JP6156216B2 - Full charge capacity estimation device - Google Patents

Full charge capacity estimation device Download PDF

Info

Publication number
JP6156216B2
JP6156216B2 JP2014061239A JP2014061239A JP6156216B2 JP 6156216 B2 JP6156216 B2 JP 6156216B2 JP 2014061239 A JP2014061239 A JP 2014061239A JP 2014061239 A JP2014061239 A JP 2014061239A JP 6156216 B2 JP6156216 B2 JP 6156216B2
Authority
JP
Japan
Prior art keywords
capacity
battery
lithium concentration
voltage
full charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014061239A
Other languages
Japanese (ja)
Other versions
JP2015184146A (en
Inventor
久 梅本
久 梅本
粟野 直実
直実 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014061239A priority Critical patent/JP6156216B2/en
Publication of JP2015184146A publication Critical patent/JP2015184146A/en
Application granted granted Critical
Publication of JP6156216B2 publication Critical patent/JP6156216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、充放電に伴い小さくなる電池の満充電容量を推定する満充電容量推定装置に関する。   The present invention relates to a full charge capacity estimation device that estimates the full charge capacity of a battery that decreases with charge and discharge.

電池は、充放電の繰り返しに伴い劣化し、完全放電した電池を完全に充電するまでに充電できる容量である満充電容量は減少する。そのため、電池の劣化状態を把握するためには、満充電容量を高精度に推定する必要がある。   The battery deteriorates with repeated charging and discharging, and the full charge capacity, which is the capacity that can be charged before the fully discharged battery is fully charged, decreases. Therefore, in order to grasp the deterioration state of the battery, it is necessary to estimate the full charge capacity with high accuracy.

特許文献1では、第1の無負荷電圧(OCV:Open Circuit Voltage)から第1のSOC(State of Charge)を判定するとともに、第2のOCVから第2のSOCを判定している。さらに、第1の無負荷タイミングと第2の無負荷タイミングとの間において、充放電電流の積算値から電池の容量変化値を算出している。そして、特許文献1では、容量変化値を第1のSOCと第2のSOCとの差で除して、満充電容量を算出している。   In Patent Document 1, a first SOC (State of Charge) is determined from a first no-load voltage (OCV), and a second SOC is determined from a second OCV. Furthermore, the battery capacity change value is calculated from the integrated value of the charge / discharge current between the first no-load timing and the second no-load timing. In Patent Document 1, the full charge capacity is calculated by dividing the capacity change value by the difference between the first SOC and the second SOC.

特開2008−261669号公報JP 2008-261669 A

電池の中には、オリビン系電池のように、SOCに対するOCVの変化量が小さい領域を有する電池がある。このような電池では、満充電又は完全放電近くまで充放電を行わないと、OCVとSOCとの相関から複数のSOCを決定することが困難であり、特許文献1のようにSOCの変化率から満充電容量を算出することは困難である。   Among batteries, there is a battery having a region where the amount of change in OCV with respect to SOC is small, such as an olivine battery. In such a battery, it is difficult to determine a plurality of SOCs from the correlation between OCV and SOC unless charging and discharging are performed to near full charge or complete discharge. It is difficult to calculate the full charge capacity.

本発明は、上記実情に鑑み、SOCに対するOCVの変化量が小さい領域を有する電池であっても、電池の満充電容量を推定することが可能な満充電容量推定装置を提供することを主たる目的とする。   In view of the above circumstances, the present invention mainly aims to provide a full charge capacity estimation device capable of estimating the full charge capacity of a battery even in a battery having a region where the amount of change in OCV relative to the SOC is small. And

上記課題を解決するため、請求項1に記載の発明は、リチウム二次電池の満充電容量を推定する満充電容量推定装置であって、前記電池の充電時に、逐次測定された前記電池の電圧から算出された前記電圧の時間変化率に基づいて、所定時刻における前記電池の残存容量を推定する残存容量推定手段と、前記電池の充電時に、前記所定時刻における前記電池の充電可能容量を推定する可能容量推定手段と、前記残存容量推定手段により推定された前記残存容量と、前記可能容量推定手段により推定された前記充電可能容量とから、前記所定時刻における満充電容量を推定する満充電容量推定手段と、を備え、前記可能容量推定手段は、前記電池の充電時に、逐次測定された前記電池の電圧に基づいて、前記充電可能容量を推定する。   In order to solve the above-mentioned problem, the invention according to claim 1 is a full-charge capacity estimation device for estimating a full-charge capacity of a lithium secondary battery, wherein the voltage of the battery is sequentially measured when the battery is charged. And a remaining capacity estimating means for estimating a remaining capacity of the battery at a predetermined time based on a time change rate of the voltage calculated from the above, and estimating a chargeable capacity of the battery at the predetermined time when the battery is charged. A full charge capacity estimation for estimating a full charge capacity at the predetermined time from a possible capacity estimation means, the remaining capacity estimated by the remaining capacity estimation means, and the chargeable capacity estimated by the possible capacity estimation means Means for estimating the chargeable capacity based on the voltage of the battery sequentially measured when the battery is charged.

本発明によれば、電池の充電時に、算出された電池電圧の時間変化率に基づいて、所定時刻における残存容量が推定される。ここで、SOCに対するOCVの変化量が小さい領域において充電をする場合でも、充電中にリチウム二次電池に電流が流れると、電池電圧は、充電開始時の充電可能容量によって充電中に異なる時間変化をする。よって、充電時に逐次測定された電池電圧に基づいて、充電可能容量を推定することができる。そして、推定された残存容量と充電可能容量とから、所定時刻における満充電容量が推定される。   According to the present invention, when the battery is charged, the remaining capacity at a predetermined time is estimated based on the calculated time change rate of the battery voltage. Here, even when charging is performed in a region where the amount of change in OCV with respect to SOC is small, if a current flows through the lithium secondary battery during charging, the battery voltage varies with time during charging depending on the chargeable capacity at the start of charging. do. Therefore, the chargeable capacity can be estimated based on the battery voltage sequentially measured during charging. Then, the full charge capacity at a predetermined time is estimated from the estimated remaining capacity and chargeable capacity.

したがって、SOCに対するOCVの変化量が小さい領域を有する電池であっても、充電中に残存容量及び充電可能容量を推定して、電池の満充電容量を高精度に推定することができる。   Therefore, even for a battery having a region where the amount of change in OCV relative to the SOC is small, the remaining capacity and the chargeable capacity can be estimated during charging, and the full charge capacity of the battery can be estimated with high accuracy.

本実施形態に係る満充電容量推定装置の構成を示す図。The figure which shows the structure of the full charge capacity estimation apparatus which concerns on this embodiment. 充電の繰り返しに伴い変化する満充電容量を示す図。The figure which shows the full charge capacity which changes with repetition of charge. 所定時刻の残存容量及び充電可能容量を示す図。The figure which shows the remaining capacity and chargeable capacity | capacitance of a predetermined time. 劣化した電池電圧と残存容量との充電特性を示す図。The figure which shows the charge characteristic of the deteriorated battery voltage and remaining capacity. 充電中の電池電圧の時間変化率を示す図。The figure which shows the time change rate of the battery voltage during charge. 充電前及び充電中の正極活物質に含まれるリチウム濃度を示す図。The figure which shows the lithium concentration contained in the positive electrode active material before charge and during charge. 充電中の電池電圧の時間変化を示す図。The figure which shows the time change of the battery voltage during charge. 電池反応モデルを示す図。The figure which shows a battery reaction model. 充電可能容量を算出する処理手順を示すフローチャート。The flowchart which shows the process sequence which calculates chargeable capacity.

以下、満充電容量推定装置を具現化した実施形態について、図面を参照しつつ説明する。まず、本実施形態に係る電池制御装置(満充電容量推定装置)の構成を、図1を参照して説明する。本実施形態では、電池制御装置100は組電池400の満充電容量を推定する。   Hereinafter, an embodiment in which a full charge capacity estimation device is embodied will be described with reference to the drawings. First, the configuration of the battery control device (full charge capacity estimation device) according to the present embodiment will be described with reference to FIG. In the present embodiment, the battery control device 100 estimates the full charge capacity of the assembled battery 400.

組電池400は、電池セル40が互いに直列に接続されて構成されている。各電池セル40は、リチウム二次電池である。本実施形態では、各電池セル40は、正極の活物質がオリビン構造を有するリチウム金属リン酸塩の少なくとも1つを含む、オリビン系リチウムイオン二次電池である。リチウム金属リン酸塩としては、例えば、LiMnPO4,LiFePO4,LiCoPO4,LiNiPO4が挙げられる。また、負極の活物質は特に限定されないが、例えば、黒鉛、コークス等の炭素系材料、リチウム金属、チタン酸化物等である。   The assembled battery 400 is configured by connecting battery cells 40 in series. Each battery cell 40 is a lithium secondary battery. In the present embodiment, each battery cell 40 is an olivine-based lithium ion secondary battery in which the positive electrode active material includes at least one lithium metal phosphate having an olivine structure. Examples of the lithium metal phosphate include LiMnPO4, LiFePO4, LiCoPO4, and LiNiPO4. The active material of the negative electrode is not particularly limited, and examples thereof include carbon materials such as graphite and coke, lithium metal, and titanium oxide.

電流センサ41は、各電池セル40を流れる電流を逐次測定する。また、電圧センサ42は、各電池セル40の端子間電圧を逐次測定する。電流センサ41及び電圧センサ42により測定された電流値及び電圧値は、電池制御装置100へ送信される。   The current sensor 41 sequentially measures the current flowing through each battery cell 40. Moreover, the voltage sensor 42 measures the voltage between terminals of each battery cell 40 sequentially. The current value and voltage value measured by the current sensor 41 and the voltage sensor 42 are transmitted to the battery control device 100.

電池制御装置100は、CPU、ROM、RAM及びI/O等を備えるコンピュータである。電池制御装置100は、測定された電流値及び電圧値を用いて、放電できる容量の絶対量である残存容量、充電可能容量、及び満充電容量を推定するとともに、推定した満充電容量を用いて組電池400の充放電を制御する。なお、以下では、放電できる容量の絶対量を残存容量(Ah)といい、満充電容量に対する残存容量の割合をSOC(%)という。   The battery control device 100 is a computer including a CPU, a ROM, a RAM, an I / O, and the like. The battery control apparatus 100 estimates the remaining capacity, the chargeable capacity, and the full charge capacity, which are absolute amounts of the capacity that can be discharged, using the measured current value and voltage value, and uses the estimated full charge capacity. Control charging / discharging of the battery pack 400. In the following, the absolute amount of capacity that can be discharged is referred to as the remaining capacity (Ah), and the ratio of the remaining capacity to the full charge capacity is referred to as SOC (%).

電池制御装置100は、CPUがROM等に記憶されているプログラムを実行することにより、残存容量推定手段10、充電可能容量推定手段20、及び満充電容量推定手段30の各手段を実現する。   In the battery control device 100, the remaining capacity estimation means 10, the chargeable capacity estimation means 20, and the full charge capacity estimation means 30 are realized by the CPU executing a program stored in a ROM or the like.

図2に、電池セル40の正極及び負極の電位に対する電池セル40の容量の特性を示す。電池セル40の容量は、正極活物質及び負極活物質それぞれの平均リチウム濃度に対応する。容量が大きくほど、正極活物質の平均リチウム濃度は低くなり、負極活物質の平均リチウム濃度は高くなる。正極の電位と負極の電位との差は、電池セル40のOCVとなる。ハッチング部分は、電池セル40の充放電に利用できない容量を表す。   FIG. 2 shows the characteristics of the capacity of the battery cell 40 with respect to the potentials of the positive electrode and the negative electrode of the battery cell 40. The capacity of the battery cell 40 corresponds to the average lithium concentration of each of the positive electrode active material and the negative electrode active material. The larger the capacity, the lower the average lithium concentration of the positive electrode active material and the higher the average lithium concentration of the negative electrode active material. The difference between the positive electrode potential and the negative electrode potential is the OCV of the battery cell 40. The hatched portion represents a capacity that cannot be used for charging / discharging the battery cell 40.

電池セル40は、初回充電時前は、製造時の正極及び負極のリチウム濃度から満充電容量Ca(Ah)が決まる(図2(a)参照)。そして、初めて電池セル40の充電を行うと、負極での不活性領域(Solid Electrolyte Interface)の形成にリチウムが消費され、正極の電位に対する容量の特性が、負極の特性に対して不活性領域の容量X1(Ah)分ずれる。これにより、満充電容量は、不活性領域の容量X1(Ah)分減少して、Ca−X1(Ah)になる(図2(b)参照)。   In the battery cell 40, the full charge capacity Ca (Ah) is determined from the lithium concentrations of the positive electrode and the negative electrode at the time of manufacture before the first charge (see FIG. 2A). When the battery cell 40 is charged for the first time, lithium is consumed to form the inactive region (Solid Electrolyte Interface) at the negative electrode, and the capacity characteristic with respect to the positive electrode potential is in the inactive region with respect to the negative electrode characteristic. The capacity is shifted by X1 (Ah). As a result, the full charge capacity is reduced by the capacity X1 (Ah) of the inactive region and becomes Ca-X1 (Ah) (see FIG. 2B).

さらに、充電を繰り返すと、不活性領域の容量は増大してX2(Ah)となり、負極の特性に対する正極の特性のずれ量も増大し、満充電容量はCa−X2(Ah)となる。すなわち、電池セル40は、充放電を繰り返す中で劣化が進み、満充電容量は次第に小さくなる。よって、電池セル40の満充電容量は、電池セル40の劣化状態を表す。   Further, when charging is repeated, the capacity of the inactive region increases to X2 (Ah), the amount of deviation of the positive electrode characteristic from the negative electrode characteristic also increases, and the full charge capacity becomes Ca-X2 (Ah). That is, the battery cell 40 deteriorates while repeating charge and discharge, and the full charge capacity gradually decreases. Therefore, the full charge capacity of the battery cell 40 represents the deterioration state of the battery cell 40.

電池制御装置100は、電池セル40の劣化状態に応じて、電池セル40の使用制限等を行うため、電池セル40の劣化状態を把握する必要がある。そこで、電池制御装置100は、残存容量推定手段10、充電可能容量推定手段20、及び満充電容量推定手段30により、電池セル40の満充電容量を推定する。   The battery control device 100 needs to grasp the deterioration state of the battery cell 40 in order to restrict the use of the battery cell 40 according to the deterioration state of the battery cell 40. Therefore, the battery control apparatus 100 estimates the full charge capacity of the battery cell 40 using the remaining capacity estimation means 10, the chargeable capacity estimation means 20, and the full charge capacity estimation means 30.

図3に示すように、現在の位置(所定時刻)の満充電容量は、現在の位置で放電できる容量の残存容量(図3の容量A1)と、現在の位置で充電できる充電可能容量(図3の容量A2)とを合わせた容量となる。ここで、残存容量が同じ状態でも、劣化前の電池セル40の充電可能容量に比べて、劣化後の電池セル40の充電可能容量は小さくなっている。充電可能容量は、現在の位置における正極活物質内の平均リチウム濃度に対応する。   As shown in FIG. 3, the full charge capacity at the current position (predetermined time) includes the remaining capacity that can be discharged at the current position (capacity A1 in FIG. 3) and the chargeable capacity that can be charged at the current position (FIG. 3). 3 capacity A2). Here, even when the remaining capacity is the same, the chargeable capacity of the battery cell 40 after deterioration is smaller than the chargeable capacity of the battery cell 40 before deterioration. The chargeable capacity corresponds to the average lithium concentration in the positive electrode active material at the current position.

正極活物質内の平均リチウム濃度は、正極から負極へ移動可能なリチウムの濃度である。残存容量が同じ状態でも、劣化後の電池セル40における正極活物質内の平均リチウム濃度αは、不活性領域の形成でリチウムが消費されているため、劣化前の電池セル40における正極活物質内の平均リチウム濃度βよりも低くなる。それゆえ、残存容量が同じ状態でも、劣化後の電池セル40の充電可能容量は、劣化後の電池セル40の充電可能容量よりも小さくなる。   The average lithium concentration in the positive electrode active material is the concentration of lithium that can move from the positive electrode to the negative electrode. Even if the remaining capacity is the same, the average lithium concentration α in the positive electrode active material in the battery cell 40 after deterioration is consumed in the formation of the inactive region. Lower than the average lithium concentration β. Therefore, even when the remaining capacity is the same, the chargeable capacity of the battery cell 40 after deterioration is smaller than the chargeable capacity of the battery cell 40 after deterioration.

残存容量推定手段10は、電池セル40の充電時に、逐次測定された電池電圧から算出された電池電圧の時間変化率に基づいて、所定時刻における電池セル40の残存容量を推定する。残存容量の推定方法の詳細は後で述べる。また、充電可能容量推定手段20は、算出手段21、更新手段22、及び換算手段23を備え、電池セル40の充電時に、逐次測定された電池電圧に基づいて、所定時刻における充電可能容量を推定する。充電可能容量の推定方法の詳細は後で述べる。満充電容量推定手段30は、所定時刻における残存容量と、所定時刻における充電可能容量とを足し合わせて、所定時刻における満充電容量を算出する。   The remaining capacity estimating means 10 estimates the remaining capacity of the battery cell 40 at a predetermined time based on the time change rate of the battery voltage calculated from the battery voltage measured sequentially when the battery cell 40 is charged. Details of the remaining capacity estimation method will be described later. The chargeable capacity estimation means 20 includes a calculation means 21, an update means 22, and a conversion means 23, and estimates the chargeable capacity at a predetermined time based on the battery voltage measured sequentially when the battery cell 40 is charged. To do. Details of the method for estimating the chargeable capacity will be described later. The full charge capacity estimation means 30 calculates the full charge capacity at the predetermined time by adding the remaining capacity at the predetermined time and the chargeable capacity at the predetermined time.

<残存容量推定>
次に、残存容量推定手段10による残存容量の推定方法について説明する。図4に示すように、電池セル40が劣化すると、電池電圧に対する残存容量の充電特性において、電池電圧が急激に上昇する急峻領域が、残存容量が小さくなる側に平行に移動する。そして、図4において四角で囲まれた領域、すなわち電池電圧が急激に上昇する急峻領域よりも残存容量が小さい側では、電池電圧に対する残存容量の充電特性は変化しない。
<Residual capacity estimation>
Next, a method for estimating the remaining capacity by the remaining capacity estimating means 10 will be described. As shown in FIG. 4, when the battery cell 40 deteriorates, in the charging characteristics of the remaining capacity with respect to the battery voltage, a steep region where the battery voltage rapidly increases moves in parallel to the side where the remaining capacity decreases. In the region surrounded by the square in FIG. 4, that is, on the side where the remaining capacity is smaller than the steep region where the battery voltage rapidly increases, the charging characteristics of the remaining capacity with respect to the battery voltage do not change.

これは、図3で示したように、電池セル40が劣化している場合は、劣化する前よりも、正極電位に対する容量の特性が、負極電位に対する容量の特定に対して、容量が小さくなる側にずれるためである。   As shown in FIG. 3, when the battery cell 40 is deteriorated, the capacity characteristic with respect to the positive electrode potential is smaller than the capacity before the deterioration with respect to the specification of the capacity with respect to the negative electrode potential. This is to shift to the side.

電池セル40は、充電特性の電池電圧の変化量が所定量よりも小さい平坦な領域において充電される際に、電池電圧の時間変化率ΔVが変動する特性を有する。上記平坦な領域には、この電池電圧の時間変化率ΔVが第2閾値を超える範囲が少なくとも1つ存在する。この範囲は、電池セル40の劣化によっても変動しない電池セル40固有の範囲である。図5に示すように、充電開始時の残存容量によって、電池電圧の時間変化率ΔVが第2閾値よりも大きくなるまでの時間は異なる。本実施形態では、予め第2閾値に規定の残存容量を対応付けておく。   When the battery cell 40 is charged in a flat region where the change amount of the battery voltage in the charge characteristic is smaller than a predetermined amount, the battery cell 40 has a characteristic that the time change rate ΔV of the battery voltage varies. In the flat region, there is at least one range in which the time change rate ΔV of the battery voltage exceeds the second threshold value. This range is a unique range of the battery cell 40 that does not vary even when the battery cell 40 is deteriorated. As shown in FIG. 5, the time until the time change rate ΔV of the battery voltage becomes larger than the second threshold differs depending on the remaining capacity at the start of charging. In the present embodiment, a predetermined remaining capacity is associated with the second threshold value in advance.

残存容量推定手段10は、電池セル40の充電時に、逐次測定された電池電圧から算出された電圧の時間変化率ΔVに基づいて、所定時刻における電池セル40の残存容量を推定する。なお、逐次測定される電圧は、閉回路電圧(CCV:Closed Circuit Voltage)である。   The remaining capacity estimating means 10 estimates the remaining capacity of the battery cell 40 at a predetermined time based on the time change rate ΔV of the voltage calculated from the battery voltage measured sequentially when the battery cell 40 is charged. In addition, the voltage measured sequentially is a closed circuit voltage (CCV: Closed Circuit Voltage).

詳しくは、残存容量推定手段10は、測定されたCCVの時間変化率ΔVが、第2閾値よりも大きくなった時点で、第2閾値と対応する残存容量を、所定時刻における残存容量と推定する(特開2012−173048号公報参照)。   Specifically, the remaining capacity estimation means 10 estimates the remaining capacity corresponding to the second threshold as the remaining capacity at a predetermined time when the time change rate ΔV of the measured CCV becomes larger than the second threshold. (See JP2012-173048).

<充電可能容量推定>
次に、充電可能容量推定手段20による充電可能容量の推定方法について説明する。図6(a)に示すように、電池セル40に電流が流れていない充電前は、正極活物質のリチウム濃度は均一に分布している。そのため、正極活物質内の平均リチウム濃度と正極活物質の表面における表面リチウム濃度は等しい。
<Estimated chargeable capacity>
Next, a method for estimating the chargeable capacity by the chargeable capacity estimation means 20 will be described. As shown in FIG. 6A, the lithium concentration of the positive electrode active material is uniformly distributed before charging when no current flows through the battery cell 40. Therefore, the average lithium concentration in the positive electrode active material is equal to the surface lithium concentration on the surface of the positive electrode active material.

一方、図6(b)に示すように、充電時に電池セル40へ電流を流すと、正極活物質から負極活物質へリチウムイオンが移動する。電池反応は正極活物質の表面から起こるため、充電中に正極活物質の表面リチウム濃度は急激に減少する。これに対して、充電直後の正極活物質内の平均リチウム濃度は緩やかに変化する。すなわち、充電時に、充電可能容量がほとんど減少しなくても、表面リチウム濃度は大きく変化する。   On the other hand, as shown in FIG. 6B, when a current is passed through the battery cell 40 during charging, lithium ions move from the positive electrode active material to the negative electrode active material. Since the battery reaction occurs from the surface of the positive electrode active material, the surface lithium concentration of the positive electrode active material rapidly decreases during charging. On the other hand, the average lithium concentration in the positive electrode active material immediately after charging changes gradually. That is, at the time of charging, even if the chargeable capacity is hardly reduced, the surface lithium concentration greatly changes.

電池セル40の正極活物質の表面リチウム濃度と正極の表面電位との関係は、図3に示す、正極活物質の平均リチウム濃度と正極の電位との関係と同様になる。また、電池セル40の負極活物質の表面リチウム濃度と負極の表面電位との関係も、図3に示す、負極活物質の平均リチウム濃度と負極の電位との関係と同様になる。正極の表面電位と負極の表面電位との差は、充電時の電池セル40のCCVとなる。   The relationship between the surface lithium concentration of the positive electrode active material of the battery cell 40 and the surface potential of the positive electrode is the same as the relationship between the average lithium concentration of the positive electrode active material and the potential of the positive electrode shown in FIG. Further, the relationship between the surface lithium concentration of the negative electrode active material of the battery cell 40 and the surface potential of the negative electrode is the same as the relationship between the average lithium concentration of the negative electrode active material and the potential of the negative electrode shown in FIG. The difference between the surface potential of the positive electrode and the surface potential of the negative electrode is the CCV of the battery cell 40 during charging.

電池セル40が劣化している場合は、劣化する前よりも、正極電位に対する容量の特性が、容量が小さくなる側にずれる。そのため、正極側では、充電中に、劣化している電池セル40は、劣化していない電池セル40よりも、正極電位が急激に大きくなる急峻な領域に早く移行する。一方、負極側では、充電中に、劣化している電池セル40も劣化していない電池セル40も、負極電位に対する容量の特性が平坦な領域を移行する。   When the battery cell 40 is deteriorated, the capacity characteristic with respect to the positive electrode potential shifts to a smaller capacity than before the deterioration. Therefore, on the positive electrode side, during the charging, the battery cell 40 that has deteriorated shifts earlier to a steep region where the positive electrode potential rapidly increases than the battery cell 40 that has not deteriorated. On the other hand, on the negative electrode side, the battery cell 40 that has deteriorated and the battery cell 40 that has not deteriorated during charging are shifted to a region where the capacity characteristics with respect to the negative electrode potential are flat.

そのため、充電時の正極活物質の表面リチウム濃度の変化は、充電時の電池セル40のCCVの変化として表れる。したがって、電池セル40に電流を流すことにより、充電状態をほとんど変化させることなく、電池セル40のCCVを変化させることができる。そして、現在の位置における正極活物質の平均リチウム濃度によって、充電時における電池セル40のCCVは異なる時間変化をする。そのため、充電時における電池セル40のCCVの時間変化に基づいて、現在の位置における正極活物質の平均リチウム濃度を推定できる。   Therefore, a change in the surface lithium concentration of the positive electrode active material during charging appears as a change in the CCV of the battery cell 40 during charging. Therefore, by supplying a current to the battery cell 40, the CCV of the battery cell 40 can be changed with almost no change in the state of charge. And CCV of the battery cell 40 at the time of charge changes with different time with the average lithium concentration of the positive electrode active material in the present position. Therefore, the average lithium concentration of the positive electrode active material at the current position can be estimated based on the time change of the CCV of the battery cell 40 during charging.

図7に、現在の位置における正極活物質の平均リチウム濃度をα及びβ(α<β)とし、現在の位置から充電を行った場合のCCVの計算値の時間変化を、それぞれ破線と一点鎖線で示す。また、現在の位置から充電を行った場合のCCVの実測値の時間変化を実線で示す。   In FIG. 7, the average lithium concentration of the positive electrode active material at the current position is α and β (α <β), and the time variation of the calculated value of CCV when charging is performed from the current position is shown by a broken line and a one-dot chain line, respectively. It shows with. Moreover, the time change of the measured value of CCV at the time of charging from the present position is shown by a solid line.

充電を開始してから約2秒の間は、平均リチウム濃度α及びβのどちらのCCVも、表面リチウム濃度に対する正極電位の特性の平坦な領域に存在するため、CCVの差はほとんどない。充電を開始してから約2秒以降では、平均リチウム濃度αのCCVが、表面リチウム濃度に対する正極電位の特性の急峻な領域に移行するため、2つのCCVの差は広がる。この場合、CCVの実測値は、平均リチウム濃度をαとしたCCVの計算値の時間変化と一致するので、現在の位置における正極活物質の平均リチウム濃度はαと推定できる。   For about 2 seconds after the start of charging, both CCVs having the average lithium concentrations α and β are present in a flat region of the characteristics of the positive electrode potential with respect to the surface lithium concentration, so there is almost no difference in CCV. After about 2 seconds from the start of charging, the CCV with an average lithium concentration α shifts to a region where the characteristics of the positive electrode potential with respect to the surface lithium concentration are steep, so the difference between the two CCVs widens. In this case, since the measured value of CCV coincides with the time change of the calculated value of CCV where the average lithium concentration is α, the average lithium concentration of the positive electrode active material at the current position can be estimated as α.

本実施形態では、充電可能容量推定手段20は、現在の位置における平均リチウム濃度の初期値を設定し、充電時に逐次測定した電池セル40のCCV及び電池セル40を流れる電流と、電池反応モデルとを用いて、初期値を真の平均リチウム濃度に補正する。   In the present embodiment, the chargeable capacity estimation means 20 sets an initial value of the average lithium concentration at the current position, the CCV of the battery cell 40 measured at the time of charging, the current flowing through the battery cell 40, the battery reaction model, Is used to correct the initial value to the true average lithium concentration.

詳しくは、算出手段21は、初期値として正極活物質内の平均リチウム濃度を設定し、平均リチウム濃度、逐次測定された電流、及び電池反応モデルから、正極活物質表面の表面リチウム濃度を逐次算出する。さらに、算出手段21は、逐次算出した表面リチウム濃度から、逐次CCVを算出する。   Specifically, the calculation means 21 sets the average lithium concentration in the positive electrode active material as an initial value, and sequentially calculates the surface lithium concentration on the surface of the positive electrode active material from the average lithium concentration, the sequentially measured current, and the battery reaction model. To do. Furthermore, the calculation means 21 calculates CCV sequentially from the surface lithium concentration calculated sequentially.

更新手段22は、算出手段21により逐次算出されたCCVと、その時点で測定されたCCVとの差分が小さくなるように、平均リチウム濃度を逐次更新し、推定されたCCVと測定されたCCVとの差分を第1閾値よりも小さくする。   The updating unit 22 sequentially updates the average lithium concentration so that the difference between the CCV sequentially calculated by the calculating unit 21 and the CCV measured at that time becomes small, and the estimated CCV and the measured CCV Is made smaller than the first threshold.

換算手段23は、CCVの差分が第1閾値よりも小さくなった時点で、更新手段22により更新された平均リチウム濃度(mol/m3)を、充電可能容量(Ah)に換算する。充電中に平均リチウム濃度は急激に変化しないが多少は変化する。そこで、換算手段23は、CCVの差分が第1閾値よりも小さくなった時点で、更新手段22により更新された平均リチウム濃度を、現在の位置における平均リチウム濃度に補正した後、充電可能容量に換算するとよい。   The conversion means 23 converts the average lithium concentration (mol / m 3) updated by the update means 22 into a chargeable capacity (Ah) when the CCV difference becomes smaller than the first threshold. During charging, the average lithium concentration does not change rapidly but changes somewhat. Therefore, the conversion means 23 corrects the average lithium concentration updated by the update means 22 to the average lithium concentration at the current position when the CCV difference becomes smaller than the first threshold value, and then converts the average lithium concentration to the chargeable capacity. It is good to convert.

例えば、図7において、平均リチウム濃度の初期値をβとした場合、充電開始から数秒(2秒以上)経過した第1時点において、初期値β、第1時点で測定された電流、及び電池反応モデルから、その時点の表面リチウム濃度及びCCVを推定する。推定したCCVとその時点において測定されたCCVとを比較する。初期値βと真の平均リチウム濃度とが等しい場合は、第1時点において推定したCCVと測定したCCVとは等しくなる。しかしながら、真の平均リチウム濃度がαの場合、第1時点において推定したCCVは測定したCCVよりも小さい。   For example, in FIG. 7, when the initial value of the average lithium concentration is β, the initial value β, the current measured at the first time, and the battery reaction at the first time after several seconds (2 seconds or more) have elapsed from the start of charging. From the model, the current surface lithium concentration and CCV are estimated. The estimated CCV is compared with the CCV measured at that time. When the initial value β is equal to the true average lithium concentration, the CCV estimated at the first time point is equal to the measured CCV. However, when the true average lithium concentration is α, the CCV estimated at the first time point is smaller than the measured CCV.

この場合、推定したCCVを測定したCCVに近づけるように、すなわち推定したCCVが大きくなるように、初期値βを減少させた値に更新する。そして、更新後の平均リチウム濃度、第1時点以降の第2時点において測定された電流、及び電池反応モデルから、第2時点の表面リチウム濃度及びCCVを推定し、推定したCCVと測定したCCVとを再度比較する。これを繰り返して、推定したCCVと測定したCCVとの差が第1閾値よりも小さくなるようにする。さらに、CCVの差が第1閾値よりも小さくなった時点で、更新された平均リチウム濃度を、現在の位置の平均リチウム濃度に補正した後、充電可能容量に換算する。このように、充電時のCCVの挙動に基づいて、現在の位置の充電可能容量を推定できる。   In this case, the initial value β is updated to a value that decreases so that the estimated CCV approaches the measured CCV, that is, the estimated CCV increases. Then, from the updated average lithium concentration, the current measured at the second time after the first time, and the battery reaction model, the surface lithium concentration and CCV at the second time are estimated, and the estimated CCV and the measured CCV Compare again. This is repeated so that the difference between the estimated CCV and the measured CCV is smaller than the first threshold value. Furthermore, when the CCV difference becomes smaller than the first threshold, the updated average lithium concentration is corrected to the average lithium concentration at the current position, and then converted into a chargeable capacity. Thus, the chargeable capacity at the current position can be estimated based on the behavior of CCV during charging.

次に、図8を参照して、電池反応モデルの一例について簡単に説明する。図8(a)に、電池セル40の内部構成の概略を示す。電池セル40は、正極と、セパレータと、負極とを含む。セパレータは、正極と負極との間に設けられた樹脂に電解液を浸透させて構成される。正極及び負極のそれぞれは、球状の活物質の集合体で構成される。正極活物質の界面上では、放電時にはリチウムイオン及び電子を吸収する化学反応が行われ、充電時にはリチウムイオン及び電子を放出する化学反応が行われる。一方、負極活物質の界面上では、放電時にはリチウムイオン及び電子を放出する化学反応が行われ、充電時にはリチウムイオン及び電子を吸収する化学反応が行われる。セパレータを介したリチウムイオンの授受によって、充電電流又は放電電流が生じる。   Next, an example of a battery reaction model will be briefly described with reference to FIG. FIG. 8A shows an outline of the internal configuration of the battery cell 40. Battery cell 40 includes a positive electrode, a separator, and a negative electrode. The separator is configured by infiltrating an electrolytic solution into a resin provided between the positive electrode and the negative electrode. Each of the positive electrode and the negative electrode is composed of an aggregate of spherical active materials. On the interface of the positive electrode active material, a chemical reaction that absorbs lithium ions and electrons is performed during discharging, and a chemical reaction that releases lithium ions and electrons is performed during charging. On the other hand, on the interface of the negative electrode active material, a chemical reaction that releases lithium ions and electrons is performed during discharging, and a chemical reaction that absorbs lithium ions and electrons is performed during charging. Charging current or discharging current is generated by the exchange of lithium ions through the separator.

図8(b)に、実際に電池セル40内部の挙動を計算するために用いる電池反応モデルを示す。この電池反応モデルでは、演算負荷軽減のため、正極及び負極を、それぞれ活物質の集合体を平均した特性を有する単一の球状活物質で表現している。図8(c)に、液相、固相、固相と液相間におけるそれぞれの支配方程式、及び電池セル40の電圧と電流との関係式を示す。図8(d)に、図8(c)の各方程式で用いられる変数及び定数の一覧を示す。   FIG. 8B shows a battery reaction model used for actually calculating the behavior inside the battery cell 40. In this battery reaction model, the positive electrode and the negative electrode are each represented by a single spherical active material having characteristics obtained by averaging an aggregate of active materials in order to reduce the calculation load. FIG. 8C shows a governing equation between the liquid phase, the solid phase, the solid phase and the liquid phase, and a relational expression between the voltage and current of the battery cell 40. FIG. 8D shows a list of variables and constants used in each equation of FIG.

式(1)は液相部分を流れる電流を規定する式であり、式(2)は液相部分におけるリチウムイオンの収支を規定する式である。式(3)は固相部分を流れる電流を規定する式であり、式(4)は固相部分におけるリチウムの濃度分布を規定する拡散方程式である。式(5)は固相と液相間におけるファラデー電流を規定する式であり、式(6)は固相と液相間における電流収支を規定する式である。式(7)は電池セル40の電圧と電池セル40を流れる電流との関係式である。式(1)〜(6)に放電開始時の初期値を与え、所定時間ごとに式(1)〜(6)を一括で解き進め、表面リチウム濃度を算出する。   Equation (1) is an equation that defines the current flowing through the liquid phase portion, and Equation (2) is an equation that defines the balance of lithium ions in the liquid phase portion. Equation (3) is an equation that defines the current flowing through the solid phase portion, and Equation (4) is a diffusion equation that defines the concentration distribution of lithium in the solid phase portion. Equation (5) is an equation that defines the Faraday current between the solid phase and the liquid phase, and Equation (6) is an equation that defines the current balance between the solid phase and the liquid phase. Expression (7) is a relational expression between the voltage of the battery cell 40 and the current flowing through the battery cell 40. The initial values at the start of discharge are given to the formulas (1) to (6), and the formulas (1) to (6) are collectively solved at predetermined time intervals to calculate the surface lithium concentration.

次に、電池セル40の充電可能容量を算出する処理手順について、図9のフローチャートを参照して説明する。本処理手順は、充電可能容量推定手段20が所定間隔で実行する。充電可能容量推定手段20は、残存容量推定手段10により残存容量が推定された時点で、本処理手順の実行を開始する。   Next, a processing procedure for calculating the chargeable capacity of the battery cell 40 will be described with reference to the flowchart of FIG. This processing procedure is executed by the chargeable capacity estimation unit 20 at predetermined intervals. The chargeable capacity estimation means 20 starts executing this processing procedure when the remaining capacity is estimated by the remaining capacity estimation means 10.

まず、平均リチウム濃度の初期値と、この時点で測定された電流、図示しない温度センサによりこの時点で測定された電池セル40の温度、及び電池反応モデルから、この時点の表面リチウム濃度を算出する(S10)。平均リチウム濃度の初期値は、前回本処理を実行して決定した平均リチウム濃度としてもよいし、適当な値に設定してもよい。また、電池セル40の温度は、逐次測定された測定値ではなく所定値としてもよい。   First, the surface lithium concentration at this time is calculated from the initial value of the average lithium concentration, the current measured at this time, the temperature of the battery cell 40 measured at this time by a temperature sensor (not shown), and the battery reaction model. (S10). The initial value of the average lithium concentration may be the average lithium concentration determined by executing this process last time or may be set to an appropriate value. Further, the temperature of the battery cell 40 may be a predetermined value instead of the measured value measured sequentially.

続いて、S10で算出した表面リチウム濃度と、測定された電流、測定された温度、及び電池反応モデルから、この時点の推定CCVを算出する(S11)。続いて、この時点で測定されたCCVと、S11で推定した推定CCVとから、電圧誤差ΔVn(nは本フローチャートのループ回数)=測定CCV−推定CCVを算出する(S12)。   Subsequently, an estimated CCV at this time is calculated from the surface lithium concentration calculated in S10, the measured current, the measured temperature, and the battery reaction model (S11). Subsequently, a voltage error ΔVn (n is the number of loops in this flowchart) = measured CCV−estimated CCV is calculated from the CCV measured at this time and the estimated CCV estimated in S11 (S12).

続いて、平均リチウム濃度の補正を実施するか否か判定する(S13)。詳しくは、S12で算出した電圧誤差ΔVnの絶対値が判定値(第1閾値)以上か否か判定する。電圧誤差ΔVnの絶対値が判定値よりも大きい場合は(S13:YES)、推定CCVの算出に用いた平均リチウム濃度と、真のリチウム濃度との差分が大きいので、平均リチウム濃度を補正する(S14)。具体的には、平均リチウム濃度を、αn=2%×n分増加又は減少させる。電圧誤差ΔVnが正の場合は、平均リチウム濃度が真の平均リチウム濃度よりも高いので、平均リチウム濃度をαn分減少させるように補正する。また、電圧誤差ΔVnが負の場合は、平均リチウム濃度が真の平均リチウム濃度よりも低いので、平均リチウム濃度をαn分増加させるように補正する。続いて、nを1つ増加させて(S15)、S10〜S13の処理を繰り返し実行する。   Subsequently, it is determined whether or not to correct the average lithium concentration (S13). Specifically, it is determined whether or not the absolute value of the voltage error ΔVn calculated in S12 is greater than or equal to a determination value (first threshold). When the absolute value of the voltage error ΔVn is larger than the determination value (S13: YES), the difference between the average lithium concentration used for calculating the estimated CCV and the true lithium concentration is large, so the average lithium concentration is corrected ( S14). Specifically, the average lithium concentration is increased or decreased by αn = 2% × n. When the voltage error ΔVn is positive, the average lithium concentration is higher than the true average lithium concentration, so that the average lithium concentration is corrected so as to decrease by αn. When the voltage error ΔVn is negative, the average lithium concentration is lower than the true average lithium concentration, so that the average lithium concentration is corrected to increase by αn. Subsequently, n is incremented by 1 (S15), and the processes of S10 to S13 are repeatedly executed.

一方、電圧誤差ΔVnの絶対値が判定値以下の場合は(S13:NO)、推定CCVの算出に用いた平均リチウム濃度と、真のリチウム濃度との差分が小さいので、推定CCVの算出に用いた平均リチウム濃度を、真のリチウム濃度と決定する(S16)。以上で本処理を終了する。   On the other hand, when the absolute value of the voltage error ΔVn is equal to or smaller than the determination value (S13: NO), the difference between the average lithium concentration used for calculating the estimated CCV and the true lithium concentration is small. The average lithium concentration is determined as the true lithium concentration (S16). This process is complete | finished above.

その後、S16で決定した平均リチウム濃度を、充電を開始してからS16で平均リチウム濃度を決定するまでに流れた電流に基づいて、現在の位置における平均リチウム濃度に補正した後、充電可能容量に換算する。   Thereafter, the average lithium concentration determined in S16 is corrected to the average lithium concentration at the current position based on the current that flows from the start of charging until the average lithium concentration is determined in S16, and then the chargeable capacity is obtained. Convert.

以上説明した本実施形態によれば、以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・本発明によれば、電池セル40の充電時に、算出されたCCVの時間変化率に基づいて、現在の位置における残存容量が推定される。ここで、SOCに対するOCVの変化量が小さい領域において充電をする場合でも、電池セル40に電流が流れると、CCVは、充電開始時の充電可能容量によって充電中に異なる時間変化をする。よって、充電時に逐次測定された電池電圧に基づいて、充電可能容量を推定することができる。そして、推定された残存容量と充電可能容量とから、所定時刻における満充電容量が推定される。したがって、SOCに対するOCVの変化量が小さい領域を有する電池セル40であっても、充電中に残存容量及び充電可能容量を推定して、電池セル40の満充電容量を高精度に推定することができる。   According to the present invention, when the battery cell 40 is charged, the remaining capacity at the current position is estimated based on the calculated time change rate of the CCV. Here, even when charging is performed in a region where the change amount of the OCV with respect to the SOC is small, when a current flows through the battery cell 40, the CCV changes with time during charging depending on the chargeable capacity at the start of charging. Therefore, the chargeable capacity can be estimated based on the battery voltage sequentially measured during charging. Then, the full charge capacity at a predetermined time is estimated from the estimated remaining capacity and chargeable capacity. Therefore, even if the battery cell 40 has a region where the amount of change in the OCV with respect to the SOC is small, the remaining capacity and the chargeable capacity can be estimated during charging, and the full charge capacity of the battery cell 40 can be estimated with high accuracy. it can.

・初期値として正極活物質内の平均リチウム濃度が設定され、平均リチウム濃度に基づいて、充電時におけるCCVが逐次算出される。そして、算出された充電時のCCVと、測定された充電時のCCVとの電圧誤差が、第1閾値よりも小さくなるように、すなわち、初期値として設定された平均リチウム濃度が、真の平均リチウム濃度に近付くように更新される。さらに、正極活物質内の平均リチウム濃度は、充電可能容量に対応するので、更新された平均リチウム濃度を換算することにより、充電可能容量を推定できる。   The average lithium concentration in the positive electrode active material is set as an initial value, and the CCV during charging is sequentially calculated based on the average lithium concentration. Then, the average lithium concentration set as the initial value is a true average so that the voltage error between the calculated CCV during charging and the measured CCV during charging is smaller than the first threshold value. Updated to approach lithium concentration. Furthermore, since the average lithium concentration in the positive electrode active material corresponds to the chargeable capacity, the chargeable capacity can be estimated by converting the updated average lithium concentration.

・ある時点の平均リチウム濃度、測定された電流、及び電池反応モデルから、ある時点の表面リチウム濃度、及びCCVが算出される。そして、ある時点の算出されたCCVと、ある時点の測定されたCCVとの電圧誤差が小さくなるように、次の時点の平均リチウム濃度が更新される。このようにして、逐次平均リチウム濃度が更新される。そして、算出されたCCVと測定されたCCVとの電圧誤差が、第1閾値よりも小さくなった時点で、更新された平均リチウム濃度が、充電可能容量に換算される。これにより、現在の位置における真のリチウム濃度に近付いた平均リチウム濃度から、充電可能容量が推定できる。   From the average lithium concentration at a certain point in time, the measured current, and the battery reaction model, the surface lithium concentration at a certain point in time and the CCV are calculated. Then, the average lithium concentration at the next time is updated so that the voltage error between the calculated CCV at the certain time and the measured CCV at the certain time becomes small. In this way, the average lithium concentration is updated sequentially. Then, when the voltage error between the calculated CCV and the measured CCV becomes smaller than the first threshold, the updated average lithium concentration is converted into the chargeable capacity. Thereby, the chargeable capacity can be estimated from the average lithium concentration approaching the true lithium concentration at the current position.

・充電中における平均リチウム濃度は急激に変化しないが多少は変化する。そこで、算出されたCCVと測定されたCCVとの差分が、第1閾値よりも小さくなった時点で、更新された平均リチウム濃度が、現在の位置における平均リチウム濃度に補正される。これにより、より高精度に現在の位置における平均リチウム濃度を推定して、満充電容量を推定できる。   ・ The average lithium concentration during charging does not change rapidly, but changes somewhat. Therefore, when the difference between the calculated CCV and the measured CCV becomes smaller than the first threshold value, the updated average lithium concentration is corrected to the average lithium concentration at the current position. Thereby, the full charge capacity can be estimated by estimating the average lithium concentration at the current position with higher accuracy.

・SOCに対するOCVの変化量が小さい領域を有する電池セル40であっても、CCVの時間変化率が第2閾値よりも大きくなる箇所がある。そのため、CCVの時間変化率が第2閾値よりも大きくなった場合に、高精度に残存容量を推定できる。   -Even if it is the battery cell 40 which has the area | region where the variation | change_quantity of OCV with respect to SOC is small, there exists a location where the time change rate of CCV becomes larger than a 2nd threshold value. Therefore, when the time change rate of CCV becomes larger than the second threshold, the remaining capacity can be estimated with high accuracy.

(他の実施形態)
・現在の位置における平均リチウム濃度、充電時の電流に応じた、充電時のCCVの時間変化のマップを用意しておき、充電時に逐次測定された電圧とマップとを比較して、現在の位置における平均リチウム濃度を推定してもよい。さらに、現在の位置における平均リチウム濃度、充電時の電流、電池セル40の温度に応じた、充電時のCCVの時間変化のマップを用いてもよい。
(Other embodiments)
-Prepare a map of CCV time change during charging according to the average lithium concentration at the current position and the current during charging, and compare the voltage measured sequentially during charging with the map to determine the current position. The average lithium concentration at may be estimated. Furthermore, you may use the map of the time change of CCV at the time of charge according to the average lithium density | concentration in the present position, the electric current at the time of charge, and the temperature of the battery cell 40. FIG.

・電池セル40は、オリビン系に限らずリチウム二次電池であればよい。リチウム二次電池であれは、電池制御装置100を適用できる。   -Battery cell 40 should just be not only an olivine type | system | group but a lithium secondary battery. The battery control device 100 can be applied to any lithium secondary battery.

10…残存容量推定手段、20…充電可能容量推定手段、21…算出手段、22…更新手段、23…換算手段、30…満充電容量推定手段、40…電池セル、100…電池制御装置。   DESCRIPTION OF SYMBOLS 10 ... Remaining capacity estimation means, 20 ... Chargeable capacity estimation means, 21 ... Calculation means, 22 ... Update means, 23 ... Conversion means, 30 ... Full charge capacity estimation means, 40 ... Battery cell, 100 ... Battery control apparatus.

Claims (4)

リチウム二次電池(40)の満充電容量を推定する満充電容量推定装置(100)であって、
前記電池の充電時に、逐次測定された前記電池の電圧から算出された前記電圧の時間変化率に基づいて、所定時刻における前記電池の残存容量を推定する残存容量推定手段(10)と、
前記電池の充電時に、前記所定時刻における前記電池の充電可能容量を推定する可能容量推定手段(20)と、
前記残存容量推定手段により推定された前記残存容量と、前記可能容量推定手段により推定された前記充電可能容量とから、前記所定時刻における満充電容量を推定する満充電容量推定手段(30)と、を備え、
前記可能容量推定手段は、前記電池の充電時に、逐次測定された前記電池の電圧に基づいて、前記充電可能容量を推定し、
前記可能容量推定手段は、
初期値として前記電池の正極活物質内の平均リチウム濃度を設定し、前記平均リチウム濃度に基づいて、前記電池の充電時における前記電圧を逐次算出する算出手段(21)と、
前記算出手段により算出された前記電圧と測定された前記電圧との差分が第1閾値よりも小さくなるように、前記平均リチウム濃度を更新する更新手段(22)と、
前記更新手段により更新された前記平均リチウム濃度を前記充電可能容量に換算する換算手段(23)と、を含む、ことを特徴とする満充電容量推定装置。
A full charge capacity estimation device (100) for estimating a full charge capacity of a lithium secondary battery (40), comprising:
A remaining capacity estimating means (10) for estimating a remaining capacity of the battery at a predetermined time based on a time change rate of the voltage calculated from the voltage of the battery measured sequentially when the battery is charged;
A possible capacity estimating means (20) for estimating a chargeable capacity of the battery at the predetermined time when charging the battery;
A full charge capacity estimation means (30) for estimating a full charge capacity at the predetermined time from the remaining capacity estimated by the remaining capacity estimation means and the chargeable capacity estimated by the possible capacity estimation means; With
The possible capacity estimating means estimates the chargeable capacity based on the battery voltage sequentially measured when the battery is charged ,
The possible capacity estimation means includes
Calculating means (21) for setting an average lithium concentration in the positive electrode active material of the battery as an initial value, and sequentially calculating the voltage at the time of charging the battery based on the average lithium concentration;
Updating means (22) for updating the average lithium concentration so that a difference between the voltage calculated by the calculating means and the measured voltage is smaller than a first threshold;
A full charge capacity estimation device comprising: conversion means (23) for converting the average lithium concentration updated by the update means into the chargeable capacity.
前記算出手段は、前記平均リチウム濃度、測定された前記電池を流れる電流、及び電池反応モデルから前記電池の正極活物質表面の表面リチウム濃度を逐次算出するとともに、算出した表面リチウム濃度から前記電圧を逐次算出し、
前記更新手段は、前記算出手段により逐次算出された前記電圧と、その時点に測定された前記電圧との差分が小さくなるように、前記平均リチウム濃度を逐次更新し、
前記換算手段は、前記差分が前記第1閾値よりも小さくなった時点で、前記更新手段により更新された前記平均リチウム濃度を前記充電可能容量に換算する請求項に記載の満充電容量推定装置。
The calculating means sequentially calculates the surface lithium concentration on the surface of the positive electrode active material of the battery from the average lithium concentration, the measured current flowing through the battery, and a battery reaction model, and calculates the voltage from the calculated surface lithium concentration. Calculate sequentially,
The updating means sequentially updates the average lithium concentration so that a difference between the voltage sequentially calculated by the calculating means and the voltage measured at that time becomes small,
The full charge capacity estimation device according to claim 1 , wherein the conversion means converts the average lithium concentration updated by the update means into the chargeable capacity when the difference becomes smaller than the first threshold value. .
前記換算手段は、前記差分が前記第1閾値よりも小さくなった時点で、前記更新手段により更新された前記平均リチウム濃度を、前記所定時刻における前記平均リチウム濃度に補正した後、前記充電可能容量に換算する請求項1又は2に記載の満充電容量推定装置。 The conversion means corrects the average lithium concentration updated by the updating means to the average lithium concentration at the predetermined time when the difference becomes smaller than the first threshold, and then the chargeable capacity. The full charge capacity estimation device according to claim 1 or 2 , wherein 前記電池は、残存容量に対する前記電池の電圧の変化量が所定量よりも小さい領域において充電する際に、前記電圧の時間変化率が変動する特性を有し、
前記残存容量推定手段は、測定された前記電圧の時間変化率が、第2閾値よりも大きくなった時点で、前記第2閾値と対応する前記残存容量を、前記所定時刻における前記残存容量とする請求項1〜のいずれかに記載の満充電容量推定装置。
The battery has a characteristic that a time change rate of the voltage fluctuates when charging in a region where a change amount of the battery voltage with respect to a remaining capacity is smaller than a predetermined amount,
The remaining capacity estimating means sets the remaining capacity corresponding to the second threshold as the remaining capacity at the predetermined time when the time change rate of the measured voltage becomes larger than a second threshold. full charge capacity estimating apparatus according to any one of claims 1-3.
JP2014061239A 2014-03-25 2014-03-25 Full charge capacity estimation device Expired - Fee Related JP6156216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061239A JP6156216B2 (en) 2014-03-25 2014-03-25 Full charge capacity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061239A JP6156216B2 (en) 2014-03-25 2014-03-25 Full charge capacity estimation device

Publications (2)

Publication Number Publication Date
JP2015184146A JP2015184146A (en) 2015-10-22
JP6156216B2 true JP6156216B2 (en) 2017-07-05

Family

ID=54350840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061239A Expired - Fee Related JP6156216B2 (en) 2014-03-25 2014-03-25 Full charge capacity estimation device

Country Status (1)

Country Link
JP (1) JP6156216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315125B1 (en) 2022-02-24 2023-07-26 Jfeスチール株式会社 Method for reducing fine iron ore

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016203834A1 (en) 2015-06-17 2017-01-12 Gs Yuasa International Ltd. State estimation device and state estimation method
JP6714838B2 (en) * 2015-06-17 2020-07-01 株式会社Gsユアサ State estimation device and state estimation method
JP6707972B2 (en) * 2016-04-22 2020-06-10 トヨタ自動車株式会社 Secondary battery salt concentration distribution estimation method
JP6942657B2 (en) * 2018-02-28 2021-09-29 株式会社東芝 Battery system, remaining capacity estimation device, and remaining capacity estimation method
JP7151689B2 (en) * 2019-11-05 2022-10-12 トヨタ自動車株式会社 BATTERY MANAGEMENT SYSTEM, BATTERY MANAGEMENT METHOD, AND BATTERY MANUFACTURING METHOD
JP7395540B2 (en) * 2021-06-01 2023-12-11 株式会社東芝 Battery deterioration determination method, battery deterioration determination device, battery management system, battery equipped equipment, and battery deterioration determination program
JP7328603B1 (en) * 2023-03-17 2023-08-17 富士通クライアントコンピューティング株式会社 Information processing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021625A (en) * 1999-07-02 2001-01-26 Yazaki Corp Capacity measuring device for battery using gassing voltage considering temperature
JP4078880B2 (en) * 2002-05-24 2008-04-23 日産自動車株式会社 Power storage system
JP4649101B2 (en) * 2003-09-10 2011-03-09 株式会社日本自動車部品総合研究所 Secondary battery status detection device and status detection method
JP4401397B2 (en) * 2006-03-01 2010-01-20 富士通テン株式会社 Battery monitoring device and battery monitoring method
JP2011172415A (en) * 2010-02-19 2011-09-01 Toshiba Corp Secondary battery device
JP5556698B2 (en) * 2011-02-18 2014-07-23 株式会社デンソー Battery assembly
JP2012253976A (en) * 2011-06-06 2012-12-20 Shimizu Corp Charge/discharge controller, and charge/discharge control method and program
WO2013069145A1 (en) * 2011-11-11 2013-05-16 古河電気工業株式会社 Charge/discharge control method for electricity storage device, and charge/discharge control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315125B1 (en) 2022-02-24 2023-07-26 Jfeスチール株式会社 Method for reducing fine iron ore

Also Published As

Publication number Publication date
JP2015184146A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6156216B2 (en) Full charge capacity estimation device
Yang et al. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting
JP5761378B2 (en) Secondary battery control device and control method
CN107835947B (en) Method and device for estimating state of charge of lithium ion battery
KR101985812B1 (en) Charging limit evaluation method of battery, method and apparatus for fast charging using the same
JP6188841B2 (en) Method and system for active equalization of lithium iron phosphate battery pack
CN107112605B (en) Method for detecting lithium plating, method and apparatus for charging secondary battery, and secondary battery system using the same
US10254346B2 (en) SOC estimation device for secondary battery
JP5261828B2 (en) Battery state estimation device
JP6155774B2 (en) State estimation device and state estimation method
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
CN111801870A (en) Charging apparatus and charging method for secondary battery
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
WO2012046375A1 (en) Discharge and charge control system of non-aqueous electrolyte secondary battery and control method, and battery pack
JP6867478B2 (en) Battery control and vehicle system
JP5565276B2 (en) Method for correcting the amount of charge in a lithium ion battery
WO2017169088A1 (en) Remaining life estimation device of lithium ion secondary battery
CN108287316A (en) Accumulator method for estimating remaining capacity based on threshold spread Kalman Algorithm
JP2013208034A (en) Open-circuit voltage estimation device
JP2019057357A (en) Secondary battery system
JP6409272B2 (en) Charge state estimation device
JP6896783B2 (en) Rechargeable battery system, rechargeable battery, and assembled battery system
Le et al. Lead-acid state of charge estimation for start-stop applications
US10553914B2 (en) Rapid forming of an electrode
JP6194841B2 (en) Equalizing discharge device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees