JP6158523B2 - Inter-vehicle distance control device - Google Patents

Inter-vehicle distance control device Download PDF

Info

Publication number
JP6158523B2
JP6158523B2 JP2013019598A JP2013019598A JP6158523B2 JP 6158523 B2 JP6158523 B2 JP 6158523B2 JP 2013019598 A JP2013019598 A JP 2013019598A JP 2013019598 A JP2013019598 A JP 2013019598A JP 6158523 B2 JP6158523 B2 JP 6158523B2
Authority
JP
Japan
Prior art keywords
vehicle
inter
distance
acceleration
preceding vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013019598A
Other languages
Japanese (ja)
Other versions
JP2014148293A (en
Inventor
郁佑 松元
郁佑 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2013019598A priority Critical patent/JP6158523B2/en
Publication of JP2014148293A publication Critical patent/JP2014148293A/en
Application granted granted Critical
Publication of JP6158523B2 publication Critical patent/JP6158523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、自車両前方の先行車を検知して先行車と自車両との車間距離を制御する車間距離制御装置に関する。   The present invention relates to an inter-vehicle distance control device that detects a preceding vehicle ahead of the host vehicle and controls an inter-vehicle distance between the preceding vehicle and the host vehicle.

先行車両との車間距離を検出して自車両の車速に応じて車間距離や速度を自動制御する車間距離制御装置が知られている。このような車間距離制御装置では、先行車両との車間距離を制御中に他車両が割り込んできたり、先行車両が離脱したりした場合、追従すべき先行車両が切り替わる。先行車両の車速と車間距離が変わるため、加減速が生じやすい状況となる。このため、従来から、車両の割込みや離脱等に対応して車間距離制御を適切に継続する技術が考えられている(例えば、特許文献1〜3参照)。   An inter-vehicle distance control device that detects an inter-vehicle distance from a preceding vehicle and automatically controls the inter-vehicle distance and speed according to the vehicle speed of the host vehicle is known. In such an inter-vehicle distance control device, when another vehicle is interrupted or the preceding vehicle leaves while controlling the inter-vehicle distance from the preceding vehicle, the preceding vehicle to be followed is switched. Since the vehicle speed and the inter-vehicle distance of the preceding vehicle change, the situation is likely to cause acceleration / deceleration. For this reason, conventionally, a technique for appropriately continuing the inter-vehicle distance control in response to a vehicle interruption or separation has been considered (for example, see Patent Documents 1 to 3).

図10(a)は特許文献1の技術を説明する図の一例である。特許文献1では、割込み又は離脱する他車両の横速度を監視して早期に追従走行する先行車両を切り替える技術が記載されている。   FIG. 10A is an example of a diagram illustrating the technique of Patent Document 1. FIG. Patent Document 1 describes a technique for switching a preceding vehicle that travels early by monitoring the lateral speed of another vehicle that interrupts or leaves.

図10(b)は特許文献2の技術を説明する図の一例である。特許文献2では、レーン変更の過渡状態において、自車両の操舵量を制限することで不要な操舵を抑制する技術が開示されている。   FIG. 10B is an example of a diagram illustrating the technique of Patent Document 2. Patent Document 2 discloses a technique for suppressing unnecessary steering by limiting the steering amount of the host vehicle in a transient state of lane change.

図10(c)は特許文献3の技術を説明する図の一例である。特許文献3では、車両の走行状態に基づいてドライバにとって望ましくない走行領域への車両の進入を予測し、ドライバにとって望ましくない走行領域への車両の進入を回避するように出力を調整する(早期にブレーキ制御する)技術が開示されている。   FIG. 10C is an example of a diagram illustrating the technique of Patent Document 3. In Patent Document 3, an approach of a vehicle to a travel region that is undesirable for the driver is predicted based on a travel state of the vehicle, and an output is adjusted so as to avoid a vehicle entering the travel region that is undesirable for the driver (early). Brake control) technology is disclosed.

特開2004-58920号公報JP 2004-58920 A 特開2007-176290号公報JP 2007-176290 A 特開2010-274887号公報JP 2010-274887

しかしながら、特許文献1〜3では、割り込んだ車両が、自車両に対し同じレーンを遠ざかる方向に移動する場合について考慮されていないという問題がある。   However, in Patent Documents 1 to 3, there is a problem that the case where the interrupted vehicle moves in a direction away from the same lane with respect to the own vehicle is not considered.

図10(d)は自車両に対し同じレーンを遠ざかる方向に割り込んだ車両が移動する場合を模式的に示す図である。それぞれの車両の車速はVa=Vb<Vcである。他車両Cが割り込んだ場合、自車両Aは他車両Cに追従するため、Va→Vcの加速制御を実行する。しかし、他車両Cが自車両の加速後、すぐに離脱した場合、自車両Aは先行車両Bへの追従を再開するので、Va→Vbの減速制御を実行する。すなわち、短期間に加速・減速という不要な制御を実行してしまう。   FIG. 10D is a diagram schematically illustrating a case where a vehicle that has moved in the direction of moving away from the same lane with respect to the host vehicle moves. The vehicle speed of each vehicle is Va = Vb <Vc. When the other vehicle C interrupts, the own vehicle A follows the other vehicle C, and therefore executes acceleration control of Va → Vc. However, if the other vehicle C leaves immediately after the acceleration of the host vehicle, the host vehicle A resumes following the preceding vehicle B, and therefore executes deceleration control of Va → Vb. That is, unnecessary control such as acceleration / deceleration is executed in a short time.

本発明は、上記課題に鑑み、割り込んだ車両が、自車両に対し同じレーンを遠ざかる方向に移動する場合に不要制御を抑制する車間距離制御装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an inter-vehicle distance control device that suppresses unnecessary control when an interrupted vehicle moves in a direction away from the same lane with respect to the host vehicle.

本発明は、自車両前方の先行車を検知して先行車と自車両との車間距離を制御する車間距離制御装置であって、前記先行車との相対速度及び自車両との距離を検出する車速距離検出手段と、前記車速距離検出手段が検出した前記相対速度及び前記距離に基づいて、前記先行車との車間距離を目標車間距離に制御するための加速度又は減速度を決定する加減速度決定手段と、前記加減速度決定手段が決定した前記加速度又は前記減速度で前記先行車に追従走行している状態で、前記先行車と自車両との間に別の先行車が割り込んだ場合、前記先行車と前記別の先行車との間の車間時間を算出する車間時間算出手段と、前記車間時間が閾値より小さいため前記別の先行車が自車両よりも遠ざかると判断される場合、割り込んだ前記別の先行車との車間距離を目標車間距離に制御するために前記加減速度決定手段が決定する前記加速度を、前記車速距離検出手段が割り込んだ前記別の先行車に対し検出した前記相対速度及び前記距離に基づいて決定される加速度よりも抑制する加減速制御手段と、を有し、前記加減速制御手段は、前記別の先行車が割り込んだ直後に最も大きく加速度を抑制し、割り込んだ直後から時間と共に加速度の抑制量を低減し、前記車間時間よりも短い一定時間の経過後に加速度を抑制する制御を終了する、ことを特徴とする。 The present invention is an inter-vehicle distance control device that detects the preceding vehicle ahead of the host vehicle and controls the inter-vehicle distance between the preceding vehicle and the host vehicle, and detects the relative speed to the preceding vehicle and the distance from the host vehicle. Acceleration / deceleration determination for determining acceleration or deceleration for controlling the inter-vehicle distance to the preceding vehicle based on the relative speed and the distance detected by the vehicle speed distance detection unit and the vehicle speed distance detection unit. And when another preceding vehicle interrupts between the preceding vehicle and the host vehicle in a state of following the preceding vehicle at the acceleration or the deceleration determined by the acceleration / deceleration determining unit, An inter-vehicle time calculating means for calculating an inter-vehicle time between the preceding vehicle and the other preceding vehicle, and when it is determined that the other preceding vehicle moves away from the own vehicle because the inter-vehicle time is smaller than a threshold value , interrupted. With the other preceding vehicle The acceleration determined by the acceleration / deceleration determining means for controlling the inter-vehicle distance to the target inter-vehicle distance is determined based on the relative speed and the distance detected with respect to the other preceding vehicle interrupted by the vehicle speed distance detecting means. Acceleration / deceleration control means that suppresses acceleration more than the acceleration that is generated, and the acceleration / deceleration control means suppresses acceleration most immediately immediately after the other preceding vehicle interrupts, and suppresses acceleration over time immediately after the interruption. The control for reducing the acceleration is terminated after a certain amount of time shorter than the inter-vehicle time has elapsed .

割り込んだ車両が、自車両に対し同じレーンを遠ざかる方向に移動する場合に不要制御を抑制する車間距離制御装置を提供することができる。   It is possible to provide an inter-vehicle distance control device that suppresses unnecessary control when an interrupted vehicle moves in a direction away from the host vehicle on the same lane.

本実施形態の車間距離制御装置の概略的な特徴について説明する図の一例である。It is an example of the figure explaining the schematic characteristic of the inter-vehicle distance control apparatus of this embodiment. 車間距離制御装置の概略構成図の一例である。It is an example of the schematic block diagram of a vehicle distance control apparatus. 車間距離制御の概略的な手順を示すフローチャート図の一例である。It is an example of the flowchart figure which shows the schematic procedure of inter-vehicle distance control. 車間制御ECUの機能ブロック図の一例である。It is an example of a functional block diagram of the inter-vehicle control ECU. 目標加速度を抑制する手順を示すフローチャート図の一例である。It is an example of the flowchart figure which shows the procedure which suppresses target acceleration. 目標加速度の抑制について説明する図の一例である。It is an example of the figure explaining suppression of target acceleration. 割り込みする他車両Cの挙動に対する、車間制御ECUの制御例を説明する図の一例である。It is an example of the figure explaining the control example of inter-vehicle control ECU with respect to the behavior of the other vehicle C to interrupt. 割込みと離脱が生じうる別の車両状況について説明する図の一例である。It is an example of the figure explaining another vehicle situation where interruption and secession may arise. 割込みと離脱が生じうる別の車両状況について説明する図の一例である。It is an example of the figure explaining another vehicle situation where interruption and secession may arise. 従来技術の技術を説明する図の一例である。It is an example of the figure explaining the technique of a prior art.

以下、本発明を実施するための形態について図面を参照しながら説明する。しかしながら、本発明の技術的範囲が、本実施の形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to this embodiment.

図1を用いて、本実施形態の車間距離制御装置の概略的な特徴について説明する。車間距離制御装置は、他車両Cが自車両前方に割り込んできた場合、先行車両Bと他車両Cの車間時間Tbcを用いて加速が必要か否かを判定する。
Tbc=(Db−Dc)/(Vb−Vc) …(1)
Db:自車両Aと先行車両Bとの距離
Dc:自車両Aと他車両Cとの距離
車間時間Tbcが閾値以上であれば、他車両Cがすぐに離脱する可能性が低いと推定できる。また、自車両Aが加速した後に他車両Cが離脱しても、自車両Aから先行車両Bまでの距離(車間時間)も長いと推定でき、先行車両Bに追従走行するための減速度も比較的緩やかになると期待できる。このため、車間時間Tbcが閾値より大きければ、他車両Cに対し従来の車間距離を行う。
A schematic feature of the inter-vehicle distance control apparatus according to the present embodiment will be described with reference to FIG. The inter-vehicle distance control device determines whether or not acceleration is necessary using the inter-vehicle time Tbc between the preceding vehicle B and the other vehicle C when the other vehicle C has interrupted in front of the host vehicle.
Tbc = (Db−Dc) / (Vb−Vc) (1)
Db: Distance between the host vehicle A and the preceding vehicle B Dc: Distance between the host vehicle A and the other vehicle C If the inter-vehicle time Tbc is equal to or greater than the threshold value, it can be estimated that the other vehicle C is unlikely to leave immediately. Further, even if the other vehicle C leaves after the host vehicle A accelerates, it can be estimated that the distance (inter-vehicle time) from the host vehicle A to the preceding vehicle B is long, and the deceleration for traveling following the preceding vehicle B is also possible. It can be expected to be relatively moderate. For this reason, if the inter-vehicle time Tbc is larger than the threshold value, the conventional inter-vehicle distance is performed for the other vehicle C.

これに対し、車間時間Tbcが閾値未満であれば、他車両Cがすぐに離脱する可能性が高いと推定できる。また、自車両Aが加速した後に他車両Cが離脱すると、自車両Aから先行車両Bまでの距離(車間時間)も短いと推定でき、先行車両Bに追従走行するための減速度も比較的大きいと考えられる。そこで、車間時間Tbcが閾値未満の場合、車間距離制御装置は目標加速度を抑制する。これにより、他車両Cに追従走行しても、自車両Aの車速が上昇しにくくなり、離脱後の減速を抑制できる。   On the other hand, if the inter-vehicle time Tbc is less than the threshold value, it can be estimated that there is a high possibility that the other vehicle C will immediately leave. Further, when the other vehicle C leaves after the host vehicle A accelerates, it can be estimated that the distance (inter-vehicle time) from the host vehicle A to the preceding vehicle B is short, and the deceleration for traveling following the preceding vehicle B is relatively high. It is considered large. Therefore, when the inter-vehicle time Tbc is less than the threshold, the inter-vehicle distance control device suppresses the target acceleration. As a result, even if the vehicle follows the other vehicle C, the vehicle speed of the host vehicle A becomes difficult to increase, and deceleration after leaving can be suppressed.

したがって、車間時間Tbcを閾値と比較して加速度を低減することで、割り込んだ他車両Cが、自車両Aに対し同じレーンを遠ざかる方向に移動する場合に不要制御を抑制することができる。つまり、加減速制御の変更の必要性を判断できる。   Therefore, by comparing the inter-vehicle time Tbc with the threshold value and reducing the acceleration, unnecessary control can be suppressed when the interrupted other vehicle C moves in the direction away from the own vehicle A in the same lane. That is, the necessity for changing the acceleration / deceleration control can be determined.

また、車間時間Tbcが閾値未満の場合に目標加速度をゼロに制限すれば、自車両Aは加速しないので、不要制御をさらに抑制することができる。つまり、加減速制御の必要性を判断できる。   Further, if the target acceleration is limited to zero when the inter-vehicle time Tbc is less than the threshold value, the host vehicle A does not accelerate, so unnecessary control can be further suppressed. That is, the necessity for acceleration / deceleration control can be determined.

〔構成例〕
図2は、車間距離制御装置の概略構成図の一例である。車間距離制御装置100の一般的な車間距離制御は以下のようになる。なお、車間距離制御装置100はACC(Adaptive Cruise Control)と呼ばれる場合がある。また、本実施形態では車間距離制御という用語と追従走行という用語を特に区別せずに使用している。
I.レーダ等で先行車両を検出する。先行車両が検出されている場合は、レーダで検出した先行車両との距離が車速に応じた目標車間距離となるように追従走行する。
II.先行車両が検出されなくなった場合、運転者がセットした車速で定速走行する。
[Configuration example]
FIG. 2 is an example of a schematic configuration diagram of the inter-vehicle distance control device. The general inter-vehicle distance control of the inter-vehicle distance control device 100 is as follows. The inter-vehicle distance control device 100 may be called ACC (Adaptive Cruise Control). Further, in the present embodiment, the term “inter-vehicle distance control” and the term “following traveling” are used without any particular distinction.
I. A leading vehicle is detected by a radar or the like. When the preceding vehicle is detected, the vehicle travels so that the distance from the preceding vehicle detected by the radar becomes the target inter-vehicle distance corresponding to the vehicle speed.
II. When the preceding vehicle is no longer detected, the vehicle travels at a constant speed at the vehicle speed set by the driver.

また、I、IIの制御を、低速域から停止時にかけて可能とした車間距離制御装置100を「全車速域定速走行・車間距離制御装置(又は全車速ACC)」と称する場合がある。   Further, the inter-vehicle distance control device 100 that enables the control of I and II from the low speed range to the stop time may be referred to as “full vehicle speed range constant speed travel / inter-vehicle distance control device (or full vehicle speed ACC)”.

全車速域定速走行・車間距離制御装置は、以下のような機能をさらに備える。
III.先行車両が停止した場合、適正な車間距離を維持して停車する。
IV.先行車両が走行を再開した場合、車速に応じた車間距離を維持しながら追従走行を開始する。
The full vehicle speed range constant speed travel / inter-vehicle distance control device further includes the following functions.
III. When the preceding vehicle stops, the vehicle is stopped while maintaining an appropriate inter-vehicle distance.
IV. When the preceding vehicle resumes traveling, the following traveling is started while maintaining the inter-vehicle distance corresponding to the vehicle speed.

本実施形態の車間距離制御装置100は低速域においても上記の制御が可能である。したがって、ACCと全車速ACCの区別なしに、以下で説明する不要減速の低減が可能である。   The inter-vehicle distance control device 100 of the present embodiment can perform the above control even in a low speed range. Therefore, unnecessary deceleration described below can be reduced without distinguishing between ACC and full vehicle speed ACC.

車間距離制御は車間制御ECU(Electronic Control Unit)13が、センサ部12、エンジンECU14、及び、スキッド制御ECU15等と協働することで行われる。センサ部12、車間制御ECU13、エンジンECU14、及び、スキッド制御ECU15はCAN(Controller Area Network)などの車載ネットワーク又は専用線を介して通信可能に接続されている。車間制御ECU13にはクルーズコントロールスイッチ11、エンジンECU14にはトランスミッション16、スロットルモータ17、スロットルポジションセンサ18、スキッド制御ECU15には車輪速センサ19とブレーキACT(アクチュエータ)20がそれぞれシリアル通信などの専用線で接続されている。   The inter-vehicle distance control is performed by the inter-vehicle control ECU (Electronic Control Unit) 13 cooperating with the sensor unit 12, the engine ECU 14, the skid control ECU 15, and the like. The sensor unit 12, the inter-vehicle control ECU 13, the engine ECU 14, and the skid control ECU 15 are communicably connected via an in-vehicle network such as a CAN (Controller Area Network) or a dedicated line. The inter-vehicle control ECU 13 has a cruise control switch 11, the engine ECU 14 has a transmission 16, a throttle motor 17, a throttle position sensor 18, and the skid control ECU 15 has a wheel speed sensor 19 and a brake ACT (actuator) 20, which are dedicated lines such as serial communication. Connected with.

各ECUはマイコン、電源、ワイヤーハーネスのインタフェースなどを搭載した情報処理装置である。マイコンは、CPU、ROM、RAM、不揮発メモリ、I/O、及び、CAN通信装置等を備えた公知の構成を有する。図示されている各ECUと各ECUが有する機能の対応は固定ではなく、例えばエンジンECU14が車間制御ECU13の機能を備えることなども可能であり、図示する構成は一例に過ぎない。   Each ECU is an information processing device equipped with a microcomputer, a power source, a wire harness interface, and the like. The microcomputer has a known configuration including a CPU, a ROM, a RAM, a nonvolatile memory, an I / O, a CAN communication device, and the like. The correspondence between the ECUs and the functions of the ECUs is not fixed. For example, the engine ECU 14 can have the functions of the inter-vehicle control ECU 13, and the illustrated configuration is merely an example.

センサ部12は、レーダセンサ21とカメラセンサ22を有している。いずれも少なくとも先行車両との距離を検出することが可能であり、少なくとも一方を有していればよい。レーダセンサ21は、車両のフロントグリルなど車両の前方の中央部に配置され、車両の前方を中心に所定の角度(例えば、正面を中心に左右10度)にミリ波を出射し、この範囲に存在する物体により反射したミリ波を受信する。レーダセンサ21は、例えばFMCW(Frequency Modulated Continuous Wave)レーダやパルスレーダである。レーダセンサ21は、送信信号と受信信号をミキサーでミキシングすることで、受信アンテナ毎にビート信号を生成する。送信信号が送信されてから受信信号が受信されるまでの時間は対象物との距離に比例し、またビート信号の周波数は相対速度によりシフトする。よって、ビート信号を例えばFFT解析することで距離及び相対速度(=Vb−Va。距離が長くなる相対速度が正、接近する相対速度が負)が得られる。また、レーダセンサ21は、MUSIC(Multiple Signal Classification)解析やDBF(Digital Beam Forming)処理により障害物の横位置x(方位θ)を検出することも可能である。   The sensor unit 12 includes a radar sensor 21 and a camera sensor 22. In any case, it is possible to detect at least the distance from the preceding vehicle, and it is sufficient to have at least one of them. The radar sensor 21 is disposed at the center of the front of the vehicle such as the front grille of the vehicle, and emits millimeter waves at a predetermined angle (for example, 10 degrees left and right with the front as the center). Receives millimeter waves reflected by an existing object. The radar sensor 21 is, for example, an FMCW (Frequency Modulated Continuous Wave) radar or a pulse radar. The radar sensor 21 generates a beat signal for each reception antenna by mixing the transmission signal and the reception signal with a mixer. The time from when the transmission signal is transmitted until the reception signal is received is proportional to the distance to the object, and the frequency of the beat signal is shifted by the relative speed. Therefore, the distance and relative speed (= Vb−Va. The relative speed at which the distance becomes longer is positive and the relative speed at which the distance approaches is negative) can be obtained by, for example, FFT analysis of the beat signal. The radar sensor 21 can also detect the lateral position x (azimuth θ) of the obstacle by MUSIC (Multiple Signal Classification) analysis or DBF (Digital Beam Forming) processing.

カメラセンサ22は、単眼カメラでもステレオカメラでもよいが、好ましくはステレオカメラである。カメラセンサ22は、例えば、光軸を車両前方に向けてルームミラーに配置される。ステレオカメラの場合、予め用意されているキャリブレーションデータを用いて各カメラが撮像したフレーム(画像データ)にレンズ歪み、光軸ずれ、焦点距離ずれ及び撮像素子歪み等を取り除く前処理を行う。これにより2つのカメラのフレームは視差に相当する違いのみを有するようになる。ステレオカメラは、左右の画像データの相関をブロックマッチングなどの手法により評価して、同一の対象物が撮影された画素に生じている視差やレンズの焦点距離fなどを用いて、画素毎に距離情報を算出する。   The camera sensor 22 may be a monocular camera or a stereo camera, but is preferably a stereo camera. For example, the camera sensor 22 is arranged on the rearview mirror with the optical axis facing the front of the vehicle. In the case of a stereo camera, pre-processing is performed to remove lens distortion, optical axis deviation, focal length deviation, imaging element distortion, and the like on frames (image data) captured by each camera using calibration data prepared in advance. As a result, the frames of the two cameras have only a difference corresponding to parallax. The stereo camera evaluates the correlation between the left and right image data by a method such as block matching, and uses the parallax generated in the pixel where the same object is photographed, the focal length f of the lens, and the like for each pixel. Calculate information.

単眼カメラの場合、周期的に撮影される複数の画像データにオプティカルフロー処理を施し、同じ撮影物の移動量を監視して、距離情報を推定する。   In the case of a monocular camera, optical flow processing is performed on a plurality of periodically captured image data, the amount of movement of the same object is monitored, and distance information is estimated.

また、距離情報を得た後又は距離情報を得る前に、カメラセンサ22はHOG(Histograms of Oriented Gradients)、Joint HOG、CPF(Co-occurrence Probability Features)、CoHOG (Co-occurrence Histograms of Oriented Gradients)、などの手法で先行車両を認識する。先行車両として認識された画素の距離情報により、先行車両との距離を特定できる。カメラセンサ22は、1秒間に所定数(30〜60個)の画像を撮影することを繰り返すので、フレーム毎に先行車両の距離が得られる。したがって、フレーム間の距離Lの変化などから相対速度Vが得られる。また、先行車両の横位置(車幅方向の中央)は認識結果から明らかになっている。   In addition, after obtaining the distance information or before obtaining the distance information, the camera sensor 22 has HOG (Histograms of Oriented Gradients), Joint HOG, CPF (Co-occurrence Probability Features), CoHOG (Co-occurrence Histograms of Oriented Gradients). The preceding vehicle is recognized by a method such as. The distance to the preceding vehicle can be specified from the distance information of the pixels recognized as the preceding vehicle. Since the camera sensor 22 repeatedly captures a predetermined number (30 to 60) of images per second, the distance of the preceding vehicle can be obtained for each frame. Therefore, the relative speed V is obtained from a change in the distance L between the frames. Further, the lateral position of the preceding vehicle (the center in the vehicle width direction) is made clear from the recognition result.

このように、レーダセンサ21とカメラセンサ22は同等の情報を得られる。センサ部12は、周期的に物標の距離、相対速度、及び、横位置(以下、物標情報という)を車間制御ECU13に送信する。   Thus, the radar sensor 21 and the camera sensor 22 can obtain equivalent information. The sensor unit 12 periodically transmits the target distance, relative speed, and lateral position (hereinafter referred to as target information) to the inter-vehicle distance control ECU 13.

車間制御ECU13は、センサ部12から送信される物標情報、現在の車速及び加速度等、に基づき、目標加速度(要求駆動力)をエンジンECU14やスキッド制御ECU15に送信する。目標加速度は正値又は負値であり、正値であればエンジンECU14が加速制御し、負値であり制動が必要な目標加速度であればスキッド制御ECU15がブレーキACT20を制御して減速する。   The inter-vehicle control ECU 13 transmits the target acceleration (required driving force) to the engine ECU 14 and the skid control ECU 15 based on the target information transmitted from the sensor unit 12, the current vehicle speed, acceleration, and the like. The target acceleration is a positive value or a negative value. If the target acceleration is a positive value, the engine ECU 14 performs acceleration control. If the target acceleration is a negative value and requires braking, the skid control ECU 15 controls the brake ACT 20 to decelerate.

クルーズコントロールスイッチ11は、車間距離制御装置100について運転者の操作を受け付け車間制御ECU13に通知する。例えば、以下のような操作が可能である。
(i) 車間距離制御のON/OFF
(ii) 車間距離制御モードと定速制御モードの切り換え
(iii) 減速、加速及び定速走行用の車速のセット
(iv) 車間距離の設定(例えば、長・中・短の3種類から選択でき、長・中・短のそれぞれで車速に応じて車間距離が決定される)
本実施形態では車間距離制御モードで動作するものとし、先行車両が検出(捕捉)されない場合は車間距離制御モードのまま定速走行用の車速で車両が定速走行する。
The cruise control switch 11 accepts a driver's operation for the inter-vehicle distance control device 100 and notifies the inter-vehicle control ECU 13. For example, the following operations are possible.
(i) Inter-vehicle distance control ON / OFF
(ii) Switching between inter-vehicle distance control mode and constant speed control mode
(iii) Set the vehicle speed for deceleration, acceleration and constant speed driving
(iv) Setting the inter-vehicle distance (For example, you can select from three types: long, medium, and short, and the inter-vehicle distance is determined according to the vehicle speed for each of long, medium, and short)
In this embodiment, it is assumed that the vehicle operates in the inter-vehicle distance control mode, and when the preceding vehicle is not detected (captured), the vehicle travels at a constant speed with the vehicle speed for constant speed travel in the inter-vehicle distance control mode.

エンジンECU14は、スロットルポジションセンサ18が検出するスロットル開度を監視しながらスロットルモータ17を制御する。後述するような手順で目標加速度を決定し、例えば、以下の式からスロットル開度を決定する。
MAn=MAn-1 + G × Ddn × Tsk
dn=(Atn−ΔVn
MAn:今回スロットル開度
MAn-1:前回スロットル開度
G:制御ゲイン
sk:スキップ時間
Atn:目標加速度
ΔVn:車両加速度(実加速度)
dn:現在加速度偏差
また、エンジンECU14は車速とスロットル開度に対して定められているシフトアップ線とシフトダウン線に基づき変速段の切り換えの必要性を判断し、必要であればトランスミッション16に変速段を指示する。トランスミッション16は、AT(オートマチックトランスミッション)又はCVT(Continuously Variable Transmission)など、どのような機構でもよい。
The engine ECU 14 controls the throttle motor 17 while monitoring the throttle opening detected by the throttle position sensor 18. The target acceleration is determined by a procedure as will be described later. For example, the throttle opening is determined from the following equation.
MA n = MA n-1 + G × D dn × T sk
D dn = (At n −ΔV n )
MA n : current throttle opening MA n-1 : previous throttle opening G: control gain T sk : skip time At n : target acceleration ΔV n : vehicle acceleration (actual acceleration)
D dn : current acceleration deviation Further, the engine ECU 14 determines the necessity of switching of the gear position based on the up-shift line and the down-shift line determined for the vehicle speed and the throttle opening, and if necessary, sends it to the transmission 16. Indicates the gear position. The transmission 16 may be any mechanism such as AT (automatic transmission) or CVT (Continuously Variable Transmission).

スキッド制御ECU15は、ブレーキACT20のバルブの開閉及び開度を制御することで車両を制動する。ブレーキACT20はポンプが作動流体に発生させた油圧により各輪のホイルシリンダ圧を増圧・維持・減圧することで、車両の加速度(減速度)を制御する。   The skid control ECU 15 brakes the vehicle by controlling the opening / closing and opening of the valve of the brake ACT20. The brake ACT 20 controls the acceleration (deceleration) of the vehicle by increasing, maintaining and reducing the wheel cylinder pressure of each wheel by the hydraulic pressure generated by the pump in the working fluid.

〔車間距離制御〕
図3は、車間距離制御の概略的な手順を示すフローチャート図の一例である。車間制御ECU13は、クルーズコントロールスイッチ11がONの間、周期的に図3の処理を繰り返す。
S10:車間制御ECU13は、センサ部12から先行車両との距離と相対速度を、車輪速センサ19から自車両の車速をそれぞれ取得する。
S20:車間制御ECU13は、運転者が設定した車間距離の設定(長・中・短)と現在の車速から目標車間距離を決定する。
S30:車間制御ECU13は、目標車間距離を現在の車速で除算することで目標車間時間を算出し、現在の先行車両との距離を車速で除算することで車間時間を算出する。目標車間時間は目標車間距離を現在の車速で移動した場合に先行車両に到達するために必要な時間である。車間時間は現在の距離を現在車速で移動した場合に先行車両に到達するために必要な時間である。
S40:車間制御ECU13は、目標車間時間から車間時間を減じて車間時間偏差を算出する。車間時間偏差が正値の場合、目標車間距離に対し車間距離が短く、負値の場合、目標車間距離に対し車間距離が長いことになる。
S50:車間制御ECU13は、相対速度と車間時間偏差を演算して、目標加速度を算出する。相対速度が正値の場合、先行車両が遠ざかっているので自車両を加速すべきであり、相対速度が負値の場合、先行車両が近づいてくるので自車両を減速すべきである。車間時間偏差が正値の場合、目標車間距離に対し現在の距離が短いので、車両を減速すべきであり、車間時間偏差が負値の場合、目標車間距離に対し現在の距離が長いので、車両を加速すべきである。したがって、適切な係数(ゲイン)を相対速度と車間時間偏差にそれぞれ乗じて符号を逆にして加算すれば、目標加速度が得られる。
目標加速度=−K1×相対速度+K2×車間時間偏差
なお、相対速度や車間時間偏差の他、相対速度の微分値や車間時間偏差の微分値などから目標加速度を決定してもよく、目標加速度の決定方法は一例である。
S60:車間制御ECU13は目標加速度から現在の加速度を減じることで加速度偏差を算出する。加速度偏差からエンジンECU14とスキッド制御ECU15に指示する要求駆動力を決定する。
(Vehicle distance control)
FIG. 3 is an example of a flowchart showing a schematic procedure of inter-vehicle distance control. The inter-vehicle control ECU 13 periodically repeats the process of FIG. 3 while the cruise control switch 11 is ON.
S10: The inter-vehicle distance control ECU 13 acquires the distance and relative speed from the preceding vehicle from the sensor unit 12, and the vehicle speed of the host vehicle from the wheel speed sensor 19, respectively.
S20: The inter-vehicle control ECU 13 determines the target inter-vehicle distance from the setting (long / medium / short) of the inter-vehicle distance set by the driver and the current vehicle speed.
S30: The inter-vehicle control ECU 13 calculates the target inter-vehicle time by dividing the target inter-vehicle distance by the current vehicle speed, and calculates the inter-vehicle time by dividing the current distance from the preceding vehicle by the vehicle speed. The target inter-vehicle time is the time required to reach the preceding vehicle when the target inter-vehicle distance is moved at the current vehicle speed. The inter-vehicle time is the time required to reach the preceding vehicle when moving the current distance at the current vehicle speed.
S40: The inter-vehicle control ECU 13 calculates the inter-vehicle time deviation by subtracting the inter-vehicle time from the target inter-vehicle time. When the inter-vehicle time deviation is positive, the inter-vehicle distance is short with respect to the target inter-vehicle distance, and when negative, the inter-vehicle distance is long with respect to the target inter-vehicle distance.
S50: The inter-vehicle control ECU 13 calculates a target acceleration by calculating a relative speed and an inter-vehicle time deviation. When the relative speed is positive, the preceding vehicle is moving away, so the own vehicle should be accelerated. When the relative speed is negative, the preceding vehicle is approaching, and the own vehicle should be decelerated. If the inter-vehicle time deviation is positive, the current distance is short relative to the target inter-vehicle distance, so the vehicle should be decelerated.If the inter-vehicle time deviation is negative, the current distance is long relative to the target inter-vehicle distance. The vehicle should be accelerated. Therefore, the target acceleration can be obtained by multiplying an appropriate coefficient (gain) by the relative speed and the inter-vehicle time deviation and adding them with the signs reversed.
Target acceleration = -K1 x relative speed + K2 x inter-vehicle time deviation In addition to the relative speed and inter-vehicle time deviation, the target acceleration may be determined from the differential value of the relative speed or the differential value of the inter-vehicle time deviation. The determination method is an example.
S60: The inter-vehicle control ECU 13 calculates the acceleration deviation by subtracting the current acceleration from the target acceleration. The required driving force instructed to the engine ECU 14 and the skid control ECU 15 is determined from the acceleration deviation.

〔目標加速度の抑制〕
図4は、本実施形態の車間制御ECU13の機能ブロック図の一例を、図5は目標加速度を抑制する手順を示すフローチャート図の一例である。速度判定部32は自車両Aの車速Vaと先行車両Bの車速Vbが同定度か否かを判定する。車間時間算出部33は上式(1)から車間時間Tbcを算出する。加速度抑制判定部34は、車間時間Tbcと閾値を比較して目標加速度を抑制するか否かを判定する。目標加速度演算部31は例えば図3の手順で目標加速度を演算し、目標加速度を抑制するよう指示された場合は目標加速度を抑制する。詳細は後述する。
[Control of target acceleration]
FIG. 4 is an example of a functional block diagram of the inter-vehicle control ECU 13 of the present embodiment, and FIG. 5 is an example of a flowchart showing a procedure for suppressing the target acceleration. The speed determination unit 32 determines whether or not the vehicle speed Va of the host vehicle A and the vehicle speed Vb of the preceding vehicle B are in the degree of identification. The inter-vehicle time calculation unit 33 calculates the inter-vehicle time Tbc from the above equation (1). The acceleration suppression determination unit 34 determines whether to suppress the target acceleration by comparing the inter-vehicle time Tbc with a threshold value. The target acceleration calculation unit 31 calculates the target acceleration, for example, according to the procedure of FIG. 3, and suppresses the target acceleration when instructed to suppress the target acceleration. Details will be described later.

図5の手順は、他車両Cが割り込んでくる場合に有効な処理を示しており、自車両Aが先行車両以外の他車両Cを捕捉し、他車両Cが割り込んだ場合または割り込んでくることが予測される場合に実行される。予測される場合とは、例えば、他車両Cの横位置が所定値以上の速度で自車レーンに移動している場合、他車両Cの横位置が自車レーンに達した場合、又は、他車両Cのウィンカランプが点滅した場合などである。   The procedure of FIG. 5 shows processing that is effective when another vehicle C interrupts, and the own vehicle A captures another vehicle C other than the preceding vehicle and the other vehicle C interrupts or interrupts. It is executed when is predicted. The predicted case is, for example, when the lateral position of the other vehicle C is moving to the own vehicle lane at a speed equal to or higher than a predetermined value, when the lateral position of the other vehicle C reaches the own vehicle lane, or other For example, the blinker lamp of the vehicle C flashes.

目標加速度演算部31は上記に一例として示した方法や他の方法で、他車両Cに対する目標加速度を演算する(S1)。   The target acceleration calculation unit 31 calculates the target acceleration for the other vehicle C by the method described above as an example or other methods (S1).

次に、速度判定部32は、自車両Aの車速Vaと先行車両Bの車速Vbが近いか否かを判定する(S2)。車速Vaと先行車両の車速Vbが近いとは、例えば差が数〔km/h〕以内など、同一視できる程度の差しかないこと、換言すると先行車両Bに追従走行していると確定してよい状態をいう。先行車両Bに追従走行していなければ、他車両Cに追従して加速したが他車両Cが離脱した後に、自車両Aが減速しない可能性がある。   Next, the speed determination unit 32 determines whether or not the vehicle speed Va of the host vehicle A and the vehicle speed Vb of the preceding vehicle B are close (S2). The vehicle speed Va and the vehicle speed Vb of the preceding vehicle are close, for example, it may be determined that the difference is within a few [km / h], for example, that there is no difference that can be identified, in other words, that the vehicle is following the preceding vehicle B. State. If the vehicle has not followed the preceding vehicle B, the vehicle has accelerated following the other vehicle C, but the host vehicle A may not decelerate after the other vehicle C leaves.

車速Vaと車速Vbが近くない場合(S2のNo)、車間制御ECU13はステップS1で算出された目標加速度で車両を制御する(S6)。したがって、S2の判定により目標加速度を過剰に抑制することを防止できる。   When the vehicle speed Va and the vehicle speed Vb are not close (No in S2), the inter-vehicle control ECU 13 controls the vehicle with the target acceleration calculated in step S1 (S6). Therefore, it is possible to prevent the target acceleration from being excessively suppressed by the determination in S2.

車速Vaと車速Vbが近い場合(S2のYes)、車間時間算出部33は他車両Cが先行車両Bに到達するまでの車間時間Tbcを算出する(S3)。   When the vehicle speed Va and the vehicle speed Vb are close (Yes in S2), the inter-vehicle time calculation unit 33 calculates the inter-vehicle time Tbc until the other vehicle C reaches the preceding vehicle B (S3).

車間時間Tbcが小さいことは割り込んだ他車両Cが短時間に先行車両Bに接近する可能性があるので、他車両Cの運転者がすぐに離脱するおそれがあると推定できる。このため、加速度抑制判定部34は、車間時間Tbcが閾値未満か否かを判定する(S4)。閾値は例えば数秒などの固定値又は自車両の車速に応じた可変値である。   If the inter-vehicle time Tbc is small, the interrupted other vehicle C may approach the preceding vehicle B in a short time, so it can be estimated that the driver of the other vehicle C may immediately leave. For this reason, the acceleration suppression determination part 34 determines whether the inter-vehicle time Tbc is less than a threshold value (S4). The threshold value is, for example, a fixed value such as several seconds or a variable value corresponding to the vehicle speed of the host vehicle.

車間時間Tbcが閾値未満でない場合(S4のNo)、車間制御ECU13はステップS1で算出された目標加速度で車両を制御する(S6)。他車両Cが割り込んだと判定された後、車速の関係としてVc>Va、Va>Vc、及び、Vc=Vaの場合があるが、Vc>Vaであれば加速され、Va>Vcであれば減速され、Vc=Vaの場合は先行車両Bを捕捉していた場合よりも車間距離が短くなる分、減速される。いずれの場合も目標加速度は抑制されていないので、車間制御ECUは速やかに他車両Cとの車間距離を適切に維持するようになる。   If the inter-vehicle time Tbc is not less than the threshold value (No in S4), the inter-vehicle control ECU 13 controls the vehicle with the target acceleration calculated in step S1 (S6). After it is determined that the other vehicle C has interrupted, there are cases where Vc> Va, Va> Vc, and Vc = Va as the vehicle speed relationship, but if Vc> Va, the vehicle is accelerated, and if Va> Vc. When Vc = Va, the vehicle is decelerated as much as the inter-vehicle distance is shorter than when the preceding vehicle B is captured. In any case, since the target acceleration is not suppressed, the inter-vehicle control ECU promptly maintains the inter-vehicle distance from the other vehicle C appropriately.

車間時間Tbcが閾値未満の場合(S4のYes)、加速度抑制判定部34は目標加速度演算部31に目標加速度を抑制させる(S5)。   When the inter-vehicle time Tbc is less than the threshold (Yes in S4), the acceleration suppression determination unit 34 causes the target acceleration calculation unit 31 to suppress the target acceleration (S5).

目標加速度演算部31が目標加速度を抑制することで、自車両Aと先行車両Bとの間に割り込んですぐ離脱する可能性がある他車両Cに対し、車間距離を維持するように加速する際の目標加速度を抑制できる。他車両Cが離脱した場合に、先行車両Bの車速が一定であると仮定して、車間距離制御のために減速する必要性を低減したり、減速が必要でも車間距離制御のために必要な減速度を低減できる。   When the target acceleration calculation unit 31 suppresses the target acceleration and accelerates the other vehicle C, which may break between the host vehicle A and the preceding vehicle B and may immediately leave, to maintain the inter-vehicle distance. The target acceleration can be suppressed. Assuming that the vehicle speed of the preceding vehicle B is constant when the other vehicle C leaves, the necessity of decelerating for the inter-vehicle distance control is reduced, or even if decelerating is necessary, it is necessary for the inter-vehicle distance control. Deceleration can be reduced.

図6は、目標加速度の抑制について説明する図の一例である。目標加速度を抑制することを、例えば目標加速度に「1/制限係数」を乗じることで表す。但し、「制限係数>1」である。
抑制された目標加速度=目標加速度/制限係数
図6(a)では一定の比率で目標加速度を抑制する場合の制限係数を示している。目標加速度の抑制は、他車両Cが離脱するか又は目標加速度の抑制が不要になるまで行えばよい。目標加速度の抑制が不要になるのは、他車両Cが先行車両Bに近づき減速した場合や割込み後に所定時間が経過した場合である。他車両Cが先行車両Bに近づき減速した場合は、車速Vc>Vbでなくなるので離脱しない場合と同一視できる。割込み後に所定時間が経過した場合は、他車両Cが徐々に減速して車速Vc>Vbでなくなった場合や他車両Cが離脱しても検知しなかったことなどが考えられる。
FIG. 6 is an example of a diagram illustrating suppression of target acceleration. The suppression of the target acceleration is expressed by, for example, multiplying the target acceleration by “1 / limitation coefficient”. However, “restriction coefficient> 1”.
Suppressed target acceleration = target acceleration / limitation coefficient FIG. 6A shows a limit coefficient when the target acceleration is suppressed at a constant ratio. The suppression of the target acceleration may be performed until the other vehicle C leaves or the suppression of the target acceleration is unnecessary. The suppression of the target acceleration is not necessary when the other vehicle C approaches the preceding vehicle B and decelerates or when a predetermined time has elapsed after interruption. When the other vehicle C approaches the preceding vehicle B and decelerates, the vehicle speed Vc> Vb is not satisfied, so that it can be regarded as the case where the vehicle does not leave. When the predetermined time has elapsed after the interruption, it is conceivable that the other vehicle C gradually decelerates and the vehicle speed Vc> Vb is not satisfied, or that no detection is made even when the other vehicle C leaves.

上記の所定時間は、以下のように設定される。他車両Cが先行車両Bに近づき減速することは、車間時間Tbcよりも短い時間内に生じると考えられる。よって、所定時間は車間時間Tbcの50%〜90%などである。図6ではこの時間を抑制時間としている。抑制時間が経過した場合は離脱しないと判定してよいので、他車両Cに対し通常の目標加速度で追従走行してよい。   The predetermined time is set as follows. The other vehicle C approaching the preceding vehicle B and decelerating is considered to occur within a time shorter than the inter-vehicle time Tbc. Therefore, the predetermined time is 50% to 90% of the inter-vehicle time Tbc. In FIG. 6, this time is set as the suppression time. Since it may be determined that the vehicle does not leave when the suppression time has elapsed, the vehicle C may follow the other vehicle C at a normal target acceleration.

このように、車間制御ECU13は他車両Cが離脱するか、目標加速度の抑制が不要になると目標加速度の抑制を終了する。目標加速度の抑制を終了することで、先行車両B又は他車両Cとの車間距離を速やかに目標車間距離に維持できるようになる。   Thus, the inter-vehicle control ECU 13 ends the suppression of the target acceleration when the other vehicle C leaves or the suppression of the target acceleration is not necessary. By terminating the suppression of the target acceleration, the inter-vehicle distance from the preceding vehicle B or the other vehicle C can be quickly maintained at the target inter-vehicle distance.

また、どの程度、抑制するかは実験的に最適な値とすることができる。図では制限係数が1.2〜3(目標加速度は0.33〜0.83程度に抑制される)となっているがあくまで一例である。また、制限係数は自車両の車速Vaに応じて可変としてもよい。例えば、自車両の車速が大きいほど制限係数を大きくすることで、割込み・離脱が生じた際に高速域だった場合の加減速を低減しやすい。   Further, the degree of suppression can be set to an optimal value experimentally. In the figure, the limiting coefficient is 1.2 to 3 (the target acceleration is suppressed to about 0.33 to 0.83), but this is merely an example. Further, the limiting coefficient may be variable according to the vehicle speed Va of the host vehicle. For example, by increasing the limiting coefficient as the vehicle speed of the host vehicle increases, it is easy to reduce acceleration / deceleration in the high speed range when an interruption or departure occurs.

また、目標加速度の抑制には、目標加速度をゼロに設定することを含めてよい(制限係数が無限大となることに相当する)。この場合、車間制御ECU13が目標加速度を制限している間、自車両Aは定速走行する。目標加速度がゼロの間に、他車両Cが離脱すれば、車速Vb=Vaのまま先行車両Bへの追従走行を開始できる。また、目標加速度がゼロの間に他車両Cが離脱しなくても、他車両Cが減速するので抑制時間が経過した時には、自車両Aは車速Vc=Vbの他車両Cに追従走行する。よって、車速Vc=Vaの状態から先行車両Bへの追従走行を開始できる。したがって、目標加速度をゼロに設定することで、目標加速度をゼロより大きい値に抑制するよりも減速量を低減できる。   Further, the suppression of the target acceleration may include setting the target acceleration to zero (corresponding to the limit coefficient being infinite). In this case, the own vehicle A travels at a constant speed while the inter-vehicle control ECU 13 limits the target acceleration. If the other vehicle C leaves while the target acceleration is zero, the follow-up traveling to the preceding vehicle B can be started with the vehicle speed Vb = Va. Even if the other vehicle C does not leave while the target acceleration is zero, the other vehicle C decelerates. Therefore, when the suppression time has elapsed, the own vehicle A follows the other vehicle C of the vehicle speed Vc = Vb. Therefore, the follow-up traveling to the preceding vehicle B can be started from the state where the vehicle speed Vc = Va. Therefore, by setting the target acceleration to zero, it is possible to reduce the deceleration amount rather than suppressing the target acceleration to a value larger than zero.

図6(b)は時間と共に小さくなる場合の制限係数を示す図の一例である。予め定められた最大値又は車速に応じて決まった最大値から、時間と共に制限係数が小さくなっている。他車両Cが割り込んだ直後は抑制量が大きいため、離脱した場合には、他車両Cが離脱するまでの間の加速を極力低減できる。また、他車両Cが離脱しない場合は、抑制量が徐々に小さくなるので、他車両Cが先行車両Bに近づき減速した場合に目標加速度の抑制量が小さくなっているため、他車両Cとの車間距離を目標車間距離に速やかに制御できるようになる。   FIG. 6B is an example of a diagram showing a limiting coefficient when it decreases with time. The limiting coefficient decreases with time from a predetermined maximum value or a maximum value determined according to the vehicle speed. Immediately after the other vehicle C interrupts, the amount of restraint is large, and when it leaves, the acceleration until the other vehicle C leaves can be reduced as much as possible. In addition, when the other vehicle C does not leave, the amount of suppression is gradually reduced. Therefore, when the other vehicle C approaches the preceding vehicle B and decelerates, the amount of suppression of the target acceleration is small. It becomes possible to quickly control the inter-vehicle distance to the target inter-vehicle distance.

〔車両挙動の例〕
図7(a)〜図7(e)は割り込みする他車両Cの挙動に対する、車間制御ECU13の制御例を説明する図の一例である。
[Examples of vehicle behavior]
FIG. 7A to FIG. 7E are examples illustrating a control example of the inter-vehicle control ECU 13 with respect to the behavior of the other vehicle C to be interrupted.

図7(a)は自車両A、先行車両B、及び、他車両Cの初期位置を示す図である。この状態は、図4のステップS20が想定する状態と近い。   FIG. 7A is a diagram illustrating initial positions of the host vehicle A, the preceding vehicle B, and the other vehicle C. This state is close to the state assumed in step S20 of FIG.

図7(b)は他車両Cが割込みを開始する状況又は割り込みすると判定された状況を示す図である。すでに、他車両Cとの距離、相対速度、横位置などは取得され、車間時間Tbcが算出される。算出された車間時間Tbcは閾値未満か否かが判定される。   FIG. 7B is a diagram illustrating a situation where the other vehicle C starts an interruption or a situation where it is determined to interrupt. Already, the distance to the other vehicle C, the relative speed, the lateral position, etc. are acquired, and the inter-vehicle time Tbc is calculated. It is determined whether or not the calculated inter-vehicle time Tbc is less than a threshold value.

図7(c)は他車両Cが割込んだ直後の状況を示す図である。Vc>Vbであれば、他車両Cは先行車両Bに接近する。自車両Aは、車間時間Tbcが閾値未満であると判定して、目標加速度を抑制する。自車両Aは他車両Cが割り込むか又は割り込むと予測した時点で、目標加速度を抑制したまま、車両Cを先行車両として車間距離制御を開始する。   FIG.7 (c) is a figure which shows the condition immediately after the other vehicle C interrupted. If Vc> Vb, the other vehicle C approaches the preceding vehicle B. The host vehicle A determines that the inter-vehicle time Tbc is less than the threshold, and suppresses the target acceleration. The own vehicle A starts the inter-vehicle distance control with the vehicle C as the preceding vehicle while suppressing the target acceleration at the time when the other vehicle C interrupts or is predicted to interrupt.

図7(d)は図7(c)の後、他車両Cが離脱しない状況を示す図である。Vc>Vbであるが離脱しないので、他車両Cは先行車両Bに接近しすぎ、他車両Cは減速する。減速により、Vcは小さくなりVbに近くなる。   FIG. 7D is a diagram illustrating a situation where the other vehicle C does not leave after FIG. 7C. Since Vc> Vb, but does not leave, the other vehicle C approaches the preceding vehicle B too much, and the other vehicle C decelerates. As a result of deceleration, Vc decreases and approaches Vb.

自車両Aは他車両Cの減速を検出して、他車両Cを先行車両とする車間距離制御において目標加速度の抑制を終了し、抑制されない(通常の)目標加速度の制御を行う。   The own vehicle A detects the deceleration of the other vehicle C, ends the suppression of the target acceleration in the inter-vehicle distance control using the other vehicle C as the preceding vehicle, and controls the target acceleration that is not suppressed (normal).

図7(e)は図7(c)の後、他車両Cが離脱した状況を示す図である。他車両Cが離脱したので、自車両Aは車両Cを先行車両とする車間距離制御及び目標加速度の抑制を終了し、先行車両Bを対象に、抑制されない(通常の)目標加速度にて車間距離制御を行う。   FIG. 7 (e) is a diagram illustrating a situation in which the other vehicle C has left after FIG. 7 (c). Since the other vehicle C has left, the own vehicle A finishes the inter-vehicle distance control and the suppression of the target acceleration with the vehicle C as the preceding vehicle, and the inter-vehicle distance at the uncontrolled (normal) target acceleration for the preceding vehicle B. Take control.

したがって、図7(e)の状況では、自車両Aは他車両Cに接近していないので、先行車両Bを追従走行の対象に切り換えても、不要な減速を抑制できる。   Therefore, in the situation of FIG. 7 (e), the host vehicle A is not approaching the other vehicle C, so that unnecessary deceleration can be suppressed even if the preceding vehicle B is switched to the target of the follow-up travel.

図8は、割込みと離脱が生じうる別の車両状況について説明する図の一例である。
図8(a)は左側のレーンから他車両Cが割り込みして離脱する車両状況を示す図の一例である。これまで説明した例えば図7とは他車両Cの進入方向が左右逆になるのだけなので、車間制御ECU13は同様に目標加速度を抑制できる。
FIG. 8 is an example of a diagram for explaining another vehicle situation in which interruption and separation may occur.
FIG. 8A is an example of a diagram illustrating a vehicle situation in which another vehicle C interrupts and leaves from the left lane. For example, since the approach direction of the other vehicle C is reversed left and right as compared with FIG. 7 described so far, the inter-vehicle control ECU 13 can similarly suppress the target acceleration.

図8(b)は片側三車線の道路において割込みと離脱が生じうる車両状況について説明する図の一例である。自車両Aと先行車両Bは中央のレーンを走行している。他車両Cが割り込んだ場合、左のレーンと右のレーンのどちらにも離脱する可能性がある。このうち右のレーンに離脱する場合は図7等と同じと考えてよい。左のレーンに離脱する場合も、車間制御ECU13は同様に目標加速度を抑制すればよいが、この場合、他車両Cによっては連続して車線変更する場合があるため、一時的にせよ、他車両Cに追従走行する必要性は低い。このため、車両制御ECUは例えば、他車両Cを先行車両とした場合の目標加速度をゼロ(定速走行)に制限し定速走行した後、他車両Cが離脱しない場合に(抑制時間が経過した場合)、追従走行を開始する。これにより、先行車両Bが頻繁に切り替わることによる短時間の加速と減速の繰り替えを抑制できる。図8(c)は図8(b)と左右の関係が逆になった車両状況を示すため、図8(b)と同様に制御すればよい。   FIG. 8B is an example of a diagram for explaining a vehicle situation in which interruption and departure may occur on a three-lane road on one side. The host vehicle A and the preceding vehicle B are traveling in the center lane. When the other vehicle C interrupts, there is a possibility of leaving either the left lane or the right lane. Of these, when leaving the right lane, it may be considered the same as FIG. When leaving the left lane, the inter-vehicle control ECU 13 may similarly suppress the target acceleration, but in this case, depending on the other vehicle C, the lane may be continuously changed. The need to follow C is low. For this reason, for example, the vehicle control ECU restricts the target acceleration when the other vehicle C is the preceding vehicle to zero (constant speed travel), and after traveling at a constant speed, the other vehicle C does not leave (the suppression time has elapsed). Follow-up). As a result, it is possible to suppress repeated short-time acceleration and deceleration due to frequent switching of the preceding vehicle B. FIG. 8C shows a vehicle situation in which the left-right relationship is reversed from FIG. 8B, and therefore, control may be performed in the same manner as in FIG. 8B.

なお、自車両Aにとって、走行中の道路が片側三車線でありその中央のレーンを走行していることは、ナビ情報、白線の認識結果、路車間通信などから特定できる。   For host vehicle A, it can be determined from the navigation information, the recognition result of the white line, road-to-vehicle communication, and the like that the road being traveled is one lane on one side and traveling in the center lane.

図9(a)は、割込みと離脱が生じうる別の車両状況について説明する図の一例である。図9(a)では片側二車線の道路において、他車両Cが自車両Aの前方に割り込んできたが、自車両Aの右側のレーンを車両Bと同程度の車速の他車両Dが走行している。このような車両状況では、他車両Cが離脱する可能性は低いと考えられ、他車両Cは割込み後、短時間に先行車両Bに接近して減速すると考えられる。減速後の車速Vcは先行車両Bの車速Vbと同程度と考えられるので、自車両Aは、他車両Cが割り込んだ直後から他車両Cの車速VcをVbとみなして、追従走行することができる。   FIG. 9A is an example of a diagram for explaining another vehicle situation in which interruption and separation may occur. In FIG. 9A, the other vehicle C has entered the front of the own vehicle A on the one-lane two-lane road, but the other vehicle D travels in the right lane of the own vehicle A at the same speed as the vehicle B. ing. In such a vehicle situation, it is considered that the possibility that the other vehicle C will leave is low, and it is considered that the other vehicle C approaches the preceding vehicle B in a short time after the interruption and decelerates. Since the vehicle speed Vc after deceleration is considered to be approximately the same as the vehicle speed Vb of the preceding vehicle B, the host vehicle A can follow the vehicle speed Vc of the other vehicle C as Vb immediately after the other vehicle C interrupts. it can.

これにより、先行車両Bの車速Vbは同じまま車間距離が短くなったことになるため、他車両Cの車速Vcが先行車両Bの車速Vbより大きくても、加速することなく、車間距離を空けながら(弱い減速により)他車両Cに対し追従走行できる。   As a result, the vehicle speed Vb of the preceding vehicle B remains the same and the inter-vehicle distance is shortened. Therefore, even if the vehicle speed Vc of the other vehicle C is greater than the vehicle speed Vb of the preceding vehicle B, the inter-vehicle distance is increased without acceleration. However, the vehicle can follow the other vehicle C (by weak deceleration).

なお、他車両Cが離脱しないことは(他車両Dが存在していること)は、先行車両Bを捕捉している間に他車両Dが検出されるので、他車両Dの車速を推定できる。   The fact that the other vehicle C does not leave (the presence of the other vehicle D) means that the other vehicle D is detected while the preceding vehicle B is being captured, so that the vehicle speed of the other vehicle D can be estimated. .

同様に、図9(b)では片側三車線の道路において、他車両Cが自車両Aの前方に割り込んできたが、自車両の左側のレーンを車両Bと同程度の車速の他車両Dが走行している。この場合も、他車両Cが離脱する可能性は低いと考えられ、図9(a)と同様に目標加速度を抑制することが有効となる。   Similarly, in FIG. 9B, on the three-lane road on one side, the other vehicle C has interrupted the front of the own vehicle A, but the other vehicle D has a vehicle speed similar to that of the vehicle B on the left lane of the own vehicle. Running. Also in this case, it is considered that the possibility that the other vehicle C will leave is low, and it is effective to suppress the target acceleration as in FIG.

以上説明したように、本実施形態の車間距離制御装置100は、先行車両Bよりも車速が大きい他車両Cが自車両Aの前方に割り込んできた場合、車間時間Tbcを算出し、他車両Cが離脱するか近い将来に減速するか否かを判定できるので、加速制御の変更や加速の必要性を判定できる。   As described above, the inter-vehicle distance control device 100 according to the present embodiment calculates the inter-vehicle time Tbc when the other vehicle C having a higher vehicle speed than the preceding vehicle B has interrupted the front of the host vehicle A, and the other vehicle C Since it can be determined whether or not the vehicle will leave or decelerate in the near future, it is possible to determine whether the acceleration control is changed or the acceleration is necessary.

12 センサ部
13 車間制御ECU
14 エンジンECU
15 スキッド制御ECU
17 スロットルモータ
19 車輪速センサ
20 ブレーキACT
21 レーダセンサ
22 カメラセンサ
31 目標加速度演算部
32 速度判定部
33 車間時間算出部
34 加速度抑制判定部
12 sensor unit 13 inter-vehicle control ECU
14 Engine ECU
15 Skid control ECU
17 Throttle motor 19 Wheel speed sensor 20 Brake ACT
DESCRIPTION OF SYMBOLS 21 Radar sensor 22 Camera sensor 31 Target acceleration calculating part 32 Speed determination part 33 Inter-vehicle time calculation part 34 Acceleration suppression determination part

Claims (5)

自車両前方の先行車を検知して先行車と自車両との車間距離を制御する車間距離制御装置であって、
前記先行車との相対速度及び自車両との距離を検出する車速距離検出手段と、
前記車速距離検出手段が検出した前記相対速度及び前記距離に基づいて、前記先行車との車間距離を目標車間距離に制御するための加速度又は減速度を決定する加減速度決定手段と、
前記加減速度決定手段が決定した前記加速度又は前記減速度で前記先行車に追従走行している状態で、前記先行車と自車両との間に別の先行車が割り込んだ場合、前記先行車と前記別の先行車との間の車間時間を算出する車間時間算出手段と、
前記車間時間が閾値より小さいため前記別の先行車が自車両よりも遠ざかると判断される場合、割り込んだ前記別の先行車との車間距離を目標車間距離に制御するために前記加減速度決定手段が決定する前記加速度を、前記車速距離検出手段が割り込んだ前記別の先行車に対し検出した前記相対速度及び前記距離に基づいて決定される加速度よりも抑制する加減速制御手段と、を有し、
前記加減速制御手段は、前記別の先行車が割り込んだ直後に最も大きく加速度を抑制し、割り込んだ直後から時間と共に加速度の抑制量を低減し、前記車間時間よりも短い一定時間の経過後に加速度を抑制する制御を終了する、ことを特徴とする車間距離制御装置。
An inter-vehicle distance control device that detects a preceding vehicle ahead of the host vehicle and controls a distance between the preceding vehicle and the host vehicle,
Vehicle speed distance detecting means for detecting a relative speed with the preceding vehicle and a distance with the own vehicle;
Acceleration / deceleration determining means for determining acceleration or deceleration for controlling the inter-vehicle distance with the preceding vehicle to the target inter-vehicle distance based on the relative speed and the distance detected by the vehicle speed distance detecting means;
When another preceding vehicle interrupts between the preceding vehicle and the host vehicle in a state of following the preceding vehicle at the acceleration or the deceleration determined by the acceleration / deceleration determining means, An inter-vehicle time calculating means for calculating an inter-vehicle time with the other preceding vehicle;
The acceleration / deceleration determining means for controlling the inter-vehicle distance from the interrupted other preceding vehicle to the target inter-vehicle distance when it is determined that the other preceding vehicle is further away from the host vehicle because the inter-vehicle time is smaller than the threshold value. It has but the acceleration to determine, and a suppressing acceleration and deceleration control means than the acceleration which is determined based on the relative velocity and the distance the vehicle distance detecting means has detected relative to the another preceding vehicle interrupted ,
The acceleration / deceleration control means suppresses the acceleration most immediately immediately after the other preceding vehicle interrupts, reduces the amount of acceleration suppression with time immediately after the interruption, and accelerates after a certain time shorter than the inter-vehicle time. The inter-vehicle distance control device is characterized in that the control for suppressing the vehicle is terminated .
前記加減速制御手段は、前記車間時間により前記別の先行車が自車両よりも遠ざかると判断される場合、前記別の先行車との車間距離を目標車間距離に制御するための加減速度を一定時間ゼロに抑制する、
ことを特徴とする請求項1に記載の車間距離制御装置。
The acceleration / deceleration control means keeps the acceleration / deceleration constant for controlling the inter-vehicle distance from the other preceding vehicle to the target inter-vehicle distance when it is determined that the other preceding vehicle moves away from the host vehicle according to the inter-vehicle time. Suppress to time zero,
The inter-vehicle distance control device according to claim 1.
自車両の車速と前記先行車の車速が同程度の場合にのみ、
前記車間時間により前記別の先行車が自車両よりも遠ざかると判断される場合、前記加減速制御手段は、前記別の先行車との車間距離を目標車間距離に制御するための加速度を、前記先行車との相対速度及び距離から決定される加速度よりも抑制する、
ことを特徴とする請求項1又は2に記載の車間距離制御装置。
Only when the vehicle speed of the host vehicle is similar to the vehicle speed of the preceding vehicle,
When it is determined that the other preceding vehicle is further away from the host vehicle due to the inter-vehicle time, the acceleration / deceleration control means sets the acceleration for controlling the inter-vehicle distance with the other preceding vehicle to the target inter-vehicle distance, Suppress the acceleration determined from the relative speed and distance with the preceding vehicle,
The inter-vehicle distance control device according to claim 1 or 2.
前記加減速制御手段は、前記別の先行車が離脱した場合、前記加速度を抑制する制御を終了する、ことを特徴とする請求項1〜3のいずれか1項に記載の車間距離制御装置。   The inter-vehicle distance control device according to any one of claims 1 to 3, wherein the acceleration / deceleration control means ends the control for suppressing the acceleration when the other preceding vehicle leaves. 前記別の先行車が割り込む前に走行していたレーンを前記先行車の並走走行車が走行している場合、
前記加減速度決定手段は、前記先行車との相対速度と等しいと見なした前記別の先行車との前記相対速度及び前記別の先行車との前記距離に基づいて、前記別の先行車との車間距離を目標車間距離に制御するための加速度を決定し、決定した該加速度自体で前記別の先行車に追従走行する
ことを特徴とする請求項1〜4のいずれか1項に記載の車間距離制御装置。
When the parallel traveling vehicle of the preceding vehicle is traveling in the lane that was traveling before the other preceding vehicle interrupted,
The acceleration / deceleration determining means determines whether the other preceding vehicle is based on the relative speed with the other preceding vehicle and the distance with the other preceding vehicle, which are considered to be equal to the relative speed with the preceding vehicle. Determining an acceleration for controlling the inter-vehicle distance to the target inter-vehicle distance, and following the other preceding vehicle with the determined acceleration itself ,
The inter-vehicle distance control device according to any one of claims 1 to 4, wherein
JP2013019598A 2013-02-04 2013-02-04 Inter-vehicle distance control device Active JP6158523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019598A JP6158523B2 (en) 2013-02-04 2013-02-04 Inter-vehicle distance control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019598A JP6158523B2 (en) 2013-02-04 2013-02-04 Inter-vehicle distance control device

Publications (2)

Publication Number Publication Date
JP2014148293A JP2014148293A (en) 2014-08-21
JP6158523B2 true JP6158523B2 (en) 2017-07-05

Family

ID=51571645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019598A Active JP6158523B2 (en) 2013-02-04 2013-02-04 Inter-vehicle distance control device

Country Status (1)

Country Link
JP (1) JP6158523B2 (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10678261B2 (en) 2015-02-06 2020-06-09 Aptiv Technologies Limited Method and apparatus for controlling an autonomous vehicle
WO2016126317A1 (en) 2015-02-06 2016-08-11 Delphi Technologies, Inc. Method of automatically controlling an autonomous vehicle based on electronic messages from roadside infrastructure of other vehicles
WO2016126323A1 (en) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. Adaptive cruise control integrated with lane keeping assist system
US9610948B2 (en) * 2015-03-04 2017-04-04 General Electric Company Movement detection system and method
US9862397B2 (en) 2015-03-04 2018-01-09 General Electric Company System and method for controlling a vehicle system to achieve different objectives during a trip
JP6365481B2 (en) 2015-09-23 2018-08-01 トヨタ自動車株式会社 Vehicle travel control device
CN108604292B (en) * 2015-11-26 2023-10-13 御眼视觉技术有限公司 Automatic prediction and lithe response of vehicles to cut lanes
JP6455456B2 (en) 2016-02-16 2019-01-23 トヨタ自動車株式会社 Vehicle control device
JP6512137B2 (en) * 2016-03-02 2019-05-15 トヨタ自動車株式会社 Vehicle travel control device
JP6460349B2 (en) 2016-04-13 2019-01-30 トヨタ自動車株式会社 Vehicle travel control device
JP6497349B2 (en) 2016-04-13 2019-04-10 トヨタ自動車株式会社 Vehicle travel control device
JP6508118B2 (en) 2016-04-26 2019-05-08 トヨタ自動車株式会社 Vehicle travel control device
JP6508137B2 (en) 2016-06-24 2019-05-08 トヨタ自動車株式会社 Vehicle travel control device
JP6544305B2 (en) 2016-06-24 2019-07-17 トヨタ自動車株式会社 Vehicle travel control device
JP2018001932A (en) 2016-06-30 2018-01-11 トヨタ自動車株式会社 Vehicle control device
JP2018020682A (en) 2016-08-04 2018-02-08 トヨタ自動車株式会社 Vehicle control device
JP6583183B2 (en) 2016-08-04 2019-10-02 トヨタ自動車株式会社 Vehicle control device
JP2018020693A (en) 2016-08-04 2018-02-08 トヨタ自動車株式会社 Vehicle travel control device
JP2018024290A (en) 2016-08-08 2018-02-15 トヨタ自動車株式会社 Vehicle travel control apparatus
JP6520858B2 (en) 2016-08-08 2019-05-29 トヨタ自動車株式会社 Vehicle travel control device
JP6520859B2 (en) 2016-08-08 2019-05-29 トヨタ自動車株式会社 Vehicle travel control device
JP2018086968A (en) * 2016-11-29 2018-06-07 株式会社デンソー Travel control device
JP6579334B2 (en) 2016-12-26 2019-09-25 トヨタ自動車株式会社 Vehicle lane change support device
JP6547970B2 (en) 2016-12-26 2019-07-24 トヨタ自動車株式会社 Vehicle lane change support device
JP2018103766A (en) 2016-12-26 2018-07-05 トヨタ自動車株式会社 Lane change support device for vehicle
JP6635023B2 (en) 2016-12-26 2020-01-22 トヨタ自動車株式会社 Vehicle lane change support device
JP6686873B2 (en) 2016-12-27 2020-04-22 トヨタ自動車株式会社 Driving support device
JP6583252B2 (en) 2016-12-27 2019-10-02 トヨタ自動車株式会社 Driving assistance device
DE102018108572B4 (en) 2017-04-12 2023-05-04 Toyota Jidosha Kabushiki Kaisha LANE CHANGE ASSISTANT DEVICE FOR A VEHICLE
US10814913B2 (en) 2017-04-12 2020-10-27 Toyota Jidosha Kabushiki Kaisha Lane change assist apparatus for vehicle
JP6733596B2 (en) 2017-04-25 2020-08-05 株式会社デンソー Braking assistance device and braking assistance method for vehicle
KR101967526B1 (en) * 2017-05-17 2019-08-13 한양대학교 산학협력단 Adaptive cruise control method and device for cut-in situation
US11208103B2 (en) * 2017-05-24 2021-12-28 Honda Motor Co., Ltd. Vehicle control device
JP6589941B2 (en) 2017-06-06 2019-10-16 トヨタ自動車株式会社 Steering support device
JP6801591B2 (en) 2017-06-06 2020-12-16 トヨタ自動車株式会社 Steering support device
JP6760204B2 (en) 2017-06-06 2020-09-23 トヨタ自動車株式会社 Steering support device
JP6627821B2 (en) 2017-06-06 2020-01-08 トヨタ自動車株式会社 Lane change support device
JP6642522B2 (en) 2017-06-06 2020-02-05 トヨタ自動車株式会社 Lane change support device
JP6627822B2 (en) 2017-06-06 2020-01-08 トヨタ自動車株式会社 Lane change support device
JP6791021B2 (en) 2017-06-06 2020-11-25 トヨタ自動車株式会社 Steering support device
JP6816658B2 (en) 2017-06-09 2021-01-20 トヨタ自動車株式会社 Target information acquisition device
JP6958001B2 (en) 2017-06-09 2021-11-02 トヨタ自動車株式会社 Lane change support device
JP6897349B2 (en) 2017-06-09 2021-06-30 トヨタ自動車株式会社 Driving support device
JP2019038314A (en) 2017-08-23 2019-03-14 トヨタ自動車株式会社 Vehicle driving support device
JP6897453B2 (en) 2017-09-26 2021-06-30 トヨタ自動車株式会社 Driving support device
JP6939334B2 (en) 2017-09-27 2021-09-22 トヨタ自動車株式会社 Driving support device
JP6822365B2 (en) 2017-09-28 2021-01-27 トヨタ自動車株式会社 Vehicle driving support device
JP6898591B2 (en) 2017-09-28 2021-07-07 トヨタ自動車株式会社 Vehicle driving support device
JP6795792B2 (en) 2017-09-28 2020-12-02 トヨタ自動車株式会社 Driving support device
JP7116355B2 (en) 2017-09-28 2022-08-10 トヨタ自動車株式会社 Driving support device
KR102429502B1 (en) * 2017-12-06 2022-08-05 현대자동차주식회사 Autonomous driving control apparatus and method for changing target thereof
JP6970386B2 (en) 2018-04-06 2021-11-24 トヨタ自動車株式会社 Driving support device
JP7037117B2 (en) 2018-04-16 2022-03-16 トヨタ自動車株式会社 Driving support device
JP7074600B2 (en) 2018-07-18 2022-05-24 トヨタ自動車株式会社 Driving support device
JP7040344B2 (en) 2018-07-30 2022-03-23 トヨタ自動車株式会社 Vehicle control unit
JP2020026154A (en) 2018-08-09 2020-02-20 トヨタ自動車株式会社 Driving support apparatus
JP7067379B2 (en) 2018-09-07 2022-05-16 トヨタ自動車株式会社 Vehicle lane change support device
JP7091956B2 (en) 2018-09-07 2022-06-28 トヨタ自動車株式会社 Vehicle lane change support device
JP7015005B2 (en) 2018-11-19 2022-02-02 トヨタ自動車株式会社 Vehicle braking force control device
JP7151566B2 (en) 2019-03-14 2022-10-12 トヨタ自動車株式会社 Vehicle running control device
JP7200782B2 (en) 2019-03-20 2023-01-10 トヨタ自動車株式会社 Vehicle running control device
JP7188212B2 (en) 2019-03-22 2022-12-13 トヨタ自動車株式会社 Vehicle running control device
JP7151578B2 (en) 2019-03-25 2022-10-12 トヨタ自動車株式会社 vehicle controller
JP7156148B2 (en) 2019-04-11 2022-10-19 トヨタ自動車株式会社 In-vehicle recording device
JP7243567B2 (en) 2019-10-18 2023-03-22 トヨタ自動車株式会社 Change operation support device
JP7264086B2 (en) 2020-02-27 2023-04-25 トヨタ自動車株式会社 Vehicle control device and vehicle control method
JP7310662B2 (en) 2020-03-12 2023-07-19 トヨタ自動車株式会社 vehicle controller
JP7339203B2 (en) 2020-04-10 2023-09-05 トヨタ自動車株式会社 vehicle controller
JP7351797B2 (en) 2020-06-02 2023-09-27 トヨタ自動車株式会社 Vehicle control device and vehicle control method
JP7380441B2 (en) 2020-06-19 2023-11-15 トヨタ自動車株式会社 Vehicle control device
JP7315904B2 (en) 2020-06-19 2023-07-27 トヨタ自動車株式会社 vehicle controller
JP7447853B2 (en) 2021-03-22 2024-03-12 トヨタ自動車株式会社 Awakening state determination system and automatic driving device
JP7525427B2 (en) 2021-03-23 2024-07-30 トヨタ自動車株式会社 Vehicle control device
JP2023133716A (en) 2022-03-14 2023-09-27 トヨタ自動車株式会社 Vehicle control device
JP2024005614A (en) 2022-06-30 2024-01-17 トヨタ自動車株式会社 Control device, control method, and program
JP2024030101A (en) 2022-08-23 2024-03-07 トヨタ自動車株式会社 Control device of vehicle, lamp system for vehicle, and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690126B2 (en) * 1998-07-23 2005-08-31 日産自動車株式会社 Vehicle tracking control device
JP3603618B2 (en) * 1998-10-05 2004-12-22 株式会社デンソー Headway control device and recording medium
JP4023059B2 (en) * 2000-01-17 2007-12-19 株式会社デンソー Vehicle travel control device
JP3714105B2 (en) * 2000-04-04 2005-11-09 株式会社デンソー Vehicle distance control device and recording medium
JP3797341B2 (en) * 2003-03-06 2006-07-19 日産自動車株式会社 Vehicle travel control device
JP2007062403A (en) * 2005-08-29 2007-03-15 Mazda Motor Corp Following travel device of automobile
JP4548279B2 (en) * 2005-08-30 2010-09-22 マツダ株式会社 Follow-up device for automobile
JP2007069797A (en) * 2005-09-08 2007-03-22 Mazda Motor Corp Follow-up traveling system for automobile
JP5326983B2 (en) * 2009-10-13 2013-10-30 トヨタ自動車株式会社 Driving support device

Also Published As

Publication number Publication date
JP2014148293A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP6158523B2 (en) Inter-vehicle distance control device
JP7132713B2 (en) Vehicle cruise control device, vehicle cruise control system, and vehicle cruise control method
EP3052961B1 (en) Adaptive cruise control with on-ramp detection
JP4005597B2 (en) Side guide support method and apparatus for vehicle
CN109204311B (en) Automobile speed control method and device
US11021155B2 (en) Vehicle control apparatus and vehicle control method
US9809251B2 (en) Lane following control device
JP5825239B2 (en) Vehicle control device
US10150476B2 (en) Methods and systems for controlling a vehicle being overtaken
JP6356584B2 (en) Predictive course estimation device
JP2005186813A (en) Drive assisting device for vehicle
JP7172172B2 (en) vehicle controller
JP4946212B2 (en) Driving support device
US11667279B2 (en) Driving assistance apparatus
JP2008046845A (en) Cutting-in vehicle determination apparatus
US11731658B2 (en) Vehicle control method and control device
JP4926859B2 (en) Vehicle driving support device
JP6535537B2 (en) Driving support device for vehicle
JP2016141387A (en) Driving support control device for vehicle
JP2006298254A (en) Traveling support device
CN113544031A (en) Driving support device
JP5994757B2 (en) Vehicle control device
US11210955B2 (en) Collision avoidance assist apparatus
JP5118468B2 (en) Vehicle travel control device.
JP5974916B2 (en) Vehicle speed control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R151 Written notification of patent or utility model registration

Ref document number: 6158523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250