JP6159563B2 - Method for manufacturing a substrate for at least one power semiconductor component - Google Patents

Method for manufacturing a substrate for at least one power semiconductor component Download PDF

Info

Publication number
JP6159563B2
JP6159563B2 JP2013088232A JP2013088232A JP6159563B2 JP 6159563 B2 JP6159563 B2 JP 6159563B2 JP 2013088232 A JP2013088232 A JP 2013088232A JP 2013088232 A JP2013088232 A JP 2013088232A JP 6159563 B2 JP6159563 B2 JP 6159563B2
Authority
JP
Japan
Prior art keywords
conductor track
metal layer
layer
power semiconductor
metallization layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013088232A
Other languages
Japanese (ja)
Other versions
JP2013229603A (en
Inventor
ベーゼンデルファー クルト・ゲオルク
ベーゼンデルファー クルト・ゲオルク
ブラムル ハイコ
ブラムル ハイコ
エルトナー ナトヤ
エルトナー ナトヤ
ゲープル クリスティアン
ゲープル クリスティアン
コボラ ハラルト
コボラ ハラルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semikron Elektronik GmbH and Co KG
Original Assignee
Semikron Elektronik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semikron Elektronik GmbH and Co KG filed Critical Semikron Elektronik GmbH and Co KG
Publication of JP2013229603A publication Critical patent/JP2013229603A/en
Application granted granted Critical
Publication of JP6159563B2 publication Critical patent/JP6159563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Description

本発明は、少なくとも1つのパワー半導体コンポーネント用の基板を製造するための方法に関する The present invention relates to a method for manufacturing a substrate for at least one power semiconductor component .

例えばIGBT(絶縁ゲートバイポーラトランジスタ)、MOSFET(金属酸化膜半導体電界効果トランジスタ)、サイリスタ、またはダイオードなどのパワー半導体コンポーネントが、例えば、電圧および電流を整流し反転するためにとりわけ用いられ、その場合には一般に、例えばコンバータを実現するための複数のパワー半導体コンポーネントが、互いに電気的に接続される。この場合に、パワー半導体コンポーネントは、一般に基板上に配置され、基板は、一般にヒートシンクに直接または間接的に接続される。   For example, power semiconductor components such as IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), thyristors, or diodes are specifically used to rectify and invert voltages and currents, for example. In general, a plurality of power semiconductor components, for example to realize a converter, are electrically connected to each other. In this case, the power semiconductor component is typically placed on a substrate, which is typically connected directly or indirectly to a heat sink.

パワー半導体コンポーネントは、通常、パワー半導体モジュールを製造する目的で基板上に配置され、かつその基板に接続される。この場合に、基板は、例えば、DCB基板の形態で存在することができる。この場合に、基板は、構造化された導電性金属層を有し、この金属層は、その構造のゆえに導体トラックを形成する。パワー半導体コンポーネントは、パワー半導体コンポーネントを通って流れ、かつ高電流強度を有する負荷電流がまた、導電性金属層の導体トラックを通って流れるように、導体トラックを介して互いに接続される。   The power semiconductor component is usually placed on and connected to a substrate for the purpose of manufacturing a power semiconductor module. In this case, the substrate can be present, for example, in the form of a DCB substrate. In this case, the substrate has a structured conductive metal layer, which forms a conductor track because of its structure. The power semiconductor components are connected to one another via conductor tracks such that a load current having a high current strength flows through the power semiconductor components and also through the conductor tracks of the conductive metal layer.

DCB基板を製造するために、均一な厚さの金属プレートを、通常はセラミックからなる絶縁材料体上に接合すること、および続いて導体トラック構造を金属プレートからエッチングすることが、当該技術分野における従来的な慣行である。負荷電流が、導体トラックを通って流れなければならないので、導体トラックは、高電流容量を有しなければならず、それで金属プレートは、厚くなければならず、導体トラックは、さらに幅広くなければならない。この場合に、負荷電流は、例えばパワー半導体モジュールから、パワー半導体モジュールに接続された、例えば電動機などの負荷に流れる。   In order to produce a DCB substrate, joining a metal plate of uniform thickness onto an insulating material body, usually made of ceramic, and subsequently etching the conductor track structure from the metal plate is known in the art. It is a traditional practice. Since the load current must flow through the conductor track, the conductor track must have a high current capacity, so the metal plate must be thick and the conductor track must be even wider. . In this case, the load current flows from, for example, the power semiconductor module to a load such as an electric motor connected to the power semiconductor module.

実際には、例えば、パワー半導体コンポーネントを駆動するためのドライブエレクトロニクスを実現するために、今日では、例えばマイクロチップの形態で存在できる集積回路が用いられる。それらの寸法が小さいゆえに、集積回路は、それらを接続できる狭い導体トラックを必要とする。この場合に、一般に、低電流強度を有する電流だけが、集積回路用の導体トラックを通って流れ、それで集積回路用の導体トラックは、狭く、小さな厚さで製造することができる。   In practice, integrated circuits that can exist, for example, in the form of microchips, are used today, for example, to realize drive electronics for driving power semiconductor components. Because of their small dimensions, integrated circuits require narrow conductor tracks that can connect them. In this case, in general, only a current having a low current intensity flows through the conductor track for the integrated circuit, so that the conductor track for the integrated circuit is narrow and can be manufactured with a small thickness.

しかしながら、例えば当該技術分野の従来のDCB基板における金属プレートの比較的大きな厚さゆえに、金属プレートの対応する微細構造化によって、集積回路用に必要とされるような狭い導体トラックを製造することは不可能である。なぜなら、パワー半導体の負荷電流用の必要な電流容量を実現するために要求される金属プレートの比較的大きな厚さのゆえに、集積回路用の狭い導体トラックをエッチングする間に、酸がまた、導体トラックが生じるように意図された位置を被覆する被覆レジストの下で横方向に材料をエッチングし、かくして狭い導体トラックが破壊されるからである。   However, for example, due to the relatively large thickness of the metal plate in a conventional DCB substrate in the art, it is not possible to produce narrow conductor tracks as required for integrated circuits by corresponding microstructuring of the metal plate. Impossible. Because, due to the relatively large thickness of the metal plate required to achieve the required current capacity for the load current of the power semiconductor, the acid also becomes conductive during the etching of narrow conductor tracks for integrated circuits. This is because the material is etched laterally under the coating resist covering the intended location for the track to occur, thus destroying the narrow conductor track.

したがって、先行技術は、通常、パワー半導体コンポーネントが配置される基板とは別個の回路ボードを設け、例えば、パワー半導体コンポーネントを駆動するドライブエレクトロニクスを実現のための集積回路は、前記回路ボード上に配置される。これは、導電性接続部(例えばワイヤ接続部)を基板と回路ボードとの間に設けなければならないという欠点を有し、それは、パワー半導体コンポーネントを備えた対応する基板、および集積回路を備えた対応する回路ボードを含むパワー半導体モジュールの信頼性に悪影響を及ぼし、かつパワー半導体モジュールの製造を複雑にする。   Therefore, the prior art usually provides a circuit board that is separate from the substrate on which the power semiconductor component is disposed, for example, an integrated circuit for realizing drive electronics for driving the power semiconductor component is disposed on the circuit board. Is done. This has the disadvantage that a conductive connection (eg wire connection) must be provided between the substrate and the circuit board, which includes a corresponding substrate with power semiconductor components, and an integrated circuit It adversely affects the reliability of the power semiconductor module including the corresponding circuit board and complicates the manufacture of the power semiconductor module.

本発明の目的は、負荷電流を伝達できる少なくとも1つの導体トラック、および集積回路への接続が可能な導体トラックを有する基板を提供することである。   It is an object of the present invention to provide a substrate having at least one conductor track capable of transmitting a load current and a conductor track capable of connection to an integrated circuit.

その目的は、少なくとも1つのパワー半導体コンポーネント用の基板を製造するための方法であって、以下の方法ステップ、
a)非導電性絶縁材料体を提供するステップと、
b)狭い導体トラック(21)を有する第1の領域(22a)と、少なくとも1つの幅広い導体トラック(20a、20b)を有する第2の領域(22b)とを有する、構造化された導電性の第1の金属化層(2a)を、前記絶縁材料体(1)の第1の側面(15a)上に適用するステップと、
c)第1の金属層を少なくとも1つの幅広い導体トラック上に電解析出するステップと、
を含む方法によって達成される。
The object is a method for manufacturing a substrate for at least one power semiconductor component comprising the following method steps:
a) providing a non-conductive insulating material body;
b) Structured conductive having a first region (22a) having a narrow conductor track (21) and a second region (22b) having at least one wide conductor track (20a, 20b). Applying a first metallization layer (2a) on the first side (15a) of the insulating material body (1);
c) electrolytically depositing a first metal layer on at least one broad conductor track;
Achieved by a method comprising:

さらに、その目的は、少なくとも1つのパワー半導体コンポーネント用の基板であって、その基板が、非導電性絶縁材料体と、絶縁材料体の第1の側面上に配置された、構造化された第1の金属化層と、を有し、第1の金属化層が第1および第2の領域を有し、第1の領域が、狭い導体トラックを有し、第2の領域が、少なくとも1つの幅広い導体トラックを有し、第1の金属層が、少なくとも1つの幅広い導体トラック上に配置される基板によって達成される。   Furthermore, the object is a substrate for at least one power semiconductor component, wherein the substrate is a non-conductive insulating material body and a structured second body disposed on a first side of the insulating material body. One metallization layer, the first metallization layer has first and second regions, the first region has narrow conductor tracks, and the second region is at least 1 The first metal layer is achieved by a substrate having two wide conductor tracks and disposed on at least one wide conductor track.

本発明によって、少なくとも1つのパワー半導体コンポーネントおよび少なくとも1つの集積回路用に共通の基板を使用することが可能になる。したがって、本発明によって、少なくとも1つの集積回路用に別個の回路ボードを設けることがもはや必要ではなくなる。したがって、パワー半導体モジュールの製造は、本発明によって単純化され、同時にパワー半導体モジュールの信頼性が向上される。   The present invention allows the use of a common substrate for at least one power semiconductor component and at least one integrated circuit. Thus, with the present invention, it is no longer necessary to provide a separate circuit board for at least one integrated circuit. Therefore, the manufacture of the power semiconductor module is simplified by the present invention, and at the same time the reliability of the power semiconductor module is improved.

方法の有利な実施形態は、基板の有利な実施形態と同様に生じ、逆もまた同様である。   Advantageous embodiments of the method occur in the same way as advantageous embodiments of the substrate and vice versa.

本発明の有利な実施形態は、従属請求項から生じる。   Advantageous embodiments of the invention result from the dependent claims.

方法ステップb)とc)との間で、
−非導電性レジスト層が、狭い導体トラックに適用され、かつ方法ステップc)の後で、
−非導電性レジスト層が除去される
場合には有利であることが分かる。
Between method steps b) and c),
A non-conductive resist layer is applied to the narrow conductor tracks and after method step c)
It can be seen that it is advantageous if the non-conductive resist layer is removed.

非導電性レジスト層を狭い導体トラックに適用することによって、狭い導体トラック上への第1の金属層の電解析出を防ぐことが単純な方法で可能になる。   By applying a non-conductive resist layer to narrow conductor tracks, it is possible in a simple manner to prevent electrolytic deposition of the first metal layer on the narrow conductor tracks.

以下の後続の方法ステップ、すなわち、
−狭い導体トラックおよび/または第1の金属層上に第2の金属層を電解析出するステップ
が実行される場合には有利であることが分かる。
The following subsequent method steps:
It can be seen that it is advantageous if the step of electrolytically depositing a second metal layer on the narrow conductor track and / or the first metal layer is carried out.

第2の金属層は、第1の金属層用の保護層として、および/または例えば焼結またははんだ付け接続などの密着接続用の接着接続層として働くのが好ましい。   The second metal layer preferably serves as a protective layer for the first metal layer and / or as an adhesive connection layer for tight connection such as, for example, sintering or soldering connection.

少なくとも1つの幅広い導体トラックが、少なくとも3000μmの幅を有する場合には有利であることが分かる。なぜなら、導体トラックの電流容量が、少なくとも1つの幅広い導体トラックの幅が増加するにつれて向上するからである。   It can be seen that it is advantageous if at least one wide conductor track has a width of at least 3000 μm. This is because the current capacity of the conductor track increases as the width of at least one wide conductor track increases.

さらに、狭い導体トラックが、100μm〜1000μmの幅を有する場合には有利であることが分かる。なぜなら、その場合には、通常用いられる全ての集積回路を狭い導体トラックに接続できるからである。   Furthermore, it can be seen that it is advantageous if the narrow conductor track has a width of 100 μm to 1000 μm. This is because in that case all commonly used integrated circuits can be connected to narrow conductor tracks.

さらに、第1の金属化層が、1μm〜30μmの厚さを有する場合には有利であることが分かる。なぜなら、その場合には第1の金属化層の優れた機械的安定性が保証されるからである。   Furthermore, it can be seen that it is advantageous if the first metallization layer has a thickness of 1 μm to 30 μm. This is because in that case the excellent mechanical stability of the first metallization layer is guaranteed.

さらに、第1の金属化層が、銀および/または銅を含む場合には有利であることが分かる。なぜなら、それによって、第1の金属化層の高い電気および熱伝導率が達成されるからである。   Furthermore, it can be seen that it is advantageous if the first metallization layer comprises silver and / or copper. This is because it achieves high electrical and thermal conductivity of the first metallization layer.

さらに、第1の金属層が、100μm〜500μmの厚さを有する場合には有利であることが分かる。なぜなら、その場合には高電流容量が得られるからである。   Furthermore, it can be seen that it is advantageous if the first metal layer has a thickness of 100 μm to 500 μm. This is because a high current capacity can be obtained in that case.

さらに、方法ステップc)が、
−第2の金属化層を絶縁材料体の第2の側面に適用することであって、第2の側面が、絶縁材料体の第1の側面の反対側に配置されることをさらに含み、
方法ステップd)が、
−第3の金属層を第2の金属化層上に電解析出することをさらに含む場合には有利であることが分かる。
Furthermore, method step c)
-Applying a second metallization layer to the second side of the insulating material body, further comprising the second side being disposed on the opposite side of the first side of the insulating material body;
Method step d)
It proves advantageous if it further comprises electrolytically depositing a third metal layer on the second metallization layer.

第3の金属層は、基板をプレートまたはヒートシンクに接続するために働くのが好ましい。   The third metal layer preferably serves to connect the substrate to a plate or heat sink.

さらに、第1の金属化層が、接続導体トラックを有し、第2の領域が、少なくとも1つの第1および1つの第2の幅広い導体トラックを有し、接続導体トラックが、第1の金属化層から形成された、導電性の第1の接続ウェブの第1の数を介して、第1の幅広い導体トラックに接続され、第1の幅広い導体トラックが、第1の金属化層から形成された、導電性の第2の接続ウェブの第2の数を介して、第2の幅広い導体トラックに接続され、接続ウェブのそれぞれの数および/または接続ウェブのそれぞれの幅が、それぞれの幅広い導体トラックと接続導体トラックとの間の距離に依存し、かつ距離が増加するにつれて増加する場合には有利であることが分かる。この方策によって、第1および第2の幅広い導体トラック上における第1の金属層のほぼ均一な厚さが保証される。   Furthermore, the first metallization layer has a connection conductor track, the second region has at least one first and one second wide conductor track, and the connection conductor track has a first metal. Connected to a first wide conductor track through a first number of conductive first connecting webs formed from the metallization layer, the first wide conductor track formed from the first metallization layer Connected to a second wide conductor track via a second number of conductive second connecting webs, wherein each number of connecting webs and / or each width of the connecting webs has a respective wide width. It can be seen that it is advantageous if it depends on the distance between the conductor track and the connecting conductor track and increases as the distance increases. This measure ensures a substantially uniform thickness of the first metal layer on the first and second wide conductor tracks.

さらに、第1の金属化層が、接続導体トラックを有し、第2の領域が、少なくとも1つの第1および1つの第2の幅広い導体トラックを有し、接続導体トラックが、第1および第2の幅広い導体トラックからほぼ同一の距離にあり、接続トラックが、第1の金属化層から形成された第1の接続ウェブを介して、第1の幅広い導体トラックに接続され、かつ第1の金属化層から形成された第2の接続ウェブを介して、第2の幅広い導体トラックに接続される場合には有利であることが分かる。この方策によって、第1および第2の幅広い導体トラック上における第1の金属層のほぼ均一な厚さが保証される。   Further, the first metallization layer has connecting conductor tracks, the second region has at least one first and one second wide conductor track, and the connecting conductor tracks have first and second connections. At approximately the same distance from the two wide conductor tracks, the connecting track being connected to the first wide conductor track via the first connecting web formed from the first metallization layer, and the first It can be seen that it is advantageous when connected to a second wide conductor track via a second connecting web formed from a metallization layer. This measure ensures a substantially uniform thickness of the first metal layer on the first and second wide conductor tracks.

さらに、第1の金属層が、銅からなる場合には有利であることが分かる。なぜなら、銅が、高い電気伝導率を有するからである。   Furthermore, it turns out that it is advantageous when the first metal layer is made of copper. This is because copper has a high electrical conductivity.

さらに、方法が、少なくとも1つのパワー半導体コンポーネントを、第1の金属層に接続するか、または第2の金属層が第1の金属層上に配置された場合に、第1の金属層上に配置された第2の金属層に接続するステップと、少なくとも1つの集積回路を、狭い導体トラックに接続するか、または第2の金属層が狭い導体トラック上に配置された場合に、狭い導体トラック上に配置された第2の金属層に接続するステップと、を含む場合には有利であることが分かる。なぜなら、このようにして単純な方法でパワー半導体モジュールを製造できるからである。   Furthermore, the method connects at least one power semiconductor component to the first metal layer or on the first metal layer when the second metal layer is disposed on the first metal layer. Connecting to a disposed second metal layer, and connecting at least one integrated circuit to a narrow conductor track, or narrow conductor track when the second metal layer is disposed on a narrow conductor track And connecting to a second metal layer disposed thereon is advantageous. This is because the power semiconductor module can be manufactured by a simple method in this way.

さらに、それぞれの接続プロセスが、密着によって、特に焼結またははんだ付け接続によって達成される場合には有利であることが分かる。なぜなら、例えば焼結またははんだ付け接続などの密着接続が、パワー半導体モジュールの場合の慣習的な接続を構成するからである。   Furthermore, it can be seen that it is advantageous if the respective connection process is achieved by adhesion, in particular by sintering or soldering connections. This is because tight connections, such as, for example, sintering or soldering connections, constitute conventional connections in the case of power semiconductor modules.

さらに、少なくとも1つのパワー半導体コンポーネントが、基板上に配置されて第1の金属層に導電接続され、少なくとも1つの集積回路が、基板上に配置されて狭い導体トラックに導電接続される場合には有利であることが分かる。これは、特に信頼できるパワー半導体モジュールを結果としてもたらす。   Further, when at least one power semiconductor component is disposed on the substrate and conductively connected to the first metal layer, and at least one integrated circuit is disposed on the substrate and conductively connected to the narrow conductor track. It turns out to be advantageous. This results in a particularly reliable power semiconductor module.

本発明の例示的な実施形態を図に示し、下記でより詳細に説明する。   Illustrative embodiments of the invention are shown in the drawings and are described in more detail below.

本発明による方法ステップが実行された後の基板ブランクを概略断面図の形で示す。Fig. 2 shows a substrate blank in the form of a schematic cross section after the method steps according to the invention have been carried out. さらなる方法ステップが実行された後の基板ブランクを概略断面図の形で示す。The substrate blank is shown in schematic cross-section after further method steps have been performed. さらなる方法ステップが実行された後の基板ブランクを概略断面図の形で示す。The substrate blank is shown in schematic cross-section after further method steps have been performed. さらなる方法ステップが実行された後の本発明による基板を概略断面図の形で示す。Fig. 3 shows in schematic cross-section a substrate according to the invention after further method steps have been carried out. 本発明による方法ステップが実行された後の基板ブランクを、基板ブランクの上方から概略図の形で示す。The substrate blank after the method steps according to the invention have been carried out is shown in schematic form from above the substrate blank. 方法ステップが実行された後の基板ブランクのさらなる実施形態を、基板ブランクの上方から概略図の形で示す。A further embodiment of the substrate blank after the method steps have been carried out is shown in schematic form from above the substrate blank. 方法ステップが実行された後の基板ブランクのさらなる実施形態を、基板ブランクの上方から概略図の形で示す。A further embodiment of the substrate blank after the method steps have been carried out is shown in schematic form from above the substrate blank. さらなる方法ステップが実行された後の本発明による基板のさらなる実施形態を概略断面図の形で示す。Fig. 2 shows a further embodiment of a substrate according to the invention in the form of a schematic cross section after further method steps have been carried out. 本発明によるパワー半導体モジュールを概略断面図の形で示す。1 shows a power semiconductor module according to the invention in the form of a schematic sectional view. 本発明によるさらなるパワー半導体モジュールを概略断面図の形で示す。A further power semiconductor module according to the invention is shown in the form of a schematic sectional view.

第1の方法ステップには、非導電性絶縁材料体1を設けることが含まれる。図1は、本発明によるさらなる方法ステップが実行された後の基板ブランク7aを概略断面図の形で示す。図5は、図1に関連する概略図を基板ブランク7aの上方から示す。方法ステップには、構造化された導電性の第1の金属化層2aを絶縁材料体1の第1の側面15a上に適用することが含まれ、第1の金属化層2aは、第1および第2の領域を有し、第1の領域22aは、狭い導体トラック21を有し、第2の領域22bは、少なくとも1つの幅広い導体トラックを有する。例示的な実施形態の文脈において、第2の領域22bは、第1の幅広い導体トラック20aおよび第2の幅広い導体トラック20bを有する。1つの狭い導体トラックだけが、分かりやすくするために図1および図5において参照符号を与えられている。狭い導体トラックが、図5の図解の中にのみ示されているが、もちろん第1の領域22aから外に進むことができ、例えば第2の領域22bの中に進むことができることに、この時点で留意されたい。さらに、幅広い導体トラックが、同様に、図5の図解の中にのみ示されているが、もちろん第2の領域22bから外に進むことができることに、この時点で留意されたい。   The first method step includes providing a non-conductive insulating material body 1. FIG. 1 shows the substrate blank 7a in the form of a schematic cross-section after further method steps according to the invention have been carried out. FIG. 5 shows a schematic diagram related to FIG. 1 from above the substrate blank 7a. The method steps include applying a structured conductive first metallization layer 2a on the first side surface 15a of the insulating material body 1, wherein the first metallization layer 2a comprises a first metallization layer 2a. And the second region, the first region 22a has a narrow conductor track 21 and the second region 22b has at least one wide conductor track. In the context of the exemplary embodiment, the second region 22b has a first broad conductor track 20a and a second broad conductor track 20b. Only one narrow conductor track is provided with reference numerals in FIGS. 1 and 5 for clarity. Narrow conductor tracks are shown only in the illustration of FIG. 5, but of course that it is possible to proceed out of the first region 22a, for example into the second region 22b. Please note that. Furthermore, it should be noted at this point that a wide conductor track is likewise shown only in the illustration of FIG. 5, but of course can proceed out of the second region 22b.

幅広い導体トラックは、少なくとも3000μmの幅b、特に少なくとも4000μmの幅を有するのが好ましい。狭い導体トラックは、100μm〜1000μm、特に100μm〜300μmの幅を有するのが好ましい。   The wide conductor tracks preferably have a width b of at least 3000 μm, in particular a width of at least 4000 μm. The narrow conductor track preferably has a width of 100 μm to 1000 μm, in particular 100 μm to 300 μm.

例示的な実施形態の文脈において、この方法ステップにはまた、第2の金属化層2bを絶縁材料体1の第2の側面15bに電気分解によって適用することが含まれ、前記第2の側面は、絶縁材料体1の第1の側面15aの反対側に配置される。このように、絶縁材料体1は、第1および第2の金属化層2aおよび2b間に配置される。絶縁材料体1は、例えばAlまたはAlNなどのセラミックから例えばなることができ、300μm〜1000μmの厚さを有するのが好ましい。金属化層2aおよび2bは、例えば、銅および/もしくは銀、または銅合金および/もしくは銀合金から実質的になることができる。第1の金属化層2aは、狭い導体トラックおよび幅広い導体トラックの意図されたコースに従って具体化された構造を有する。したがって、例示的な実施形態の文脈において、第1の金属化層2aは、例えば、導体トラックの境界を互いに定める中断部4および4’を有する。第2の金属化層2bは、好ましくは構造化されないが、しかしまた同様に構造化方式で具体化することができる。 In the context of the exemplary embodiment, this method step also includes applying a second metallization layer 2b to the second side 15b of the insulating material body 1 by electrolysis, said second side Is disposed on the opposite side of the first side surface 15 a of the insulating material body 1. Thus, the insulating material body 1 is disposed between the first and second metallized layers 2a and 2b. The insulating material body 1 can be made of ceramic such as Al 2 O 3 or AlN, for example, and preferably has a thickness of 300 μm to 1000 μm. The metallization layers 2a and 2b can consist essentially of, for example, copper and / or silver, or copper alloys and / or silver alloys. The first metallization layer 2a has a structure embodied according to the intended course of narrow conductor tracks and wide conductor tracks. Thus, in the context of the exemplary embodiment, the first metallization layer 2a has, for example, interruptions 4 and 4 ′ that delimit the conductor tracks from each other. The second metallization layer 2b is preferably not structured, but can also be embodied in a structured manner as well.

第1および第2の金属化層2aおよび2bは、1μm〜30μmの厚さを有することが好ましいが、第1および第2の金属化層2aおよび2bは、異なる厚さを有することができる。   The first and second metallization layers 2a and 2b preferably have a thickness of 1 μm to 30 μm, but the first and second metallization layers 2a and 2b can have different thicknesses.

第1および第2の金属化層を絶縁材料体1の第1および第2の側面に適用するプロセスは、次の手順によって達成されるのが好ましい。すなわち、最初に、金属化層が存在すべく意図された位置で、銅および/または銀含有粒子ならびに溶剤を含む金属化ペーストが、絶縁材料体1の第1および第2の側面15aおよび15bに適用され、次に、金属化ペーストが、例えば180℃で乾燥され、次に、炉において、好ましくは真空で、好ましくは約1000℃に加熱され、このように焼かれるという手順で達成されるのが好ましい。   The process of applying the first and second metallization layers to the first and second sides of the insulating material body 1 is preferably accomplished by the following procedure. That is, first, a metallized paste containing copper and / or silver-containing particles and a solvent is applied to the first and second side surfaces 15a and 15b of the insulating material body 1 at a position where the metallized layer is intended to exist. Applied and then the metallized paste is dried, for example at 180 ° C. and then heated in a furnace, preferably in vacuum, preferably to about 1000 ° C. Is preferred.

図1〜10が概略図であること、および特に層厚さが縮尺通りには図示されていないことに、この時点で留意されたい。   It should be noted at this point that FIGS. 1-10 are schematic and in particular that the layer thicknesses are not shown to scale.

図2は、例示的な実施形態の文脈で実行されるさらなる方法ステップが実行された後の基板ブランク7aを概略断面図の形で示す。方法ステップには、非導電性レジスト層3を狭い導体トラック21に適用することが含まれる。レジスト層3は、5μm〜300μmの厚さを有するのが好ましい。   FIG. 2 shows the substrate blank 7a in the form of a schematic cross-section after further method steps have been performed which are performed in the context of the exemplary embodiment. The method steps include applying the non-conductive resist layer 3 to the narrow conductor track 21. The resist layer 3 preferably has a thickness of 5 μm to 300 μm.

図3は、さらなる方法ステップが実行された後の基板ブランク7aを概略断面図の形で示す。方法ステップには、第1の金属層5を少なくとも1つの幅広い導体トラック上に、すなわち、例示的な実施形態の文脈において、第1および第2の幅広い導体トラック20a、20b上に電解析出することが含まれる。さらに、例示的な実施形態の文脈において、第3の金属層6が、第2の金属化層2b上に電解析出される。この目的のために、基板ブランク7aは、電気めっき液で満たされた容器に浸漬され、第1および第2の金属化層2aおよび2bは、電圧源の陰極に導電接続され、電気めっき液に配置された電極は、電圧源の陽極に導電接続されて、電流が流れ始め、かつ第1の金属層5が、幅広い導体トラック20a、20b上に析出し、かつ第3の金属層6が、第2の金属化層2b上に析出するようにする。レジスト層3は、狭い導体トラック21上への第1の金属層の電解析出を防ぐ。代替として、レジスト層3の適用を省くこと、ならびに幅広い導体トラックだけおよび存在する場合には追加として第2の金属化層2bを電圧源の陰極に導電接続して、狭い導体トラック21上への第1の金属層の電解析出が発生しないようにすることがまた可能である。この場合に、例示的な実施形態の文脈において電気めっき液には銅イオンが含まれ、第1および第3の金属層5および6が、例示的な実施形態において銅からなるようにする。   FIG. 3 shows the substrate blank 7a in the form of a schematic cross section after further method steps have been carried out. In the method step, the first metal layer 5 is electrodeposited on at least one wide conductor track, ie in the context of the exemplary embodiment, on the first and second wide conductor tracks 20a, 20b. It is included. Furthermore, in the context of the exemplary embodiment, a third metal layer 6 is electrodeposited on the second metallization layer 2b. For this purpose, the substrate blank 7a is immersed in a container filled with an electroplating solution, and the first and second metallized layers 2a and 2b are conductively connected to the cathode of the voltage source, and the electroplating solution The arranged electrode is conductively connected to the anode of the voltage source, current begins to flow, and the first metal layer 5 is deposited on the wide conductor tracks 20a, 20b, and the third metal layer 6 is It is made to deposit on the 2nd metallization layer 2b. The resist layer 3 prevents electrolytic deposition of the first metal layer on the narrow conductor track 21. Alternatively, the application of the resist layer 3 is omitted, and only a wide conductor track and, if present, an additional second metallization layer 2b is conductively connected to the cathode of the voltage source so that it is applied onto the narrow conductor track 21. It is also possible to prevent electrolytic deposition of the first metal layer. In this case, in the context of the exemplary embodiment, the electroplating solution contains copper ions so that the first and third metal layers 5 and 6 are made of copper in the exemplary embodiment.

第1および第3の金属層5および6は、100μm〜500μmの厚さを有するのが好ましい。第1および第3の金属層5および6の厚さは、必ずしも同一である必要はない。例示的な実施形態において、第3の金属層6の厚さが、第1の金属層5の厚さより薄いので、例示的な実施形態において、電解析出中に、第3の金属層6が、想定された厚さを達成した場合に、電圧源への第2の金属化層2bの電気接続は遮断されて、さらなる電解析出中に、第1の金属層5だけが、想定された厚さを達成するまで成長するようにする。   The first and third metal layers 5 and 6 preferably have a thickness of 100 μm to 500 μm. The thicknesses of the first and third metal layers 5 and 6 are not necessarily the same. In the exemplary embodiment, since the thickness of the third metal layer 6 is less than the thickness of the first metal layer 5, in the exemplary embodiment, during the electrolytic deposition, the third metal layer 6 is When the assumed thickness is achieved, the electrical connection of the second metallization layer 2b to the voltage source is interrupted and only the first metal layer 5 is assumed during further electrolytic deposition. Allow to grow until thickness is achieved.

しかしながら、異なる析出高さを達成するためのさらに他の方法がまた可能である。したがって、例えば、第3の金属層6が想定された厚さを達成した後でまた、電解析出を中断すること、非導電性レジストを第3の金属層6に適用すること、および次に、第1の金属層5が想定された高さhを達成するまで電解析出を継続することが可能であり、第3の金属層6は、第3の金属層6に適用されたレジストゆえに、この場合にはそれ以上成長しない。   However, still other methods for achieving different deposition heights are also possible. Thus, for example, after the third metal layer 6 has achieved the assumed thickness, also interrupting electrolytic deposition, applying a non-conductive resist to the third metal layer 6, and then It is possible to continue the electrodeposition until the first metal layer 5 achieves the assumed height h, and the third metal layer 6 is due to the resist applied to the third metal layer 6. In this case, no further growth.

幅広い導体トラック20aおよび20b上に配置された第1の金属層5は、導体トラック20aおよび20bを強化し、したがって負荷電流を伝達できる、かつそれに応じて高電流強度を備えた負荷電流が通過できる導体トラックをもたらす。負荷電流を伝達できる導体トラックが、図3において参照符号25を与えられている。この場合に、負荷電流を伝達できる導体トラック25は、導体トラック20aおよび導体トラック20a上に配置された第1の金属層5からなる。   The first metal layer 5 arranged on the wide conductor tracks 20a and 20b reinforces the conductor tracks 20a and 20b and thus can transmit the load current and accordingly the load current with high current strength can pass through. Bring conductor tracks. A conductor track capable of transmitting a load current is given reference numeral 25 in FIG. In this case, the conductor track 25 capable of transmitting the load current includes the conductor track 20a and the first metal layer 5 disposed on the conductor track 20a.

幅広い導体トラックへの第1の金属層の電解析出中に、幅広い導体トラックが、電解析出中の第1の金属化層を介して互いに接続される場合には有利である。なぜなら、その場合には、電解析出中に、幅広い導体トラックにそれぞれ割り当てられた電線を介して、各幅広い導体トラックを電圧源の陰極に導電接続する必要がないからである。   During the electrolytic deposition of the first metal layer onto the broad conductor track, it is advantageous if the broad conductor tracks are connected to each other via the first metallization layer during the electrolytic deposition. This is because, in that case, during the electrolytic deposition, it is not necessary to conductively connect each wide conductor track to the cathode of the voltage source via wires respectively assigned to the wide conductor tracks.

したがって、好ましくは、図6に示すように、第1の金属化層2aは、接続導体トラック8を有し、図6における接続導体トラック8は、第1の金属化層2aから形成された、導電性の第1の接続ウェブ9の第1の数を介して、第1の幅広い導体トラック20aに接続され、第1の幅広い導体トラック20aは、第1の金属化層2aから形成された、導電性の第2の接続ウェブ9’の第2の数を介して、第2の幅広い導体トラック20bに接続され、接続ウェブのそれぞれの数および/または接続ウェブ9のそれぞれの幅cは、それぞれの幅広い導体トラックと接続導体トラック8との間の距離に依存し、距離aが増加するにつれて増加する。例示的な実施形態の場合に、第1の数は「1」であり、第2の数は「2」であり、全ての接続ウェブ9は、均一な幅cを有する。   Therefore, preferably, as shown in FIG. 6, the first metallization layer 2a has a connection conductor track 8, and the connection conductor track 8 in FIG. 6 is formed from the first metallization layer 2a. Connected to a first wide conductor track 20a via a first number of conductive first connecting webs 9, the first wide conductor track 20a being formed from the first metallization layer 2a, Via a second number of conductive second connecting webs 9 ', it is connected to a second wide conductor track 20b, the respective number of connecting webs and / or the respective width c of connecting webs 9 being respectively Depending on the distance between the wide conductor tracks and the connecting conductor tracks 8 and increases as the distance a increases. In the exemplary embodiment, the first number is “1”, the second number is “2”, and all connecting webs 9 have a uniform width c.

それに対する代替として、図7に示すように、接続導体トラック8が、第1および第2の幅広い導体トラック20aおよび20bからほぼ同一の距離a、特に同一の距離aにあることが可能であり、接続導体トラック8は、第1の金属化層2aから形成された第1の接続ウェブ9を介して、第1の幅広い導体トラック20aに接続され、かつ第1の金属化層2aから形成された第2の接続ウェブ9’を介して、第2の幅広い導体トラック20bに接続される。第1および第2の接続ウェブ9および9’は、ほぼ同一の長さ、特に同一の長さを有する。   As an alternative to that, as shown in FIG. 7, it is possible for the connecting conductor track 8 to be at approximately the same distance a, in particular the same distance a, from the first and second wide conductor tracks 20a and 20b, The connection conductor track 8 is connected to the first wide conductor track 20a via the first connection web 9 formed from the first metallization layer 2a and formed from the first metallization layer 2a. It is connected to a second wide conductor track 20b via a second connection web 9 '. The first and second connecting webs 9 and 9 'have approximately the same length, in particular the same length.

図6および図7に示す本発明の有利な実施形態によって、電解析出中に、第1および第2の幅広い導体トラック20aおよび20b上における第1の金属層5のほぼ均一な厚さが可能になる。   The advantageous embodiment of the invention shown in FIGS. 6 and 7 allows a substantially uniform thickness of the first metal layer 5 on the first and second broad conductor tracks 20a and 20b during the electrolytic deposition. become.

接続導体トラックおよび/または接続ウェブは、第1の金属層の電解析出の前に非導電性レジストで被覆され、第1の金属層が、電解析出中に接続導体トラックおよび/または接続ウェブ上に析出されないようにするのが好ましい。   The connecting conductor track and / or connecting web is coated with a non-conductive resist prior to the electrolytic deposition of the first metal layer, and the first metal layer is connected to the connecting conductor track and / or connecting web during the electrodeposition. It is preferable not to deposit on the top.

例示的な実施形態の文脈において狭い導体トラック21に適用されるレジスト層3は、例示的な実施形態において、第1の金属層の電解析出後に再び除去される。図4は、このステップが実行された後の本発明による基板7を示す。   The resist layer 3 applied to the narrow conductor tracks 21 in the context of the exemplary embodiment is removed again after the electrolytic deposition of the first metal layer in the exemplary embodiment. FIG. 4 shows the substrate 7 according to the invention after this step has been carried out.

例示的な実施形態の文脈において、続いて図8に示すように、第2の金属層10が、狭い導体トラック21および第1の金属層5上に、ならびにまた第3の金属層6上に電解析出される。第2の金属層10は、銀からなるのが好ましい。第2の金属層10は、第1および第3の金属層用、ならびにまた狭い導体トラック21用の保護層として、かつ/または焼結もしくははんだ付け接続用の接着接続層として働くのが好ましい。第2の金属層10は、0.1μm〜10μmの厚さを有するのが好ましい。第2の金属層10を、第1の金属層5にも、狭い導体トラック21にも、または第3の金属層6にも必ずしも適用する必要がないことに、この時点で特に留意されたい。   In the context of the exemplary embodiment, as shown subsequently in FIG. 8, the second metal layer 10 is on the narrow conductor track 21 and the first metal layer 5 and also on the third metal layer 6. Electrodeposited. The second metal layer 10 is preferably made of silver. The second metal layer 10 preferably serves as a protective layer for the first and third metal layers and also for the narrow conductor track 21 and / or as an adhesive connection layer for sintering or soldering connections. The second metal layer 10 preferably has a thickness of 0.1 μm to 10 μm. It should be particularly noted at this point that the second metal layer 10 does not necessarily have to be applied to the first metal layer 5, to the narrow conductor track 21 or to the third metal layer 6.

さらに、第2の金属層10が、例えば狭い導体トラック21上にのみ電解析出されるように意図されている場合に、第1および第3の金属層5および6は、第2の金属層10の電解析出の前に電気絶縁レジストで被覆して、第2の金属層10が、狭い導体トラック21上にのみ電解析出されるようにすることができることに、この時点で留意されたい。   Furthermore, when the second metal layer 10 is intended to be electrodeposited only on, for example, the narrow conductor track 21, the first and third metal layers 5 and 6 are the second metal layer 10. It should be noted at this point that the second metal layer 10 can be electrodeposited only on the narrow conductor tracks 21 by coating with an electrically insulating resist prior to the electrodeposition of the first electrode.

さらに、第2の金属層10が、例えば第1の金属層5上にのみ電解析出されるように意図されている場合に、狭い導体トラック21および第3の金属層6は、第2の金属層10の電解析出の前に電気絶縁レジストで被覆して、第2の金属層10が、第1の金属層5上にのみ電解析出されるようにすることができることに留意されたい。   Furthermore, when the second metal layer 10 is intended to be electrodeposited only on the first metal layer 5, for example, the narrow conductor tracks 21 and the third metal layer 6 Note that the second metal layer 10 can be electrodeposited only on the first metal layer 5 by coating with an electrically insulating resist prior to the electrodeposition of the layer 10.

第2の金属層10で被覆されるように意図されていない要素は、各場合に、第2の金属層10の電解析出の前に電気絶縁レジストで被覆される。   Elements that are not intended to be coated with the second metal layer 10 are in each case coated with an electrically insulating resist before the electrolytic deposition of the second metal layer 10.

図8は、第2の金属層10の電解析出後の基板7を示す。   FIG. 8 shows the substrate 7 after electrolytic deposition of the second metal layer 10.

続いて、接続ウェブは、例えば接続ウェブの機械的除去によって、絶縁材料体1から除去されるのが好ましい。接続ウェブが、第1の金属層5の電解析出および第2の金属層10の析出(必要に応じて行われる)の前に電気絶縁レジストで被覆されなかった場合に、接続ウェブは、接続ウェブ上に配置された第1の金属層5を含めて、かつ必要に応じて、接続ウェブの第1の金属層5上に配置された第2の金属層10を含めて、例えば接続ウェブの機械的除去によって除去される。   Subsequently, the connecting web is preferably removed from the insulating material body 1, for example by mechanical removal of the connecting web. If the connection web was not coated with an electrically insulating resist prior to the electrolytic deposition of the first metal layer 5 and the deposition of the second metal layer 10 (which is done if necessary), the connection web is connected Including a first metal layer 5 disposed on the web, and optionally including a second metal layer 10 disposed on the first metal layer 5 of the connection web, for example of the connection web Removed by mechanical removal.

本発明によるパワー半導体モジュール26を製造するために、続いて、図9に示すさらなる方法ステップには、少なくとも1つのパワー半導体コンポーネントを、第1の金属層5に接続するか、または第2の金属層10が、図9による例示的な実施形態におけるように第1の金属層5上に配置される場合には、第1の金属層5上に配置された第2の金属層10に接続するステップと、少なくとも1つの集積回路17を狭い導体トラックに接続するか、または第2の金属層10が、例示的な実施形態におけるように狭い導体トラック21上に存在する場合には、狭い導体トラック21上に配置された第2の金属層10に接続するステップと、が含まれる。例示的な実施形態の文脈において、例としてIGBTとして具体化された第1のパワー半導体コンポーネント18、および例としてダイオードとして具体化された第2のパワー半導体コンポーネント19が、第2の金属層10に接続される。この場合に、少なくとも1つのパワー半導体コンポーネントの接続は、第1の部分方法ステップにおいて達成され、集積回路17の接続は、第2の部分方法ステップにおいて達成される。この場合、第1の部分方法ステップは、第2の部分方法ステップの前か、第2の部分方法ステップと同時か、または第2の部分方法ステップの後に達成することができる。   In order to manufacture the power semiconductor module 26 according to the invention, subsequently, a further method step shown in FIG. 9 includes connecting at least one power semiconductor component to the first metal layer 5 or a second metal. If the layer 10 is arranged on the first metal layer 5 as in the exemplary embodiment according to FIG. 9, it connects to the second metal layer 10 arranged on the first metal layer 5. Step and connecting at least one integrated circuit 17 to a narrow conductor track or, if the second metal layer 10 is present on a narrow conductor track 21 as in the exemplary embodiment, the narrow conductor track Connecting to the second metal layer 10 disposed on 21. In the context of the exemplary embodiment, a first power semiconductor component 18 embodied as an IGBT as an example, and a second power semiconductor component 19 embodied as a diode as an example are in the second metal layer 10. Connected. In this case, the connection of at least one power semiconductor component is achieved in the first partial method step, and the connection of the integrated circuit 17 is achieved in the second partial method step. In this case, the first partial method step can be achieved before the second partial method step, simultaneously with the second partial method step, or after the second partial method step.

例示的な実施形態の文脈において、この場合には図9に従って、第1の金属層5上に配置された第2の金属層10と共に第1のパワー半導体コンポーネント18および第2のパワー半導体コンポーネント19は、焼結またははんだ付け層14がパワー半導体コンポーネント18および19と第1の金属層5との間に配置されるように、焼結またははんだ付け接続によって互いに接続される。さらに、例示的な実施形態の文脈において、狭い導体トラック上に配置された第2の金属層10と共に集積回路17は、焼結またははんだ付け層14’が集積回路17と第2の金属層10との間に配置されるように、焼結またははんだ付け接続によって接続ピン16を介して互いに接続される。この場合に、それぞれの焼結層は、少なくとも実質的に銀からなるのが好ましく、それぞれのはんだ付け層は、少なくとも実質的にスズからなるのが好ましい。   In the context of the exemplary embodiment, in this case according to FIG. 9, a first power semiconductor component 18 and a second power semiconductor component 19 together with a second metal layer 10 disposed on the first metal layer 5. Are connected to each other by a sintered or soldered connection such that the sintered or soldered layer 14 is disposed between the power semiconductor components 18 and 19 and the first metal layer 5. Further, in the context of the exemplary embodiment, the integrated circuit 17 together with the second metal layer 10 disposed on the narrow conductor track has a sintered or soldered layer 14 ′ that is integrated with the integrated circuit 17 and the second metal layer 10. Are connected to each other via connection pins 16 by sintering or soldering connections. In this case, each sintered layer is preferably at least substantially composed of silver, and each soldering layer is preferably at least substantially composed of tin.

図10は、本発明のさらに例示的な実施形態を示す。この実施形態は、図9による本発明の例示的な実施形態にほぼ対応するが、図9による例示的な実施形態とは対照的に、図10による例示的な実施形態では、第1の金属層5は、第2の金属層10でコーティングされず、第1のパワー半導体コンポーネント18および第2のパワー半導体コンポーネント19が、例えば焼結またははんだ付け接合によって第1の金属層5に接続されるようにする。   FIG. 10 illustrates a further exemplary embodiment of the present invention. This embodiment substantially corresponds to the exemplary embodiment of the present invention according to FIG. 9, but in contrast to the exemplary embodiment according to FIG. 9, in the exemplary embodiment according to FIG. The layer 5 is not coated with the second metal layer 10 and the first power semiconductor component 18 and the second power semiconductor component 19 are connected to the first metal layer 5, for example by sintering or soldering. Like that.

図9および図10による例示的な実施形態において、パワー半導体コンポーネント18および19は、基板7上に配置され、かつ第1の金属層5に導電接続され、集積回路17は、基板7上に配置され、かつ導体トラック21に導電接続される。この場合に、それぞれの導電接続は、焼結またははんだ付け層14を介して、および存在する場合にはさらに第2の金属層10を介して、および少なくとも1つのさらなる金属層が第2の金属層10上に恐らくまたさらに配置される場合には、さらに前記少なくとも1つのさらなる金属層を介して達成される。   In the exemplary embodiment according to FIGS. 9 and 10, the power semiconductor components 18 and 19 are disposed on the substrate 7 and conductively connected to the first metal layer 5, and the integrated circuit 17 is disposed on the substrate 7. And conductively connected to the conductor track 21. In this case, the respective conductive connection is via the sintered or soldering layer 14 and, if present, via the second metal layer 10 and at least one further metal layer is the second metal. If it is possibly further arranged on the layer 10, it is further achieved via the at least one further metal layer.

上記のように、少なくとも1つのさらなる金属層を第2の金属層10上にさらに配置することができ、この場合に本発明の趣旨内で、少なくとも1つのパワー半導体コンポーネントおよび/または少なくとも1つの集積回路を少なくとも1つのさらなる金属層に接続することが、少なくとも1つのパワー半導体コンポーネントおよび/または少なくとも1つの集積回路を第2の金属層に接続することを意味すると理解すべきであることに、この時点で留意されたい。   As mentioned above, at least one further metal layer can be further arranged on the second metal layer 10, in this case within the spirit of the invention at least one power semiconductor component and / or at least one integration. It should be understood that connecting the circuit to at least one further metal layer means connecting at least one power semiconductor component and / or at least one integrated circuit to the second metal layer. Please note that at the time.

さらに、特に焼結接続の場合に、それぞれ接続されることになる2つの要素を接続するプロセスの一部として、接続されることになる2つの要素には、それぞれの接着接続層を設けることができ、接着接続層は、例えば、互いに接続されるように意図された要素の側面において、少なくとも実質的に銀からなることができる。この場合に、接続されることになるそれぞれの要素は、必ずしも電解析出によって接着接続層を設けられている必要はないことに、この時点で留意されたい。   Furthermore, in particular in the case of a sintered connection, as part of the process of connecting the two elements to be connected to each other, the two elements to be connected can be provided with respective adhesive connection layers. The adhesive connection layer can, for example, consist at least substantially of silver on the sides of the elements intended to be connected to each other. It should be noted at this point that in this case each element to be connected does not necessarily have to be provided with an adhesive connection layer by electrolytic deposition.

図における同一の要素が、同じ参照符号を与えられていることに、この時点で留意されたい。   It should be noted at this point that identical elements in the figures have been given the same reference numerals.

1 非導電性絶縁材料体
2a 第1の金属化層
2b 第2の金属化層
3 非導電性レジスト層
4、4’ 中断部
5 第1の金属層
6 第3の金属層
7 基板
7a 基板ブランク
8 接続導体トラック
9 第1の接続ウェブ
9’ 第2の接続ウェブ
10 第2の金属層
14、14’ 焼結またははんだ付け層
15a 第1の側面
15b 第2の側面
16 接続ピン
17 集積回路
18 第1のパワー半導体コンポーネント
19 第2のパワー半導体コンポーネント
20a 第1の幅広い導体トラック
20b 第2の幅広い導体トラック
21 狭い導体トラック
22a 第1の領域
22b 第2の領域
25 導体トラック
26 パワー半導体モジュール
a 距離
b、b’ 幅
c 幅
DESCRIPTION OF SYMBOLS 1 Nonelectroconductive insulating material body 2a 1st metallization layer 2b 2nd metallization layer 3 Nonelectroconductive resist layer 4, 4 'Interrupting part 5 1st metal layer 6 3rd metal layer 7 Substrate 7a Substrate blank DESCRIPTION OF SYMBOLS 8 Connection conductor track 9 1st connection web 9 '2nd connection web 10 2nd metal layer 14, 14' Sintering or soldering layer 15a 1st side surface 15b 2nd side surface 16 Connection pin 17 Integrated circuit 18 1st power semiconductor component 19 2nd power semiconductor component 20a 1st wide conductor track 20b 2nd wide conductor track 21 narrow conductor track 22a first area 22b second area 25 conductor track 26 power semiconductor module a distance b, b 'width c width

Claims (14)

少なくとも1つのパワー半導体コンポーネント(18、19)用の基板(7)を製造するための方法であって、以下の方法ステップ、
a)セラミックからなる非導電性の絶縁材料体(1)を提供するステップと、
b)狭い導体トラック(21)を有する第1の領域(22a)と、少なくとも1つの幅広い導体トラック(20a、20b)を有する第2の領域(22b)とを有する、構造化された導電性の第1の金属化層(2a)を、前記絶縁材料体(1)の第1の側面(15a)上に適用するステップと、
c)前記少なくとも1つの幅広い導体トラック(20a、20b)上に第1の金属層(5)を電解析出するステップと、
を備えて構成される方法。
A method for manufacturing a substrate (7) for at least one power semiconductor component (18, 19) comprising the following method steps:
a) providing a non-conductive insulating material body (1) made of ceramic ;
b) Structured conductive having a first region (22a) having a narrow conductor track (21) and a second region (22b) having at least one wide conductor track (20a, 20b). Applying a first metallization layer (2a) on the first side (15a) of the insulating material body (1);
c) electrolytically depositing a first metal layer (5) on said at least one wide conductor track (20a, 20b);
A method configured with.
方法ステップb)と方法ステップc)との間に、
− 前記狭い導体トラック(21)に非導電性レジスト層(3)を適用すること、および
方法ステップc)の後に、
− 前記非導電性レジスト層(3)を除去すること、
を特徴とする、請求項1に記載の方法。
Between method step b) and method step c),
After applying a non-conductive resist layer (3) to the narrow conductor track (21) and after method step c)
-Removing said non-conductive resist layer (3);
The method of claim 1, wherein:
以下の後続の方法ステップ、
− 前記狭い導体トラック(21)および/または前記第1の金属層(5)上に第2の金属層(10)を電解析出するステップを備える、請求項1または2に記載の方法。
The following method steps:
Method according to claim 1 or 2, comprising the step of electrolytically depositing a second metal layer (10) on the narrow conductor track (21) and / or the first metal layer (5).
前記少なくとも1つの幅広い導体トラック(20a)が、少なくとも3000μmの幅(b)を有することを特徴とする、請求項1〜3のいずれか一項に記載の方法。   4. A method according to any one of the preceding claims, characterized in that the at least one wide conductor track (20a) has a width (b) of at least 3000 [mu] m. 前記狭い導体トラック(21)が100μm〜1000μmの幅(b’)を有することを特徴とする、請求項1〜4のいずれか一項に記載の方法。   5. The method according to claim 1, characterized in that the narrow conductor track (21) has a width (b ′) of 100 μm to 1000 μm. 前記第1の金属化層(2a)が1μm〜30μmの厚さを有することを特徴とする、請求項1〜5のいずれか一項に記載の方法。 6. The method according to any one of claims 1 to 5, characterized in that the first metallization layer ( 2a ) has a thickness of 1 [mu] m to 30 [mu] m. 前記第1の金属化層(2a)が銀および/または銅を含むことを特徴とする、請求項1〜6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, characterized in that the first metallization layer ( 2a ) comprises silver and / or copper. 前記第1の金属層(5)が100μm〜500μmの厚さを有することを特徴とする、請求項1〜7のいずれか一項に記載の方法。   8. A method according to any one of the preceding claims, characterized in that the first metal layer (5) has a thickness of 100 [mu] m to 500 [mu] m. 方法ステップb)が追加的に、
− 前記絶縁材料体(1)の前記第1の側面(15a)の反対側に配置される前記絶縁材料体(1)の第2の側面(15b)に第2の金属化層(2b)を適用することを含み、
方法ステップc)が追加的に、
− 前記第2の金属化層(2b)上に第3の金属層(6)を電解析出することを含むことを特徴とする、請求項1〜8のいずれか一項に記載の方法。
Method step b) additionally
- the insulating material body (1) second metallization layer to the second side (15b) of which is disposed opposite said first side of said insulating material body (1) (15a) with (2b) Including applying,
Method step c) additionally comprises:
Method according to any one of claims 1 to 8, characterized in that it comprises electrolytically depositing a third metal layer (6) on the second metallization layer (2b).
前記第1の金属化層(2a)が接続導体トラック(8)を有し、前記第2の領域(22b)が、少なくとも1つの第1および1つの第2の幅広い導体トラック(20a、20b)を有し、前記接続導体トラック(8)が、前記第1の金属化層(2a)から形成された導電性の第1の接続ウェブ(9)の第1の数を介して、前記第1の幅広い導体トラック(20a)に接続され、前記第1の幅広い導体トラック(20a)が、前記第1の金属化層(2a)から形成された導電性の第2の接続ウェブ(9’)の第2の数を介して、前記第2の幅広い導体トラック(20b)に接続され、前記接続ウェブ(9、9’)のそれぞれの数および/または前記接続ウェブ(9、9’)のそれぞれの幅(c)が、前記それぞれの幅広い導体トラック(20a、20b)と前記接続導体トラック(8)との間の距離(a)に依存し、かつ前記距離(a)が増加するにつれて増加することを特徴とする、請求項1〜9のいずれか一項に記載の方法。   The first metallization layer (2a) has connecting conductor tracks (8) and the second region (22b) has at least one first and one second wide conductor track (20a, 20b). The connecting conductor track (8) through a first number of conductive first connecting webs (9) formed from the first metallization layer (2a). Of the conductive second connecting web (9 ') formed from the first metallization layer (2a). Connected to the second wide conductor track (20b) via a second number, each number of the connecting webs (9, 9 ') and / or each of the connecting webs (9, 9') The width (c) is greater than the respective wide conductor track (20a 20b) depending on the distance (a) between the connecting conductor track (8) and increasing as the distance (a) increases. The method described in 1. 前記第1の金属化層(2a)が接続導体トラック(8)を有し、前記第2の領域(22b)が、少なくとも1つの第1および1つの第2の幅広い導体トラック(20a、20b)を有し、前記接続導体トラック(8)が、前記第1および第2の幅広い導体トラック(20a、20b)からほぼ同一の距離(a)にあり、前記接続導体トラック(8)が、前記第1の金属化層(2a)から形成された第1の接続ウェブ(9)を介して、前記第1の幅広い導体トラック(20a)に接続され、かつ前記第1の金属化層(2a)から形成された第2の接続ウェブ(9’)を介して、前記第2の幅広い導体トラック(20b)に接続されることを特徴とする、請求項1〜9のいずれか一項に記載の方法。 The first metallization layer (2a) has connecting conductor tracks (8) and the second region (22b) has at least one first and one second wide conductor track (20a, 20b). The connecting conductor track (8) is at substantially the same distance (a) from the first and second wide conductor tracks (20a, 20b), and the connecting conductor track (8) Connected to the first wide conductor track (20a) via a first connection web (9) formed from one metallization layer (2a) and from the first metallization layer (2a) 10. Method according to any one of the preceding claims, characterized in that it is connected to the second broad conductor track (20b) via a formed second connecting web (9 '). . 前記第1の金属層(5)が銅からなることを特徴とする、請求項1〜11のいずれか一項に記載の方法。   12. A method according to any one of the preceding claims, characterized in that the first metal layer (5) consists of copper. パワー半導体モジュール(26)を製造するための方法であって、請求項1〜12のいずれか一項に記載の少なくとも1つのパワー半導体コンポーネント(18、19)用の基板(7)を製造するための方法を含み、以下のさらなる方法ステップ、
e)前記少なくとも1つのパワー半導体コンポーネント(18、19)を、前記第1の金属層(5)に接続するか、または前記第1の金属層(5)上に第2の金属層(10)が配置された場合、前記第1の金属層(5)上に配置された前記第2の金属層(10)に接続し、かつ少なくとも1つの集積回路(17)を、前記狭い導体トラック(21)に接続するか、または前記狭い導体トラック(21)上に第2の金属層(10)が配置された場合、前記狭い導体トラック(21)上に配置された前記第2の金属層(10)に接続するステップを備える、方法。
A method for manufacturing a power semiconductor module (26), for manufacturing a substrate (7) for at least one power semiconductor component (18, 19) according to any one of the preceding claims. The following additional method steps including:
e) connecting the at least one power semiconductor component (18, 19) to the first metal layer (5) or a second metal layer (10) on the first metal layer (5); Is connected to the second metal layer (10) disposed on the first metal layer (5), and at least one integrated circuit (17) is connected to the narrow conductor track (21). ) Or when the second metal layer (10) is disposed on the narrow conductor track (21), the second metal layer (10) disposed on the narrow conductor track (21). And connecting to the method.
前記それぞれの接続するステップが、密着によって、特に焼結またははんだ付け接続によって達成される、請求項13に記載のパワー半導体モジュールを製造するための方法。 The method for manufacturing a power semiconductor module according to claim 13, wherein each connecting step is achieved by close contact, in particular by sintering or soldering connections.
JP2013088232A 2012-04-25 2013-04-19 Method for manufacturing a substrate for at least one power semiconductor component Expired - Fee Related JP6159563B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012206758A DE102012206758B3 (en) 2012-04-25 2012-04-25 Method for manufacturing substrate for power semiconductor component such as MOSFET of power semiconductor module, involves performing galvanic isolation of metal film on broad strip conductor
DE102012206758.2 2012-04-25

Publications (2)

Publication Number Publication Date
JP2013229603A JP2013229603A (en) 2013-11-07
JP6159563B2 true JP6159563B2 (en) 2017-07-05

Family

ID=48288183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088232A Expired - Fee Related JP6159563B2 (en) 2012-04-25 2013-04-19 Method for manufacturing a substrate for at least one power semiconductor component

Country Status (4)

Country Link
JP (1) JP6159563B2 (en)
KR (1) KR20130120385A (en)
CN (1) CN103377950B (en)
DE (1) DE102012206758B3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437304B2 (en) 2014-11-06 2022-09-06 Semiconductor Components Industries, Llc Substrate structures and methods of manufacture
US9397017B2 (en) * 2014-11-06 2016-07-19 Semiconductor Components Industries, Llc Substrate structures and methods of manufacture
US9408301B2 (en) 2014-11-06 2016-08-02 Semiconductor Components Industries, Llc Substrate structures and methods of manufacture
WO2023234590A1 (en) * 2022-05-31 2023-12-07 주식회사 아모그린텍 Ceramic substrate and manufacturing method therefor
KR20230173334A (en) * 2022-06-17 2023-12-27 주식회사 아모그린텍 Ceramic substrate and manufacturing method thereof
DE102022206295B3 (en) 2022-06-23 2023-11-09 Zf Friedrichshafen Ag METHOD FOR FORMING A SEMICONDUCTOR MODULE AND SEMICONDUCTOR MODULE
KR20240020380A (en) * 2022-08-08 2024-02-15 주식회사 아모그린텍 Ceramic substrate and manufacturing method thereof
KR20240038268A (en) * 2022-09-16 2024-03-25 주식회사 아모그린텍 Power module substrate with heat sink and manufacturing method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664409B2 (en) * 1988-04-18 1997-10-15 三洋電機株式会社 Manufacturing method of hybrid integrated circuit
US5160578A (en) * 1990-04-23 1992-11-03 Phillips Petroleum Company Separating of fibers from a fiber-containing solid sample
US5160579A (en) * 1991-06-05 1992-11-03 Macdermid, Incorporated Process for manufacturing printed circuit employing selective provision of solderable coating
CN1139117C (en) * 1995-03-20 2004-02-18 株式会社东芝 Silicon nitride circuit substrate
TW408453B (en) * 1997-12-08 2000-10-11 Toshiba Kk Package for semiconductor power device and method for assembling the same
EP1187521A1 (en) * 2000-09-09 2002-03-13 AB Mikroelektronik Gesellschaft m.b.H. Process for manufacturing a supporting board for electronic components
US6319750B1 (en) * 2000-11-14 2001-11-20 Siliconware Precision Industries Co., Ltd. Layout method for thin and fine ball grid array package substrate with plating bus
DE10154316A1 (en) * 2001-11-07 2003-05-15 Juergen Schulz-Harder Process for the selective surface treatment of plate-shaped workpieces
JP4765110B2 (en) * 2005-03-31 2011-09-07 Dowaメタルテック株式会社 Metal-ceramic bonding substrate and manufacturing method thereof
JP2006310796A (en) * 2005-04-01 2006-11-09 Ngk Spark Plug Co Ltd Wiring board for multiple patterning
CN100588308C (en) * 2007-01-24 2010-02-03 南京汉德森科技股份有限公司 High heat conductivity ceramic base printed circuit board and method for making the same
US7838978B2 (en) * 2007-09-19 2010-11-23 Infineon Technologies Ag Semiconductor device
CN101754584B (en) * 2008-12-12 2012-01-25 清华大学 Method for preparing conducting lines
CN101593655B (en) * 2009-07-17 2011-11-23 威海新佳电子有限公司 PDP power integration module and method for manufacturing same

Also Published As

Publication number Publication date
DE102012206758B3 (en) 2013-05-29
JP2013229603A (en) 2013-11-07
KR20130120385A (en) 2013-11-04
CN103377950B (en) 2017-03-01
CN103377950A (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP6159563B2 (en) Method for manufacturing a substrate for at least one power semiconductor component
US9418930B2 (en) Power module
US8630097B2 (en) Power module using sintering die attach and manufacturing method thereof
US9363894B2 (en) Circuit device
US20170221853A1 (en) Electrode terminal, semiconductor device, and power conversion apparatus
US9466542B2 (en) Semiconductor device
JP6550477B2 (en) Electrical contact method of parts by galvanic bonding of open-pored contact pieces and corresponding part modules
EP2677541A1 (en) Method for wire bonding a power semiconductor chip and the corresponding device
CN105489580B (en) Semiconductor substrate and semiconductor package
US10937767B2 (en) Chip packaging method and device with packaged chips
CN102576705B (en) Circuit arrangement and manufacture method thereof
CN103681552B (en) Power semiconductor modular and the method for manufacturing power semiconductor modular
WO2017157486A1 (en) Semiconductor device
JP2017135144A (en) Semiconductor module
EP2840607A1 (en) Semiconductor module
JP2020077857A (en) Module and manufacturing method thereof
KR100806789B1 (en) Method of fabricating sip semiconductor device
TWI718217B (en) Wiring substrate, semiconductor package with wiring substrate and manufacturing method thereof
JP2009295634A (en) Solid electrolytic capacitor
JP6283469B2 (en) Method for manufacturing a power semiconductor module comprising a substrate for at least one power semiconductor component, and method for producing a substrate for at least one power semiconductor component
US20240057255A1 (en) Method of manufacturing a printed circuit board assembly
JP3709035B2 (en) Two-layer wiring board and manufacturing method thereof
CN106931318B (en) Light emitting assembly and manufacturing method thereof
JP2020155645A (en) Module and manufacturing method thereof
JP2006100546A (en) Wiring board having many wiring areas, package for storing electronic component, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees