に関する。   The present invention relates to a fresh water production apparatus.

空気中の水分をゼオライトのような多孔質材からなる水分凝縮体に吸着させた後、水分凝縮体から水分を排出させることで淡水を得る装置が、例えば特許文献1や特許文献2に開示されている。   Devices that obtain fresh water by allowing moisture in the air to be adsorbed to a moisture condensate made of a porous material such as zeolite and then discharging the moisture from the moisture condensate are disclosed in, for example, Patent Document 1 and Patent Document 2. ing.

特許文献1に開示された装置は、ほぼ密閉した空間を形成する筐体内に配置され、複数の通気路を有する水分凝縮体と、前記通気路の一部に当該通気路に気流を作る気流発生手段を備えている。この装置では、筐体外から外気が残る通気路に供給されることで外気に含まれる水分が水分凝縮体に吸着され、吸着された水分が水分凝縮体内を移動して、ヒータなどの気流発生手段を備えた通気路から排出される。排出された水分を含む空気が筐体の内壁面で冷却されることで得られた結露水が淡水として回収される。   The apparatus disclosed in Patent Document 1 is arranged in a housing that forms a substantially sealed space, and includes a moisture condensate having a plurality of air passages, and an air flow generation that creates an air flow in the air passages in a part of the air passages. Means. In this apparatus, the moisture contained in the outside air is adsorbed by the moisture condensate by being supplied to the air passage from which the outside air remains from outside the housing, and the adsorbed moisture moves through the moisture condensate to generate an air flow generating means such as a heater. It is discharged from the air passage with Condensed water obtained by cooling the exhausted air with the inner wall surface of the housing is collected as fresh water.

特許文献2に開示された装置は、ほぼ密閉した空間を形成する筐体と、筐体内に配置された水分凝縮体と、水分凝縮体から排出された水分を含む空気を冷却して結露水として回収する水分回収機構を備えている。この装置では夜間に筐体を開放し、空気に含まれる水分を水分凝縮体に凝縮させる。その後、昼間に筐体をほぼ密閉状態にし、太陽光を利用して水分凝縮体から水分を排出させると同時に、排出された水分を含む空気を筐体と熱交換器の間で循環させることで結露水が得られる。   The device disclosed in Patent Document 2 cools the casing that forms a substantially sealed space, the moisture condensate disposed in the casing, and the air containing moisture discharged from the moisture condensate as condensed water. A water recovery mechanism for recovery is provided. In this apparatus, the casing is opened at night, and moisture contained in the air is condensed into a moisture condensate. After that, the casing is almost sealed in the daytime, and water is discharged from the moisture condensate using sunlight, and at the same time, air containing the discharged moisture is circulated between the casing and the heat exchanger. Condensed water is obtained.

特開2010−209586号公報JP 2010-209586 A 特開2014−125872号公報JP 2014-122582 A

しかしながら、特許文献1の淡水製造装置は、水分凝縮体内を水分が移動するという水分凝縮体の性質を利用するために水分の回収効率はその水分移動特性に制約される。このために、水分凝縮体の吸湿能力の他に水分移動特性を考慮しなければ十分な量の淡水を回収できない。また、水分凝縮体の吸湿能力を高めても水分移動特性が良好でなければ十分な量の淡水を回収できなかった。そして、砂漠においては昼間時の空気中の水分量は夜間に比べて少ない。従って、気流発生手段を備えるために昼夜を問わず淡水を回収できると言っても昼間の水分回収量は少なく、気流発生手段の電力消費エネルギーを鑑みると淡水の回収効率は悪く、水分凝縮体の吸湿能力を十分に活かしているとは言えない。   However, since the fresh water producing apparatus of Patent Document 1 utilizes the property of the moisture condensate that the moisture moves within the moisture condensate, the water recovery efficiency is limited by its moisture transfer characteristics. For this reason, a sufficient amount of fresh water cannot be recovered without considering the moisture transfer characteristics in addition to the moisture absorption capacity of the moisture condensate. Moreover, even if the moisture absorption capacity of the moisture condensate was increased, a sufficient amount of fresh water could not be recovered unless the moisture transfer characteristics were good. And in the desert, the amount of moisture in the air during the daytime is less than at night. Therefore, even if it can be said that fresh water can be collected day and night because it has an air flow generation means, the amount of water recovered in the daytime is small, and in view of the power consumption energy of the air flow generation means, the recovery efficiency of fresh water is poor, and the moisture condensate It cannot be said that the moisture absorption capacity is fully utilized.

一方、特許文献2の淡水製造装置は、夜間に水分凝縮体に水分を吸着させ、それを昼間の太陽エネルギーで排出させているので、水分凝縮体の水分移動特性を考慮する必要はない。ところが、昼夜を問わず筐体内に水分凝縮体が置かれた状態にあるので、昼間における水分の回収量は夜間における水分吸着量に依存する。このため、夜間における水分吸着量が少なければ、高い吸湿能力を有する水分凝縮体を用いても水分の回収量の増大には結びつかず、水分凝縮体の吸湿能力を十分に活かすことができなかった。   On the other hand, since the fresh water production apparatus of Patent Document 2 adsorbs moisture to the moisture condensate at night and discharges it with solar energy in the daytime, it is not necessary to consider the moisture transfer characteristics of the moisture condensate. However, since the moisture condensate is placed in the casing regardless of day or night, the amount of water collected during the day depends on the amount of moisture adsorbed at night. For this reason, if the amount of moisture adsorbed at night is small, the use of a moisture condensate having a high moisture absorption capacity does not lead to an increase in the amount of moisture recovered, and the moisture absorption capacity of the moisture condensate could not be fully utilized. .

本願発明は上記の背景技術に鑑みてなされたものであって、本願発明が解決するための課題は、水分凝縮体の吸湿能力をできるだけ最大限に活用し、さらに効率良く空気中から淡水を回収するための装置を提供することにある。   The present invention has been made in view of the above-mentioned background art, and the problem to be solved by the present invention is to utilize the moisture absorption capacity of the moisture condensate as much as possible and recover fresh water from the air more efficiently. An object of the present invention is to provide an apparatus.

本願発明では、ほぼ密閉された空間を形成し得る筐体に、水分凝縮体を出し入れするための1以上の開口部を設け、水分凝縮体を出し入れできる構造にした。   In the present invention, one or more openings for taking in and out the moisture condensate are provided in a housing that can form a substantially sealed space, so that the moisture condensate can be taken in and out.

本願発明に係る淡水製造装置は、ほぼ密閉された空間を形成し得る筐体に水分凝縮体を出し入れするための1以上の開口部が設けられている。このため、水分凝縮体から水分を排出する空間(排湿域)と、水分凝縮体に水分を吸着させる空間(吸湿域)を分離して、水分凝縮体と空気を接触させる吸湿時間を水分凝縮体から水分を排出させる排湿時間よりも長くすることができる。この結果、水分凝縮体への水分吸着量が増加し、昼間における淡水の排出量(回収量)が増加する。また、水分を回収するための冷却時には、水分凝縮体を筐体外に取り出せるので、水分凝縮体への再吸着が防止される。これにより、排出された水分をほぼもれなく回収され、得られる淡水量が増加する。   The fresh water producing apparatus according to the present invention is provided with one or more openings for taking in and out the moisture condensate in a housing that can form a substantially sealed space. For this reason, a space for draining moisture from the moisture condensate (humidification area) and a space for adsorbing moisture to the moisture condensate (moisture absorption area) are separated, and the moisture absorption time for contacting the moisture condensate with air is condensed into moisture. It can be made longer than the time for dehydration to drain water from the body. As a result, the amount of moisture adsorbed on the moisture condensate increases, and the amount of freshwater discharged (recovered amount) in the daytime increases. Moreover, since the moisture condensate can be taken out of the housing during cooling for recovering moisture, re-adsorption to the moisture condensate is prevented. As a result, the discharged water is almost completely collected and the amount of fresh water obtained is increased.

図1は本願発明の第1の実施例である淡水製造装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a fresh water producing apparatus according to a first embodiment of the present invention. 図2は図1に示す淡水製造装置の一部を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a part of the fresh water producing apparatus shown in FIG. 図3は図1に示す淡水製造装置で用いられる水分凝縮体の収容容器を示す図である。FIG. 3 is a view showing a water condensate container used in the fresh water producing apparatus shown in FIG. 図4は図1に示す淡水製造装置における水分回収方法を示す説明図である。FIG. 4 is an explanatory view showing a moisture recovery method in the fresh water producing apparatus shown in FIG. 図5は本願発明の第2の実施例である淡水製造装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a fresh water producing apparatus according to a second embodiment of the present invention. 図6は図5に示す淡水製造装置から水分凝縮体が搬出された際の状態を示す図である。FIG. 6 is a view showing a state when the water condensate is carried out from the fresh water producing apparatus shown in FIG. 図7は本願発明の第3の実施例である淡水製造装置の概略構成図である。FIG. 7 is a schematic configuration diagram of a fresh water producing apparatus according to a third embodiment of the present invention. 図8は図7に示す淡水製造装置の使用方法を示す説明図である。FIG. 8 is an explanatory view showing a method of using the fresh water producing apparatus shown in FIG. 図9は本願発明の第4の実施例である淡水製造装置の概略構成図である。FIG. 9 is a schematic configuration diagram of a fresh water producing apparatus according to a fourth embodiment of the present invention. 図10は図9に示す淡水製造装置の使用方法を示す説明図である。FIG. 10 is an explanatory view showing a method of using the fresh water producing apparatus shown in FIG. 図11は本願発明の第5の実施例である淡水製造装置の概略構成図である。FIG. 11 is a schematic configuration diagram of a fresh water producing apparatus according to a fifth embodiment of the present invention. 図12は図11に示す淡水製造装置の使用方法を示す説明図である。FIG. 12 is an explanatory view showing a method of using the fresh water producing apparatus shown in FIG.

本願発明に係る淡水製造装置は、ほぼ密閉された空間を形成し得る筐体と、前記空間内に出し入れされる水分凝縮体と、前記空間内で前記水分凝縮体から排出された水を含む気体を冷却して淡水として回収する水分回収機構と、を備え、前記筐体は前記水分凝縮体を出し入れする1以上の開閉可能な開口部を有する。   The fresh water producing apparatus according to the present invention includes a housing that can form a substantially sealed space, a moisture condensate that is taken in and out of the space, and a gas that contains water discharged from the moisture condensate in the space. A water recovery mechanism that cools the water and recovers it as fresh water, and the housing has one or more openable and closable openings for taking in and out the water condensate.

水分凝縮体は、空気中の水分を吸着し、周囲又はそれ自体の温度上昇に伴って吸着した水分を排出する機能を果たし、係る機能を発揮する水分脱着素材から作製される。水分脱着素材は係る機能を発揮する素材であれば限定されず、例えば、特許文献1や2に開示された多孔質材が例示される。より具体的に例示すれば、当該材質として、石灰石や黒曜石、トルマリンのような電気石、軟石、火山石などの自然石、シリカ、珪藻土、鹿沼土、フライアッシュ、ゼオライト、石灰岩、粘土、玄武岩、ガラス、金属、セラミック、高分子収着剤、コークス、木炭(備長炭)、メタルシリケート、シリカゲルなどが示される。これらのうち、吸着放出のよいフライアッシュ、珪藻土、シリカゲル、ゼオライトが好ましく用いられる。また、ここにいう金属として、例えば鉄、銅、ニッケル、ステンレス鋼、アルミ合金などが例示される。また、高分子吸着剤として、デンプン系吸着剤やセルロース系吸着剤、ポリアクリル酸塩系吸着剤、ポリビニルアルコール系吸着剤、ポリアクリルアミド系吸着剤、ポリオキシエチレン系吸着剤、ポリアクリル酸ナトリウム系吸着剤などが例示される。もっとも、これらの素材に限られないのはいうまでもない。   The moisture condensate is made of a moisture desorption material that adsorbs moisture in the air and discharges the adsorbed moisture as the temperature of the surroundings or itself increases, and exhibits such a function. The moisture desorption material is not limited as long as the material exhibits such a function, and examples thereof include porous materials disclosed in Patent Documents 1 and 2. More specifically, examples of the material include natural stones such as limestone, obsidian, tourmaline, soft stone, volcanic stone, silica, diatomaceous earth, kanuma earth, fly ash, zeolite, limestone, clay, basalt, Glass, metal, ceramic, polymer sorbent, coke, charcoal (Bincho charcoal), metal silicate, silica gel and the like are shown. Of these, fly ash, diatomaceous earth, silica gel, and zeolite with good adsorption and release are preferably used. Moreover, as a metal here, iron, copper, nickel, stainless steel, an aluminum alloy etc. are illustrated, for example. Also, as the polymer adsorbent, starch adsorbent, cellulose adsorbent, polyacrylate adsorbent, polyvinyl alcohol adsorbent, polyacrylamide adsorbent, polyoxyethylene adsorbent, sodium polyacrylate adsorbent Examples include adsorbents. Needless to say, these materials are not limiting.

本願発明においては、水分凝縮体の形状(形態)は筐体内への出し入れを考慮して適宜決定され得る。例えば、特許文献1や2に記載されたような柱状など所定の形状に成型加工された水分凝縮体や粒状の水分凝縮体、成型加工前の粉体状の水分凝縮体が用いられるが、好ましくは粒状の水分凝縮体である。粒状の水分凝縮体は、所定の形状に加工された水分凝縮体に比べて実質的な比表面積が大きく、その吸湿能を十分に活かすことができるだけでなく、加工コストも安価になる。   In the present invention, the shape (form) of the moisture condensate can be appropriately determined in consideration of taking in and out of the housing. For example, a moisture condensate or granular water condensate formed into a predetermined shape such as a columnar shape described in Patent Documents 1 and 2 or a granular water condensate before molding is used. Is a granular moisture condensate. The granular moisture condensate has a substantial specific surface area larger than that of the moisture condensate processed into a predetermined shape, and not only can the moisture absorption capacity be fully utilized, but also the processing cost can be reduced.

筐体は開口部が閉じられた際にほぼ密閉され得る空間を有する。空間は完全に密閉された状態に保たれることが望ましいが、本願発明では、水分凝縮体から排出された水分を含む空気がほぼ内部に留めておける程度に密閉されていればよい。筐体の壁面には、筐体内部の空間や水分凝縮体が太陽光の輻射熱で暖められるように、太陽光の輻射熱が透過できる強化ガラスや強化プラスチックなどが好ましく用いられる。   The housing has a space that can be substantially sealed when the opening is closed. Although it is desirable that the space be kept in a completely sealed state, in the present invention, the space may be sealed to such an extent that the air containing moisture discharged from the moisture condensate can be kept substantially inside. For the wall surface of the casing, tempered glass or reinforced plastic that can transmit sunlight radiant heat is preferably used so that the space inside the casing and the moisture condensate can be warmed by radiant heat of sunlight.

筐体は1つ以上の開口部を有し、水分凝縮体を出し入れできるように開閉可能となった開閉扉が開口部に備えられる。なお、本明細書において、水分凝縮体を出し入れすることには、水分凝縮体を搬入することや水分凝縮体を搬出することのいずれか一方のみを意味する場合も含まれる。すなわち、1つの開口部が水分凝縮体の搬入や搬出のいずれか一方にのみ利用される場合や、その双方に利用される場合もあり得る。開口部が設置される箇所や開口部の個数は特に限定されることはなく、水分凝縮体を出し入れする方法により適宜定められる。例えば、出し入れが無端軌道式の搬送機構で行われる場合であれば、1つの開口部が対向する筐体側面にそれぞれ設けられる。また、出し入れがいわゆる自動倉庫で用いられるクレーンのような搬入出機構で行われる場合であれば、筐体側面の1箇所又は対向する側面のそれぞれ1箇所に設けられる。ホースのような中空導管で出し入れが行われる場合には、筐体の上面に1つ又は複数の開口部が設けられる。ジャッキやテーブルリフタのような持ち上げ機構で行われる場合には、1つ又は複数の開口部が筐体の底面に設けられ、また、底面全体が開口部となり得る。さらには、筐体の上面に搬入口となる1つの開口部と、筐体の底面に搬出口となる1の開口部が備えられる場合もある。   The housing has one or more openings, and an opening / closing door that can be opened and closed so that moisture condensate can be taken in and out is provided in the opening. In addition, in this specification, the case where a moisture condensate is taken in and out includes the case where only one of carrying in a water condensate or carrying out a water condensate is included. That is, one opening may be used for only one of carrying in and carrying out the moisture condensate, or it may be used for both. The location where the openings are installed and the number of openings are not particularly limited, and can be determined as appropriate by the method of taking in and out the moisture condensate. For example, if the loading and unloading is performed by an endless track-type transport mechanism, one opening is provided on each of the opposite housing side surfaces. In addition, if the loading / unloading is performed by a loading / unloading mechanism such as a crane used in a so-called automatic warehouse, the loading / unloading mechanism is provided at one position on the side surface of the housing or one position on the opposite side surface. When taking in and out by a hollow conduit such as a hose, one or a plurality of openings are provided on the upper surface of the housing. When performed by a lifting mechanism such as a jack or table lifter, one or more openings can be provided on the bottom surface of the housing, and the entire bottom surface can be the opening. Further, there may be a case where one opening serving as a carry-in port is provided on the upper surface of the housing and one opening serving as a carry-out port is provided on the bottom surface of the housing.

筐体内には好ましくは水分凝縮体が収容される容器又は水分凝縮体が配置される架台が備えられ得る。粒状や粉状の水分凝縮体であれば容器が用いられ、柱状体の水分凝縮体のように成型加工された水分凝縮体であれば載置される架台が用いられる。水分凝縮体が収容又は載置され得る限りそれらの形状は特に制限もなく、水分凝縮体の形態や水分凝縮体を出し入れする方法によって適宜定められる。例えば、無端軌道式の搬送機構が用いられる場合、無端軌道が架台としての機能を果たす。クレーンのような搬入出機構が用いられる場合では、上下左右に多数の載置部が配列された保持棚(ラック)が用いられる。載置部には、水分凝縮体が直接載置され、あるいは水分凝縮体が載置されたパレットや水分凝縮体が収容された容器が配置される。容器や架台は筐体内に固定されるか、取り出し可能に筐体内に設置され得る。また、架台や容器が備えられることなく、筐体の底面や開口部の開閉扉が架台として利用され得る場合もある。例えば、持ち上げ機構が用いられた場合には、水分凝縮体は底面の開閉扉に直接載置され得る。   A container in which the moisture condensate is accommodated or a gantry on which the moisture condensate is arranged may be provided in the housing. If it is a granular or powdery water condensate, a container is used, and if it is a water condensate that has been molded like a columnar water condensate, a mounting base is used. As long as the moisture condensate can be accommodated or placed, the shape thereof is not particularly limited and is appropriately determined depending on the form of the moisture condensate and the method of taking in and out the moisture condensate. For example, when an endless track type transport mechanism is used, the endless track functions as a gantry. When a carry-in / out mechanism such as a crane is used, a holding shelf (rack) in which a large number of placement units are arranged vertically and horizontally is used. A moisture condensate is directly placed on the placing portion, or a pallet on which the moisture condensate is placed and a container containing the moisture condensate are disposed. The container and the gantry can be fixed in the casing or can be removed in the casing. In some cases, the bottom of the housing or the open / close door of the opening can be used as the gantry without the gantry or the container. For example, when a lifting mechanism is used, the moisture condensate can be placed directly on the bottom door.

水分凝縮体は、筐体外の吸湿域において空気と接触される。本明細書において吸湿域とは、水分を含む空気と水分凝縮体が接触することで水分凝縮体に水分を吸着させるための空間を意味し、筐体外の任意の箇所である。吸湿域は、空気と接触させる領域であればよく、静止状態で水分凝縮体と空気を接触させる領域でもあり、移動する水分凝縮体と空気を接触させる領域でもあり得る。吸湿域は閉じられた空間でもあり得るが、好ましくは開放された空間である。前者であれば、吸湿域となる閉じられた空間内に水分を含む空気を供給する装置が必要となるが、後者であれば水分を含む大気下に放置するだけでよいからである。また、吸湿域の一部又はその全てが好ましくは太陽光の遮光下にある遮光域であることが好ましい。遮光下であるとは太陽光が水分凝縮体に直接当たらないことを意味する。直射日光による水分凝縮体からの排湿量を少なくするためである。吸湿域における接触は夜間に限られず、好ましくは昼夜を問わず数日間、望ましくは水分凝縮体の吸湿能の限界近くまで行われる。   The moisture condensate is brought into contact with air in the moisture absorption area outside the housing. In this specification, the hygroscopic region means a space for adsorbing moisture to the moisture condensate by contacting the moisture-containing air and the moisture condensate, and is an arbitrary location outside the housing. The moisture absorption region may be a region that is brought into contact with air, and may be a region in which the moisture condensate is brought into contact with air in a stationary state, or may be a region in which the moving moisture condensate is brought into contact with air. The hygroscopic area may be a closed space, but is preferably an open space. In the former case, a device for supplying air containing moisture into a closed space serving as a hygroscopic region is required, but in the latter case, it is only necessary to leave in an atmosphere containing moisture. Moreover, it is preferable that a part or all of the hygroscopic area is a light shielding area that is preferably shielded from sunlight. Under shading means that sunlight does not hit the moisture condensate directly. This is to reduce the amount of moisture exhausted from the moisture condensate by direct sunlight. The contact in the hygroscopic region is not limited to nighttime, and preferably for several days regardless of day or night, desirably up to the limit of the moisture condensing capacity of the moisture condensate.

水分を吸着した水分凝縮体は筐体内に入れられ、太陽光が照射することで水分凝縮体から水分が排出され、筐体内の湿度が高められる。湿度が上昇した筐体内の気体は水分回収機構にて冷却され、淡水として回収される。水分回収機構は水分を含む気体を冷却して淡水を回収できる構造であれば特に限定されない。水分回収機構は、前記筐体外に備えられる機構でもあり、筐体内に淡水として回収される機構でもあり得る。   The moisture condensate that has adsorbed moisture is put in the housing, and when the sunlight is irradiated, the moisture is discharged from the moisture condensate and the humidity in the housing is increased. The gas in the housing whose humidity has been increased is cooled by the moisture recovery mechanism and recovered as fresh water. The moisture recovery mechanism is not particularly limited as long as it is a structure capable of recovering fresh water by cooling a gas containing moisture. The moisture recovery mechanism may be a mechanism provided outside the casing, and may be a mechanism that is recovered as fresh water in the casing.

筐体外に備えられる水分回収機構として、例えば熱交換器(冷却器)を備えた水分回収機構が示される。この水分回収機構は、筐体から水分を含む気体を熱交換器に送る排気路と、熱交換器にて水分が除去された気体を筐体内に送る給気路を備え、筐体と熱交換器の間で循環路が構成される。熱交換器は、例えば地中に配置され、砂漠における地下の冷熱により水分を含む気体を冷却する。また、筐体の空間内に気体を供給する気体供給装置と、筐体の空間内に排出された水分を含む気体を回収する回収バルーンを備えた水分回収機構が示される。例えば回収バルーンは筐体の一端に備えられ、気体供給装置は他端に備えられる。気体供給装置は筐体内に気体を供給して、水分凝縮体から排出された水分を含む筐体内の気体を回収バルーンに排出させる。筐体内に供給される気体は大気(気体供給装置周辺の空気)であり、除湿された空気であり、窒素ガスのような単離されたガスなどの気体でもあり得る。気体供給装置は、給気路を介して筐体内部と接続された補給バルーンであり、コンプレッサなどの送風装置でもあり得る。回収バルーンと筐体間の排気路上と、気体供給装置と筐体間の給気路上にはそれぞれ開閉バルブが備えられる。排出された水分を含む気体の回収前は、回収バルーンは気体がほぼ排出された状態に維持される。気体供給装置から気体が筐体内に送られると、水分凝縮体から排出された水分を含む筐体内の気体が回収バルーンに送られる。回収バルーンが夜間の冷気で冷却されると回収バルーン内部に結露水が生じる。   As the moisture recovery mechanism provided outside the housing, for example, a moisture recovery mechanism including a heat exchanger (cooler) is shown. This moisture recovery mechanism is equipped with an exhaust passage that sends moisture-containing gas from the housing to the heat exchanger, and an air supply passage that sends the gas from which moisture has been removed by the heat exchanger into the housing, and exchanges heat with the housing. A circulation path is constructed between the vessels. A heat exchanger is arrange | positioned in the ground, for example, and cools the gas containing a water | moisture content with the cold of the underground in a desert. In addition, a water supply mechanism that includes a gas supply device that supplies gas into the space of the housing and a recovery balloon that recovers gas containing water discharged into the space of the housing is shown. For example, the recovery balloon is provided at one end of the housing, and the gas supply device is provided at the other end. The gas supply device supplies gas into the housing, and causes the recovery balloon to discharge the gas in the housing containing moisture discharged from the moisture condensate. The gas supplied into the housing is the atmosphere (air around the gas supply device), is dehumidified air, and may be a gas such as an isolated gas such as nitrogen gas. The gas supply device is a supply balloon connected to the inside of the housing via an air supply path, and may be a blower device such as a compressor. Open / close valves are provided on the exhaust path between the collection balloon and the casing and on the supply path between the gas supply device and the casing, respectively. Before the recovery of the gas containing the discharged moisture, the recovery balloon is maintained in a state where the gas is substantially discharged. When the gas is sent from the gas supply device into the housing, the gas in the housing containing the moisture discharged from the moisture condensate is sent to the recovery balloon. When the recovery balloon is cooled by cold air at night, condensed water is generated inside the recovery balloon.

筐体内部において水分が回収される機構として、筐体全体が夜間の冷気で冷却されることで筐体内に結露水が生じる水分回収機構が示される。この場合、筐体全体の冷却効率を高めるために、筐体に例えば冷却フィンが備えられ得る。   As a mechanism for collecting moisture inside the casing, a moisture collecting mechanism is shown in which condensed water is generated in the casing by cooling the entire casing with cold air at night. In this case, in order to increase the cooling efficiency of the entire casing, the casing may be provided with cooling fins, for example.

筐体に水分凝縮体を入れた状態で水分を回収することもできる。また日没前、好ましくは筐体内外の温度が高い時間帯に筐体から水分凝縮体が取り出される。筐体内に排出された水分が水分凝縮体に再吸着されるのを防ぐためである。   It is also possible to collect moisture with the moisture condensate placed in the housing. Further, the moisture condensate is taken out of the casing before sunset, preferably during a time when the temperature inside and outside the casing is high. This is to prevent moisture discharged into the casing from being re-adsorbed by the moisture condensate.

本願発明の淡水製造装置は筐体内へ水分凝縮体を出し入れするための搬入出機構を含み得る。搬入出機構は、筐体の開口部に水分凝縮体を搬入出できる機構であれば特に制限されない。また、本明細書において水分凝縮体を出し入れすることには、水分凝縮体の搬入や水分凝縮体の搬出のいずれか一方のみを意味する場合も含まれる。搬入出機構も水分凝縮体の搬入専用の機構であり、搬出専用の機構であり、搬入出の双方に利用される機構でもあり得る。搬入出機構は、例えば、ローラコンベアやベルトコンベアのような無端軌道を用いた搬送装置であり、クレーンであり、ジャッキであり、リフタであり、昇降のみを行うテーブルリフタであり、油圧ショベルであり得る。クレーンは、水分凝縮体を昇降し、かつ水平方向にも搬送する機構である。ジャッキは、水分凝縮体を昇降する機構であり、リフタは水分凝縮体を上下に昇降し、かつ水平方向にも移動する機構である。油圧ショベルは、先端にバケットやグラップルが取り付けられたアームにより水分凝縮体を移動する機構である。また、搬入出機構は、ホースのような中空の導管を備えた搬入出装置でもあり得る。導管を用いた搬入出機構は、水分凝縮体をポンプなどの送出機構によって導管を介して筐体内に搬入し、吸引ポンプなどの吸引機構によって導管を介して筐体外に搬出する。これらの機構は、水分凝縮体のみを搬入出する機構でもあり、架台や容器と共に水分凝縮体を搬入出する機構でもあり得る。   The fresh water producing apparatus of the present invention may include a carry-in / out mechanism for taking in and out the moisture condensate into and out of the housing. The carry-in / out mechanism is not particularly limited as long as it is a mechanism that can carry in / out the moisture condensate to / from the opening of the housing. Further, in the present specification, taking out and taking in the moisture condensate includes a case in which only one of the carrying in of the moisture condensate and the carrying out of the moisture condensate is meant. The carry-in / out mechanism is also a mechanism dedicated to carrying in the moisture condensate, is a mechanism dedicated to carry-out, and may be a mechanism used for both carry-in / out. The carry-in / out mechanism is, for example, a transport device using an endless track such as a roller conveyor or a belt conveyor, a crane, a jack, a lifter, a table lifter that only moves up and down, and a hydraulic excavator. obtain. The crane is a mechanism that moves up and down the moisture condensate and also transports it in the horizontal direction. The jack is a mechanism that raises and lowers the moisture condensate, and the lifter is a mechanism that moves the moisture condensate up and down and also moves in the horizontal direction. The hydraulic excavator is a mechanism that moves the moisture condensate by an arm having a bucket or grapple attached to the tip. Further, the loading / unloading mechanism may be a loading / unloading device including a hollow conduit such as a hose. The carry-in / out mechanism using the conduit carries the moisture condensate into the housing through the conduit by a delivery mechanism such as a pump, and carries it out of the housing through the conduit by a suction mechanism such as a suction pump. These mechanisms may be mechanisms that carry in and out only the moisture condensate, and may be mechanisms that carry in and out the moisture condensate together with the gantry and the container.

さらに本願発明の淡水製造装置は筐体から搬出された水分凝縮体や筐体に搬入する水分凝縮体を、筐体近傍や搬入出機構と吸湿域との間で搬送する搬送機構を含み得る。搬送機構は、例えば、ローラコンベアやベルトコンベアを用いた搬送装置であり、前記クレーンであり、前記リフタであり、前記油圧ショベルであり、中空の導管を備えた搬入出装置でもあり得る。好ましく用いられる搬送機構は、前記の搬入出機構を兼ね備えたものである。搬送機構は、筐体内から搬出された水分凝縮体を吸湿域に移動し、吸湿域で水分を吸着した水分凝縮体を筐体近傍若しくは筐体内に移動する。   Furthermore, the fresh water producing apparatus of the present invention may include a transport mechanism that transports the moisture condensate carried out of the casing and the moisture condensate carried into the casing between the vicinity of the casing and between the loading / unloading mechanism and the moisture absorption area. The transport mechanism is, for example, a transport device using a roller conveyor or a belt conveyor, the crane, the lifter, the hydraulic excavator, or a carry-in / out device including a hollow conduit. A transport mechanism that is preferably used has the carry-in / out mechanism described above. The transport mechanism moves the moisture condensate carried out of the housing to the moisture absorption region, and moves the moisture condensate that has adsorbed moisture in the moisture absorption region to the vicinity of the housing or inside the housing.

このように本願発明の淡水製造装置は、筐体に水分凝縮体を出し入れできる開口部を備えているので、水分凝縮体に水分を吸着させる吸湿域と、水分凝縮体から水分を排出させる排湿域を明確に区分できる。このために、昼夜のサイクルを問わず筐体外において水分凝縮体に十分な量の水分を吸着させ、筐体内において吸着した水分を排出させることができる。その結果、水分凝縮体の吸湿能を十分に活用して、1日でより多くの淡水量を得ることができる。言い換えると、本願発明の淡水製造装置は、筐体内で排湿させる水分凝縮体を交換することにして、筐体外で水分を含んだ空気との接触時間をより長く確保できるようにした装置である。そして、夜間の冷気を利用して筐体全体を冷却することで、水分凝縮体が搬出された筐体内に結露水を集めることができる装置でもある。もちろん、水分凝縮体が収められた状態で結露水を得ることもできる。   As described above, the fresh water producing apparatus of the present invention includes an opening through which a moisture condensate can be taken in and out of the housing, and therefore, a moisture absorption region for adsorbing moisture to the moisture condensate and a moisture exhaust for discharging moisture from the moisture condensate. The area can be clearly divided. For this reason, a sufficient amount of moisture can be adsorbed to the moisture condensate outside the casing regardless of the day / night cycle, and the moisture adsorbed inside the casing can be discharged. As a result, it is possible to obtain a larger amount of fresh water in one day by fully utilizing the moisture absorption capacity of the moisture condensate. In other words, the fresh water production apparatus of the present invention is an apparatus that can secure a longer contact time with air containing moisture outside the casing by exchanging the moisture condensate to be dehumidified inside the casing. . And it is also an apparatus which can collect dew condensation water in the housing | casing from which the moisture condensate was carried out by cooling the whole housing | casing using cold air at night. Of course, dew condensation water can also be obtained in a state where the moisture condensate is contained.

以下、本願発明の淡水製造装置について下記の実施例に基づいてさらに具体的に説明する。なお、本願発明の淡水製造装置は下記の実施例に限られないのは言うまでもない。   Hereinafter, the fresh water producing apparatus of the present invention will be described more specifically based on the following examples. In addition, it cannot be overemphasized that the fresh water manufacturing apparatus of this invention is not restricted to the following Example.

図1は本願発明の第1の実施例に係る淡水製造装置1を示す概略構成図であり、図2は当該淡水製造装置1の一部を示す概略構成図である。淡水製造装置1は、直方体状の筐体10と、粒状の水分凝縮体20と、水分凝縮体20を搬送する無端軌道式のコンベア30を備える。筐体10はほぼ密閉状態に維持され得る内部空間11を有する。筐体10の壁面は強化ガラスなどの太陽光を透過する素材から作製されている。筐体10の対向する側面にはそれぞれ開閉扉14が備えられた開口部12,13が1つずつ設けられている。コンベア30は無端軌道31上を移動する連続して備えられた複数の架台32を有し、無端軌道31の駆動により架台32が順送りされる。1つの架台32には水分凝縮体20が収容される1つの容器21が載置され、容器21は架台32から取り外し可能となっている。当該容器21は図3に示すように金属製の枠部材を有し、その上面は開口され、その他の周面及び底面が金網のような網目部材から作製されている。無端軌道31上には容器21が載置されていない架台32が複数個連続して配置された非載置領域33が設けられる。排出された水分の回収する際に筐体10内に水分凝縮体20が搬入されないようにするためである。無端軌道31の長さや非載置領域33が設けられる数や長さは、筐体10外において吸湿させる時間や後述する吸湿域40までの距離、筐体10の長さなどによって適宜調節される。   FIG. 1 is a schematic configuration diagram showing a fresh water production apparatus 1 according to a first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing a part of the fresh water production apparatus 1. The fresh water producing apparatus 1 includes a rectangular parallelepiped casing 10, a granular moisture condensate 20, and an endless track type conveyor 30 that conveys the moisture condensate 20. The housing 10 has an internal space 11 that can be maintained in a substantially sealed state. The wall surface of the housing 10 is made of a material that transmits sunlight, such as tempered glass. Openings 12 and 13 each provided with an open / close door 14 are provided on opposite side surfaces of the housing 10. The conveyor 30 has a plurality of gantry 32 provided continuously that move on the endless track 31, and the gantry 32 is sequentially fed by driving the endless track 31. One container 21 in which the moisture condensate 20 is accommodated is placed on one gantry 32, and the container 21 is removable from the gantry 32. The container 21 has a metal frame member as shown in FIG. 3, the upper surface thereof is opened, and the other peripheral surface and bottom surface are made of a mesh member such as a wire mesh. On the endless track 31, there is provided a non-mounting region 33 in which a plurality of gantry 32 on which the container 21 is not mounted is continuously arranged. This is to prevent the moisture condensate 20 from being carried into the housing 10 when collecting the discharged moisture. The length of the endless track 31 and the number and length of the non-mounting regions 33 are appropriately adjusted according to the time for absorbing moisture outside the housing 10, the distance to the moisture absorbing region 40 described later, the length of the housing 10, and the like. .

無端軌道31の一部は、搬入口となる一方の開口部12から搬出口となる他方の開口部13を通過して筐体10内に設置されている。開閉扉14が閉じられた状態でも無端軌道31上の架台32のみが移動できるように開口部12,13は備えられている。残る無端軌道31は筐体10外に設置され、筐体10の内外で循環する無端軌道31が形成されている。コンベア30は手動又は動力で架台32を移動させる手動制御式のコンベア30でもあり、自動制御により架台を移動させる自動制御式のコンベア30でもあり得る。自動制御式のコンベア30であれば、コンベア30の無端軌道31の移動を自動的に制御する制御部(図示せず)を備える。制御部は、好ましくは水分凝縮体20が夜明け前後から日没前後までの間筐体10内に滞留し、筐体10から搬出された水分凝縮体20が2〜5日間程度吸湿域40に滞留するように架台32の移動を制御する。また、制御部は、2つの開閉扉14の開閉を制御する。   A part of the endless track 31 is installed in the housing 10 through one opening 12 serving as a carry-in port and the other opening 13 serving as a carry-out port. The openings 12 and 13 are provided so that only the gantry 32 on the endless track 31 can move even when the door 14 is closed. The remaining endless track 31 is installed outside the housing 10, and the endless track 31 that circulates inside and outside the housing 10 is formed. The conveyor 30 may be a manually controlled conveyor 30 that moves the gantry 32 manually or by power, and may be an automatically controlled conveyor 30 that moves the gantry by automatic control. The automatic control type conveyor 30 includes a control unit (not shown) that automatically controls the movement of the endless track 31 of the conveyor 30. The controller preferably retains the moisture condensate 20 in the casing 10 from before and after dawn until before and after sunset, and the moisture condensate 20 carried out of the casing 10 stays in the moisture absorption area 40 for about 2 to 5 days. Thus, the movement of the gantry 32 is controlled. Further, the control unit controls the opening / closing of the two opening / closing doors 14.

筐体10外の無端軌道31の上方には、その一部分に直射日光を遮る遮蔽物41が備えられ、当該遮蔽物41の下方は遮光域42となっている。遮光域42を除いては、無端軌道31の周囲は開放されており、筐体10内を除く無端軌道31上は遮光域42を含めて水分凝縮体20が大気と接触して大気中の水分を吸着する吸湿域40となっている。遮蔽物41は、例えば布製のシートであり、木製やスレート製の板状材、建物などの設置物でもあり、木などの自然物などでもあり得る。筐体10外に搬出された水分凝縮体20は吸湿域40において大気と接触し、主として夜間において大気中の水分を吸着する。   Above the endless track 31 outside the housing 10, a part of the shield 41 that shields from direct sunlight is provided, and below the shield 41 is a light shielding area 42. Except for the light shielding area 42, the periphery of the endless track 31 is open. On the endless track 31 except for the inside of the housing 10, the moisture condensate 20 including the light shielding area 42 comes into contact with the atmosphere and moisture in the atmosphere. It becomes the moisture absorption area 40 which adsorbs. The shield 41 is, for example, a cloth sheet, a wooden or slate plate-like material, an installation such as a building, or a natural object such as a tree. The moisture condensate 20 carried out of the housing 10 comes into contact with the atmosphere in the moisture absorption region 40 and adsorbs moisture in the atmosphere mainly at night.

開口部12,13が開閉扉14により閉じられた際は筐体10内がほぼ密閉された状態に維持される。複数個の水分凝縮体20が適宜の間隔で筐体10内外の無端軌道31上に配置され、1乃至数個(図示するものでは4個)の水分凝縮体20が1度の回収の際に搬入側の開口部12から筐体10内に搬送され、搬出側の開口部13から筐体10外に搬出される。   When the openings 12 and 13 are closed by the open / close door 14, the inside of the housing 10 is maintained in a substantially sealed state. A plurality of moisture condensates 20 are arranged on endless tracks 31 inside and outside the casing 10 at appropriate intervals, and one to several (four in the illustrated example) moisture condensates 20 are collected at one time. It is conveyed into the housing 10 from the opening 12 on the carry-in side and is carried out of the housing 10 through the opening 13 on the carry-out side.

水分回収機構50は、筐体10の対向する側面の一方に備えられた補給バルーン51と、その対向する側面に備えられた回収バルーン52を含む。補給バルーン51は開閉バルブ53を備えた給気路54により筐体10の内部空間11に接続されている。補給バルーン51は筐体10内の気体を回収バルーン52に送り出すのに十分な容量を有し、回収バルーン52は筐体内10内の気体を回収するのに十分な容量を有する。回収バルーン52は開閉バルブ55と排気ポンプ56を備えた排気路57により筐体10の内部空間11に接続されている。水分凝縮体20から排出された水分を含む気体の回収前は、給気路54上の開閉バルブ53は閉じられており、補給バルーン51は空気で充満された状態に保たれている。排気路57上の開閉バルブ55も閉じられており、回収バルーン52は排気された状態に保たれている。   The moisture recovery mechanism 50 includes a supply balloon 51 provided on one of the opposing side surfaces of the housing 10 and a recovery balloon 52 provided on the opposing side surface. The supply balloon 51 is connected to the internal space 11 of the housing 10 by an air supply path 54 having an opening / closing valve 53. The supply balloon 51 has a capacity sufficient to send the gas in the housing 10 to the recovery balloon 52, and the recovery balloon 52 has a capacity sufficient to recover the gas in the housing 10. The recovery balloon 52 is connected to the internal space 11 of the housing 10 by an exhaust passage 57 having an open / close valve 55 and an exhaust pump 56. Before the recovery of the gas containing moisture discharged from the moisture condensate 20, the open / close valve 53 on the air supply path 54 is closed, and the replenishment balloon 51 is kept in a state filled with air. The open / close valve 55 on the exhaust path 57 is also closed, and the recovery balloon 52 is kept in an exhausted state.

気温が上昇する前の夜明け前後に、吸湿域40において吸湿した数個(図示するものでは4個)の水分凝縮体20は容器21に収容された状態でコンベア30によって、搬入側の開口部12から筐体10内に搬入される。搬入後は、2つの開口部12,13は共に閉じられて筐体10の内部空間11はほぼ密閉された状態に保たれる(図4(a))。その状態で放置すると、太陽光の輻射熱により水分凝縮体20から水分が排出され、筐体10内部の湿度は高まる。その後、水分凝縮体20からの排出が終わった頃、好ましくは気温が低下する日没までに、搬出側の開口部13から水分凝縮体20が収容された容器21が搬出され、搬出された後に搬出側の開口部13は閉じられた状態に保たれる。このとき、容器21が載置されていない架台32が数個連続した非配置領域33が筐体10に位置して、筐体10内には吸湿した水分凝縮体は存在しない。   Before and after the dawn before the temperature rises, several moisture condensates 20 (four in the illustrated example) that have absorbed moisture in the moisture absorption area 40 are accommodated in the container 21 by the conveyor 30 and accommodated in the opening 12 on the carry-in side. Is carried into the housing 10. After the carry-in, the two openings 12 and 13 are both closed, and the internal space 11 of the housing 10 is kept almost sealed (FIG. 4A). If left in that state, moisture is discharged from the moisture condensate 20 by the radiant heat of sunlight, and the humidity inside the housing 10 increases. After that, after the discharge from the moisture condensate 20 is finished, preferably by the sunset when the temperature decreases, the container 21 containing the moisture condensate 20 is unloaded from the unloading side opening 13 and unloaded. The opening 13 on the carry-out side is kept closed. At this time, a non-arrangement region 33 in which several pedestals 32 on which the container 21 is not placed is continuous is located in the housing 10, and no moisture condensate that has absorbed moisture exists in the housing 10.

次いで、排気路57上の開閉バルブ55と給気路54上の開閉バルブ53が開かれ、排気ポンプ56の作動により補給バルーン51から空気が筐体10に供給されると共に回収バルーン52に筐体10内の空気が排出される。回収バルーン52に十分な量の気体が充満した頃に、排気路57上の開閉バルブ55と給気路54上の開閉バルブ53が閉じられる(図4(b))。その後、回収バルーン52は排気路57に取り付けられた状態で放置され、回収バルーン52は夜間の冷気により冷却される。この結果、水分凝縮体20から排出された水分は結露水として回収され、得られた淡水は回収バルーン52から取り出されるとともに、回収バルーン52内部の気体は排出される(図4(c))。一方、補給バルーン51には図示されないポンプにより気体が供給される。   Next, the opening / closing valve 55 on the exhaust path 57 and the opening / closing valve 53 on the air supply path 54 are opened, and the air is supplied from the supply balloon 51 to the casing 10 by the operation of the exhaust pump 56 and the recovery balloon 52 has a casing. The air in 10 is discharged. When the recovery balloon 52 is filled with a sufficient amount of gas, the open / close valve 55 on the exhaust passage 57 and the open / close valve 53 on the air supply passage 54 are closed (FIG. 4B). Thereafter, the recovery balloon 52 is left in a state of being attached to the exhaust passage 57, and the recovery balloon 52 is cooled by cold air at night. As a result, the moisture discharged from the moisture condensate 20 is collected as condensed water, and the obtained fresh water is taken out from the collection balloon 52, and the gas inside the collection balloon 52 is discharged (FIG. 4C). On the other hand, gas is supplied to the supply balloon 51 by a pump (not shown).

一方、筐体10から搬出された水分凝縮体20は、筐体10外である吸湿域40に移動して主として夜間に水分を吸着する。そして、好ましくは水分を吸着した水分凝縮体20は容器21に入れられた状態で翌日の昼間頃には遮光域42に移動される。遮光域42では、直射日光が遮られるので直射日光による水分凝縮体20からの排湿が抑えられる。その後、再び夜間になれば遮光域42又は遮光域42外の吸湿域40において水分凝縮体20は大気中の水分を吸着する。こうして幾日か分の昼夜を経て、上記のように再び筐体10内に搬入される。この結果、水分凝縮体20の吸湿能を最大限に活かすことができ、日中に回収できる水分量を増大させることができる。特に、吸排湿能が大きいとされるB型シリカゲルを用いれば、1日で十分な量の淡水を得ることができる。   On the other hand, the moisture condensate 20 carried out from the housing 10 moves to the moisture absorption area 40 outside the housing 10 and adsorbs moisture mainly at night. Preferably, the moisture condensate 20 that has adsorbed moisture is moved to the light-shielding area 42 in the daytime of the next day in a state of being placed in the container 21. In the light shielding area 42, direct sunlight is blocked, so that moisture from the moisture condensate 20 due to the direct sunlight is suppressed. Thereafter, at night again, the moisture condensate 20 adsorbs moisture in the atmosphere in the light shielding area 42 or the moisture absorption area 40 outside the light shielding area 42. Thus, after several days and nights, it is carried into the housing 10 again as described above. As a result, the moisture absorption capacity of the moisture condensate 20 can be maximized, and the amount of moisture that can be collected during the day can be increased. In particular, if B-type silica gel, which is considered to have a high moisture absorption / exhaust capacity, is used, a sufficient amount of fresh water can be obtained in one day.

上記の説明では、筐体10内で排湿させた水分凝縮体20を筐体10外に搬出させた後に、筐体10内の空気を回収バルーン52に回収させることで、水分凝縮体20への再吸着を防止している。もっとも、搬出のために筐体10内の水分を多く含む気体が多量に筐体10外に排出されるおそれもあり、回収量が減少することもあり得る。その場合には、昼間に排湿させた水分凝縮体20を筐体10外に搬出させることなく筐体10内の空気を回収バルーン52に回収し、その後に水分凝縮体20を筐体外に搬出してもよい。また、当該装置1では架台32を備えないベルトやローラを用いたコンベア30も用いられ得る。そして、筐体10外にある無端軌道31の上方全てに遮蔽物41を配置したり、筐体10から搬出された水分凝縮体20を直ちに遮光域42に移動してもよい。   In the above description, after the moisture condensate 20 that has been dehumidified in the housing 10 is carried out of the housing 10, the air in the housing 10 is collected by the collection balloon 52, so that the moisture condensate 20 is recovered. Prevents re-adsorption. However, a large amount of gas containing a large amount of moisture in the housing 10 may be discharged out of the housing 10 for carrying out, and the recovery amount may be reduced. In that case, the air in the housing 10 is collected in the recovery balloon 52 without carrying out the moisture condensate 20 that has been dehumidified during the daytime, and then the moisture condensate 20 is carried out of the housing. May be. In the apparatus 1, a conveyor 30 using a belt or a roller that does not include the gantry 32 may be used. Then, the shielding object 41 may be arranged all over the endless track 31 outside the housing 10, or the moisture condensate 20 carried out from the housing 10 may be immediately moved to the light shielding area 42.

図5は第2の実施例である淡水製造装置1の概略構成図である。当該淡水製造装置1は、直方体状の筐体10と、複数個の容器21に収容された水分凝縮体20と、水分凝縮体20を筐体10内に搬入出するリフト機構60と、地表面下に配置された熱交換器71を有する水分回収機構70とを備えている。筐体10は支持体15により地表から持ち上げられた状態に支持され、底面に複数(図示するものでは4つ)の開口部16を備えている。この開口部16はそれぞれ水分凝縮体20の搬入口と搬出口を兼ねている。筐体10の内部において開口部16の周囲には、ゴムパッキンなどの封止部材22が備えられている。筐体10には、水分凝縮体20を筐体10に搬入した際にそれぞれの開口部16を塞いで底面の一部を形成する複数(図示するものでは4つ)の板状の架台18が設けられている。リフト機構60は、架台18を載せる1つの支持台61と支持台61を上下させる2つのジャッキ62を備えている。水分凝縮体20は実施例1と同様な透湿性(網目状)の容器21に収容されている。各架台18には水分凝縮体20が入った1つの容器21が配置され、容器21の下端周縁に位置する箇所にはゴムパッキンなどの封止部材17が備えられている。また、水分凝縮体20を筐体10から搬出した際に、それぞれの開口部16を塞ぐ天板19が筐体内10に備えられている。天板19は太陽光の輻射熱が透過できるガラス(強化ガラス)や強化プラスチックなどから作製されている。図5に示すように、容器21(水分凝縮体20)を架台18に乗せた状態で支持台61を上昇させると、容器21(水分凝縮体20)の上面が天板19を押し上げる。水分凝縮体20が筐体10内に納められると架台18上の封止部材17が筐体10の底面と当接し、筐体10の内部空間11がほぼ密閉した状態に保たれる。また、図6に示されるように水分凝縮体20を筐体10から取り出した際には、天板19が筐体10の底面の封止部材22と当接し、筐体10の内部空間11がほぼ密閉した状態に保たれる。なお、開口部16周囲の密閉部材22は、天板19の下面に備えることとしてもよい。   FIG. 5 is a schematic configuration diagram of the fresh water producing apparatus 1 according to the second embodiment. The fresh water producing apparatus 1 includes a rectangular parallelepiped casing 10, a moisture condensate 20 accommodated in a plurality of containers 21, a lift mechanism 60 that carries the moisture condensate 20 into and out of the casing 10, and a ground surface. And a moisture recovery mechanism 70 having a heat exchanger 71 disposed below. The housing 10 is supported by the support 15 in a state where it is lifted from the ground surface, and has a plurality (four in the illustrated example) of openings 16 on the bottom surface. Each of the openings 16 also serves as a carry-in port and a carry-out port for the moisture condensate 20. Inside the housing 10, a sealing member 22 such as a rubber packing is provided around the opening 16. The casing 10 includes a plurality of (four in the illustrated example) plate-like bases 18 that close the respective openings 16 and form part of the bottom surface when the moisture condensate 20 is carried into the casing 10. Is provided. The lift mechanism 60 includes one support base 61 on which the gantry 18 is placed and two jacks 62 that move the support base 61 up and down. The moisture condensate 20 is accommodated in a moisture-permeable (network-like) container 21 similar to that in the first embodiment. A single container 21 containing a moisture condensate 20 is disposed on each pedestal 18, and a sealing member 17 such as a rubber packing is provided at a position located at the lower edge of the container 21. In addition, a top plate 19 that closes each opening 16 when the moisture condensate 20 is unloaded from the housing 10 is provided in the housing 10. The top plate 19 is made of glass (tempered glass) or reinforced plastic that can transmit sunlight radiant heat. As shown in FIG. 5, when the support base 61 is raised in a state where the container 21 (moisture condensate 20) is placed on the gantry 18, the upper surface of the container 21 (moisture condensate 20) pushes up the top plate 19. When the moisture condensate 20 is housed in the housing 10, the sealing member 17 on the gantry 18 comes into contact with the bottom surface of the housing 10, and the internal space 11 of the housing 10 is kept almost sealed. As shown in FIG. 6, when the moisture condensate 20 is taken out from the housing 10, the top plate 19 comes into contact with the sealing member 22 on the bottom surface of the housing 10, and the internal space 11 of the housing 10 is It is kept almost sealed. The sealing member 22 around the opening 16 may be provided on the lower surface of the top plate 19.

この装置1における水分回収機構70は、筐体10と熱交換器71の間に設けられた排気路72と、熱交換器71と筐体10の間に設けられた給気路73を有し、筐体10と熱交換器71の間で気体が循環する循環路74が構成されている。循環路74には気体を循環させる循環ポンプ75が備えられている。筐体10内で水分凝縮体20から排湿された水分を含む気体は排気路72を通って熱交換器71に送られる。熱交換器71で水分が回収された後の気体は給気路73を通って筐体10内に送られる。   The moisture recovery mechanism 70 in the apparatus 1 has an exhaust path 72 provided between the casing 10 and the heat exchanger 71 and an air supply path 73 provided between the heat exchanger 71 and the casing 10. A circulation path 74 through which gas circulates between the housing 10 and the heat exchanger 71 is configured. The circulation path 74 is provided with a circulation pump 75 for circulating gas. The gas containing moisture exhausted from the moisture condensate 20 in the housing 10 is sent to the heat exchanger 71 through the exhaust path 72. The gas after the moisture is collected by the heat exchanger 71 is sent into the housing 10 through the air supply path 73.

筐体10外は吸湿域となっており、筐体10の近傍には遮蔽物41により直射日光が遮られた遮光域(図示せず)が設けられている。容器21に収容された水分凝縮体20は水分凝縮体20が容器21に収容された状態で数日間水分を含んだ空気(外気)と接触される。その後、気温が上昇する前の夜明け前後に、フォークリフトなどの搬送機構(図示せず)によって水分凝縮体20が収容された容器21は支持台61に載置された架台18上に搬送、載置された後に、リフト機構60によって持ち上げられて筐体10内に納められる。また、水分凝縮体20が搬入されると循環ポンプ75を稼動して、筐体10内の気体を熱交換器71に送る。その後、太陽光の輻射熱により水分凝縮体20から水分が排出されると、この水分を含む気体は熱交換器71で冷却され、得られた結露水は淡水として汲み上げポンプ76により回収される。この装置では、水分凝縮体20から排出された水分は直ちに熱交換器71により冷却されるので、水分凝縮体20に再吸着される水分量が抑えられ、水分凝縮体20から排出される水分のほぼ全量が淡水として回収され得る。そして、日没前の筺体10内部の湿分が最高に高くなった時にのみ、循環ポンプ75を稼動することにすれば循環ポンプ75の消費電力量を低減できる。   The outside of the housing 10 is a hygroscopic region, and a light shielding region (not shown) in which direct sunlight is blocked by the shield 41 is provided in the vicinity of the housing 10. The moisture condensate 20 accommodated in the container 21 is brought into contact with air (outside air) containing moisture for several days in a state where the moisture condensate 20 is accommodated in the container 21. Thereafter, before and after the dawn before the temperature rises, the container 21 in which the moisture condensate 20 is accommodated by a transport mechanism (not shown) such as a forklift is transported and placed on the base 18 placed on the support base 61. Then, it is lifted by the lift mechanism 60 and stored in the housing 10. Further, when the moisture condensate 20 is carried in, the circulation pump 75 is operated to send the gas in the housing 10 to the heat exchanger 71. Thereafter, when moisture is discharged from the moisture condensate 20 by the radiant heat of sunlight, the gas containing the moisture is cooled by the heat exchanger 71, and the obtained condensed water is pumped up as fresh water and collected by the pump 76. In this apparatus, since the water discharged from the water condensate 20 is immediately cooled by the heat exchanger 71, the amount of water re-adsorbed on the water condensate 20 is suppressed, and the amount of water discharged from the water condensate 20 is reduced. Almost the entire amount can be recovered as fresh water. Then, if the circulation pump 75 is operated only when the moisture inside the housing 10 before sunset becomes the highest, the power consumption of the circulation pump 75 can be reduced.

また、当該装置1においても、水分凝縮体20からの排湿が終わった頃、好ましくは気温が低下する日没までに開口部16から水分凝縮体20が入った容器21を搬出した後に、水分回収機構70により水分を回収することもできる。つまり、水分凝縮体20を搬出した後に、開口部16を架台18で閉じた状態に保ち、循環ポンプの稼動により筐体10内の水分を多く含む気体は熱交換器71で冷却して、水分を回収する。   Also in the apparatus 1, when the moisture from the moisture condensate 20 is finished, preferably after the container 21 containing the moisture condensate 20 is unloaded from the opening 16 by the sunset when the temperature decreases, Water can also be recovered by the recovery mechanism 70. That is, after carrying out the moisture condensate 20, the opening 16 is kept closed by the gantry 18, and the gas containing a large amount of moisture in the housing 10 is cooled by the heat exchanger 71 by the operation of the circulation pump. Recover.

図7はさらに別な実施例である淡水製造装置1の概略構成図である。この筐体10はその上面に水分凝縮体20を搬入出するための複数(図示するものでは3つ)の開口部16を備えている。開口部16にはそれぞれ開閉可能な開閉扉14が備えられており、開閉扉14により開口部16が閉じられた状態では筐体10の内部空間11はほぼ密閉状態に保たれる。この淡水製造装置1では、容器21は筐体10内に据え置かれている点で、実施例1や実施例2の淡水製造装置1と異なっている。実施例3の淡水製造装置1における水分回収機構50は実施例1と同様に補給バルーン51と回収バルーン52などを備えている。また、筐体10の近傍には図示しない遮蔽域が設けられ、当該遮蔽域には複数個の吸湿用容器(図示せず)が備えられている。吸湿用容器は、例えば網目部材から作製された透湿性を有する容器であり、その大きさや個数は適宜定められ、筐体10から搬出された水分凝縮体20は吸湿用容器に入れられた状態で、好ましくは遮蔽域にて数日間放置される。   FIG. 7 is a schematic configuration diagram of a fresh water producing apparatus 1 which is still another embodiment. The casing 10 includes a plurality of (three in the illustrated example) openings 16 for carrying in and out the moisture condensate 20 on the upper surface thereof. Each opening 16 is provided with an openable / closable door 14. When the opening 16 is closed by the open / close door 14, the internal space 11 of the housing 10 is kept substantially sealed. The fresh water producing apparatus 1 is different from the fresh water producing apparatus 1 of the first and second embodiments in that the container 21 is stationary in the housing 10. The water recovery mechanism 50 in the fresh water producing apparatus 1 according to the third embodiment includes a replenishment balloon 51 and a recovery balloon 52 as in the first embodiment. Further, a shielding area (not shown) is provided in the vicinity of the housing 10, and a plurality of moisture absorption containers (not shown) are provided in the shielding area. The moisture absorption container is a moisture permeable container made of, for example, a mesh member, the size and number of which are appropriately determined, and the moisture condensate 20 carried out of the housing 10 is placed in the moisture absorption container. , Preferably left in a shielded area for several days.

淡水製造装置1は、中空導管であるホース35と、ホース35を介して粒状の水分凝縮体20を筐体10内の容器21と吸湿用容器との間で搬送するポンプ装置(図示せず)を有する搬入出機構を備えている。ポンプ装置に駆動によりホース35の先端から水分凝縮体20が吐出され、ポンプ装置の駆動を逆転させることでホース35の先端から容器21内の水分凝縮体20を吸引して、好ましくは遮蔽域にある吸湿用容器に吐出する。もっとも、筐体10と吸湿用容器の間に中継用の補給用容器を備え、補給用容器を介して水分凝縮体20を搬入出してもよい。   The fresh water production apparatus 1 includes a hose 35 that is a hollow conduit, and a pump device (not shown) that conveys the granular moisture condensate 20 between the container 21 in the housing 10 and the moisture absorption container via the hose 35. The carrying-in / out mechanism which has is provided. The water condensate 20 is discharged from the tip of the hose 35 by driving the pump device, and the water condensate 20 in the container 21 is sucked from the tip of the hose 35 by reversing the driving of the pump device, preferably in the shielding area. Discharge into a container for moisture absorption. Of course, a relay replenishment container may be provided between the housing 10 and the moisture absorption container, and the moisture condensate 20 may be carried in and out via the replenishment container.

この装置1では、夜明け前後にポンプ装置を駆動して、1つの開口部16から空の容器21に、遮蔽域で水分を吸着した水分凝縮体20を吐出させる(図8(a))。次にホース35を隣接した開口部16に移動して、別な空の容器21に水分凝縮体20を吐出させる(同図(b))。そして、夜明け前後には全ての筐体10内の容器21に水分凝縮体20を充填し、その後全ての開閉扉14を閉じた状態で日中放置する(同図(c))。水分凝縮体20から十分に水分が排出された頃に給気路54上の開閉バルブ53及び排気路57上の開閉バルブ55を開き、排気ポンプ56を駆動して筐体10内の気体を回収バルーン52に回収する(同図(d))。その後、日没前後に開閉扉14を開き、開口部16から容器21内の水分凝縮体20を順次搬出して、全ての容器21を空にして放置する(同図(e)(f))。一方、回収バルーン52は夜間の冷気で冷却され、回収バルーン52内に結露水が得られる。上記の説明においては、水分凝縮体20の搬出時に筐体10内の気体が筐体外10に排気されるのを防止するため、水分凝縮体20が筐体10外に搬出される前に筐体10内の気体を回収することにしているが、水分凝縮体20の搬出後に筐体10内の気体を回収バルーン52に排出することもできる。   In this apparatus 1, the pump apparatus is driven before and after dawn, and the moisture condensate 20 that has adsorbed moisture in the shielding area is discharged from one opening 16 to the empty container 21 (FIG. 8A). Next, the hose 35 is moved to the adjacent opening 16 and the moisture condensate 20 is discharged into another empty container 21 (FIG. 2B). Then, before and after dawn, the containers 21 in all the casings 10 are filled with the moisture condensate 20, and after that, all the open / close doors 14 are closed and left in the daytime ((c) in the figure). When the moisture is sufficiently discharged from the moisture condensate 20, the opening / closing valve 53 on the air supply passage 54 and the opening / closing valve 55 on the exhaust passage 57 are opened, and the exhaust pump 56 is driven to collect the gas in the housing 10. It collect | recovers to the balloon 52 (the figure (d)). Thereafter, the opening / closing door 14 is opened before and after sunset, and the moisture condensate 20 in the container 21 is sequentially carried out from the opening 16, and all the containers 21 are left empty and left (FIGS. (E) and (f)). . On the other hand, the collection balloon 52 is cooled by cold air at night, and condensed water is obtained in the collection balloon 52. In the above description, in order to prevent the gas in the housing 10 from being exhausted to the outside of the housing 10 when the moisture condensate 20 is carried out, the housing before the moisture condensate 20 is carried out of the housing 10. The gas in the housing 10 is collected, but the gas in the housing 10 can be discharged to the collection balloon 52 after the moisture condensate 20 is carried out.

図9は第4の実施例である淡水製造装置1の概略構成図、図10は当該淡水製造装置1の使用方法を説明する図である。当該淡水製造装置1は、筐体10内部において水分が回収される構成であって、当該装置1では水分凝縮体20を取り出した後の筐体10を夜間の冷気によって冷却することで筐体10内に淡水が得られる。   FIG. 9 is a schematic configuration diagram of the fresh water producing apparatus 1 according to the fourth embodiment, and FIG. 10 is a diagram illustrating a method of using the fresh water producing apparatus 1. The fresh water producing apparatus 1 has a configuration in which moisture is collected inside the casing 10, and the apparatus 10 cools the casing 10 after taking out the moisture condensate 20 with cold air at night to thereby protect the casing 10. Fresh water is obtained inside.

当該淡水製造装置1の筐体10は角柱状に作製され、筐体10は、その1つの側面と平行に配置された1つの仕切板81と、水分凝縮体20が出し入れされる複数の筒状の容器21を備える。仕切板81は筐体10の内部空間11を、水分凝縮体20の搬入出室11Aと、水分凝縮体20から水分を排湿する排湿室11Bの2つの部屋に分割している。搬入出室11Aの筐体上面には水分凝縮体20の搬入口である1つの開口部12が設けられ、搬入出室11Aの筐体底面には水分凝縮体20の搬出口である1つの開口部13が設けられている。2つの開口部12,13にはそれぞれ開閉可能な開閉扉14が取り付けられており、2つの開閉扉14が閉じられた状態では筐体10の内部空間11はほぼ密閉された状態に保たれる。容器21は金網などから作製され、通気性が担保されている。容器21は筐体10の底面とほぼ平行に配置され、筐体10内に固定されている。   The casing 10 of the fresh water producing apparatus 1 is manufactured in a prismatic shape, and the casing 10 has a plurality of cylindrical shapes into which one partition plate 81 arranged in parallel with one side surface thereof and the moisture condensate 20 are taken in and out. The container 21 is provided. The partition plate 81 divides the internal space 11 of the housing 10 into two chambers: a carry-in / out chamber 11 </ b> A for the moisture condensate 20, and a dehumidification chamber 11 </ b> B for dehumidifying moisture from the moisture condensate 20. One opening 12 serving as a carry-in port for the moisture condensate 20 is provided on the top surface of the carry-in / out chamber 11A, and one opening serving as a carry-out port for the moisture condensate 20 is provided on the bottom surface of the carry-in / out chamber 11A. A portion 13 is provided. Openable and closable doors 14 are attached to the two openings 12 and 13, respectively, and the internal space 11 of the housing 10 is kept almost sealed when the two doors 14 are closed. . The container 21 is made from a wire mesh or the like, and air permeability is ensured. The container 21 is disposed substantially parallel to the bottom surface of the housing 10 and is fixed in the housing 10.

容器21は、排湿室11Bにおいて仕切板81から筐体10の側面に至るまで配置され、容器21の片端は筐体10の側面で塞がれ、他端は開放されている。そして、仕切板81にはこの開放端に位置して容器21の数と同数の穴81aが開設されている。筐体10は仕切板81に平行して上下にスライドする平板上のシャッター82を備える。シャッター82は仕切版81の穴81aを開閉する。シャッター82は複数の穴82aを有し、これらの穴82aは、シャッター82がその下辺が最下段にある容器21のやや上方にまで引き上げられた際に、仕切穴81の穴81aと重なる位置に開設されている。この結果、シャッター82を全て引き上げられることなく、全ての容器21の開放端は搬入出室11Aに向けて開かれる。そして、シャッター81が最も下げられた際にはシャッター82により仕切板81の全ての穴81aは塞がれる。   The container 21 is disposed from the partition plate 81 to the side surface of the housing 10 in the moisture removal chamber 11B, and one end of the container 21 is closed by the side surface of the housing 10 and the other end is opened. The partition plate 81 is provided with the same number of holes 81a as the number of the containers 21 at the open end. The housing 10 includes a flat shutter 82 that slides up and down in parallel with the partition plate 81. The shutter 82 opens and closes the hole 81 a of the partition plate 81. The shutter 82 has a plurality of holes 82a, and these holes 82a overlap with the holes 81a of the partition holes 81 when the shutter 82 is pulled up slightly above the lowermost container 21. It has been established. As a result, the open ends of all the containers 21 are opened toward the loading / unloading chamber 11A without lifting all the shutters 82. When the shutter 81 is lowered most, all the holes 81a of the partition plate 81 are closed by the shutter 82.

筐体10はその左右側面に外側に突設された軸65によって設置台66に軸支されている。筐体10は容器21の開放端が上に来る位置からほぼ水平、好ましくは水平からやや傾いた位置まで軸65の周りに回転する。軸65には図示しない複数の歯車を組み合わせた減速機構が備えられており、手動で筐体10が回転される。もっとも、モータなどの駆動機構を備え、駆動機構によって筐体10を回転させてもよい。   The housing 10 is pivotally supported on the installation base 66 by a shaft 65 projecting outward on the left and right side surfaces. The housing 10 rotates about the shaft 65 from a position where the open end of the container 21 is located to a substantially horizontal position, preferably a position slightly inclined from the horizontal position. The shaft 65 is provided with a speed reduction mechanism that combines a plurality of gears (not shown), and the housing 10 is manually rotated. However, a drive mechanism such as a motor may be provided, and the housing 10 may be rotated by the drive mechanism.

筐体10の近傍には図示しない遮蔽域が設けられ、当該遮蔽域には複数個の吸湿用容器(図示せず)が備えられている。吸湿用容器は例えば網目部材から作製された透湿性を有する容器であり、その大きさや個数は適宜定められる。筐体10から搬出された粒状の水分凝縮体20は吸湿用容器に入れられ、遮蔽域にて数日間放置される。遮蔽域において水分を吸着した水分凝縮体20は、夜明け前後の気温が上昇する前に例えばポンプ装置(図示せず)に接続されたホース36から、筐体上部の開口部12から搬入出室11Aがほぼ満たされる程度に投入される(図10(a))。このとき、シャッター82は最も下げられた状態にあり、仕切板81の穴81aはシャッター82で塞がれている。また、開口部13は閉じられている。次いで、開口部12と開口部13を閉じた状態で筐体10を約90度回転させた後、シャッター82をスライドさせて、容器21内部に水分凝縮体20を入れる(図10(b))。その後、シャッター81を元の状態にスライドさせて仕切板81の穴81aを全て塞いだ後、筐体10を約90度反転させて容器21をほぼ水平状態に戻す(図10(c))。昼間この状態が維持されると、太陽光の輻射熱により水分凝縮体20から水分が排出され、排湿室11B内の湿度は上昇する。そして、水分凝縮体20からの排出が終わった頃に、好ましくは気温が低下する日没頃までに、シャッター81を再びスライドさせて仕切板81の穴81aを全て開いた状態で筐体10をやや傾斜させて水分凝縮体20を搬入出室11Aに移動させる(図10(d))。この時点では開口部12,13は閉じられたままである。次にシャッター82をスライドさせて仕切板81の穴81aを全てシャッター82で塞いだ後、筐体10をほぼ水平状態に戻し、水分凝縮体20を開口部13から取り出す(図10(e))。次に開閉扉14により開口部13を閉じてこの状態で放置する(図10(f))。そうすると、夜間の冷気によって筐体10全体が冷却され、筐体10内には結露水が得られる。一方、筐体10から取り出された水分凝縮体20はコンベアやポンプ装置などの搬送装置あるいは人力によって遮蔽域に搬送され、遮蔽域に備えられた吸湿用容器内で数日間放置される。   A shielding area (not shown) is provided in the vicinity of the housing 10, and a plurality of moisture absorbing containers (not shown) are provided in the shielding area. The hygroscopic container is a moisture-permeable container made from, for example, a mesh member, and the size and number of the hygroscopic containers are appropriately determined. The granular moisture condensate 20 carried out from the housing 10 is put in a moisture absorption container and left for several days in a shielding area. The moisture condensate 20 that has adsorbed moisture in the shielded area is brought into the loading / unloading chamber 11A from the opening 12 at the upper part of the housing from, for example, a hose 36 connected to a pump device (not shown) before the temperature before and after dawn rises. Is introduced to such an extent that is substantially satisfied (FIG. 10A). At this time, the shutter 82 is in the lowest position, and the hole 81 a of the partition plate 81 is closed by the shutter 82. Moreover, the opening part 13 is closed. Next, the casing 10 is rotated about 90 degrees with the opening 12 and the opening 13 closed, and then the shutter 82 is slid to put the moisture condensate 20 into the container 21 (FIG. 10B). . Thereafter, the shutter 81 is slid to the original state to close all the holes 81a of the partition plate 81, and then the casing 10 is inverted by about 90 degrees to return the container 21 to a substantially horizontal state (FIG. 10 (c)). When this state is maintained in the daytime, moisture is discharged from the moisture condensate 20 by the radiant heat of sunlight, and the humidity in the humidity chamber 11B increases. Then, when the discharge from the moisture condensate 20 is finished, preferably by the sunset when the temperature decreases, the shutter 10 is slid again to open the casing 10 with all the holes 81a of the partition plate 81 opened. The moisture condensate 20 is moved to the carry-in / out chamber 11A with a slight inclination (FIG. 10D). At this point, the openings 12 and 13 remain closed. Next, after the shutter 82 is slid to cover all the holes 81a of the partition plate 81 with the shutter 82, the housing 10 is returned to a substantially horizontal state, and the moisture condensate 20 is taken out from the opening 13 (FIG. 10 (e)). . Next, the opening 13 is closed by the door 14 and left in this state (FIG. 10 (f)). If it does so, the whole housing | casing 10 will be cooled by the cool air at night, and dew condensation water will be obtained in the housing | casing 10. FIG. On the other hand, the moisture condensate 20 taken out from the housing 10 is transported to a shielded area by a transport device such as a conveyor or a pump device or by human power, and left in a moisture absorbing container provided in the shielded area for several days.

この実施例では、搬入出室11Aと排湿室11Bの間に仕切板81とシャッター82の2つの間仕切りが備えられているので、水分凝縮体20を筐体10外に取り出す際に、水分を多く含む気体が筐体10外に排出されるのを少なくできる。もっともシャッター82の設置は任意であり、シャッター82により仕切板81の穴81aを塞ぐことなく、筐体10を傾けて排湿させた後の水分凝縮体20を開口部13から取り出し、その後筐体10を夜間の冷気で冷やすこともできる。   In this embodiment, since the two partitions of the partition plate 81 and the shutter 82 are provided between the carry-in / out chamber 11A and the dehumidification chamber 11B, moisture is removed when the moisture condensate 20 is taken out of the housing 10. A gas containing a large amount can be reduced from being discharged out of the housing 10. However, the installation of the shutter 82 is optional, and the moisture condensate 20 after the casing 10 is tilted and dehumidified is taken out from the opening 13 without closing the hole 81a of the partition plate 81 by the shutter 82, and then the casing 10 can also be cooled with cold air at night.

図11は第5の実施例である淡水製造装置1の概略構成図である。当該淡水製造装置1も、筐体10内部において水分が回収される構成を有し、水分凝縮体20を取り出した後の筐体10を夜間の冷気によって冷却することで淡水が得られる。   FIG. 11: is a schematic block diagram of the fresh water manufacturing apparatus 1 which is a 5th Example. The fresh water producing apparatus 1 also has a configuration in which moisture is collected inside the casing 10, and fresh water is obtained by cooling the casing 10 after taking out the moisture condensate 20 with cold air at night.

筐体10は筐体10上部の一部分が側方に飛び出した形状を有しており、側方に飛び出た筐体10部分の下方は筐体10から取り出された水分凝縮体20を吸湿域に搬送するための搬出空間45となっている。搬出空間45にはコンベアなどの搬送装置46が配置されている。搬送装置46は取り出された水分凝縮体20を吸湿域へ連続的又は間歇的に搬送する手段である。搬送空間45と反対側にある筐体10の片端部上面には搬入口である開口部12が1つ設けられている。また、搬出空間45との境界面にある筐体10底面には搬出口である開口部13が1つ設けられている。開口部12,13には開閉扉14がそれぞれ備えられており、開閉扉14により開口部12,13が閉じられた際には内部空間11はほぼ密閉状態に保たれる。   The case 10 has a shape in which a part of the upper part of the case 10 protrudes to the side, and the lower part of the case 10 that protrudes to the side has the moisture condensate 20 taken out from the case 10 as a moisture absorption region. It is a carry-out space 45 for carrying. A transport device 46 such as a conveyor is disposed in the carry-out space 45. The transport device 46 is a means for transporting the extracted moisture condensate 20 continuously or intermittently to the moisture absorption area. One opening 12 serving as a carry-in entrance is provided on the upper surface of one end of the housing 10 on the side opposite to the transfer space 45. Further, one opening 13 serving as a carry-out port is provided on the bottom surface of the housing 10 at the boundary surface with the carry-out space 45. Opening and closing doors 14 are respectively provided in the openings 12 and 13, and when the openings 12 and 13 are closed by the opening and closing door 14, the internal space 11 is kept in a substantially sealed state.

筐体10内には脚26を有する架台25が備えられている。架台25は上面が開放された箱型形状を有し、粒状の水分凝縮体20を収容する容器となっている。架台25の底面は、搬入口側が搬出口側に比べてわずかに高くなった傾斜面となっている。架台25の搬出口側にある側面25aはヒンジ機構27により架台25の底面に取り付けられている。側面25aの上部には巻取装置39から引き出された牽引ロープ38の一端が取り付けられている。牽引ロープ38が巻取装置39により巻き取られることで、架台25の側面25aは架台25の側面は閉じられた状態となり、牽引ロープ38が緩められると側面25aは架台25の外側に倒れることで架台25の側方が開かれる。牽引ロープ38の筐体10からの引き出し箇所(筐体10の上面)には、筐体10からの気体漏れを防ぐための封止部材(図示せず)が備えられている。   A frame 25 having legs 26 is provided in the housing 10. The gantry 25 has a box shape with an open upper surface, and is a container that accommodates the granular moisture condensate 20. The bottom surface of the gantry 25 is an inclined surface in which the carry-in port side is slightly higher than the carry-out port side. A side surface 25 a on the carry-out side of the gantry 25 is attached to the bottom surface of the gantry 25 by a hinge mechanism 27. One end of a tow rope 38 drawn from the winding device 39 is attached to the upper portion of the side surface 25a. When the tow rope 38 is wound by the winding device 39, the side surface 25a of the gantry 25 is in a closed state, and when the tow rope 38 is loosened, the side surface 25a falls to the outside of the gantry 25. The side of the gantry 25 is opened. A location where the tow rope 38 is pulled out from the housing 10 (the upper surface of the housing 10) is provided with a sealing member (not shown) for preventing gas leakage from the housing 10.

筐体10外には、遮蔽物により直射日光が遮られた遮光域(図示せず)が設けられており、遮光域で粒状の水分凝縮体は数日間水分を含んだ空気(外気)と接触される。その後、夜明け前後の気温が上昇する前に油圧ショベルなどの搬送機構や人手によって、水分凝縮体20は開口部12から投入され、誘導部材28上を流れ落ちて架台25内に搬入される。図示した装置1では搬送機構としてポンプ装置によってホース37から水分凝縮体20が吐出される。このとき、牽引ロープ38は巻き取られて架台25の側方は閉じられている。開口部13も閉じられている(図12(a))。次に、水分凝縮体20の搬入が終わると開口部12が閉じられ、好ましくは直射日光の当たる場所の下で放置される(同図(b))。そして、好ましくは太陽光の輻射熱により水分凝縮体からの排出が終わる日没前に、開口部14が開かれると共に牽引ロープ38が緩められると架台25の側面25aが開かれ、水分凝縮体20は開口部13から搬送装置46上に搬出される(同図(c))。その後、開閉扉14により開口部13が閉じられ夜間の冷気によって筐体10全体が冷却される(同図(d))。冷却により筐体10内に溜まった結露水は、筐体10の取出口(図示せず)から淡水として取り出される。   Outside the housing 10 is provided a light shielding area (not shown) that is shielded from direct sunlight by a shield, and the granular moisture condensate is in contact with air (outside air) containing moisture for several days in the light shielding area. Is done. Thereafter, before the temperature around dawn rises, the moisture condensate 20 is introduced from the opening 12 by a transport mechanism such as a hydraulic excavator or manually, and flows down on the guide member 28 and is carried into the gantry 25. In the illustrated apparatus 1, the moisture condensate 20 is discharged from the hose 37 by a pump device as a transport mechanism. At this time, the tow rope 38 is wound up and the side of the gantry 25 is closed. The opening 13 is also closed (FIG. 12 (a)). Next, when the moisture condensate 20 has been carried in, the opening 12 is closed and preferably left under a place exposed to direct sunlight ((b) in the figure). And preferably, before the sunset when the discharge from the moisture condensate ends due to the radiant heat of sunlight, when the opening 14 is opened and the traction rope 38 is loosened, the side surface 25a of the gantry 25 is opened, and the moisture condensate 20 is It is carried out from the opening part 13 on the conveying apparatus 46 (the figure (c)). Thereafter, the opening 13 is closed by the open / close door 14, and the entire housing 10 is cooled by the cold air at night ((d) in the figure). The condensed water accumulated in the housing 10 by cooling is taken out as fresh water from an outlet (not shown) of the housing 10.

この装置1では、架台25の傾斜を利用して水分凝縮体20を筐体内20から取り出すこととしているが、傾斜した架台25の代わりに、油圧シリンダーなどの昇降装置を用いて架台を傾けることにしてもよい。また、架台25の側面25aの開閉も適宜な方法で開閉させてもよいのはいうまでもない。   In this apparatus 1, the moisture condensate 20 is taken out of the housing 20 by using the inclination of the gantry 25, but the gantry is inclined by using a lifting device such as a hydraulic cylinder instead of the inclined gantry 25. May be. Needless to say, the side surface 25a of the gantry 25 may be opened and closed by an appropriate method.

なお、第4の実施例や第5の実施例において、第1の実施例や第2の実施例に備えられた水分回収機構を備えることもできるし、第1〜第3の実施例において、水分回収機構を備えることなく、筐体を夜間の冷気で冷却することで筐体内に生じた結露水を回収する水分回収機構を構成することもできる。このように、本発明の淡水製造装置では水分凝縮体を交換可能な開口部を筐体に設ければよく、水分凝縮体の搬入手段や搬出手段、水分回収機構は適宜な方法を組み合わせることができる。また、上記の各実施例では粒状の水分凝縮体が用いられたが、角柱状などに成型された水分凝縮体が用いられ得るのは言うまでもない。   In the fourth embodiment and the fifth embodiment, the water recovery mechanism provided in the first embodiment and the second embodiment can be provided. In the first to third embodiments, Without providing a moisture recovery mechanism, it is also possible to configure a moisture recovery mechanism that recovers condensed water generated in the casing by cooling the casing with cold air at night. As described above, in the fresh water production apparatus of the present invention, an opening for exchanging the moisture condensate may be provided in the housing, and an appropriate method may be combined for the moisture condensate loading and unloading means and the moisture recovery mechanism. it can. In each of the above embodiments, a granular water condensate is used, but it goes without saying that a water condensate molded into a prismatic shape or the like may be used.

本発明の淡水製造装置によると、水分凝縮体の吸湿能力が十分に活かされ、昼時における淡水製造量が増大する。   According to the fresh water producing apparatus of the present invention, the moisture absorption capacity of the water condensate is fully utilized, and the amount of fresh water produced at daytime increases.

10 筐体
12 搬入口となる開口部
13 搬出口となる開口部
20 水分凝縮体
21 容器
25 架台
30 コンベア
36 搬入出手段であるホース
51 補給バルーン
52 回収バルーン
81 仕切板
DESCRIPTION OF SYMBOLS 10 Housing | casing 12 Opening part 13 which becomes a carrying-in entrance 20 Opening part 20 which becomes a carrying-out exit Moisture condensate 21 Container 25 Stand 30 Conveyor 36 Hose 51 which is carrying in / out means Supply balloon 52 Recovery balloon 81 Partition plate

Claims (9)

ほぼ密閉された空間を形成し得る筐体と、
前記筐体内に出し入れされる水分凝縮体と、
前記筐体内で前記水分凝縮体から排出された水を含む気体を冷却して淡水として回収する水分回収機構と、
を備え、
前記筐体は前記水分凝縮体を出し入れする1以上の開閉可能な開口部を有し、
前記水分回収機構は、
前記筐体外に備えられた熱交換器と、
前記空間内で排出された水分を含む気体を前記熱交換器に供給する排気路と、
前記空間内に前記水分回収機構で水分が除去された気体を供給する給気路と、を有する淡水製造装置。
A housing capable of forming a substantially sealed space;
Moisture condensate in and out of the housing;
A moisture recovery mechanism for cooling the gas containing water discharged from the moisture condensate in the housing and recovering it as fresh water;
With
The housing has one or more openable and closable openings for taking in and out the moisture condensate,
The moisture recovery mechanism is
A heat exchanger provided outside the housing;
An exhaust path for supplying a gas containing moisture exhausted in the space to the heat exchanger;
A fresh water producing apparatus, comprising: an air supply path for supplying a gas from which moisture has been removed by the moisture recovery mechanism into the space.
ほぼ密閉された空間を形成し得る筐体と、
前記筐体内に出し入れされる水分凝縮体と、
前記筐体内で前記水分凝縮体から排出された水を含む気体を冷却して淡水として回収する水分回収機構と、
を備え、
前記筐体は前記水分凝縮体を出し入れする1以上の開閉可能な開口部を有し、
前記水分回収機構は、
前記空間内に気体を送る供給装置と、
前記空間内に排出された水分を含む気体を回収する回収バルーンと、を有する淡水製造装置。
A housing capable of forming a substantially sealed space;
Moisture condensate in and out of the housing;
A moisture recovery mechanism for cooling the gas containing water discharged from the moisture condensate in the housing and recovering it as fresh water;
With
The housing has one or more openable and closable openings for taking in and out the moisture condensate,
The moisture recovery mechanism is
A supply device for sending gas into the space;
A fresh water production apparatus comprising: a recovery balloon that recovers a gas containing moisture discharged into the space.
前記水分凝縮体を前記筐体内から出し入れする搬入出機構を備えた請求項1又は2に記載の淡水製造装置。   The fresh water manufacturing apparatus of Claim 1 or 2 provided with the carrying in / out mechanism which takes in / out the said moisture condensate from the inside of the said housing | casing. 前記水分凝縮体を、前記筐体内と、前記筐体外において水分凝縮体と空気を接触し得る吸湿域との間で搬送する搬送機構を備えた請求項1〜3の何れか1項に記載の淡水製造装置。   4. The transport mechanism according to claim 1, further comprising a transport mechanism that transports the moisture condensate between the inside of the housing and a moisture absorption region where the moisture condensate and air can be contacted outside the housing. 5. Fresh water production equipment. ほぼ密閉された空間を形成し得る筐体と、
前記筐体内に出し入れされる水分凝縮体と、
前記筐体内で前記水分凝縮体から排出された水を含む気体を冷却して淡水として回収する水分回収機構と、
を備え、
前記筐体は前記水分凝縮体を出し入れする1以上の開閉可能な開口部を有し、
前記水分凝縮体を、前記筐体内と、前記筐体外において水分凝縮体と空気を接触し得る吸湿域の間で搬送する無端軌道式の搬送機構を備えた淡水製造装置。
A housing capable of forming a substantially sealed space;
Moisture condensate in and out of the housing;
A moisture recovery mechanism for cooling the gas containing water discharged from the moisture condensate in the housing and recovering it as fresh water;
With
The housing has one or more openable and closable openings for taking in and out the moisture condensate,
An apparatus for producing fresh water, comprising an endless track type transport mechanism for transporting the moisture condensate between the inside of the casing and a hygroscopic region where the moisture condensate and air can be contacted outside the casing.
前記吸湿域の少なくとも一部が、太陽光の遮光下にある遮光域に設けられた請求項4又は5に記載の淡水製造装置。   The fresh water producing apparatus according to claim 4 or 5, wherein at least a part of the hygroscopic area is provided in a light shielding area under the shielding of sunlight. 前記水分回収機構は、
前記筐体外に備えられた熱交換器と、
前記空間内で排出された水分を含む気体を前記熱交換器に供給する排気路と、
前記空間内に前記水分回収機構で水分が除去された気体を供給する給気路と、
を有する請求項5に記載の淡水製造装置。
The moisture recovery mechanism is
A heat exchanger provided outside the housing;
An exhaust path for supplying a gas containing moisture exhausted in the space to the heat exchanger;
An air supply path for supplying a gas from which moisture has been removed by the moisture recovery mechanism into the space;
The fresh water manufacturing apparatus of Claim 5 which has these.
当該水分回収機構は、
前記空間内に気体を送る供給装置と、
前記空間内に排出された水分を含む気体を回収する回収バルーンと、
を備えた請求項5に記載の淡水製造装置。
The moisture recovery mechanism is
A supply device for sending gas into the space;
A collection balloon for collecting a gas containing moisture discharged into the space;
The fresh water manufacturing apparatus of Claim 5 provided with these.
前記吸湿域の少なくとも一部が、太陽光の遮光下にある遮光域に設けられた請求項7又は8に記載の淡水製造装置。   The fresh water producing apparatus according to claim 7 or 8, wherein at least a part of the moisture absorption area is provided in a light-shielding area under the shielding of sunlight.
JP2016255928A 2016-12-28 2016-12-28 Fresh water production equipment Expired - Fee Related JP6159912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255928A JP6159912B1 (en) 2016-12-28 2016-12-28 Fresh water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255928A JP6159912B1 (en) 2016-12-28 2016-12-28 Fresh water production equipment

Publications (2)

Publication Number Publication Date
JP6159912B1 true JP6159912B1 (en) 2017-07-05
JP2018105095A JP2018105095A (en) 2018-07-05

Family

ID=59273012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255928A Expired - Fee Related JP6159912B1 (en) 2016-12-28 2016-12-28 Fresh water production equipment

Country Status (1)

Country Link
JP (1) JP6159912B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738926A (en) * 1980-08-21 1982-03-03 Mitsubishi Electric Corp Water producer
JPH10508350A (en) * 1994-09-23 1998-08-18 クルムスヴィック,ペル,コーレ Method and apparatus for extracting water from moist air
JP2004313842A (en) * 2003-04-11 2004-11-11 Genshiryoku Engineering:Kk Method and equipment for making fresh water from hygroscopic moisture in atmosphere
JP2010209586A (en) * 2009-03-10 2010-09-24 Nuclear Engineering Ltd Fresh water producing device
JP2014125872A (en) * 2012-12-27 2014-07-07 Nuclear Engineering Ltd Fresh water production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738926A (en) * 1980-08-21 1982-03-03 Mitsubishi Electric Corp Water producer
JPH10508350A (en) * 1994-09-23 1998-08-18 クルムスヴィック,ペル,コーレ Method and apparatus for extracting water from moist air
JP2004313842A (en) * 2003-04-11 2004-11-11 Genshiryoku Engineering:Kk Method and equipment for making fresh water from hygroscopic moisture in atmosphere
JP2010209586A (en) * 2009-03-10 2010-09-24 Nuclear Engineering Ltd Fresh water producing device
JP2014125872A (en) * 2012-12-27 2014-07-07 Nuclear Engineering Ltd Fresh water production apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device
JP2019136657A (en) * 2018-02-09 2019-08-22 清水建設株式会社 Water production method and water production apparatus
JP7182881B2 (en) 2018-02-09 2022-12-05 清水建設株式会社 Water production method and water production device

Also Published As

Publication number Publication date
JP2018105095A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
CN1677031A (en) Cold storage
KR20160012208A (en) Integrated solar energy drying system collecting, storing and supplying heat
JP6159912B1 (en) Fresh water production equipment
CN110277331A (en) Method for supplying gas in EFEM system and EFEM system
CN116078110B (en) Explosion-proof safe adsorption tower
CN104173165B (en) Lifting dissecting table
CN1139777C (en) A drying device
CN103478863A (en) Multilayer type longan drying room
CN204317077U (en) Grains storage equipment
CN209523067U (en) A kind of impregnated paper production cooling device and system of processing
KR100566956B1 (en) Method and system for preventing dew condensation of storage rooms
CN109279145A (en) A kind of quick water-collecting type Fresh-keeping Logistics case
KR101419499B1 (en) Apparatus and method for preventing dew condensation
CN109969615B (en) High-protection type grain moisture-removing storage system and working method thereof
CN209523068U (en) A kind of impregnated paper production impregnated paper workshop air purification device and system of processing
CN209524714U (en) A kind of impregnated paper production drying unit and system of processing
CN208119842U (en) A kind of production sulfide quantum dots storage box
CN210212430U (en) Be used for conventional seed of crops to store transfer equipment
CN219488329U (en) Stackable storage equipment for walnut processing
CN213567891U (en) Intelligent lifting goods shelf for logistics storage
CN210215135U (en) Assembled bucket type dehumidifying and drying machine
CN217919056U (en) Green grain storage steel plate storehouse is with device that prevents mildening and rot
CN109395129A (en) A kind of container alternate form chamber door FCL fumigation system
CN1042891C (en) Method and arrangement of safety store of seeds
CN108974639A (en) A kind of waterproof transport device for logistic storage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6159912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees