JP2007062403A - Following travel device of automobile - Google Patents

Following travel device of automobile Download PDF

Info

Publication number
JP2007062403A
JP2007062403A JP2005247158A JP2005247158A JP2007062403A JP 2007062403 A JP2007062403 A JP 2007062403A JP 2005247158 A JP2005247158 A JP 2005247158A JP 2005247158 A JP2005247158 A JP 2005247158A JP 2007062403 A JP2007062403 A JP 2007062403A
Authority
JP
Japan
Prior art keywords
vehicle
inter
vehicle distance
distance
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005247158A
Other languages
Japanese (ja)
Inventor
Hiroshi Omura
博志 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005247158A priority Critical patent/JP2007062403A/en
Publication of JP2007062403A publication Critical patent/JP2007062403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve comfortableness and sense of security of an occupant by suppressing bucking drive of one's own vehicle, in a following travel device of an automobile. <P>SOLUTION: The following travel device 1 comprises vehicle speed control means 17 and 18 for controlling the vehicle speed (v) of one's own vehicle W so that the inter-vehicle distance L1 between an immediately leading vehicle Wf and one's own vehicle W detected by an inter-vehicle distance detecting means 11 is kept at a target inter-vehicle distance Lt. The following travel device 1 comprises a control unit 10 for slowing down the control selectivity of the vehicle speed control means 17 and 18 when the inter-vehicle distance L2 between a vehicle Wff preceding the immediately leading vehicle and the immediately leading vehicle Wf becomes shorter than a predetermined distance inter-vehicle distance Lm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自車両と前方車両との目標車間距離を維持しながら自車両を前方車両に追従走行させる自動車の追従走行装置に関する。   The present invention relates to a follow-up traveling device for an automobile that causes the subject vehicle to follow the preceding vehicle while maintaining the target inter-vehicle distance between the subject vehicle and the preceding vehicle.

従来、車載カメラで自車両の前方車両を認識し、レーダで自車両と前方車両との車間距離を検出して、自車両と前方車両との実車間距離が所定の目標車間距離に維持されるように自車両を前方車両に追従走行させる自動車の追従走行装置が知られている。そして、近年、そのような追従走行装置において、乗員の乗り心地や安心感を改善・改良する様々な技術が提案されている。例えば、特許文献1には、自車両の前方車両に加えて自車両の前々方車両も認識し、追従走行時に検出される前々方車両の減速度や前方車両と前々方車両との車間時間等から前方車両と前々方車両との衝突可能性が大きくなったと判断したときは、自車両と前方車両との衝突可能性も大きくなったと判断して、自車両における衝突対応装置、例えばシートベルト装置やブレーキ装置等の作動タイミングを早めたり作動量を大きくする技術が開示されている。
特開2005−31967号公報
Conventionally, an in-vehicle camera recognizes a vehicle ahead of the host vehicle, a radar detects a distance between the host vehicle and the preceding vehicle, and an actual inter-vehicle distance between the host vehicle and the preceding vehicle is maintained at a predetermined target inter-vehicle distance. As described above, there is known an automobile follow-up traveling apparatus that causes the own vehicle to follow the preceding vehicle. In recent years, various techniques for improving and improving the ride comfort and security of passengers have been proposed for such a follow-up traveling device. For example, in Patent Document 1, in addition to the vehicle in front of the host vehicle, the vehicle in front of the host vehicle is also recognized, and the deceleration of the vehicle in front of the vehicle detected during follow-up and the relationship between the vehicle in front and the vehicle in front of the vehicle. When it is determined that the possibility of collision between the preceding vehicle and the preceding vehicle has increased from the inter-vehicle time, etc., it is determined that the possibility of collision between the own vehicle and the preceding vehicle has also increased. For example, a technique for advancing the operation timing of a seat belt device or a brake device or increasing the operation amount is disclosed.
JP 2005-31967 A

ところで、一般に、前述したように、追従走行時は自車両と前方車両との車間距離を目標車間距離に維持しようとする制御が働くので、例えば前方車両が前々方車両に接近して走行し、前方車両が急ブレーキや急加速を繰り返すギクシャク運転をすると、それに連動して自車両も急ブレーキや急加速を頻繁に行うこととなり、乗員の乗り心地や安心感が損なわれるという不具合がある。しかしながら、この不具合に対処する技術の提案は現在のところ見当たらない。   By the way, generally, as described above, during follow-up traveling, control is performed to maintain the inter-vehicle distance between the host vehicle and the preceding vehicle at the target inter-vehicle distance. For example, the preceding vehicle travels closer to the preceding vehicle. When the front vehicle repeats sudden braking and acceleration, the host vehicle frequently performs sudden braking and acceleration, which causes a problem that passenger comfort and a sense of security are impaired. However, there is no proposal for a technique for dealing with this problem at present.

そこで、本発明は、自動車の追従走行装置において、前方車両を目標車両として車間距離を維持しようとする結果、前方車両のギクシャク運転に連動して自車両もギクシャク運転をしてしまうという前記不具合に対処し、乗員の乗り心地や安心感の向上を図ることを課題とする。   Therefore, the present invention has the above-described problem that, in the follow-up traveling device of an automobile, the host vehicle also performs a jerky operation in conjunction with the jerky operation of the preceding vehicle as a result of maintaining the inter-vehicle distance with the preceding vehicle as the target vehicle. The problem is to deal with it and improve the ride comfort and security of passengers.

すなわち、前記課題を解決するため、本願の請求項1に記載の発明は、自車両の前方車両を認識する前方車両認識手段と、自車両と前方車両との目標車間距離を設定する目標車間距離設定手段と、前記前方車両認識手段で認識された前方車両と自車両との車間距離を検出する車間距離検出手段と、該車間距離検出手段で検出された車間距離が前記目標車間距離設定手段で設定された目標車間距離に維持されるように自車両の車速を制御する車速制御手段とを備える自動車の追従走行装置であって、自車両の前々方車両を認識する前々方車両認識手段と、該前々方車両認識手段で認識された前々方車両と前記前方車両認識手段で認識された前方車両との車間距離を検出する第2の車間距離検出手段と、該第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなったときは短くなっていないときよりも前記車速制御手段の制御感度を鈍化させる制御感度鈍化手段とが設けられていることを特徴とする。   That is, in order to solve the above-mentioned problem, the invention according to claim 1 of the present application is directed to a front vehicle recognition means for recognizing a front vehicle of the host vehicle and a target inter-vehicle distance for setting a target inter-vehicle distance between the host vehicle and the front vehicle. Setting means; inter-vehicle distance detection means for detecting the inter-vehicle distance between the preceding vehicle recognized by the forward vehicle recognition means and the host vehicle; and the inter-vehicle distance detected by the inter-vehicle distance detection means is the target inter-vehicle distance setting means. A vehicle follow-up travel device comprising vehicle speed control means for controlling the vehicle speed of the host vehicle so as to be maintained at a set target inter-vehicle distance, and forefront vehicle recognition means for recognizing a vehicle ahead of the host vehicle And a second inter-vehicle distance detecting means for detecting an inter-vehicle distance between the forward vehicle recognized by the forward vehicle recognition means and the forward vehicle recognized by the forward vehicle recognition means, and the second inter-vehicle distance Vehicle detected by distance detection means Distance is characterized in that the control sensitivity slowing means for slowing the control sensitivity of the vehicle speed control means is provided than when not in short when it becomes shorter than a predetermined inter-vehicle distance.

次に、請求項2に記載の発明は、前記請求項1に記載の自動車の追従走行装置において、前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなったときは短くなっていないときよりも目標車間距離を所定距離だけ延長することを特徴とする。   Next, according to a second aspect of the present invention, in the following traveling apparatus for an automobile according to the first aspect, the target inter-vehicle distance setting means has a predetermined inter-vehicle distance detected by the second inter-vehicle distance detection means. When the vehicle distance is shorter than the target vehicle distance, the target vehicle distance is extended by a predetermined distance than when it is not shorter.

次に、請求項3に記載の発明は、前記請求項2に記載の自動車の追従走行装置において、前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなった後は、該車間距離が短くなるに従い目標車間距離を徐々に延長することを特徴とする。   Next, according to a third aspect of the present invention, in the following traveling apparatus for an automobile according to the second aspect, the target inter-vehicle distance setting means has a predetermined inter-vehicle distance detected by the second inter-vehicle distance detection means. After the vehicle-to-vehicle distance becomes shorter, the target vehicle-to-vehicle distance is gradually extended as the vehicle-to-vehicle distance becomes shorter.

次に、請求項4に記載の発明は、前記請求項2又は3に記載の自動車の追従走行装置において、前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が前記所定の車間距離よりも短い第2の所定の車間距離よりも短くなったときは目標車間距離を第2の所定距離だけさらに延長することを特徴とする。   Next, the invention according to claim 4 is the following traveling apparatus for an automobile according to claim 2 or 3, wherein the target inter-vehicle distance setting means is the inter-vehicle distance detected by the second inter-vehicle distance detection means. Is shorter than the second predetermined inter-vehicle distance shorter than the predetermined inter-vehicle distance, the target inter-vehicle distance is further extended by the second predetermined distance.

次に、請求項5に記載の発明は、前記請求項1から4のいずれかに記載の自動車の追従走行装置において、前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差に対する自車両の車速制御量を低減することにより前記車速制御手段の制御感度を鈍化させることを特徴とする。   Next, the invention according to claim 5 is the vehicle following traveling device according to any one of claims 1 to 4, wherein the control sensitivity dulling means includes an inter-vehicle distance detected by the inter-vehicle distance detecting means. The control sensitivity of the vehicle speed control means is reduced by reducing the vehicle speed control amount of the host vehicle with respect to the deviation from the target inter-vehicle distance set by the target inter-vehicle distance setting means.

次に、請求項6に記載の発明は、前記請求項1から5のいずれかに記載の自動車の追従走行装置において、前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差に対する自車両の車速制御の開始を遅延することにより前記車速制御手段の制御感度を鈍化させることを特徴とする。   Next, the invention according to claim 6 is the vehicle following traveling apparatus according to any one of claims 1 to 5, wherein the control sensitivity dulling means includes an inter-vehicle distance detected by the inter-vehicle distance detecting means. The control sensitivity of the vehicle speed control means is slowed by delaying the start of the vehicle speed control of the host vehicle with respect to the deviation from the target inter-vehicle distance set by the target inter-vehicle distance setting means.

次に、請求項7に記載の発明は、前記請求項1から6のいずれかに記載の自動車の追従走行装置において、前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差を小さくすることにより前記車速制御手段の制御感度を鈍化させることを特徴とする。   Next, according to a seventh aspect of the present invention, in the vehicle follow-up traveling device according to any one of the first to sixth aspects, the control sensitivity dulling means includes an inter-vehicle distance detected by the inter-vehicle distance detecting means. The control sensitivity of the vehicle speed control means is reduced by reducing a deviation from the target inter-vehicle distance set by the target inter-vehicle distance setting means.

そして、請求項8に記載の発明は、前記請求項1から7のいずれかに記載の自動車の追従走行装置において、前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離が前記目標車間距離設定手段で設定された目標車間距離よりも大きい場合にのみ前記車速制御手段の制御感度を鈍化させることを特徴とする。   According to an eighth aspect of the present invention, in the vehicle follow-up traveling device according to any one of the first to seventh aspects, the control sensitivity dulling means has an inter-vehicle distance detected by the inter-vehicle distance detecting means. The control sensitivity of the vehicle speed control means is reduced only when it is larger than the target inter-vehicle distance set by the target inter-vehicle distance setting means.

まず、請求項1に記載の発明によれば、例えば前方車両が前々方車両に接近して走行し、その結果、前方車両と前々方車両との車間距離が所定の車間距離よりも短くなって、前方車両がギクシャク運転をしそうな状況においては、自車両と前方車両との車間距離を目標車間距離に維持しようとする自車両の車速制御の感度を鈍化させるようにしたから、たとえ前方車両が急ブレーキや急加速を繰り返すギクシャク運転をしても、それに連動して自車両が急ブレーキや急加速を頻繁に行うことが抑制され、乗員の乗り心地や安心感の向上が図られる。   First, according to the first aspect of the present invention, for example, the front vehicle travels closer to the front vehicle, and as a result, the inter-vehicle distance between the front vehicle and the front vehicle is shorter than a predetermined inter-vehicle distance. Therefore, in a situation where the front vehicle is likely to drive jerkyly, the sensitivity of the vehicle speed control of the host vehicle that tries to maintain the inter-vehicle distance between the host vehicle and the preceding vehicle at the target inter-vehicle distance is reduced. Even if the vehicle performs jerky driving that repeats sudden braking and acceleration, the vehicle frequently suppresses sudden braking and acceleration, thereby improving the ride comfort and security of the occupant.

その場合に、請求項2に記載の発明によれば、自車両の車速制御の感度を鈍化させると共に、目標車間距離を所定距離だけ延長するようにしたから、自車両と前方車両との車間距離に余裕ができて、たとえ自車両の車速制御の感度が鈍化しても乗員の安心感が確保される。   In this case, according to the invention described in claim 2, since the sensitivity of the vehicle speed control of the host vehicle is slowed and the target inter-vehicle distance is extended by a predetermined distance, the inter-vehicle distance between the host vehicle and the preceding vehicle is increased. Even if the vehicle speed control sensitivity of the host vehicle slows down, the passenger's sense of security is ensured.

また、その場合に、請求項3に記載の発明によれば、目標車間距離を一気に所定距離だけ延長するのではなく、前方車両と前々方車両との車間距離が短くなるに従い目標車間距離を徐々に延長するようにしたから、自車両は前方車両から徐々に離間していくこととなり、円滑な追従走行制御が実現して、この点からも乗員の乗り心地の向上が図られる。   In this case, according to the third aspect of the invention, the target inter-vehicle distance is not increased at a stretch by a predetermined distance, but the target inter-vehicle distance is reduced as the inter-vehicle distance between the preceding vehicle and the preceding vehicle decreases. Since the vehicle is gradually extended, the host vehicle is gradually separated from the preceding vehicle, and smooth follow-up running control is realized. From this point as well, the ride comfort of the occupant is improved.

さらに、請求項4に記載の発明によれば、前方車両と前々方車両との車間距離が前記所定の車間距離よりも短い第2の所定の車間距離よりも短くなって、前方車両がギクシャク運転をより一層しそうな状況、あるいは前方車両と前々方車両との接触が起こりそうな状況においては、目標車間距離を第2の所定距離だけさらに延長するようにしたから、自車両と前方車両との車間距離にさらに余裕ができて、たとえ自車両の車速制御の感度が鈍化しても乗員の安心感が確保されると共に、たとえ前方車両が前々方車両に接触した場合でも自車両が前方車両に接触する可能性が低減できて安全性が担保される。   Further, according to the invention described in claim 4, the inter-vehicle distance between the preceding vehicle and the preceding vehicle becomes shorter than the second predetermined inter-vehicle distance that is shorter than the predetermined inter-vehicle distance, and the front vehicle is jerky. In a situation where driving is more likely, or in a situation where contact between the preceding vehicle and the preceding vehicle is likely to occur, the target inter-vehicle distance is further extended by the second predetermined distance. The distance between the vehicle and the vehicle can be further increased, and even if the sensitivity of the vehicle speed control of the host vehicle decreases, the passenger's sense of security is secured. The possibility of contact with the vehicle ahead can be reduced, and safety is ensured.

次に、請求項5に記載の発明によれば、前記自車両の車速制御感度を鈍化させる具体的態様が示され、それによれば、自車両と前方車両との車間距離と、自車両と前方車両との目標車間距離との偏差に対する自車両の車速制御量を低減することにより、前記自車両の車速制御感度を確実に鈍化させることができる。   Next, according to the fifth aspect of the present invention, there is shown a specific mode for slowing down the vehicle speed control sensitivity of the host vehicle. According to this, the inter-vehicle distance between the host vehicle and the preceding vehicle, the host vehicle and the front By reducing the vehicle speed control amount of the host vehicle with respect to the deviation from the target inter-vehicle distance from the vehicle, the vehicle speed control sensitivity of the host vehicle can be surely slowed down.

同じく、請求項6に記載の発明によれば、前記自車両の車速制御感度を鈍化させる別の具体的態様が示され、それによれば、自車両と前方車両との車間距離と、自車両と前方車両との目標車間距離との偏差に対する自車両の車速制御の開始を遅延することにより、前記自車両の車速制御感度を確実に鈍化させることができる。   Similarly, according to the invention described in claim 6, another specific mode for slowing down the vehicle speed control sensitivity of the host vehicle is shown. According to this, the inter-vehicle distance between the host vehicle and the preceding vehicle, the host vehicle, By delaying the start of the vehicle speed control of the host vehicle with respect to the deviation from the target inter-vehicle distance from the preceding vehicle, the vehicle speed control sensitivity of the host vehicle can be surely slowed down.

同じく、請求項7に記載の発明によれば、前記自車両の車速制御感度を鈍化させるさらに別の具体的態様が示され、それによれば、自車両と前方車両との車間距離と、自車両と前方車両との目標車間距離との偏差を小さくすることにより、前記自車両の車速制御感度を確実に鈍化させることができる。   Similarly, according to the seventh aspect of the present invention, there is shown another specific aspect for slowing down the vehicle speed control sensitivity of the host vehicle. According to this, the inter-vehicle distance between the host vehicle and the preceding vehicle, the host vehicle, By reducing the deviation between the target vehicle distance and the vehicle ahead, the vehicle speed control sensitivity of the host vehicle can be reliably reduced.

そして、請求項8に記載の発明によれば、前記自車両の車速制御感度の鈍化は、自車両と前方車両との車間距離が自車両と前方車両との目標車間距離よりも大きい場合、つまり自車両が前方車両から目標以上に離間している場合にのみ行われるので、逆にいえば、自車両と前方車両との車間距離が自車両と前方車両との目標車間距離よりも小さい場合、つまり自車両が前方車両に目標以上に接近している場合には自車両の車速制御感度は鈍化されないので、たとえ自車両が前方車両に目標以上に接近している場合に前方車両が急ブレーキや急停止することがあっても、これに遅れなく対応でき、自車両が前方車両に接触する可能性が低減できて安全性が担保される。以下、発明の実施形態を通して本発明をさらに詳しく説明する。   According to the invention described in claim 8, the slowing down of the vehicle speed control sensitivity of the host vehicle is caused when the inter-vehicle distance between the host vehicle and the preceding vehicle is larger than the target inter-vehicle distance between the host vehicle and the preceding vehicle, that is, Since it is performed only when the host vehicle is farther than the target from the front vehicle, conversely, if the inter-vehicle distance between the host vehicle and the front vehicle is smaller than the target inter-vehicle distance between the host vehicle and the front vehicle, In other words, if the host vehicle is approaching the front vehicle beyond the target, the vehicle speed control sensitivity of the host vehicle is not slowed down. Even if there is a sudden stop, it is possible to respond to this without delay, and the possibility that the host vehicle contacts the preceding vehicle can be reduced, thus ensuring safety. Hereinafter, the present invention will be described in more detail through embodiments of the invention.

図1は、本実施形態に係る自動車の追従走行装置1の各構成要素のレイアウト図である。この追従走行装置1は、自車両Wと前方車両Wfとの車間距離及び自車両Wと前々方車両Wffとの車間距離を検出するためのレーダ11と、自車両Wの前方空間を撮像して前方車両Wf及び前々方車両Wffを認識するためのカメラ12とを含んでいる。   FIG. 1 is a layout diagram of each component of an automobile follow-up traveling device 1 according to the present embodiment. This follow-up travel device 1 images a radar 11 for detecting the distance between the host vehicle W and the preceding vehicle Wf and the distance between the host vehicle W and the preceding vehicle Wff, and the front space of the host vehicle W. And a camera 12 for recognizing the forward vehicle Wf and the preceding vehicle Wff.

また、この追従走行装置1は、車車間通信により、自車両Wの周囲に存在する他の車両から送信されてくる信号を受信したり、逆に、自車両Wの周囲に存在する他の車両へ信号を発信するための車車間通信用アンテナ13と、路車間通信により、道路側方に設けられたアンテナ(図示せず)と信号の遣り取りを行うための路車間通信用アンテナ14と、自車両Wの前方に存在する前方車両Wfのナンバープレートに内蔵されたIDタグ(このようなナンバープレートをスマートプレートという)から送信されてくる信号を受信するためのスマートプレート信号受信用アンテナ15とを含んでいる。   Further, the follow-up traveling device 1 receives signals transmitted from other vehicles existing around the host vehicle W by inter-vehicle communication, or conversely, other vehicles existing around the host vehicle W. A vehicle-to-vehicle communication antenna 13 for transmitting a signal to the vehicle, a road-to-vehicle communication antenna 14 for exchanging signals with an antenna (not shown) provided on the side of the road by road-to-vehicle communication, A smart plate signal receiving antenna 15 for receiving a signal transmitted from an ID tag (such a number plate is referred to as a smart plate) built in a license plate of a forward vehicle Wf existing in front of the vehicle W; Contains.

また、この追従走行装置1は、操舵角を検出するための舵角センサ16の他、スロットルアクチュエータ17、ブレーキアクチュエータ18及びステアリングアクチュエータ19を含んでいる。   The following traveling device 1 includes a throttle actuator 17, a brake actuator 18, and a steering actuator 19 in addition to the steering angle sensor 16 for detecting the steering angle.

図2は、この追従走行装置1のコントロールユニット10を中心とした制御システム図である。コントロールユニット10は、レーダ11からの信号と、カメラ12からの信号と、車車間通信用アンテナ13からの信号と、路車間通信用アンテナ14からの信号と、スマートプレート信号受信用アンテナ15からの信号と、舵角センサ16からの信号とを入力し、これらの信号に基いて、スロットルアクチュエータ17、ブレーキアクチュエータ18及びステアリングアクチュエータ19に制御信号を出力する。また、コントロールユニット10は、車車間通信用アンテナ13及び路車間通信用アンテナ14を介して自車両に関する情報を周囲に送信する。   FIG. 2 is a control system diagram centering on the control unit 10 of the following traveling device 1. The control unit 10 includes a signal from the radar 11, a signal from the camera 12, a signal from the vehicle-to-vehicle communication antenna 13, a signal from the road-to-vehicle communication antenna 14, and a smart plate signal receiving antenna 15. A signal and a signal from the steering angle sensor 16 are input, and control signals are output to the throttle actuator 17, the brake actuator 18, and the steering actuator 19 based on these signals. Further, the control unit 10 transmits information related to the own vehicle to the surroundings via the vehicle-to-vehicle communication antenna 13 and the road-to-vehicle communication antenna 14.

本実施形態では、図3に示すように、自車両Wと前方車両Wfとの車間距離(第1車間距離)L1、及び前方車両Wfと前々方車両Wffとの車間距離(第2車間距離)L2が重要である。第1車間距離L1は、前述したように、レーダ11で検出できる。第2車間距離L2は、自車両Wと前々方車両Wffとの車間距離から、第1車間距離L1と前方車両Wfの全長Lfとを減算することにより、検出できる(コントロールユニット10の動作)。ここで、自車両Wと前々方車両Wffとの車間距離は、レーダ11としてミリ波レーダを用いると、前述したように、該レーダ11で検出できる。というのは、図示したように、ミリ波は、前方車両Wfのフロアの下の路面で反射して前々方車両Wffに到達し、跳ね返ってくるからである。   In the present embodiment, as shown in FIG. 3, the inter-vehicle distance (first inter-vehicle distance) L1 between the host vehicle W and the front vehicle Wf, and the inter-vehicle distance (second inter-vehicle distance) between the front vehicle Wf and the preceding vehicle Wff. ) L2 is important. The first inter-vehicle distance L1 can be detected by the radar 11 as described above. The second inter-vehicle distance L2 can be detected by subtracting the first inter-vehicle distance L1 and the total length Lf of the preceding vehicle Wf from the inter-vehicle distance between the host vehicle W and the preceding vehicle Wff (operation of the control unit 10). . Here, when the millimeter wave radar is used as the radar 11, the distance between the host vehicle W and the preceding vehicle Wff can be detected by the radar 11 as described above. This is because, as shown in the figure, the millimeter wave is reflected by the road surface below the floor of the preceding vehicle Wf, reaches the vehicle Wff ahead of time, and bounces back.

ここで、前方車両Wfが大型車の場合は、ギクシャクした挙動を起こし難いから、前方車両Wfの全長Lfを一律5m等として計算してもよいが、車車間通信により、前方車両Wfから直接前方車両Wfの全長Lfに関する情報を取得してもよい。あるいは、車車間通信により、前方車両Wfから直接第2車間距離L2に関する情報を取得することもできる。その場合は、レーダ11としてミリ波レーダ以外のレーダ、例えば、光、電波、超音波等を利用した各種レーダも用いることができる。   Here, when the front vehicle Wf is a large vehicle, it is difficult to cause a jerky behavior, so the total length Lf of the front vehicle Wf may be calculated as a uniform 5 m or the like. Information regarding the total length Lf of the vehicle Wf may be acquired. Or the information regarding the 2nd inter-vehicle distance L2 can also be acquired directly from the front vehicle Wf by inter-vehicle communication. In that case, a radar other than the millimeter wave radar, for example, various radars using light, radio waves, ultrasonic waves, or the like can be used as the radar 11.

また、図4に示すように、カーブを走行中に前方車両Wfの全長Lfを検出することも可能である。すなわち、舵角センサ16により自車両Wがカーブを走行していることが検出されているときに(図例は、前輪20、20の向きから、左カーブの走行中を示す)、レーダ11を用いて、前方車両Wfの内輪側の前端Fと自車両Wとの距離D2、前方車両Wfの内輪側の後端Rと自車両Wとの距離D1、及び、前方車両Wfの内輪側の前端Fと自車両Wとを結ぶ直線と、前方車両Wfの内輪側の後端Rと自車両Wとを結ぶ直線とで挟まれた角度Θを検出する。点Rから線D2に垂線を下ろし、交点をPとする。すると、前方車両Wfの全長Lfは、数1で表され、ここでFP,PRは、数2、数3で表されるから、結局、前方車両Wfの全長Lfは、数4で表されることとなり、前記距離D1,D2及び前記角度Θに基いて前方車両Wfの全長Lfを検出することが可能となる(コントロールユニット10の動作)。また、これに準じて、前方車両Wfと前々方車両Wffとの第2車間距離L2をカーブを走行中に検出することも可能である。   Further, as shown in FIG. 4, it is also possible to detect the total length Lf of the front vehicle Wf while traveling on a curve. That is, when it is detected by the rudder angle sensor 16 that the host vehicle W is traveling on a curve (the figure shows that the vehicle is traveling on the left curve from the direction of the front wheels 20, 20), the radar 11 is operated. The distance D2 between the front end F on the inner ring side of the front vehicle Wf and the host vehicle W, the distance D1 between the rear end R on the inner ring side of the front vehicle Wf and the host vehicle W, and the front end on the inner ring side of the front vehicle Wf. An angle Θ sandwiched between a straight line connecting F and the host vehicle W and a straight line connecting the rear end R on the inner ring side of the forward vehicle Wf and the host vehicle W is detected. A perpendicular line is drawn from the point R to the line D2, and the intersection is set to P. Then, the total length Lf of the front vehicle Wf is expressed by the following equation (1), and FP and PR are expressed by the following equations (2) and (3). Therefore, the total length Lf of the front vehicle Wf is expressed by the following equation (4). In other words, the total length Lf of the forward vehicle Wf can be detected based on the distances D1, D2 and the angle Θ (operation of the control unit 10). In accordance with this, it is also possible to detect the second inter-vehicle distance L2 between the preceding vehicle Wf and the preceding vehicle Wff while traveling along a curve.

Figure 2007062403
Figure 2007062403

Figure 2007062403
Figure 2007062403

Figure 2007062403
Figure 2007062403

Figure 2007062403
Figure 2007062403

また、前方車両Wfのナンバープレートに表示されている内容から前方車両Wfの全長Lfを検出することも可能である。すなわち、カメラ12を用いて、前方車両Wfのナンバープレート(図示せず)を撮像し、例えば、ナンバーが「1x」であれば、大型車(大型貨物、トラック)であると判断できるので、前方車両Wfの全長Lfを例えば12m等に設定し、ナンバーが「3x」であれば、普通車であると判断できるので、前方車両Wfの全長Lfを例えば5m等に設定し、ナンバーが「5x」であれば、小型車であると判断できるので、前方車両Wfの全長Lfを例えば4.5m等に設定する。これに準じて、ナンバーが「2x」(大型バス)、「4x」(小型貨物)、「6x」(小型貨物)、「7x」(小型普通車、バス)、「8x」(キャンピングカー等の特殊用途車)、「9x」(大型特殊)、「0x」(大型特殊)のときも、同様に、前方車両Wfの全長Lfを設定することが可能である。また、ナンバーが黄色又は黒色であれば、軽自動車であると判断できるので、前方車両Wfの全長Lfを例えば3.4m等に設定する。   It is also possible to detect the total length Lf of the forward vehicle Wf from the content displayed on the license plate of the forward vehicle Wf. That is, the camera 12 is used to image a license plate (not shown) of the forward vehicle Wf. For example, if the number is “1x”, it can be determined that the vehicle is a large vehicle (large cargo, truck). If the total length Lf of the vehicle Wf is set to 12 m, for example, and the number is “3x”, it can be determined that the vehicle is a normal vehicle. Therefore, the total length Lf of the preceding vehicle Wf is set to 5 m, for example, and the number is “5x”. Then, since it can be determined that the vehicle is a small car, the total length Lf of the front vehicle Wf is set to 4.5 m, for example. In accordance with this, the numbers are “2x” (large bus), “4x” (small cargo), “6x” (small cargo), “7x” (small ordinary car, bus), “8x” (camper, etc.) In the case of “use vehicle”, “9x” (large special), and “0x” (large special), it is also possible to set the total length Lf of the preceding vehicle Wf. Further, if the number is yellow or black, it can be determined that the vehicle is a light vehicle, so the total length Lf of the front vehicle Wf is set to 3.4 m, for example.

さらには、前方車両Wfのナンバープレートに内蔵されたIDタグから送信されてくる信号(スマートプレート信号)に基いて前方車両Wfの全長Lfを検出することも可能である。すなわち、スマートプレート信号受信用アンテナ15を用いて、前記スマートプレート信号を受信し、該信号に含まれるナンバー、全長、全幅、全高等の車両緒元情報から前方車両Wfの全長Lfを取得することができる。   Further, it is possible to detect the total length Lf of the preceding vehicle Wf based on a signal (smart plate signal) transmitted from an ID tag built in the license plate of the preceding vehicle Wf. That is, the smart plate signal is received using the smart plate signal receiving antenna 15, and the total length Lf of the preceding vehicle Wf is obtained from the vehicle specification information such as the number, the total length, the total width, and the total height included in the signal. Can do.

コントロールユニット10は、図5に示すように、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも長いとき、すなわち前方車両Wfがギクシャク運転をしそうな状況にないとき(通常時)は、自車両Wと前方車両Wfとの目標車間距離Ltとして、数5に従い、第1の目標車間距離Lt(i)を設定する。ここで、A,Bは、比例定数であり、停止車間距離Lxとは、自車両W及び前方車両Wfの停止時にとるべき車間距離のことである。   As shown in FIG. 5, when the second vehicle distance L2 between the forward vehicle Wf and the forward vehicle Wff is longer than the first predetermined vehicle distance Lm, that is, the forward vehicle Wf is likely to perform a jerky operation, as shown in FIG. When the situation is not normal (normal time), the first target inter-vehicle distance Lt (i) is set according to Equation 5 as the target inter-vehicle distance Lt between the host vehicle W and the preceding vehicle Wf. Here, A and B are proportional constants, and the stop inter-vehicle distance Lx is the inter-vehicle distance that should be taken when the host vehicle W and the front vehicle Wf are stopped.

Figure 2007062403
Figure 2007062403

ここで、A項の関数f(v)は、例えば、k・vとすることができる。その場合に、kは、車両重量に比例する比例定数であり、乗員数や積載量に応じて補正される(より詳しくは、乗員数や積載量が多いほど大きな値に補正される)。また、B項の関数g(vf−v)は、例えば、h・(vf−v)とすることができる。その場合に、hは、0(零)未満の負の値の比例定数である。したがって、前方車両速度vfが自車両速度vよりも大きくなるほど(自車両Wが前方車両Wfから離間する傾向にあるほど)、B項の値がマイナス側に大きくなり、第1の目標車間距離Lt(i)は小さい値に設定される。その結果、車間距離偏差ΔL(次に説明するように、実車間距離L1と目標車間距離Ltとの偏差ΔL(=L1−Lt)をいう)が見かけ上大きくされることとなる。逆に、自車両速度vが前方車両速度vfよりも大きくなるほど(自車両Wが前方車両Wfに接近する傾向にあるほど)、B項の値がプラス側に大きくなり、第1の目標車間距離Lt(i)は大きな値に設定される。その結果、車間距離偏差ΔL(=L1−Lt)が見かけ上小さくされることとなる。このことは、いずれにおいても、車間距離偏差ΔLが見かけ上絶対値で大きくされることとなり、自車両Wと前方車両Wfとの相対速度差(vf−v)に応じて目標車間距離Ltへの自車両W位置の収束を早めるように働く。 Here, the function f (v) of the A term can be, for example, k · v 2 . In this case, k is a proportional constant proportional to the vehicle weight, and is corrected in accordance with the number of passengers and the loading amount (more specifically, the larger the number of passengers and the loading amount, the larger the value is corrected). The function g (vf−v) of the B term can be, for example, h · (vf−v). In this case, h is a negative proportionality constant less than 0 (zero). Therefore, as the forward vehicle speed vf becomes larger than the own vehicle speed v (the more the own vehicle W tends to move away from the forward vehicle Wf), the value of the B term becomes negative and the first target inter-vehicle distance Lt (I) is set to a small value. As a result, the inter-vehicle distance deviation ΔL (referred to as a deviation ΔL (= L1-Lt) between the actual inter-vehicle distance L1 and the target inter-vehicle distance Lt, as will be described below) is apparently increased. Conversely, as the host vehicle speed v becomes greater than the forward vehicle speed vf (the host vehicle W tends to approach the forward vehicle Wf), the value of the B term increases to the plus side, and the first target inter-vehicle distance Lt (i) is set to a large value. As a result, the inter-vehicle distance deviation ΔL (= L1−Lt) is apparently reduced. In any case, the inter-vehicle distance deviation ΔL is apparently increased as an absolute value, and the target inter-vehicle distance Lt is increased according to the relative speed difference (vf−v) between the host vehicle W and the preceding vehicle Wf. It works to accelerate the convergence of the host vehicle W position.

また、コントロールユニット10は、通常時は、車速制御特性qとして、図6に示す第1車速制御特性q(i)を用いる。この車速制御特性qは、一般に、実車間距離L1と目標車間距離Ltとの偏差ΔL(=L1−Lt)に対する自車両Wの車速制御量の値を示すもので、原点、すなわち前記車間距離偏差ΔLが0のときは車速制御量は0となる。そして、前記車間距離偏差ΔLがプラス側に大きくなるに従い、つまり自車両Wが前方車両Wfから離間していくに従い、車速制御量はプラス側、つまり加速側に大きくなる。逆に、前記車間距離偏差ΔLがマイナス側に大きくなるに従い、つまり自車両Wが前方車両Wfに接近していくに従い、車速制御量はマイナス側、つまり減速側に大きくなる。なお、この第1車速制御特性q(i)は、後述する第2車速制御特性q(ii)及び第3車速制御特性q(iii)と共に、予め、例えばコントロールユニット10の記録装置(メインメモリ等)に登録・格納されている。   Further, the control unit 10 normally uses the first vehicle speed control characteristic q (i) shown in FIG. 6 as the vehicle speed control characteristic q. The vehicle speed control characteristic q generally indicates the value of the vehicle speed control amount of the host vehicle W with respect to the deviation ΔL (= L1-Lt) between the actual inter-vehicle distance L1 and the target inter-vehicle distance Lt. When ΔL is 0, the vehicle speed control amount is 0. As the inter-vehicle distance deviation ΔL increases toward the plus side, that is, as the host vehicle W moves away from the front vehicle Wf, the vehicle speed control amount increases toward the plus side, that is, the acceleration side. Conversely, as the inter-vehicle distance deviation ΔL increases toward the minus side, that is, as the host vehicle W approaches the forward vehicle Wf, the vehicle speed control amount increases toward the minus side, that is, the deceleration side. The first vehicle speed control characteristic q (i), together with a second vehicle speed control characteristic q (ii) and a third vehicle speed control characteristic q (iii), which will be described later, for example, a recording device (main memory or the like) of the control unit 10 in advance. ).

その場合に、符号アで示すように、前記車間距離偏差ΔLが離間側にγ1になるまで及び接近側にγ2になるまで車速制御量が0とされる不感帯が設けられている。また、符号イで示すように、前記車間距離偏差ΔLが前記不感帯アを超えて比較的小さい間は車速制御量の増分・減分が比較的小さい緩応答帯が設けられている。そして、符号ウで示すように、前記車間距離偏差ΔLが前記緩応答帯イを超えて比較的大きくなると車速制御量の増分・減分が比較的大きい急応答帯が設けられている。   In this case, as indicated by reference symbol (a), a dead zone is provided in which the vehicle speed control amount is zero until the inter-vehicle distance deviation ΔL reaches γ1 on the separation side and γ2 on the approach side. Further, as indicated by reference symbol (a), a slow response zone is provided in which the increment / decrement of the vehicle speed control amount is relatively small while the inter-vehicle distance deviation ΔL exceeds the dead zone a and is relatively small. As indicated by the symbol C, there is provided a sudden response zone in which the increase / decrease in the vehicle speed control amount is relatively large when the inter-vehicle distance deviation ΔL becomes relatively large beyond the slow response zone a.

次に、コントロールユニット10は、図7に示すように、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短いとき、すなわち前方車両Wfがギクシャク運転をしそうな状況にあるとき(接近時)は、自車両Wと前方車両Wfとの目標車間距離Ltとして、数6に従い、第2の目標車間距離Lt(ii)を設定する。ここで、第1の所定車間距離Lmとしては、例えば、(A・f(v)+Lx)等とすることができる。明らかなように、第1の目標車間距離Lt(i)に比べて、C・v・(Lm−L2)というC項が追加されている。つまり、第2目標車間距離Lt(ii)はC項の分だけ延長されている[請求項2に対応]。ここで、Cは、比例定数である。そして、このC項の値C・v・(Lm−L2)は、第2車間距離L2が第1の所定車間距離Lmよりも短くなった後、第2車間距離L2が短くなるに従い、徐々に大きくなっていく。換言すれば、第2目標車間距離Lt(ii)が徐々に延長されることとなる[請求項3に対応]。   Next, as shown in FIG. 7, when the second inter-vehicle distance L2 between the forward vehicle Wf and the preceding vehicle Wff is shorter than the first predetermined inter-vehicle distance Lm, that is, the forward vehicle Wf is jerky as shown in FIG. When the vehicle is likely to drive (when approaching), the second target inter-vehicle distance Lt (ii) is set according to Equation 6 as the target inter-vehicle distance Lt between the host vehicle W and the preceding vehicle Wf. Here, the first predetermined inter-vehicle distance Lm can be, for example, (A · f (v) + Lx). As is apparent, a C term C · v · (Lm−L2) is added as compared with the first target inter-vehicle distance Lt (i). That is, the second target inter-vehicle distance Lt (ii) is extended by the C term [corresponding to claim 2]. Here, C is a proportionality constant. The value C · v · (Lm−L2) of the C term is gradually increased as the second inter-vehicle distance L2 becomes shorter after the second inter-vehicle distance L2 becomes shorter than the first predetermined inter-vehicle distance Lm. It gets bigger. In other words, the second target inter-vehicle distance Lt (ii) is gradually extended [corresponding to claim 3].

Figure 2007062403
Figure 2007062403

また、その場合に、第2目標車間距離Lt(ii)における比例定数Bの値は、第1目標車間距離Lt(i)における比例定数Bの値に比べて小さくされている。それゆえ、自車両Wが前方車両Wfから離間する傾向にあるほど、第2の目標車間距離Lt(ii)が小さい値に設定され、前記車間距離偏差ΔLが見かけ上大きくされるという効果、及び、自車両Wが前方車両Wfに接近する傾向にあるほど、第2の目標車間距離Lt(ii)が大きい値に設定され、前記車間距離偏差ΔLが見かけ上小さくされるという効果、すなわち、自車両Wと前方車両Wfとの相対速度差(vf−v)に応じて目標車間距離Ltへの自車両W位置の収束が早まるという効果が低減されることとなる。換言すれば、自車両Wの車速制御感度が鈍化されていることとなる[請求項7に対応]。   In this case, the value of the proportionality constant B at the second target inter-vehicle distance Lt (ii) is made smaller than the value of the proportionality constant B at the first target inter-vehicle distance Lt (i). Therefore, the effect that the second target inter-vehicle distance Lt (ii) is set to a smaller value and the inter-vehicle distance deviation ΔL is apparently increased as the host vehicle W tends to move away from the preceding vehicle Wf, and The second target inter-vehicle distance Lt (ii) is set to a larger value as the host vehicle W tends to approach the front vehicle Wf, and the effect that the inter-vehicle distance deviation ΔL is apparently reduced, that is, the own vehicle The effect that the convergence of the host vehicle W position to the target inter-vehicle distance Lt is accelerated according to the relative speed difference (vf−v) between the vehicle W and the preceding vehicle Wf is reduced. In other words, the vehicle speed control sensitivity of the host vehicle W is slowed down [corresponding to claim 7].

また、コントロールユニット10は、接近時は、車速制御特性qとして、図8に示す第2車速制御特性q(ii)を用いる。この第2車速制御特性q(ii)は、第1車速制御特性q(i)と比べると(図中点線で示す)、車間距離偏差ΔLがプラス側、つまり離間側において、緩応答帯イ及び急応答帯ウのいずれも、車速制御量の増分・減分が小さくされている[請求項8に対応]。すなわち、自車両Wの車速制御量が低減されて、自車両Wの車速制御感度が鈍化されている[請求項5に対応]。   Further, when approaching, the control unit 10 uses the second vehicle speed control characteristic q (ii) shown in FIG. 8 as the vehicle speed control characteristic q. The second vehicle speed control characteristic q (ii) is compared with the first vehicle speed control characteristic q (i) (indicated by a dotted line in the figure), and the slow response band A and In any of the sudden response zones c, the increment / decrement of the vehicle speed control amount is reduced [corresponding to claim 8]. That is, the vehicle speed control amount of the host vehicle W is reduced, and the vehicle speed control sensitivity of the host vehicle W is slowed down [corresponding to claim 5].

次に、コントロールユニット10は、図9に示すように、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短い第2の所定車間距離Lnよりも短いとき、すなわち前方車両Wfがより一層ギクシャク運転をしそうな状況にあるとき(異常接近時)は、自車両Wと前方車両Wfとの目標車間距離Ltとして、数7に従い、第3の目標車間距離Lt(iii)を設定する。ここで、第2の所定車間距離Lnとしては、例えば、空走距離(前方車両Wfの空走距離)等とすることができる。明らかなように、第2の目標車間距離Lt(ii)に比べて、B項が削除され、代わりに、D・vというD項が追加されている。ここで、D項の値は、B項の値よりも大きくされている。すなわち、第3目標車間距離Lt(iii)は、(D項の値−B項の値)の分だけ、第2目標車間距離Lt(ii)よりもさらに延長されている[請求項4に対応]。ここで、Dは、比例定数である。   Next, as shown in FIG. 9, the control unit 10 determines that the second inter-vehicle distance Ln between the front vehicle Wf and the preceding vehicle Wff is shorter than the first predetermined inter-vehicle distance Lm. Is shorter, that is, when the forward vehicle Wf is likely to perform more jerky driving (when abnormally approaching), the third target according to Equation 7 is used as the target inter-vehicle distance Lt between the host vehicle W and the forward vehicle Wf. An inter-vehicle distance Lt (iii) is set. Here, the second predetermined inter-vehicle distance Ln can be, for example, an idle running distance (an empty running distance of the front vehicle Wf) or the like. As is apparent, the B term is deleted as compared to the second target inter-vehicle distance Lt (ii), and a D term of D · v is added instead. Here, the value of the D term is larger than the value of the B term. In other words, the third target inter-vehicle distance Lt (iii) is further extended from the second target inter-vehicle distance Lt (ii) by (D term value−B term value). ]. Here, D is a proportionality constant.

Figure 2007062403
Figure 2007062403

また、その場合に、B項が削除された結果、自車両Wが前方車両Wfから離間する傾向にあるほど、第3の目標車間距離Lt(iii)が小さい値に設定され、前記車間距離偏差ΔLが見かけ上大きくされるという効果、及び、自車両Wが前方車両Wfに接近する傾向にあるほど、第3の目標車間距離Lt(iii)が大きい値に設定され、前記車間距離偏差ΔLが見かけ上小さくされるという効果、すなわち、自車両Wと前方車両Wfとの相対速度差(vf−v)に応じて目標車間距離Ltへの自車両W位置の収束が早まるという効果が無くなることとなる。換言すれば、自車両Wの車速制御感度がさらに鈍化されていることとなる[請求項7に対応]。   In this case, the third target inter-vehicle distance Lt (iii) is set to a smaller value as the host vehicle W tends to move away from the preceding vehicle Wf as a result of deleting the B term, and the inter-vehicle distance deviation The third target inter-vehicle distance Lt (iii) is set to a larger value as the effect that ΔL is apparently increased and the host vehicle W tends to approach the front vehicle Wf, and the inter-vehicle distance deviation ΔL is The effect that it is apparently reduced, that is, the effect that the convergence of the position of the host vehicle W to the target inter-vehicle distance Lt is accelerated according to the relative speed difference (vf−v) between the host vehicle W and the preceding vehicle Wf is eliminated. Become. In other words, the vehicle speed control sensitivity of the host vehicle W is further reduced (corresponding to claim 7).

また、コントロールユニット10は、異常接近時は、車速制御特性qとして、図10に示す第3車速制御特性q(iii)を用いる。この第3車速制御特性q(iii)は、第2車速制御特性q(ii)と比べると(図中点線で示す)、車間距離偏差ΔLがプラス側、つまり離間側において、不感帯アがγ3まで大きくされている[請求項8に対応]。すなわち、自車両Wの車速制御の開始がより一層遅延されて、自車両Wの車速制御感度が鈍化されている[請求項6に対応]。また、それに伴い、帰りの緩応答帯イの変化量、すなわち増分・減分がさらに小さくされている。   Further, the control unit 10 uses the third vehicle speed control characteristic q (iii) shown in FIG. 10 as the vehicle speed control characteristic q when abnormally approaching. This third vehicle speed control characteristic q (iii) is compared with the second vehicle speed control characteristic q (ii) (indicated by a dotted line in the figure), and the dead zone a is up to γ3 when the inter-vehicle distance deviation ΔL is positive, that is, away from the vehicle. It is enlarged [corresponding to claim 8]. That is, the start of the vehicle speed control of the host vehicle W is further delayed, and the vehicle speed control sensitivity of the host vehicle W is slowed down [corresponding to claim 6]. Along with this, the amount of change in the return slow response zone (i.e., increment / decrement) is further reduced.

次に、図11のフローチャートに従って、前記コントロールユニット10が行う追従走行制御の具体的動作の1例を説明する。まず、ステップS1で、各種信号を入力したうえで、ステップS2で、前方車両WFの有無を判定する。前方車両Wfが無いときは、ステップS3で、目標車間距離Ltの設定を行わず、ステップS4で、目標車速制御量の設定も行わないまま、リターンする。   Next, according to the flowchart of FIG. 11, an example of a specific operation of the follow-up running control performed by the control unit 10 will be described. First, in step S1, various signals are input, and in step S2, the presence or absence of the forward vehicle WF is determined. If there is no preceding vehicle Wf, the process returns without setting the target inter-vehicle distance Lt at step S3 and without setting the target vehicle speed control amount at step S4.

前方車両Wfが有るときは、ステップS5で、前々方車両Wffの有無を判定する。前々方車両Wffが無いときは、ステップS6で、目標車間距離Ltを第1目標車間距離Lt(i)に設定し、ステップS7で、車間距離偏差ΔL(i)を算出し、ステップS8で、目標車速制御量を第1車速制御特性q(i)により設定する(この詳しい動作はさらに後述する)。そして、ステップS9で、設定した目標車速制御量が得られるようにスロットルアクチュエータ17(加速時)及びブレーキアクチュエータ18(減速時)を制御する。これにより、自車両Wと前方車両Wfとの実車間距離L1が所定の目標車間距離Ltに維持されるように自車両Wを前方車両Wfに追従走行させることとなる。   If there is a preceding vehicle Wf, it is determined in step S5 whether or not there is a preceding vehicle Wff. When there is no preceding vehicle Wff, the target inter-vehicle distance Lt is set to the first target inter-vehicle distance Lt (i) in step S6, the inter-vehicle distance deviation ΔL (i) is calculated in step S7, and in step S8. The target vehicle speed control amount is set by the first vehicle speed control characteristic q (i) (this detailed operation will be further described later). Then, in step S9, the throttle actuator 17 (during acceleration) and the brake actuator 18 (during deceleration) are controlled so that the set target vehicle speed control amount is obtained. Thereby, the host vehicle W is caused to travel following the front vehicle Wf so that the actual inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is maintained at the predetermined target inter-vehicle distance Lt.

前々方車両Wffが有るときは、ステップS10で、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短いか否かを判定する。次いで、ステップS11で、前記第2車間距離L2が第2の所定車間距離Lnよりも短いか否かを判定する。その結果、前記第2車間距離L2が第1の所定車間距離Lmよりも長い場合(図5、図6参照)は、ステップS6に進み、前記第2車間距離L2が第1の所定車間距離Lmよりも短い場合(図7、図8参照)は、ステップS12に進み、前記第2車間距離L2が第2の所定車間距離Lnよりも短い場合(図9、図10参照)は、ステップS15に進む。   When there is the front-end vehicle Wff, it is determined in step S10 whether the second inter-vehicle distance L2 between the front vehicle Wf and the front-end vehicle Wff is shorter than the first predetermined inter-vehicle distance Lm. Next, in step S11, it is determined whether or not the second inter-vehicle distance L2 is shorter than a second predetermined inter-vehicle distance Ln. As a result, when the second inter-vehicle distance L2 is longer than the first predetermined inter-vehicle distance Lm (see FIGS. 5 and 6), the process proceeds to step S6, where the second inter-vehicle distance L2 is the first predetermined inter-vehicle distance Lm. Is shorter (see FIGS. 7 and 8), the process proceeds to step S12, and when the second inter-vehicle distance L2 is shorter than the second predetermined inter-vehicle distance Ln (see FIGS. 9 and 10), the process proceeds to step S15. move on.

いずれの場合も、まず、目標車間距離Ltを第1、第2、第3目標車間距離Lt(i),Lt(ii),Lt(iii)に設定し(ステップS6,S12,S15)、車間距離偏差ΔL(i),ΔL(ii),ΔL(iii)を算出し(ステップS7,S13,S16)、目標車速制御量を第1、第2、第3車速制御特性q(i),q(ii),q(iii)により設定する(ステップS8,S14,S17)。そして、いずれの場合も、ステップS9で、設定した目標車速制御量が得られるようにスロットルアクチュエータ17(加速時)及びブレーキアクチュエータ18(減速時)を制御する。これにより、自車両Wと前方車両Wfとの実車間距離L1が所定の目標車間距離Ltに維持されるように自車両Wを前方車両Wfに追従走行させることとなる。   In either case, first, the target inter-vehicle distance Lt is set to the first, second, and third target inter-vehicle distances Lt (i), Lt (ii), and Lt (iii) (steps S6, S12, and S15). Distance deviations ΔL (i), ΔL (ii), ΔL (iii) are calculated (steps S7, S13, S16), and the target vehicle speed control amount is set to the first, second, and third vehicle speed control characteristics q (i), q. It is set by (ii) and q (iii) (steps S8, S14, S17). In either case, in step S9, the throttle actuator 17 (during acceleration) and the brake actuator 18 (during deceleration) are controlled so that the set target vehicle speed control amount is obtained. Thereby, the host vehicle W is caused to travel following the front vehicle Wf so that the actual inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is maintained at the predetermined target inter-vehicle distance Lt.

前記ステップS8,S14,S17の目標車速制御量の設定動作は、およそ図12に示すフローチャートに従って行われる。まず、ステップS21で、γ3の設定の有無を判定する。無い場合(通常時又は接近時)は、ステップS22で、車間距離偏差ΔLがγ1より大きいか否かを判定する。大きい場合は、ステップS23で、目標車速制御量を車速制御特性qに従い決定する。一方、ステップS22で車間距離偏差ΔLがγ1より小さい場合は、ステップS24で、車間距離偏差ΔLがγ2より小さいか否かを判定する。小さい場合は、ステップS23で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS25で、目標車速制御量を0と決定する。   The setting operation of the target vehicle speed control amount in steps S8, S14, and S17 is performed according to the flowchart shown in FIG. First, in step S21, it is determined whether or not γ3 is set. If not (normal or approaching), it is determined in step S22 whether the inter-vehicle distance deviation ΔL is greater than γ1. If larger, in step S23, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. On the other hand, if the inter-vehicle distance deviation ΔL is smaller than γ1 in step S22, it is determined in step S24 whether the inter-vehicle distance deviation ΔL is smaller than γ2. If it is smaller, in step S23, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S25.

同様に、ステップS21でγ3の設定が有る場合(異常接近時)は、ステップS26で、車間距離偏差ΔLがγ3より大きいか否かを判定する。大きい場合は、ステップS23で、目標車速制御量を車速制御特性qに従い決定する。一方、ステップS26で車間距離偏差ΔLがγ3より小さい場合は、ステップS24で、車間距離偏差ΔLがγ2より小さいか否かを判定する。小さい場合は、ステップS23で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS25で、目標車速制御量を0と決定する。   Similarly, if γ3 is set in step S21 (during abnormal approach), it is determined in step S26 whether the inter-vehicle distance deviation ΔL is greater than γ3. If larger, in step S23, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. On the other hand, if the inter-vehicle distance deviation ΔL is smaller than γ3 in step S26, it is determined in step S24 whether the inter-vehicle distance deviation ΔL is smaller than γ2. If it is smaller, in step S23, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S25.

以上のように、本実施形態においては、例えば前方車両Wfが前々方車両Wffに接近して走行し、その結果、前方車両Wfと前々方車両Wffとの車間距離L2が所定の車間距離Lmよりも短くなって(L2<Lm)、前方車両Wfがギクシャク運転をしそうな状況においては(図7の接近時)、自車両Wと前方車両Wfとの車間距離L1を目標車間距離Ltに維持しようとする自車両Wの車速制御の感度を鈍化させるようにしたから(図8の第2車速制御特性q(ii)、ひいては図10の第3車速制御特性q(iii))、たとえ前方車両Wfが急ブレーキや急加速を繰り返すギクシャク運転をしても、それに連動して自車両Wが急ブレーキや急加速を頻繁に行うことが抑制され、乗員の乗り心地や安心感の向上が図られる。   As described above, in the present embodiment, for example, the front vehicle Wf travels close to the front vehicle Wff, and as a result, the inter-vehicle distance L2 between the front vehicle Wf and the front vehicle Wff is a predetermined inter-vehicle distance. In a situation where the vehicle is shorter than Lm (L2 <Lm) and the forward vehicle Wf is likely to perform a jerky operation (when approaching in FIG. 7), the inter-vehicle distance L1 between the host vehicle W and the forward vehicle Wf is set to the target inter-vehicle distance Lt. Since the sensitivity of the vehicle speed control of the host vehicle W to be maintained is slowed (the second vehicle speed control characteristic q (ii) in FIG. 8 and eventually the third vehicle speed control characteristic q (iii) in FIG. 10), Even if the vehicle Wf repeats sudden braking and acceleration, the host vehicle W is restrained from frequent frequent braking and rapid acceleration, improving the ride comfort and sense of security. It is done.

その場合に、自車両Wの車速制御の感度を鈍化させると共に、目標車間距離Ltを所定距離(C項:C・v・(Lm−L2))だけ延長するようにしたから、自車両Wと前方車両Wfとの車間距離L1に余裕ができて、たとえ自車両Wの車速制御の感度が鈍化しても乗員の安心感が確保される。   In this case, the sensitivity of the vehicle speed control of the host vehicle W is slowed and the target inter-vehicle distance Lt is extended by a predetermined distance (C term: C · v · (Lm−L2)). Even if there is a margin in the inter-vehicle distance L1 with the preceding vehicle Wf and the sensitivity of the vehicle speed control of the host vehicle W is slowed down, the passenger's sense of security is ensured.

また、その場合に、目標車間距離Ltを一気に所定距離だけ延長するのではなく、前方車両Wfと前々方車両Wffとの車間距離L2が短くなるに従い目標車間距離Ltを徐々に延長するようにしたから(前記C項参照)、自車両Wは前方車両Wfから徐々に離間していくこととなり、円滑な追従走行制御が実現して、この点からも乗員の乗り心地の向上が図られる。   In this case, the target inter-vehicle distance Lt is not extended at a time by a predetermined distance, but the target inter-vehicle distance Lt is gradually extended as the inter-vehicle distance L2 between the front vehicle Wf and the preceding vehicle Wff becomes shorter. Therefore (see section C), the host vehicle W is gradually separated from the front vehicle Wf, and smooth follow-up control is realized. From this point as well, the ride comfort of the occupant is improved.

さらに、前方車両Wfと前々方車両Wffとの車間距離L2が前記所定の車間距離Lmよりも短い第2の所定の車間距離Lnよりも短くなって(L2<Ln)、前方車両Wfがギクシャク運転をより一層しそうな状況、あるいは前方車両Wfと前々方車両Wffとの接触が起こりそうな状況においては(図9の異常接近時)、目標車間距離Ltを第2の所定距離(D項の値−B項の値)だけさらに延長するようにしたから、自車両Wと前方車両Wfとの車間距離L1にさらに余裕ができて、たとえ自車両Wの車速制御の感度が鈍化しても乗員の安心感が確保されると共に、たとえ前方車両Wfが前々方車両Wffに接触した場合でも自車両Wが前方車両Wfに接触する可能性が低減できて安全性が担保される。   Furthermore, the inter-vehicle distance L2 between the preceding vehicle Wf and the preceding vehicle Wff becomes shorter than the second predetermined inter-vehicle distance Ln that is shorter than the predetermined inter-vehicle distance Lm (L2 <Ln), so that the front vehicle Wf is jerky. In a situation where driving is more likely, or in a situation where contact between the preceding vehicle Wf and the preceding vehicle Wff is likely to occur (at the time of abnormal approach in FIG. 9), the target inter-vehicle distance Lt is set to the second predetermined distance (D term). Therefore, even if the vehicle speed control sensitivity of the host vehicle W is slowed down, the vehicle distance L1 between the host vehicle W and the preceding vehicle Wf can be further increased. A passenger's sense of security is ensured, and even if the forward vehicle Wf comes into contact with the forward vehicle Wff, the possibility that the host vehicle W comes into contact with the forward vehicle Wf can be reduced, and safety is ensured.

一方、前記自車両Wの車速制御感度を鈍化させる具体的態様の1つとして、自車両Wと前方車両Wfとの車間距離L1と、自車両Wと前方車両Wfとの目標車間距離Ltとの偏差ΔLに対する自車両Wの車速制御量を低減するようにしたから(図8及び図10における緩応答帯イ及び急応答帯ウの変化量の減少)、前記自車両Wの車速制御感度を確実に鈍化させることができる。   On the other hand, as one of the specific modes for slowing down the vehicle speed control sensitivity of the host vehicle W, there are an inter-vehicle distance L1 between the host vehicle W and the preceding vehicle Wf, and a target inter-vehicle distance Lt between the host vehicle W and the preceding vehicle Wf. Since the vehicle speed control amount of the host vehicle W with respect to the deviation ΔL is reduced (decrease in the amount of change in the slow response zone A and the sudden response zone U in FIGS. 8 and 10), the vehicle speed control sensitivity of the host vehicle W is ensured. Can be slowed down.

同じく、前記自車両Wの車速制御感度を鈍化させる別の具体的態様の1つとして、自車両Wと前方車両Wfとの車間距離L1と、自車両Wと前方車両Wfとの目標車間距離Ltとの偏差ΔLに対する自車両Wの車速制御の開始を遅延するようにしたから(図10における不感帯アの拡大)、やはりこの場合も前記自車両Wの車速制御感度を確実に鈍化させることができる。   Similarly, as another specific aspect of slowing down the vehicle speed control sensitivity of the host vehicle W, the inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf, and the target inter-vehicle distance Lt between the host vehicle W and the front vehicle Wf. Since the start of the vehicle speed control of the host vehicle W with respect to the deviation ΔL is delayed (expansion of the dead zone in FIG. 10), the vehicle speed control sensitivity of the host vehicle W can be surely slowed in this case as well. .

同じく、前記自車両Wの車速制御感度を鈍化させるさらに別の具体的態様の1つとして、自車両Wと前方車両Wfとの車間距離L1と、自車両Wと前方車両Wfとの目標車間距離Ltとの偏差ΔLを小さくする(絶対値で小さくする)ようにしたから(図7における比例定数Bの値の減少、図9におけるB項の削除)、やはりこの場合も前記自車両Wの車速制御感度を確実に鈍化させることができる。   Similarly, as another specific aspect for slowing down the vehicle speed control sensitivity of the host vehicle W, the inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf and the target inter-vehicle distance between the host vehicle W and the front vehicle Wf. Since the deviation ΔL from Lt is reduced (decrease in absolute value) (decrease in the value of the proportionality constant B in FIG. 7 and deletion of the B term in FIG. 9), the vehicle speed of the host vehicle W is again in this case. The control sensitivity can be surely slowed down.

そして、前記自車両Wの車速制御感度の鈍化を、自車両Wと前方車両Wfとの車間距離L1が自車両Wと前方車両Wfとの目標車間距離Ltよりも大きい場合、つまり自車両Wが前方車両Wfから目標以上に離間している場合(車間距離偏差ΔLがプラスの場合)にのみ行うようにしたから、逆にいえば、自車両Wと前方車両Wfとの車間距離L1が自車両Wと前方車両Wfとの目標車間距離Ltよりも小さい場合、つまり自車両Wが前方車両Wfに目標以上に接近している場合(車間距離偏差ΔLがマイナスの場合)には、自車両Wの車速制御感度の鈍化を行わないようにしたから、たとえ自車両Wが前方車両Wfに目標以上に接近している場合に前方車両Wfが急ブレーキや急停止することがあっても、これに遅れなく対応でき、自車両Wが前方車両Wfに接触する可能性が低減できて安全性が担保される。   The vehicle speed control sensitivity of the host vehicle W is slowed down when the inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is larger than the target inter-vehicle distance Lt between the host vehicle W and the front vehicle Wf. Since it is performed only when the vehicle is separated from the front vehicle Wf beyond the target (when the inter-vehicle distance deviation ΔL is positive), conversely, the inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is the host vehicle. When the vehicle distance Wt is smaller than the target inter-vehicle distance Lt between W and the preceding vehicle Wf, that is, when the own vehicle W is approaching the front vehicle Wf more than the target (when the inter-vehicle distance deviation ΔL is negative), Since the vehicle speed control sensitivity is not slowed down, even if the host vehicle W is approaching the target vehicle Wf beyond the target even if the host vehicle Wf suddenly brakes or stops suddenly, it is delayed. The vehicle W Is less likely to come into contact with the forward vehicle Wf, and safety is ensured.

次に、本発明の第2の実施形態を特徴部分のみ取り出して説明する。図13(図8に対応)、図14(図10に対応)に例示したように、コントロールユニット10は、接近時及び異常接近時は、車速制御特性qとして、車間距離偏差ΔLがマイナス側、つまり接近側においても、自車両Wの車速制御量が低減されて、自車両Wの車速制御感度が鈍化されている第2の車速制御特性q(ii)、及び自車両Wの車速制御の開始がより一層遅延されて(γ4)、自車両Wの車速制御感度が鈍化されている第3の車速制御特性q(iii)を用いてもよい。   Next, a second embodiment of the present invention will be described by extracting only the characteristic part. As illustrated in FIG. 13 (corresponding to FIG. 8) and FIG. 14 (corresponding to FIG. 10), the control unit 10 has an inter-vehicle distance deviation ΔL as a negative side as a vehicle speed control characteristic q when approaching or abnormally approaching. That is, on the approach side, the second vehicle speed control characteristic q (ii) in which the vehicle speed control amount of the host vehicle W is reduced and the vehicle speed control sensitivity of the host vehicle W is slowed down, and the start of the vehicle speed control of the host vehicle W is started. May be further delayed (γ4), and the third vehicle speed control characteristic q (iii) in which the vehicle speed control sensitivity of the host vehicle W is slowed may be used.

その場合にコントロールユニット10が行う追従走行制御は、前記図11に示した第1実施形態と同様であるが、目標車速制御量の設定動作は、およそ図15に示すフローチャートに従って行われる。   The follow-up running control performed by the control unit 10 in this case is the same as that in the first embodiment shown in FIG. 11, but the setting operation of the target vehicle speed control amount is performed according to the flowchart shown in FIG.

まず、ステップS31で、γ3の設定の有無を判定する。無い場合(通常時又は接近時)は、ステップS32で、車間距離偏差ΔLがγ1より大きいか否かを判定する。大きい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。一方、ステップS32で車間距離偏差ΔLがγ1より小さい場合は、ステップS34で、γ4の設定の有無を判定する。無い場合(通常時又は接近時)は、ステップS35で、車間距離偏差ΔLがγ2より小さいか否かを判定する。小さい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS36で、目標車速制御量を0と決定する。また、ステップS34でγ4の設定が有る場合(異常接近時)は、ステップS38で、車間距離偏差ΔLがγ4より小さいか否かを判定する。小さい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS36で、目標車速制御量を0と決定する。   First, in step S31, it is determined whether or not γ3 is set. If not (normal or approaching), it is determined in step S32 whether the inter-vehicle distance deviation ΔL is greater than γ1. If so, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q in step S33. On the other hand, if the inter-vehicle distance deviation ΔL is smaller than γ1 in step S32, it is determined whether or not γ4 is set in step S34. If not (normal or approaching), it is determined in step S35 whether the inter-vehicle distance deviation ΔL is smaller than γ2. If it is smaller, in step S33, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S36. If γ4 is set in step S34 (when abnormally approaching), it is determined in step S38 whether the inter-vehicle distance deviation ΔL is smaller than γ4. If it is smaller, in step S33, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S36.

同様に、ステップS31でγ3の設定が有る場合(異常接近時)は、ステップS37で、車間距離偏差ΔLがγ3より大きいか否かを判定する。大きい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。一方、ステップS37で車間距離偏差ΔLがγ3より小さい場合は、ステップS34で、γ4の設定の有無を判定する。無い場合(通常時又は接近時)は、ステップS35で、車間距離偏差ΔLがγ2より小さいか否かを判定する。小さい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS36で、目標車速制御量を0と決定する。また、ステップS34でγ4の設定が有る場合(異常接近時)は、ステップS38で、車間距離偏差ΔLがγ4より小さいか否かを判定する。小さい場合は、ステップS33で、目標車速制御量を車速制御特性qに従い決定する。しかし、大きい場合は、不感帯アにあるとして、ステップS36で、目標車速制御量を0と決定する。   Similarly, if γ3 is set in step S31 (during abnormal approach), it is determined in step S37 whether the inter-vehicle distance deviation ΔL is greater than γ3. If so, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q in step S33. On the other hand, if the inter-vehicle distance deviation ΔL is smaller than γ3 in step S37, it is determined whether or not γ4 is set in step S34. If not (normal or approaching), it is determined in step S35 whether the inter-vehicle distance deviation ΔL is smaller than γ2. If it is smaller, in step S33, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S36. If γ4 is set in step S34 (when abnormally approaching), it is determined in step S38 whether the inter-vehicle distance deviation ΔL is smaller than γ4. If it is smaller, in step S33, the target vehicle speed control amount is determined according to the vehicle speed control characteristic q. However, if it is larger, it is determined that the vehicle is in the dead zone a, and the target vehicle speed control amount is determined to be 0 in step S36.

次に、本発明の第3の実施形態を特徴部分のみ取り出して説明する。図16(図7、図9に対応)に例示したように、この第3実施形態では、第3目標車間距離Lt(iii)は設定されず、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短くなった後は、連続して第2目標車間距離Lt(ii)のみ用いられる。   Next, a third embodiment of the present invention will be described by extracting only the characteristic part. As illustrated in FIG. 16 (corresponding to FIG. 7 and FIG. 9), in the third embodiment, the third target inter-vehicle distance Lt (iii) is not set, and the first vehicle Wf and the forward vehicle Wff are After the two inter-vehicle distance L2 becomes shorter than the first predetermined inter-vehicle distance Lm, only the second target inter-vehicle distance Lt (ii) is used continuously.

また、図17(図8、図10に対応)に例示したように、この第3実施形態では、第3車速制御特性q(iii)は用いられず、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短くなった後は、連続して第2車速制御特性q(ii)のみ用いられる。その場合に、この第2車速制御特性q(ii)では、図8に示した第2車速制御特性q(ii)と比較して、不感帯アがγ3まで大きくされている。   Further, as illustrated in FIG. 17 (corresponding to FIGS. 8 and 10), in the third embodiment, the third vehicle speed control characteristic q (iii) is not used, and the forward vehicle Wf and the forward and backward vehicle Wff are After the second inter-vehicle distance L2 becomes shorter than the first predetermined inter-vehicle distance Lm, only the second vehicle speed control characteristic q (ii) is continuously used. In this case, in the second vehicle speed control characteristic q (ii), the dead zone a is increased to γ3 as compared with the second vehicle speed control characteristic q (ii) shown in FIG.

この第3実施形態では、コントロールユニット10が行う目標車速制御量の設定動作は、前記図12に示した第1実施形態と同様であるが、追従走行制御は、およそ図18に示すフローチャートに従って行われる。   In the third embodiment, the setting operation of the target vehicle speed control amount performed by the control unit 10 is the same as that in the first embodiment shown in FIG. 12, but the follow-up running control is performed according to the flowchart shown in FIG. Is called.

まず、ステップS41で、各種信号を入力したうえで、ステップS42で、前方車両WFの有無を判定する。前方車両Wfが無いときは、ステップS43で、目標車間距離Ltの設定を行わず、ステップS44で、目標車速制御量の設定も行わないまま、リターンする。   First, in step S41, various signals are input, and in step S42, the presence / absence of the preceding vehicle WF is determined. If there is no preceding vehicle Wf, the process returns without setting the target inter-vehicle distance Lt at step S43 and without setting the target vehicle speed control amount at step S44.

前方車両Wfが有るときは、ステップS45で、前々方車両Wffの有無を判定する。前々方車両Wffが無いときは、ステップS46で、目標車間距離Ltを第1目標車間距離Lt(i)に設定し、ステップS47で、車間距離偏差ΔL(i)を算出し、ステップS48で、目標車速制御量を第1車速制御特性q(i)により設定する。そして、ステップS49で、設定した目標車速制御量が得られるようにスロットルアクチュエータ17(加速時)及びブレーキアクチュエータ18(減速時)を制御する。これにより、自車両Wと前方車両Wfとの実車間距離L1が所定の目標車間距離Ltに維持されるように自車両Wを前方車両Wfに追従走行させることとなる。   If there is a preceding vehicle Wf, it is determined in step S45 whether or not there is a preceding vehicle Wff. When there is no preceding vehicle Wff, the target inter-vehicle distance Lt is set to the first target inter-vehicle distance Lt (i) in step S46, the inter-vehicle distance deviation ΔL (i) is calculated in step S47, and in step S48. The target vehicle speed control amount is set by the first vehicle speed control characteristic q (i). In step S49, the throttle actuator 17 (during acceleration) and the brake actuator 18 (during deceleration) are controlled so that the set target vehicle speed control amount is obtained. Thereby, the host vehicle W is caused to travel following the front vehicle Wf so that the actual inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is maintained at the predetermined target inter-vehicle distance Lt.

前々方車両Wffが有るときは、ステップS50で、前方車両Wfと前々方車両Wffとの第2車間距離L2が第1の所定車間距離Lmよりも短いか否かを判定する。その結果、前記第2車間距離L2が第1の所定車間距離Lmよりも長い場合(図5、図6参照)は、ステップS46に進み、前記第2車間距離L2が第1の所定車間距離Lmよりも短い場合(図16、図17参照)は、ステップS51に進む。   When there is the front-end vehicle Wff, it is determined in step S50 whether the second inter-vehicle distance L2 between the front vehicle Wf and the front-end vehicle Wff is shorter than the first predetermined inter-vehicle distance Lm. As a result, when the second inter-vehicle distance L2 is longer than the first predetermined inter-vehicle distance Lm (see FIGS. 5 and 6), the process proceeds to step S46, and the second inter-vehicle distance L2 is the first predetermined inter-vehicle distance Lm. If shorter (see FIGS. 16 and 17), the process proceeds to step S51.

いずれの場合も、まず、目標車間距離Ltを第1、第2目標車間距離Lt(i),Lt(ii)に設定し(ステップS46,S51)、車間距離偏差ΔL(i),ΔL(ii)を算出し(ステップS47,S52)、目標車速制御量を第1、第2車速制御特性q(i),q(ii)により設定する(ステップS48,S53)。そして、いずれの場合も、ステップS49で、設定した目標車速制御量が得られるようにスロットルアクチュエータ17(加速時)及びブレーキアクチュエータ18(減速時)を制御する。これにより、自車両Wと前方車両Wfとの実車間距離L1が所定の目標車間距離Ltに維持されるように自車両Wを前方車両Wfに追従走行させることとなる。   In either case, first, the target inter-vehicle distance Lt is set to the first and second target inter-vehicle distances Lt (i) and Lt (ii) (steps S46 and S51), and the inter-vehicle distance deviations ΔL (i) and ΔL (ii) ) Is calculated (steps S47, S52), and the target vehicle speed control amount is set by the first and second vehicle speed control characteristics q (i), q (ii) (steps S48, S53). In either case, in step S49, the throttle actuator 17 (during acceleration) and the brake actuator 18 (during deceleration) are controlled so that the set target vehicle speed control amount is obtained. Thereby, the host vehicle W is caused to travel following the front vehicle Wf so that the actual inter-vehicle distance L1 between the host vehicle W and the front vehicle Wf is maintained at the predetermined target inter-vehicle distance Lt.

なお、前記各実施形態は、本発明の最良の実施形態ではあるが、特許請求の範囲を逸脱しない限り、なお種々の修正、変更が可能なことはいうまでもない。例えば、前記実施形態では、前方車両Wfと前々方車両Wffとの第3車間距離L3が第1の所定車間距離Lmよりも長い通常時に用いる第1車速制御特性q(i)と、前記第3車間距離L3が第1の所定車間距離Lmよりも短い接近時に用いる第2車速制御特性q(ii)と、前記第3車間距離L3が第2の所定車間距離Lnよりも短い異常接近時に用いる第3車速制御特性q(iii)とを、予め、例えばコントロールユニット10の記録装置等に登録・格納しておく場合で説明したが、これに代えて、例えば、標準形である前記第1車速制御特性q(i)だけを記録装置等に登録・格納しておき、接近時又は異常接近時になれば、該第1車速制御特性q(i)をその都度第2車速制御特性q(ii)又は第3車速制御特性q(iii)に変形・修正して用いるようにすることもできる。また、自車両Wの車速制御感度を鈍化させる手段として、比例定数Bの値の減少、不感帯アの拡大、緩応答帯イ及び急応答帯ウの変化量の減少の3つを挙げたが、これらを様々に組み合わせて適用することができる。また、第3実施形態において、第2実施形態のように、車間距離偏差ΔLがマイナス側、つまり接近側においても、自車両Wの車速制御感度を鈍化させてもよい。   Each of the above embodiments is the best embodiment of the present invention, but it goes without saying that various modifications and changes can be made without departing from the scope of the claims. For example, in the above-described embodiment, the first vehicle speed control characteristic q (i) used during normal time when the third inter-vehicle distance L3 between the preceding vehicle Wf and the preceding vehicle Wff is longer than the first predetermined inter-vehicle distance Lm, and the first The second vehicle speed control characteristic q (ii) used at the time of approach when the three inter-vehicle distance L3 is shorter than the first predetermined inter-vehicle distance Lm, and the abnormal distance when the third inter-vehicle distance L3 is shorter than the second predetermined inter-vehicle distance Ln. The third vehicle speed control characteristic q (iii) has been described in the case where it is registered and stored in advance in, for example, the recording device of the control unit 10, but instead of this, for example, the first vehicle speed that is a standard form is used. Only the control characteristic q (i) is registered / stored in the recording device or the like, and when the vehicle approaches or abnormally approaches, the first vehicle speed control characteristic q (i) is changed to the second vehicle speed control characteristic q (ii) each time. Or the third vehicle speed control characteristic q (iii) It is also possible to make use deformed and corrected. In addition, as means for slowing down the vehicle speed control sensitivity of the host vehicle W, the following three were mentioned: a decrease in the value of the proportional constant B, an expansion of the dead zone A, a decrease in the amount of change in the slow response zone A and the sudden response zone U. These can be applied in various combinations. In the third embodiment, as in the second embodiment, the vehicle speed control sensitivity of the host vehicle W may be slowed even when the inter-vehicle distance deviation ΔL is on the minus side, that is, on the approaching side.

以上、具体例を挙げて詳しく説明したように、本発明は、たとえ前方車両が急ブレーキや急加速を繰り返すギクシャク運転をしても、それに連動して自車両が急ブレーキや急加速を頻繁に行うことが抑制され、乗員の乗り心地や安心感の向上が図られるもので、自動車の追従走行装置の技術分野において幅広い産業上の利用可能性が期待される。   As described above in detail with reference to specific examples, the present invention frequently causes sudden braking and sudden acceleration of the own vehicle in conjunction with the forward driving even when the preceding vehicle repeats sudden braking and sudden acceleration. This is intended to improve the ride comfort and security of passengers, and is expected to have a wide range of industrial applicability in the technical field of automobile tracking systems.

本発明の最良の実施形態に係る自動車の追従走行装置の各構成要素のレイアウト図である。FIG. 2 is a layout diagram of each component of the automobile follow-up traveling device according to the best embodiment of the present invention. 前記追従走行装置のコントロールユニットを中心とした制御システム図である。It is a control system figure centering on the control unit of the said follower traveling apparatus. 自車両と前々方車両との車間距離を検出する具体的一態様の説明図である。It is explanatory drawing of the concrete one aspect | mode which detects the inter-vehicle distance of the own vehicle and a vehicle ahead. 前方車両の全長を検出する具体的一態様の説明図である。It is explanatory drawing of the specific one aspect | mode which detects the full length of a front vehicle. 前々方車両と前方車両との車間距離が第1所定車間距離よりも長い場合における自車両と前方車両との目標車間距離の説明図である。It is explanatory drawing of the target inter-vehicle distance of the own vehicle and a front vehicle in case the inter-vehicle distance of a front vehicle and a front vehicle is longer than the 1st predetermined inter-vehicle distance. 前記場合における車間距離偏差に対する車速制御量の特性(第1特性)を示す説明図である。It is explanatory drawing which shows the characteristic (1st characteristic) of the vehicle speed control amount with respect to the inter-vehicle distance deviation in the said case. 前々方車両と前方車両との車間距離が第1所定車間距離よりも短い場合における自車両と前方車両との目標車間距離の説明図である。It is explanatory drawing of the target inter-vehicle distance of the own vehicle and a front vehicle in case the inter-vehicle distance of a front vehicle and a front vehicle is shorter than the 1st predetermined inter-vehicle distance. 前記場合における車間距離偏差に対する車速制御量の特性(第2特性)を示す説明図である。It is explanatory drawing which shows the characteristic (2nd characteristic) of the vehicle speed control amount with respect to the inter-vehicle distance deviation in the said case. 前々方車両と前方車両との車間距離が第2所定車間距離よりも短い場合における自車両と前方車両との目標車間距離の説明図である。It is explanatory drawing of the target inter-vehicle distance of the own vehicle and a front vehicle in case the inter-vehicle distance of a front vehicle and a front vehicle is shorter than the 2nd predetermined inter-vehicle distance. 前記場合における車間距離偏差に対する車速制御量の特性(第3特性)を示す説明図である。It is explanatory drawing which shows the characteristic (3rd characteristic) of the vehicle speed control amount with respect to the inter-vehicle distance deviation in the said case. 前記コントロールユニットが行う追従走行制御の具体的動作の1例を示すフローチャートである。It is a flowchart which shows an example of the specific operation | movement of the follow-up running control which the said control unit performs. 前記コントロールユニットが行う目標車速制御量設定動作の1例を示すフローチャートである。It is a flowchart which shows one example of the target vehicle speed control amount setting operation | movement which the said control unit performs. 本発明の第2の実施形態における第2特性の説明図である。It is explanatory drawing of the 2nd characteristic in the 2nd Embodiment of this invention. 本発明の第2の実施形態における第3特性の説明図である。It is explanatory drawing of the 3rd characteristic in the 2nd Embodiment of this invention. 本発明の第2の実施形態における目標車速制御量設定動作の1例を示すフローチャートである。It is a flowchart which shows one example of the target vehicle speed control amount setting operation | movement in the 2nd Embodiment of this invention. 本発明の第3の実施形態における自車両と前方車両との目標車間距離の説明図である。It is explanatory drawing of the target inter-vehicle distance of the own vehicle and the front vehicle in the 3rd Embodiment of this invention. 本発明の第3の実施形態における第2特性の説明図である。It is explanatory drawing of the 2nd characteristic in the 3rd Embodiment of this invention. 本発明の第3の実施形態における追従走行制御の具体的動作の1例を示すフローチャートである。It is a flowchart which shows an example of the specific operation | movement of follow-up driving control in the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 追従走行装置
10 コントロールユニット(目標車間距離設定手段、第2の車間距離検出手段、制御感度鈍化手段)
11 レーダ(車間距離検出手段)
12 カメラ(前方車両認識手段、前々方車両認識手段)
13 車車間通信用アンテナ
14 路車間通信用アンテナ
15 スマートプレート信号受信用アンテナ
16 舵角センサ
17 スロットルアクチュエータ(車速制御手段)
18 ブレーキアクチュエータ(車速制御手段)
19 ステアリングアクチュエータ
20 前輪
L1 第1車間距離
L2 第2車間距離
Lt 目標車間距離
W 自車両
Wf 前方車両
Wff 前々方車両
1 Follow-up traveling device 10 Control unit (target inter-vehicle distance setting means, second inter-vehicle distance detection means, control sensitivity dulling means)
11 Radar (vehicle distance detection means)
12 Camera (front vehicle recognition means, forward vehicle recognition means)
13 Vehicle-to-vehicle communication antenna 14 Road-to-vehicle communication antenna 15 Smart plate signal receiving antenna 16 Steering angle sensor 17 Throttle actuator (vehicle speed control means)
18 Brake actuator (vehicle speed control means)
19 steering actuator 20 front wheel L1 first inter-vehicle distance L2 second inter-vehicle distance Lt target inter-vehicle distance W own vehicle Wf forward vehicle Wff forward vehicle

Claims (8)

自車両の前方車両を認識する前方車両認識手段と、
自車両と前方車両との目標車間距離を設定する目標車間距離設定手段と、
前記前方車両認識手段で認識された前方車両と自車両との車間距離を検出する車間距離検出手段と、
該車間距離検出手段で検出された車間距離が前記目標車間距離設定手段で設定された目標車間距離に維持されるように自車両の車速を制御する車速制御手段とを備える自動車の追従走行装置であって、
自車両の前々方車両を認識する前々方車両認識手段と、
該前々方車両認識手段で認識された前々方車両と前記前方車両認識手段で認識された前方車両との車間距離を検出する第2の車間距離検出手段と、
該第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなったときは短くなっていないときよりも前記車速制御手段の制御感度を鈍化させる制御感度鈍化手段とが設けられていることを特徴とする自動車の追従走行装置。
Forward vehicle recognition means for recognizing a vehicle ahead of the host vehicle;
Target inter-vehicle distance setting means for setting the target inter-vehicle distance between the host vehicle and the preceding vehicle;
An inter-vehicle distance detection means for detecting an inter-vehicle distance between the preceding vehicle recognized by the forward vehicle recognition means and the host vehicle;
A follow-up traveling device for an automobile, comprising vehicle speed control means for controlling the vehicle speed of the host vehicle so that the inter-vehicle distance detected by the inter-vehicle distance detection means is maintained at the target inter-vehicle distance set by the target inter-vehicle distance setting means. There,
Front vehicle recognition means for recognizing the vehicle ahead of the vehicle,
A second inter-vehicle distance detecting means for detecting an inter-vehicle distance between the forward vehicle recognized by the forward vehicle recognition means and the forward vehicle recognized by the forward vehicle recognition means;
There is provided a control sensitivity slowing means for slowing the control sensitivity of the vehicle speed control means when the inter-vehicle distance detected by the second inter-vehicle distance detection means is shorter than the predetermined inter-vehicle distance than when it is not shortened. A follow-up traveling device for an automobile.
前記請求項1に記載の自動車の追従走行装置において、
前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなったときは短くなっていないときよりも目標車間距離を所定距離だけ延長することを特徴とする自動車の追従走行装置。
In the vehicle following traveling device according to claim 1,
The target inter-vehicle distance setting means extends the target inter-vehicle distance by a predetermined distance when the inter-vehicle distance detected by the second inter-vehicle distance detection means is shorter than the predetermined inter-vehicle distance than when it is not shortened. An automobile follow-up traveling device characterized by that.
前記請求項2に記載の自動車の追従走行装置において、
前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が所定の車間距離よりも短くなった後は、該車間距離が短くなるに従い目標車間距離を徐々に延長することを特徴とする自動車の追従走行装置。
In the automobile follow-up traveling device according to claim 2,
The target inter-vehicle distance setting means gradually increases the target inter-vehicle distance as the inter-vehicle distance decreases after the inter-vehicle distance detected by the second inter-vehicle distance detection means becomes shorter than a predetermined inter-vehicle distance. An automobile follow-up traveling device characterized by that.
前記請求項2又は3に記載の自動車の追従走行装置において、
前記目標車間距離設定手段は、前記第2の車間距離検出手段で検出された車間距離が前記所定の車間距離よりも短い第2の所定の車間距離よりも短くなったときは目標車間距離を第2の所定距離だけさらに延長することを特徴とする自動車の追従走行装置。
In the vehicle following traveling device according to claim 2 or 3,
The target inter-vehicle distance setting means sets the target inter-vehicle distance when the inter-vehicle distance detected by the second inter-vehicle distance detection means is shorter than a second predetermined inter-vehicle distance that is shorter than the predetermined inter-vehicle distance. An automobile follow-up traveling device further extending by a predetermined distance of 2.
前記請求項1から4のいずれかに記載の自動車の追従走行装置において、
前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差に対する自車両の車速制御量を低減することにより前記車速制御手段の制御感度を鈍化させることを特徴とする自動車の追従走行装置。
In the follow-up traveling device for an automobile according to any one of claims 1 to 4,
The control sensitivity reduction means reduces the vehicle speed control amount by reducing a vehicle speed control amount of the host vehicle with respect to a deviation between the inter-vehicle distance detected by the inter-vehicle distance detection means and the target inter-vehicle distance setting means. A follow-up traveling device for an automobile characterized in that the control sensitivity of the means is blunted.
前記請求項1から5のいずれかに記載の自動車の追従走行装置において、
前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差に対する自車両の車速制御の開始を遅延することにより前記車速制御手段の制御感度を鈍化させることを特徴とする自動車の追従走行装置。
In the automobile follow-up traveling device according to any one of claims 1 to 5,
The control sensitivity reduction means delays the start of the vehicle speed control of the host vehicle with respect to the deviation between the inter-vehicle distance detected by the inter-vehicle distance detection means and the target inter-vehicle distance set by the target inter-vehicle distance setting means. A follow-up traveling device for an automobile, characterized in that the control sensitivity of the control means is blunted.
前記請求項1から6のいずれかに記載の自動車の追従走行装置において、
前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離と前記目標車間距離設定手段で設定された目標車間距離との偏差を小さくすることにより前記車速制御手段の制御感度を鈍化させることを特徴とする自動車の追従走行装置。
In the automobile traveling device according to any one of claims 1 to 6,
The control sensitivity dulling means dulls the control sensitivity of the vehicle speed control means by reducing the deviation between the inter-vehicle distance detected by the inter-vehicle distance detection means and the target inter-vehicle distance set by the target inter-vehicle distance setting means. An automobile follow-up traveling device characterized by that.
前記請求項1から7のいずれかに記載の自動車の追従走行装置において、
前記制御感度鈍化手段は、前記車間距離検出手段で検出された車間距離が前記目標車間距離設定手段で設定された目標車間距離よりも大きい場合にのみ前記車速制御手段の制御感度を鈍化させることを特徴とする自動車の追従走行装置。
In the automobile follow-up traveling device according to any one of claims 1 to 7,
The control sensitivity dulling means dulls the control sensitivity of the vehicle speed control means only when the inter-vehicle distance detected by the inter-vehicle distance detection means is larger than the target inter-vehicle distance set by the target inter-vehicle distance setting means. A vehicle follow-up running device.
JP2005247158A 2005-08-29 2005-08-29 Following travel device of automobile Pending JP2007062403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247158A JP2007062403A (en) 2005-08-29 2005-08-29 Following travel device of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247158A JP2007062403A (en) 2005-08-29 2005-08-29 Following travel device of automobile

Publications (1)

Publication Number Publication Date
JP2007062403A true JP2007062403A (en) 2007-03-15

Family

ID=37925130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247158A Pending JP2007062403A (en) 2005-08-29 2005-08-29 Following travel device of automobile

Country Status (1)

Country Link
JP (1) JP2007062403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233091A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Traveling controller
JP2014148293A (en) * 2013-02-04 2014-08-21 Toyota Motor Corp Inter-vehicle distance control unit
JP2017159741A (en) * 2016-03-08 2017-09-14 株式会社デンソー Control system
CN112706783A (en) * 2021-01-12 2021-04-27 重庆大学 State flow-based longitudinal speed control method for automatic driving automobile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269736A (en) * 1987-04-27 1988-11-08 Mazda Motor Corp Constant speed drive device for automobile
JPH04238744A (en) * 1991-01-08 1992-08-26 Mazda Motor Corp Running control device for vehicle
JPH0769094A (en) * 1993-08-31 1995-03-14 Mitsubishi Motors Corp Travel control device for automobile
JP2001026226A (en) * 1999-07-13 2001-01-30 Mazda Motor Corp Running control device for vehicle
JP2001199257A (en) * 2000-01-17 2001-07-24 Denso Corp Travel controller for vehicle
JP2002104015A (en) * 2000-10-03 2002-04-09 Mitsubishi Motors Corp Driving support system
JP2004106588A (en) * 2002-09-13 2004-04-08 Fuji Heavy Ind Ltd Driving support system for vehicle
JP2004265238A (en) * 2003-03-03 2004-09-24 Fuji Heavy Ind Ltd Vehicular driving support system
JP2005115484A (en) * 2003-09-17 2005-04-28 Fujitsu Ten Ltd Driving support device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269736A (en) * 1987-04-27 1988-11-08 Mazda Motor Corp Constant speed drive device for automobile
JPH04238744A (en) * 1991-01-08 1992-08-26 Mazda Motor Corp Running control device for vehicle
JPH0769094A (en) * 1993-08-31 1995-03-14 Mitsubishi Motors Corp Travel control device for automobile
JP2001026226A (en) * 1999-07-13 2001-01-30 Mazda Motor Corp Running control device for vehicle
JP2001199257A (en) * 2000-01-17 2001-07-24 Denso Corp Travel controller for vehicle
JP2002104015A (en) * 2000-10-03 2002-04-09 Mitsubishi Motors Corp Driving support system
JP2004106588A (en) * 2002-09-13 2004-04-08 Fuji Heavy Ind Ltd Driving support system for vehicle
JP2004265238A (en) * 2003-03-03 2004-09-24 Fuji Heavy Ind Ltd Vehicular driving support system
JP2005115484A (en) * 2003-09-17 2005-04-28 Fujitsu Ten Ltd Driving support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233091A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Traveling controller
JP2014148293A (en) * 2013-02-04 2014-08-21 Toyota Motor Corp Inter-vehicle distance control unit
JP2017159741A (en) * 2016-03-08 2017-09-14 株式会社デンソー Control system
CN112706783A (en) * 2021-01-12 2021-04-27 重庆大学 State flow-based longitudinal speed control method for automatic driving automobile
CN112706783B (en) * 2021-01-12 2022-06-28 重庆大学 State flow-based longitudinal speed control method for automatic driving automobile

Similar Documents

Publication Publication Date Title
CN108657177B (en) Vehicle control device
CN111902322B (en) Method and system for distance adjustment of host vehicle
JP5825239B2 (en) Vehicle control device
US8880319B2 (en) Driving control apparatus mounted on vehicle to avoid collision with preceding vehicle
JP4640465B2 (en) Vehicle travel support device
US10689005B2 (en) Traveling assist device
JP4104532B2 (en) Vehicle control device
US11427166B2 (en) Adaptive AEB system considering steerable path and control method thereof
EP3683112B1 (en) Collision avoidance control apparatus
JP5552955B2 (en) Vehicle control device
US20140114548A1 (en) Method of Controlling the Speed and/or the Distance for Motor Vehicles
US11072334B2 (en) Vehicle control system
US11414074B2 (en) Driving support device
US11001255B2 (en) Driving assistance apparatus and driving assistance method
JP4946212B2 (en) Driving support device
US20240043065A1 (en) Vehicle control device
JP2020082850A (en) Vehicle travel control method and vehicle travel control system
US20220388502A1 (en) Lateral movement system for collision avoidance
JP4548279B2 (en) Follow-up device for automobile
JP7351076B2 (en) Electric vehicle control method and electric vehicle control device
JP2007062403A (en) Following travel device of automobile
US20230234579A1 (en) Vehicle driving assist device
US7216027B2 (en) Running control system
JP5018411B2 (en) Vehicle tracking device
JP7285179B2 (en) Vehicle driving support method and vehicle driving support system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629