JP6194841B2 - Equalizing discharge device - Google Patents

Equalizing discharge device Download PDF

Info

Publication number
JP6194841B2
JP6194841B2 JP2014078503A JP2014078503A JP6194841B2 JP 6194841 B2 JP6194841 B2 JP 6194841B2 JP 2014078503 A JP2014078503 A JP 2014078503A JP 2014078503 A JP2014078503 A JP 2014078503A JP 6194841 B2 JP6194841 B2 JP 6194841B2
Authority
JP
Japan
Prior art keywords
discharge
discharge amount
secondary battery
remaining capacity
equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014078503A
Other languages
Japanese (ja)
Other versions
JP2015201939A (en
Inventor
藤井 宏紀
宏紀 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014078503A priority Critical patent/JP6194841B2/en
Publication of JP2015201939A publication Critical patent/JP2015201939A/en
Application granted granted Critical
Publication of JP6194841B2 publication Critical patent/JP6194841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、組電池を構成する二次電池の残存容量を均等化する均等化放電装置に関する。   The present invention relates to an equalizing discharge device that equalizes a remaining capacity of a secondary battery constituting an assembled battery.

ハイブリッド自動車や電気自動車では、複数の二次電池(電池セル)を直列に接続し、出力電圧を高電圧化した組電池が用いられている。このような組電池では、充放電を繰り返すと、各電池セルの残存容量にばらつきが生じる。組電池における充放電を実施する場合、各電池セルの過放電及び過充電を回避するため、複数の電池セルのそれぞれの残存容量のうち最小又は最大のものに応じて、組電池の充放電を停止しなければならない。各電池セルの残存容量のばらつきが大きいと使用可能な電池容量が低下するため、各電池セルの残存容量を均等化する必要がある。   Hybrid vehicles and electric vehicles use assembled batteries in which a plurality of secondary batteries (battery cells) are connected in series to increase the output voltage. In such an assembled battery, when charge and discharge are repeated, the remaining capacity of each battery cell varies. When charging / discharging an assembled battery, in order to avoid overdischarge and overcharge of each battery cell, charge / discharge of the assembled battery is performed according to the minimum or maximum remaining capacity of each of the plurality of battery cells. Must stop. When the variation in the remaining capacity of each battery cell is large, the usable battery capacity is lowered, so that it is necessary to equalize the remaining capacity of each battery cell.

各電池セルの残存容量を均等化する方法として、各電池セルの無負荷電圧(開放端電圧)から各電池セルの残存容量を算出し、その残存容量から各電池セルの放電量を算出する。そして、その放電量に基づいて設定された放電時間だけ各電池セルから放電回路に対して放電を実施する技術が知られている(例えば、特許文献1)。   As a method of equalizing the remaining capacity of each battery cell, the remaining capacity of each battery cell is calculated from the no-load voltage (open end voltage) of each battery cell, and the discharge amount of each battery cell is calculated from the remaining capacity. And the technique which discharges with respect to the discharge circuit from each battery cell for the discharge time set based on the discharge amount is known (for example, patent document 1).

特開2007−244142号公報JP 2007-244142 A

上記特許文献に記載の技術では、電池セルから放電回路に対して流れる放電電流を一定とみなし、放電量を放電電流で除算することで放電時間を算出するものである。ここで、放電電流は、電池セルとして用いられる二次電池の状態、及び、放電回路の状態によって変化するものである。つまり、電池セルから放電回路に流れる放電電流を一定と見なして放電時間を算出し、その放電時間だけ電池セルから放電回路に対する放電を実施する上記の技術では、各電池セルから実際に放電される放電量を所望の量にすることができない。   In the technique described in the above-mentioned patent document, the discharge time flowing from the battery cell to the discharge circuit is regarded as constant, and the discharge time is calculated by dividing the discharge amount by the discharge current. Here, the discharge current changes depending on the state of the secondary battery used as the battery cell and the state of the discharge circuit. That is, in the above-described technique in which the discharge time flowing from the battery cell to the discharge circuit is regarded as constant and the discharge time is calculated, and the discharge from the battery cell to the discharge circuit is performed for the discharge time, the battery cell is actually discharged. The amount of discharge cannot be made a desired amount.

本発明は上記課題を解決するためになされたものであり、組電池を構成する二次電池の残存容量を均等化するに際し、各二次電池の残存容量を正確に均等化することを目的とする。   The present invention has been made to solve the above-described problems, and aims to accurately equalize the remaining capacity of each secondary battery when equalizing the remaining capacity of the secondary battery constituting the assembled battery. To do.

本発明は、複数の二次電池(C1〜Cn)が直列接続されて構成される組電池(10)において、前記複数の二次電池の残存容量を均等化させるために、前記複数の二次電池から放電回路(21)に対してそれぞれ放電を行う均等化放電装置(20)であって、前記二次電池の端子間電圧を検出する電圧検出手段(22)と、前記放電を開始する場合に、前記端子間電圧の検出値に基づいて、前記二次電池において前記残存容量の均等化のために必要な必要放電量を算出する必要放電量算出手段(31)と、所定周期ごとに、前記二次電池の端子間電圧の検出値に基づいて前記放電回路における前記二次電池の実放電量を算出する実放電量算出手段(32,34)と、前記実放電量の積算値が前記必要放電量に達するまで前記二次電池から前記放電回路に対する放電を実施する放電実施手段(37)と、を備えることを特徴とする。   In the assembled battery (10) configured by connecting a plurality of secondary batteries (C1 to Cn) in series, the present invention provides the plurality of secondary batteries in order to equalize the remaining capacity of the plurality of secondary batteries. An equalizing discharge device (20) for discharging from a battery to a discharge circuit (21), respectively, a voltage detection means (22) for detecting a voltage between terminals of the secondary battery, and starting the discharge And a required discharge amount calculating means (31) for calculating a required discharge amount required for equalizing the remaining capacity in the secondary battery based on the detected value of the voltage between the terminals, and for each predetermined cycle, An actual discharge amount calculating means (32, 34) for calculating an actual discharge amount of the secondary battery in the discharge circuit based on a detected value of a voltage between terminals of the secondary battery, and an integrated value of the actual discharge amount is the From the secondary battery until the required discharge amount is reached And discharge means for executing the discharge to the discharge circuit (37), characterized in that it comprises a.

本発明の均等化放電装置によれば、均等化放電の開始時において、各二次電池について均等化のために必要な放電量である必要放電量がそれぞれ算出される。均等化放電の実施中において、所定周期ごとに、二次電池の端子間電圧の検出値に基づいて、放電回路における実放電量が算出される。そして、実放電量の積算値が必要放電量に達するまで均等化放電が継続される。   According to the equalizing discharge apparatus of the present invention, at the start of the equalizing discharge, a necessary discharge amount that is a discharge amount necessary for equalization is calculated for each secondary battery. During the equalization discharge, the actual discharge amount in the discharge circuit is calculated based on the detected value of the inter-terminal voltage of the secondary battery for each predetermined period. The equalized discharge is continued until the integrated value of the actual discharge amount reaches the required discharge amount.

このような制御を行うことで、均等化放電の実施中において、均等化放電に伴って二次電池の端子間電圧が変動した場合であっても、その変動分を考慮して実放電量が算出される。そのため、均等化のために必要な放電量(目標値)と実際に二次電池から放電される放電量(実際値)とを近づけることが可能になり、各二次電池の残存容量を正確に均等化することが可能となる。   By performing such control, even when the voltage between the terminals of the secondary battery fluctuates due to the equalizing discharge during the equalizing discharge, the actual discharge amount can be reduced in consideration of the fluctuation. Calculated. This makes it possible to bring the amount of discharge required for equalization (target value) close to the amount of discharge actually discharged from the secondary battery (actual value), and accurately determine the remaining capacity of each secondary battery. It becomes possible to equalize.

本実施形態の電気的構成図。The electrical block diagram of this embodiment. オリビン系リチウムイオン二次電池のSOC−OCV特性を示す図。The figure which shows the SOC-OCV characteristic of an olivine type lithium ion secondary battery. 制御部の機能を表す機能ブロック図。The functional block diagram showing the function of a control part. 必要放電量算出処理を表すフローチャート。The flowchart showing a required discharge amount calculation process. 放電電流算出処理を表すフローチャート。The flowchart showing a discharge current calculation process. 更新周期設定処理を表すフローチャート。The flowchart showing an update period setting process. 残放電量更新処理を表すフローチャート。The flowchart showing the remaining discharge amount update process.

図1に本実施形態における組電池10及び均等化放電装置20の電気的構成図を示す。   FIG. 1 shows an electrical configuration diagram of the assembled battery 10 and the equalizing discharge device 20 in the present embodiment.

組電池10は、n個の電池セルC1〜Cnの直列接続体として構成されている(nは2以上の整数)。各電池セルC1〜Cnは、リチウムイオン二次電池である。更に、各電池セルC1〜Cnは、その正極材としてオリビン構造を有するリチウム鉄リン酸塩(LiFePO4)が含まれているオリビン系リチウムイオン二次電池である。なお、各電池セルC1〜Cnの正極材として、リチウムマンガンリン酸塩(LiMnPO4)、リチウムコバルトリン酸塩(LiCoPO4)、リチウムニッケルリン酸塩(LiNiPO4)など、他のオリビン構造を有するリチウム金属リン酸塩が用いられていてもよい。   The assembled battery 10 is configured as a series connection body of n battery cells C1 to Cn (n is an integer of 2 or more). Each battery cell C1-Cn is a lithium ion secondary battery. Furthermore, each battery cell C1-Cn is an olivine type lithium ion secondary battery in which lithium iron phosphate (LiFePO4) having an olivine structure is included as a positive electrode material. In addition, as the positive electrode material of each battery cell C1 to Cn, lithium metal phosphate having another olivine structure such as lithium manganese phosphate (LiMnPO4), lithium cobalt phosphate (LiCoPO4), lithium nickel phosphate (LiNiPO4), etc. Acid salts may be used.

オリビン系リチウムイオン二次電池の残存容量−開放電圧(OCV: Open Circuit Voltage)特性を図2に示す。なお、残存容量を表す指標として、満充電容量に対する残存容量の比を表す充電状態(SOC: State of Charge)を用いている。   The remaining capacity-open circuit voltage (OCV) characteristics of the olivine-based lithium ion secondary battery are shown in FIG. Note that a state of charge (SOC) representing a ratio of the remaining capacity to the full charge capacity is used as an index representing the remaining capacity.

SOCがA1〜A2(例えば、A1=20%,A2=80%)となる領域では、SOCが変化してもOCVが殆ど変化しない。このSOCがA1〜A2となる領域をプラトー領域と呼ぶ。また、SOCがA1未満となる領域、及び、SOCがA2より大きくなる領域では、プラトー領域に比べて、SOCの増加に伴い顕著にOCVが増加する。このSOCがA1未満となる領域、及び、SOCがA2より大きくなる領域を非プラトー領域と呼ぶ。オリビン系リチウムイオン二次電池では、オリビン系以外のリチウムイオン二次電池に比べて、このプラトー領域が広く、また、プラトー領域におけるOCVの変化が小さい。   In the region where the SOC is A1 to A2 (for example, A1 = 20%, A2 = 80%), the OCV hardly changes even if the SOC changes. A region where the SOC is A1 to A2 is referred to as a plateau region. In the region where the SOC is less than A1 and the region where the SOC is greater than A2, the OCV increases remarkably as the SOC increases compared to the plateau region. The region where the SOC is less than A1 and the region where the SOC is greater than A2 are called non-plateau regions. In the olivine-based lithium ion secondary battery, the plateau region is wider and the change in the OCV in the plateau region is smaller than in lithium ion secondary batteries other than the olivine-based battery.

図1の説明に戻り、組電池10は、均等化放電装置20に接続されている。均等化放電装置20の放電回路21は、抵抗体R1〜Rn及び半導体スイッチSW1〜SWnを備えている。電池セルCiは、抵抗体Ri及び半導体スイッチSWiの直列接続体と並列接続され、電池セルCi、抵抗体Ri及び半導体スイッチSWiは閉回路を形成している(i=1〜n)。半導体スイッチSWiがオン状態にされることで、電池セルCiから抵抗体Riに対する放電が実施される。   Returning to the description of FIG. 1, the assembled battery 10 is connected to the equalizing discharge device 20. The discharge circuit 21 of the equalizing discharge device 20 includes resistors R1 to Rn and semiconductor switches SW1 to SWn. The battery cell Ci is connected in parallel with a series connection body of the resistor Ri and the semiconductor switch SWi, and the battery cell Ci, the resistor Ri, and the semiconductor switch SWi form a closed circuit (i = 1 to n). When the semiconductor switch SWi is turned on, the battery cell Ci discharges the resistor Ri.

また、電池セルC1〜Cnの両端子はそれぞれ電圧検出手段としてのセル電圧検出回路22に接続されている。セル電圧検出回路22は、各電池セルC1〜Cnの各端子間電圧を検出する。また、放電回路21が設けられている回路基板には、温度検出手段としての温度センサ23が設けられており、放電回路21の基板温度を検出する。   Further, both terminals of the battery cells C1 to Cn are respectively connected to a cell voltage detection circuit 22 as voltage detection means. The cell voltage detection circuit 22 detects the voltage between the terminals of the battery cells C1 to Cn. Further, the circuit board on which the discharge circuit 21 is provided is provided with a temperature sensor 23 as temperature detecting means, and detects the substrate temperature of the discharge circuit 21.

制御部30は、セル電圧検出回路22から電池セルC1〜Cnの端子間電圧の検出値V1〜Vnを取得し、温度センサ23から放電回路21の基板温度の検出値Tを取得する。制御部30は、これら検出値V1〜Vn,Tに基づいて、放電回路21の半導体スイッチSW1〜SWnのオンオフ制御を実施することで、各電池セルC1〜CnのSOCを均等化させる。本実施形態における制御部30は、各電池セルC1〜CnのSOC1〜SOCnに基づいて、目標SOCを算出し、各電池セルC1〜CnのSOCが目標SOCとなるように各電池セルC1〜Cnから抵抗体R1〜Rnに対する放電を実施する。   The control unit 30 acquires the detection values V1 to Vn of the inter-terminal voltages of the battery cells C1 to Cn from the cell voltage detection circuit 22, and acquires the detection value T of the substrate temperature of the discharge circuit 21 from the temperature sensor 23. The controller 30 equalizes the SOCs of the battery cells C1 to Cn by performing on / off control of the semiconductor switches SW1 to SWn of the discharge circuit 21 based on the detection values V1 to Vn, T. The control unit 30 in the present embodiment calculates a target SOC based on the SOC1 to SOCn of each battery cell C1 to Cn, and each battery cell C1 to Cn so that the SOC of each battery cell C1 to Cn becomes the target SOC. To the resistors R1 to Rn.

制御部30の機能ブロック図を図3に示す。制御部30は、必要放電量算出手段31、放電電流算出手段32、更新周期設定手段33、スイッチ制御手段37、及び、残放電量更新手段38を備えている。制御部30は、スイッチSWiを制御して電池セルCiを放電させることで、電池セルCiのSOCiを電池セルC1〜CnのSOC1〜SOCnから定まる目標SOCへと減少させる制御を行う(i=1〜n)。   A functional block diagram of the control unit 30 is shown in FIG. The control unit 30 includes a necessary discharge amount calculation unit 31, a discharge current calculation unit 32, an update cycle setting unit 33, a switch control unit 37, and a remaining discharge amount update unit 38. The control unit 30 controls the switch SWi to discharge the battery cell Ci so as to reduce the SOCi of the battery cell Ci to the target SOC determined from the SOC1 to SOCn of the battery cells C1 to Cn (i = 1). ~ N).

必要放電量算出手段31は、各電池セルC1〜CnのSOC1〜SOCnを均等化させるために、電池セルCiにおいて必要な放電量である必要放電量DCiを算出するものである。必要放電量算出手段31は、各電池セルC1〜Cnにおいて放電が実施されていない状況下で、各電池セルC1〜Cnの端子間電圧の検出値V1〜Vnを取得する。この場合、必要放電量算出手段31が取得する端子間電圧の検出値V1〜Vnは、各電池セルC1〜CnのOCVと等しくなる。   The required discharge amount calculation means 31 calculates a required discharge amount DCi that is a discharge amount necessary for the battery cells Ci in order to equalize the SOC1 to SOCn of the battery cells C1 to Cn. The required discharge amount calculation means 31 acquires the detected values V1 to Vn of the inter-terminal voltages of the battery cells C1 to Cn under a situation where the discharge is not performed in the battery cells C1 to Cn. In this case, the detected values V1 to Vn of the inter-terminal voltage acquired by the required discharge amount calculating means 31 are equal to the OCV of each of the battery cells C1 to Cn.

必要放電量算出手段31は、取得した各電池セルC1〜Cnの端子間電圧の検出値V1〜Vnに基づいて、図2に示すSOC−OCVマップを用いて各電池セルC1〜CnのSOC1〜SOCnを算出する。そして、各電池セルC1〜CnのSOC1〜SOCnに基づいて、各電池セルC1〜Cnの目標SOCを算出する。そして、電池セルCiのSOCiを目標SOCまで減少させることで電池セルC1〜CnのSOCを均等化させるために、電池セルCiにおいて必要な必要放電量DCiを算出する。   The required discharge amount calculating means 31 uses the SOC-OCV map shown in FIG. 2 based on the acquired detected values V1 to Vn of the inter-terminal voltages of the respective battery cells C1 to Cn, and the SOC1 to SOC1 of each battery cell C1 to Cn. Calculate SOCn. Then, the target SOC of each battery cell C1 to Cn is calculated based on the SOC1 to SOCn of each battery cell C1 to Cn. Then, in order to equalize the SOCs of the battery cells C1 to Cn by reducing the SOCi of the battery cell Ci to the target SOC, the necessary discharge amount DCi necessary for the battery cell Ci is calculated.

残放電量記憶手段36は、必要放電量算出手段31によって算出された必要放電量DCiを記憶する。減算手段35は、電池セルCiから放電が実施されると、電池セルCiから実際に放電された実放電量に基づいて、残放電量記憶手段36に記憶されている残放電量としての必要放電量DCiを更新する。スイッチ制御手段37(放電実施手段)は、必要放電量DCiが0Ahに達するまでスイッチSWiをオン状態にし、必要放電量DCiが0Ahに達するとスイッチSWiをオフ状態に制御する。つまり、スイッチ制御手段37は、実放電量の積算値が必要放電量算出手段31によって算出された必要放電量DCiに達するまで電池セルCiから放電回路21に対する放電を実施する。   The remaining discharge amount storage means 36 stores the required discharge amount DCi calculated by the required discharge amount calculation means 31. When the discharge from the battery cell Ci is carried out, the subtracting means 35 requires the required discharge as the remaining discharge amount stored in the remaining discharge amount storage means 36 based on the actual discharge amount actually discharged from the battery cell Ci. Update the quantity DCi. The switch control means 37 (discharge execution means) turns on the switch SWi until the required discharge amount DCi reaches 0 Ah, and controls the switch SWi to the off state when the required discharge amount DCi reaches 0 Ah. That is, the switch control unit 37 performs the discharge from the battery cell Ci to the discharge circuit 21 until the integrated value of the actual discharge amount reaches the necessary discharge amount DCi calculated by the necessary discharge amount calculating unit 31.

放電電流算出手段32は、検出値Vi,Tを取得する。放電電流算出手段32は、放電回路21の基板温度の検出値Tに基づいて、スイッチSWiのオン抵抗値Ronを算出する。そして、電池セルCiの端子間電圧の検出値ViをスイッチSWiのオン抵抗値Ron及び抵抗体Riの抵抗値Rの和で除算することで、電池セルCiから放電回路21に流れる放電電流Ioutを算出する(Iout=Vi/(Ron+R))。   The discharge current calculation means 32 acquires the detection values Vi and T. The discharge current calculation unit 32 calculates the on-resistance value Ron of the switch SWi based on the detected value T of the substrate temperature of the discharge circuit 21. Then, by dividing the detected value Vi of the voltage across the terminals of the battery cell Ci by the sum of the on-resistance value Ron of the switch SWi and the resistance value R of the resistor Ri, the discharge current Iout flowing from the battery cell Ci to the discharge circuit 21 is obtained. Calculate (Iout = Vi / (Ron + R)).

乗算手段34において、放電電流Ioutと、必要放電量DCiの更新周期λとの積Iout・λを算出する。減算手段35において、その乗算値Iout・λを電池セルCiから実際に放電された実放電量として、残放電量記憶手段36に記憶されている必要放電量DCiから減算することで、残放電量記憶手段36に記憶されている必要放電量DCiを更新する。つまり、放電電流算出手段32及び乗算手段34が実放電量算出手段を構成している。また、減算手段35及び残放電量記憶手段36が残放電量としての必要放電量DCiを逐次更新する残放電量更新手段38を構成している。   The multiplication unit 34 calculates a product Iout · λ of the discharge current Iout and the update period λ of the required discharge amount DCi. The subtracting means 35 subtracts the multiplication value Iout · λ as the actual discharge amount actually discharged from the battery cell Ci from the required discharge amount DCi stored in the remaining discharge amount storage means 36, thereby obtaining the remaining discharge amount. The required discharge amount DCi stored in the storage means 36 is updated. That is, the discharge current calculation unit 32 and the multiplication unit 34 constitute an actual discharge amount calculation unit. The subtracting means 35 and the remaining discharge amount storage means 36 constitute a remaining discharge amount updating means 38 for sequentially updating the required discharge amount DCi as the remaining discharge amount.

更新周期設定手段33は、電池セルCiの現在のSOCに基づいて、必要放電量DCiの更新周期λを算出する。具体的には、電池セルCiの現在のSOCiが、プラトー領域であるA1〜A2に属する場合に、更新周期λをλ1に設定し、電池セルCiの現在のSOCが、非プラトー領域である0%〜A1又はA2〜100%に属する場合に、更新周期λをλ2に設定する。   The update cycle setting means 33 calculates the update cycle λ of the required discharge amount DCi based on the current SOC of the battery cell Ci. Specifically, when the current SOCi of the battery cell Ci belongs to the plateau region A1 to A2, the update cycle λ is set to λ1, and the current SOC of the battery cell Ci is 0 in the non-plateau region. When it belongs to% to A1 or A2 to 100%, the update period λ is set to λ2.

ここで、λ1はλ2より大きい値に設定されている。つまり、電池セルCiのSOCiが非プラトー領域に属する場合に、電池セルCiのSOCiがプラトー領域に属する場合に比べて、必要放電量の更新周期が短く設定される。このような設定を行うことで、電池セルCiのSOCiが非プラトー領域に属する場合の必要放電量の更新頻度を高くし、必要放電量の算出精度を向上させることができる。   Here, λ1 is set to a value larger than λ2. That is, when the SOCi of the battery cell Ci belongs to the non-plateau region, the update period of the required discharge amount is set shorter than when the SOCi of the battery cell Ci belongs to the plateau region. By performing such setting, it is possible to increase the frequency of updating the required discharge amount when the SOCi of the battery cell Ci belongs to the non-plateau region, and improve the calculation accuracy of the required discharge amount.

図4に必要放電量算出処理を表すフローチャートを示す。本処理は、必要放電量算出手段31によって、電池セルCiの均等化放電の開始時に実施される。   FIG. 4 is a flowchart showing the required discharge amount calculation process. This process is performed by the required discharge amount calculation means 31 at the start of the equalization discharge of the battery cell Ci.

ステップS11において、各電池セルC1〜Cnの端子間電圧の検出値V1〜Vnを取得する。ここで、各電池セルC1〜Cnにおいて電流が流れていないため、端子間電圧の検出値V1〜Vnは、各電池セルC1〜CnのOCVと等しい値となる。ステップS12において、各電池セルC1〜CnのOCVとしての検出値V1〜Vnに基づいて、各電池セルC1〜CnのSOCであるSOC1〜SOCnを算出する。   In step S11, detection values V1 to Vn of the inter-terminal voltages of the battery cells C1 to Cn are acquired. Here, since no current flows in each of the battery cells C1 to Cn, the detected values V1 to Vn of the inter-terminal voltage are equal to the OCV of each of the battery cells C1 to Cn. In step S12, SOC1 to SOCn, which are the SOCs of the battery cells C1 to Cn, are calculated based on the detection values V1 to Vn as the OCV of the battery cells C1 to Cn.

ステップS13において、SOC1〜SOCnに基づいて、電池セルCiにおける必要放電量DCiを算出し、処理を終了する。必要放電量DCiの算出では、SOC1〜SOCnのうち最小のものを目標SOCとし、その目標SOCとSOCiとの偏差を算出し、その偏差と電池セルCiの満充電容量との積として必要放電量DCiを算出する。なお、SOC1〜SOCnの平均値を目標SOCとしてもよい。   In step S13, the required discharge amount DCi in the battery cell Ci is calculated based on the SOC1 to SOCn, and the process ends. In the calculation of the required discharge amount DCi, the minimum one of SOC1 to SOCn is set as the target SOC, the deviation between the target SOC and SOCi is calculated, and the required discharge amount is calculated as the product of the deviation and the full charge capacity of the battery cell Ci. DCi is calculated. An average value of SOC1 to SOCn may be set as the target SOC.

図5に放電電流算出処理を表すフローチャートを示す。本処理は、放電電流算出手段32によって、均等化放電の実施中に所定周期で実施される。   FIG. 5 is a flowchart showing the discharge current calculation process. This process is performed by the discharge current calculation means 32 at a predetermined cycle during the equalization discharge.

ステップS21において、電池セルCiの端子間電圧の検出値Vi及び放電回路21の基板温度の検出値Tを取得する。ステップS22において、放電回路21の基板温度の検出値Tに基づいて、放電回路21のスイッチSWiのオン抵抗値Ronを算出する。具体的には、放電回路21の基板温度の検出値TをスイッチSWiの温度とみなし、スイッチSWiの温度とオン抵抗値Ronとの対応関係を示すマップを用い、オン抵抗値Ronを算出する。ステップS23において、電池セルCiから放電回路21の抵抗体Ri及びスイッチSWiに流れる放電電流Ioutを算出し、処理を終了する。具体的には、電池セルCiの端子間電圧の検出値Viを抵抗体Riの抵抗値R及びスイッチSWiのオン抵抗値Ronの和で除算した値として、放電電流Ioutを算出する(Iout=Vi/(R+Ron))。   In step S21, the detected value Vi of the voltage between the terminals of the battery cell Ci and the detected value T of the substrate temperature of the discharge circuit 21 are acquired. In step S22, the on-resistance value Ron of the switch SWi of the discharge circuit 21 is calculated based on the detected value T of the substrate temperature of the discharge circuit 21. Specifically, the detected value T of the substrate temperature of the discharge circuit 21 is regarded as the temperature of the switch SWi, and the on-resistance value Ron is calculated using a map showing the correspondence between the temperature of the switch SWi and the on-resistance value Ron. In step S23, the discharge current Iout flowing from the battery cell Ci to the resistor Ri and the switch SWi of the discharge circuit 21 is calculated, and the process ends. Specifically, the discharge current Iout is calculated as a value obtained by dividing the detected value Vi of the inter-terminal voltage of the battery cell Ci by the sum of the resistance value R of the resistor Ri and the on-resistance value Ron of the switch SWi (Iout = Vi / (R + Ron)).

図6に更新周期設定処理を表すフローチャートを示す。本処理は、更新周期設定手段33によって所定周期ごとに実施される。   FIG. 6 is a flowchart showing the update cycle setting process. This process is performed at predetermined intervals by the update cycle setting means 33.

ステップS31において、放電対象の電池セルCiのSOCであるSOCiを取得する。SOCiは、電池セルCiの端子間電圧の検出値Vi及び電池セルCiから放電される放電電流Ioutに基づいて算出することができる。ステップS32において、電池セルCiのSOCiがプラトー領域であるA1〜A2に属するか否かを判定する。電池セルCiのSOCiがプラトー領域に属する場合(S32:YES)、ステップS33において、必要放電量DCiの更新周期λをλ1に設定し、処理を終了する。また、電池セルCiのSOCがプラトー領域に属しない、つまり、非プラトー領域に属する場合(S32:NO)、ステップS34において、必要放電量DCiの更新周期λをλ2(λ1>λ2)に設定し、処理を終了する。   In step S31, SOCi that is the SOC of the battery cell Ci to be discharged is acquired. The SOCi can be calculated based on the detected value Vi of the inter-terminal voltage of the battery cell Ci and the discharge current Iout discharged from the battery cell Ci. In step S32, it is determined whether or not the SOCi of the battery cell Ci belongs to A1 to A2 that are plateau regions. When the SOCi of the battery cell Ci belongs to the plateau region (S32: YES), in step S33, the update period λ of the required discharge amount DCi is set to λ1, and the process is terminated. If the SOC of the battery cell Ci does not belong to the plateau region, that is, belongs to the non-plateau region (S32: NO), the update period λ of the required discharge amount DCi is set to λ2 (λ1> λ2) in step S34. The process is terminated.

図7に残放電量更新処理を表すフローチャートを示す。本処理は、残放電量更新手段38によって、更新周期λごとに実施される。   FIG. 7 is a flowchart showing the remaining discharge amount update process. This process is performed by the remaining discharge amount update unit 38 for each update cycle λ.

ステップS41において、必要放電量DCiを取得する。必要放電量DCiの取得について、初回は必要放電量算出手段31から取得し、その後、残放電量記憶手段36から取得する。ステップS42において、前回の更新周期の経過中に電池セルCiから放電回路21に放電電流Ioutが流れることで生じた放電量Iout・λを乗算手段34から取得する。ステップS43において、必要放電量DCiを更新する。具体的には、必要放電量DCiから放電量Iout・λを減算した値を新たな必要放電量DCiとして残放電量記憶手段36に記憶する。   In step S41, the required discharge amount DCi is acquired. Regarding the acquisition of the required discharge amount DCi, the first time is acquired from the required discharge amount calculation means 31 and then from the remaining discharge amount storage means 36. In step S 42, the amount of discharge Iout · λ generated by the discharge current Iout flowing from the battery cell Ci to the discharge circuit 21 during the previous update cycle is acquired from the multiplying unit 34. In step S43, the required discharge amount DCi is updated. Specifically, a value obtained by subtracting the discharge amount Iout · λ from the required discharge amount DCi is stored in the remaining discharge amount storage means 36 as a new required discharge amount DCi.

ステップS44において、更新された必要放電量DCiと、0Ahとを比較する。更新された必要放電量DCiが0Ahより大きい場合(S44:YES)、ステップS45において、更新周期λが経過するまで待機し(S45:NO)、更新周期λが経過すると(S45:YES)、再びステップS41以降の処理を行う。更新された必要放電量DCiが0Ahに達した場合(S44:NO)、ステップS46において、放電を終了すべくスイッチSWiをオフ状態とし、処理を終了する。   In step S44, the updated required discharge amount DCi is compared with 0 Ah. If the updated necessary discharge amount DCi is greater than 0 Ah (S44: YES), the process waits until the update period λ elapses (S45: NO) in step S45, and when the update period λ elapses (S45: YES), again. The process after step S41 is performed. When the updated required discharge amount DCi has reached 0 Ah (S44: NO), in step S46, the switch SWi is turned off to end the discharge, and the process is ended.

以下、本実施形態の奏する効果を述べる。   Hereinafter, the effect which this embodiment show | plays is described.

均等化放電の実施中において、均等化放電に伴って電池セルCiの端子間電圧の検出値Viが変動した場合であっても、その変動分を考慮して放電電流Ioutが算出されるため、均等化のために必要な放電量(目標値)と実際に電池セルCiから放電される放電量(実際値)とを近づけることが可能になる。このような制御を行うことで、各電池セルC1〜Cnの残存容量を正確に均等化することが可能となる。   Even when the detected value Vi of the inter-terminal voltage of the battery cell Ci varies with the equalizing discharge during the equalizing discharge, the discharge current Iout is calculated in consideration of the variation. It becomes possible to make the discharge amount (target value) necessary for equalization close to the discharge amount (actual value) actually discharged from the battery cells Ci. By performing such control, it becomes possible to equalize the remaining capacities of the battery cells C1 to Cn accurately.

具体的には、必要放電量DCiから、前回の更新周期中に放電された放電量に相当する現在の放電電流Ioutと更新周期λとの乗算値を減算することで、残放電量としての必要放電量DCiの更新を行う。そして、残放電量としての必要放電量DCiが0Ahになるまで放電回路21に対する放電を実施する。   Specifically, the necessary amount of remaining discharge is obtained by subtracting the multiplication value of the current discharge current Iout and the update cycle λ corresponding to the discharge amount discharged during the previous update cycle from the required discharge amount DCi. The discharge amount DCi is updated. Then, the discharge circuit 21 is discharged until the required discharge amount DCi as the remaining discharge amount becomes 0 Ah.

プラトー領域において、放電に伴うOCVの変化は僅かであるため、放電に伴う電池セルCiの端子間電圧の検出値Viの変化は殆ど生じず、放電電流Ioutの時間変化も小さいと考えられる。一方、非プラトー領域において、放電に伴うOCVの変化は大きく、放電に伴う電池セルCiの端子間電圧の検出値Viの変化は大きく、放電電流Ioutの時間変化も大きいと考えられる。   In the plateau region, the change in OCV accompanying the discharge is slight, so that the change in the detected value Vi of the voltage between the terminals of the battery cell Ci caused by the discharge hardly occurs, and the change in the discharge current Iout over time is considered to be small. On the other hand, in the non-plateau region, the OCV change due to the discharge is large, the change in the detected value Vi of the inter-terminal voltage of the battery cell Ci due to the discharge is large, and the time change of the discharge current Iout is also large.

そこで、非プラトー領域における必要放電量DCiの更新周期λ2を、プラトー領域における必要放電量DCiの更新周期λ1に比べて短く設定し、非プラトー領域における必要放電量DCiの更新機会を多く設定する構成とした。このような構成にすることで、SOCが非プラトー領域に属する場合に均等化放電の精度を向上させつつ、SOCがプラトー領域に属する場合に処理の簡易化を図ることが可能になる。   Therefore, the update cycle λ2 of the required discharge amount DCi in the non-plateau region is set shorter than the update cycle λ1 of the required discharge amount DCi in the plateau region, and a large number of update opportunities of the required discharge amount DCi in the non-plateau region is set. It was. By adopting such a configuration, it is possible to improve the accuracy of the equalizing discharge when the SOC belongs to the non-plateau region and to simplify the process when the SOC belongs to the plateau region.

本実施形態では、電池セルC1〜Cnとしてオリビン系リチウムイオン二次電池を用いている。オリビン系リチウムイオン二次電池は、プラトー領域におけるOCVの変化が非プラトー領域におけるOCVの変化に比べて極めて小さく、また、プラトー領域が広い。このため、上記のプラトー領域と非プラトー領域とで更新周期λを変更することによる効果が顕著になる。   In the present embodiment, olivine-based lithium ion secondary batteries are used as the battery cells C1 to Cn. In the olivine-based lithium ion secondary battery, the change in OCV in the plateau region is extremely small compared to the change in OCV in the non-plateau region, and the plateau region is wide. For this reason, the effect by changing update period (lambda) by said plateau area | region and non-plateau area | region becomes remarkable.

放電回路21は、抵抗体R1〜Rnと半導体スイッチSW1〜SWnとから構成されている。半導体スイッチSW1〜SWnのオン抵抗値Ronは、均等化放電による半導体スイッチSW1〜SWnの発熱による温度上昇に伴って増加するため、均等化放電に与える影響が大きくなる。そこで、本実施形態では、放電回路21の抵抗値として、抵抗体R1〜Rnの抵抗値Rと半導体スイッチSW1〜SWnのオン抵抗値Ronとを加算した値を用いる構成にした。これにより、抵抗体R1〜Rnの抵抗値Rのみを放電回路21の抵抗値とみなす構成に比べて、より正確に放電電流Ioutの値を算出することが可能になる。   The discharge circuit 21 includes resistors R1 to Rn and semiconductor switches SW1 to SWn. Since the on-resistance value Ron of the semiconductor switches SW1 to SWn increases as the temperature rises due to heat generation of the semiconductor switches SW1 to SWn due to the equalizing discharge, the influence on the equalizing discharge is increased. Therefore, in the present embodiment, as the resistance value of the discharge circuit 21, a value obtained by adding the resistance value R of the resistors R1 to Rn and the on-resistance value Ron of the semiconductor switches SW1 to SWn is used. This makes it possible to calculate the value of the discharge current Iout more accurately than in a configuration in which only the resistance value R of the resistors R1 to Rn is regarded as the resistance value of the discharge circuit 21.

放電が実施されると、放電回路21の半導体スイッチSW1〜SWnに電流が流れるため、その電流によって半導体スイッチSW1〜SWnは発熱する。発熱により半導体スイッチSW1〜SWnの温度が高くなると、半導体スイッチSW1〜SWnのオン抵抗値Ronは大きくなる。そこで、温度センサ23によって放電回路21の基板温度を検出し、その基板温度の検出値Tを半導体スイッチSW1〜SWnの温度とみなして、その温度に基づいて半導体スイッチSW1〜SWnのオン抵抗値Ronを算出する構成とした。このような構成にすることで、より正確に放電電流Ioutの値を算出することが可能になる。   When discharging is performed, a current flows through the semiconductor switches SW1 to SWn of the discharge circuit 21, and the semiconductor switches SW1 to SWn generate heat due to the current. When the temperature of the semiconductor switches SW1 to SWn increases due to heat generation, the on-resistance value Ron of the semiconductor switches SW1 to SWn increases. Therefore, the substrate temperature of the discharge circuit 21 is detected by the temperature sensor 23, the detected value T of the substrate temperature is regarded as the temperature of the semiconductor switches SW1 to SWn, and the on-resistance value Ron of the semiconductor switches SW1 to SWn is based on the temperature. It was set as the structure which calculates. With such a configuration, the value of the discharge current Iout can be calculated more accurately.

(他の実施形態)
・上記構成では、SOCに関わらず、放電電流Ioutの算出値に基づく必要放電量DCiの更新を実施する構成とした。これを変更し、均等化放電の前におけるSOC及び放電前の残存容量から必要放電量を減じた値に相当する目標SOCの少なくとも一方が非プラトー領域に属する場合に、電池セルCiの端子間電圧の検出値Viに基づいて放電電流Ioutを算出する。そして、その放電電流Ioutに基づいて現在の必要放電量DCiを更新する構成とする。この構成により、各電池セルC1〜Cnの残存容量を好適に均等化しつつ、処理の簡易化を図ることが可能になる。
(Other embodiments)
In the above configuration, the required discharge amount DCi is updated based on the calculated value of the discharge current Iout regardless of the SOC. When this is changed, and at least one of the SOC before the equalization discharge and the target SOC corresponding to the value obtained by subtracting the required discharge amount from the remaining capacity before the discharge belongs to the non-plateau region, the voltage between the terminals of the battery cell Ci The discharge current Iout is calculated based on the detected value Vi. And it is set as the structure which updates the present required discharge amount DCi based on the discharge current Iout. With this configuration, it is possible to simplify the processing while suitably equalizing the remaining capacities of the battery cells C1 to Cn.

・必要放電量を総放電時間として設定し、更新周期λが経過するごとに、実放電量に相当する減算時間を算出する構成としてもよい。具体的には、放電電流Ioutが増加した場合は、減算時間が長くなるように算出し、放電電流Ioutが減少した場合は、減算時間が短くなるように算出するとよい。そして、総放電時間が0secになるまで、半導体スイッチSW1〜SWnをオン状態にする構成とする。   The required discharge amount may be set as the total discharge time, and the subtraction time corresponding to the actual discharge amount may be calculated every time the update period λ elapses. Specifically, when the discharge current Iout increases, the subtraction time is calculated to be longer, and when the discharge current Iout decreases, the subtraction time is calculated to be shorter. The semiconductor switches SW1 to SWn are turned on until the total discharge time becomes 0 sec.

・電池セルC1〜Cnとしてオリビン系リチウムイオン二次電池を用いたが、これを変更し、オリビン系以外のリチウムイオン二次電池を用いてもよい。オリビン系以外のリチウムイオン二次電池においても、プラトー領域と非プラトー領域が存在するため、プラトー領域と非プラトー領域で必要放電量DCiの更新周期λを変更すると、オリビン系リチウムイオン二次電池と同様の効果が得られる。また、電池セルC1〜Cnとして、ニッケル水素二次電池や鉛二次電池などを用いる構成としてもよい。   -Although the olivine type lithium ion secondary battery was used as battery cell C1-Cn, this may be changed and lithium ion secondary batteries other than an olivine type may be used. Even in a lithium ion secondary battery other than the olivine system, there are a plateau region and a non-plateau region. Therefore, if the update period λ of the required discharge amount DCi is changed in the plateau region and the non-plateau region, the olivine-based lithium ion secondary battery Similar effects can be obtained. Moreover, it is good also as a structure which uses a nickel-hydrogen secondary battery, a lead secondary battery, etc. as battery cell C1-Cn.

・半導体スイッチSW1〜SWnのオン抵抗値Ronを基板温度の検出値Tに基づいて算出する構成としたが、これを変更し、オン抵抗値Ronとして固定値を用いる構成としてもよい。また、基板温度の検出値Tに代えて、半導体スイッチSW1〜SWnの温度を直接検出し、その検出値を用いる構成としてもよい。また、放電回路21の抵抗値として、半導体スイッチSW1〜SWnのオン抵抗値Ronを無視し、抵抗体R1〜Rnの抵抗値Rを用いて、放電電流Ioutを算出する構成としてもよい。   The on-resistance value Ron of the semiconductor switches SW1 to SWn is calculated based on the detected value T of the substrate temperature, but this may be changed and a fixed value may be used as the on-resistance value Ron. Further, instead of the detected value T of the substrate temperature, the temperature of the semiconductor switches SW1 to SWn may be directly detected and the detected value may be used. Further, as the resistance value of the discharge circuit 21, the on-resistance value Ron of the semiconductor switches SW1 to SWn may be ignored, and the discharge current Iout may be calculated using the resistance value R of the resistors R1 to Rn.

・更新周期設定手段は、均等化放電の開始時における電池セルのSOC及び均等化放電の目標値である目標SOCのいずれか一方が非プラトー領域に属する場合に、放電開始時における電池セルのSOC及び目標SOCが共にプラトー領域に属する場合に比べて、更新周期を短く設定してもよい。   The update cycle setting means determines the SOC of the battery cell at the start of discharge when one of the SOC of the battery cell at the start of the equalization discharge and the target SOC that is the target value of the equalization discharge belongs to the non-plateau region. In addition, the update cycle may be set shorter than when both the target SOCs belong to the plateau region.

・非プラトー領域とプラトー領域とで更新周期λを変更する構成としたが、これを変更し、同一の更新周期λで必要放電量DCiを更新する構成としてもよい。   Although the update cycle λ is changed between the non-plateau region and the plateau region, this may be changed and the required discharge amount DCi may be updated at the same update cycle λ.

10…組電池、20…均等化放電装置、21…放電回路、22…セル電圧検出回路、31…必要放電量算出手段、32…放電電流算出手段、34…乗算手段、37…スイッチ制御手段、38…残放電量更新手段、C1〜Cn…電池セル。   DESCRIPTION OF SYMBOLS 10 ... Assembly battery, 20 ... Equalization discharge apparatus, 21 ... Discharge circuit, 22 ... Cell voltage detection circuit, 31 ... Necessary discharge amount calculation means, 32 ... Discharge current calculation means, 34 ... Multiplication means, 37 ... Switch control means, 38: Remaining discharge amount update means, C1-Cn: Battery cells.

Claims (6)

複数の二次電池(C1〜Cn)が直列接続されて構成される組電池(10)において、前記複数の二次電池の残存容量を均等化させるために、前記複数の二次電池から放電回路(21)に対してそれぞれ放電を行う均等化放電装置(20)であって、
前記二次電池は、残存容量−開放電圧特性として、残存容量の変化に伴う開放電圧の変化が小さいプラトー領域と、残存容量の変化に伴う開放電圧の変化が大きい非プラトー領域と、を有し、
前記二次電池の端子間電圧を検出する電圧検出手段(22)と、
前記放電を開始する場合に、前記端子間電圧の検出値に基づいて、前記二次電池において前記残存容量の均等化のために必要な必要放電量を算出する必要放電量算出手段(31)と、
前記放電の実施中において、所定周期ごとに前記二次電池の端子間電圧の検出値を取得して、取得した前記二次電池の端子間電圧の検出値に基づいて前記放電回路における前記二次電池の実放電量を算出する実放電量算出手段(32,34)と、
前記実放電量の積算値が前記必要放電量に達するまで前記二次電池から前記放電回路に対する放電を実施する放電実施手段(37)と、
前記二次電池の残存容量が前記非プラトー領域に属する場合に、前記二次電池の残存容量が前記プラトー領域に属する場合に比べて、前記所定周期を短く設定する周期設定手段(33)と、
を備えることを特徴とする均等化放電装置。
In the assembled battery (10) configured by connecting a plurality of secondary batteries (C1 to Cn) in series, in order to equalize the remaining capacity of the plurality of secondary batteries, a discharge circuit is formed from the plurality of secondary batteries. (21) An equalizing discharge device (20) for performing discharge with respect to each,
The secondary battery has, as remaining capacity-open voltage characteristics, a plateau region in which a change in open voltage due to a change in remaining capacity is small, and a non-plateau region in which a change in open voltage due to a change in remaining capacity is large. ,
Voltage detection means (22) for detecting a voltage between terminals of the secondary battery;
Required discharge amount calculating means (31) for calculating a necessary discharge amount for equalizing the remaining capacity in the secondary battery based on the detected value of the voltage between the terminals when starting the discharge; ,
During the implementation of the discharge, to obtain the detected value of the inter-terminal voltage before Symbol secondary battery for each predetermined period, it said in the discharge circuit based on the detected value of the terminal voltage of the acquired battery two Actual discharge amount calculating means (32, 34) for calculating the actual discharge amount of the secondary battery;
Discharge execution means (37) for performing discharge from the secondary battery to the discharge circuit until the integrated value of the actual discharge amount reaches the required discharge amount;
Period setting means (33) for setting the predetermined period to be shorter when the remaining capacity of the secondary battery belongs to the non-plateau region than when the remaining capacity of the secondary battery belongs to the plateau region;
An equalizing discharge device comprising:
前記所定周期ごとに、前記必要放電量から前記実放電量を減算することで、均等化のために必要な残りの放電量である残放電量を更新する残放電量更新手段(38)を備え、
前記放電実施手段は、前記残放電量がゼロになるまで前記二次電池から前記放電回路に対する放電を実施することを特徴とする請求項1に記載の均等化放電装置。
There is provided a remaining discharge amount update means (38) for updating a remaining discharge amount which is a remaining discharge amount necessary for equalization by subtracting the actual discharge amount from the required discharge amount at each predetermined period. ,
2. The equalizing discharge apparatus according to claim 1, wherein the discharge execution unit performs discharge from the secondary battery to the discharge circuit until the remaining discharge amount becomes zero.
前記放電実施手段は、前記均等化放電の開始時における前記二次電池の残存容量及びその残存容量から前記必要放電量を減じた値の少なくとも一方が前記非プラトー領域に属する場合に、前記実放電量算出手段により算出した前記実放電量に基づく前記放電回路に対する放電を実施することを特徴とする請求項1又は2に記載の均等化放電装置。 The discharge executing means is configured to provide the actual discharge when at least one of a remaining capacity of the secondary battery at the start of the equalizing discharge and a value obtained by subtracting the required discharge amount from the remaining capacity belongs to the non-plateau region. equalization discharge device according to claim 1 or 2 which comprises carrying out the discharging of the discharge circuit based on the actual discharge amount calculated by the amount-calculating means. 前記二次電池は、その正極材としてオリビン構造のリチウム金属リン酸塩が用いられているオリビン系リチウムイオン二次電池であることを特徴とする請求項1乃至3のいずれか1項に記載の均等化放電装置。 The said secondary battery is an olivine type | system | group lithium ion secondary battery in which the lithium metal phosphate of the olivine structure is used as the positive electrode material , The any one of Claim 1 thru | or 3 characterized by the above-mentioned. Equalizing discharge device. 前記放電回路は、抵抗体(R1〜Rn)と開閉手段(SW1〜SWn)とから構成され、前記開閉手段がオン状態にされることで、前記二次電池から前記抵抗体に対する放電を行うものであって、
前記実放電量算出手段は、前記端子間電圧の検出値を前記抵抗体の抵抗値及び前記開閉手段のオン抵抗値の合成値で除算することで放電電流を算出し、その放電電流に基づいて前記実放電量を算出することを特徴とする請求項1乃至のいずれか1項に記載の均等化放電装置。
The discharge circuit includes resistors (R1 to Rn) and open / close means (SW1 to SWn), and discharges the resistor from the secondary battery when the open / close means is turned on. Because
The actual discharge amount calculating means calculates a discharge current by dividing the detected value of the voltage between the terminals by a combined value of the resistance value of the resistor and the on-resistance value of the switching means, and based on the discharge current equalization discharge device according to any one of claims 1 to 4, characterized in that to calculate the actual discharge amount.
前記放電回路の基板温度を検出する温度検出手段(23)と、
前記開閉手段のオン抵抗値を前記放電回路の基板温度の検出値に基づいて算出する抵抗値算出手段(32)と、
を備えることを特徴とする請求項に記載の均等化放電装置。
Temperature detection means (23) for detecting the substrate temperature of the discharge circuit;
A resistance value calculating means (32) for calculating an on-resistance value of the opening / closing means based on a detected value of a substrate temperature of the discharge circuit;
The equalizing discharge apparatus according to claim 5 , comprising:
JP2014078503A 2014-04-07 2014-04-07 Equalizing discharge device Active JP6194841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078503A JP6194841B2 (en) 2014-04-07 2014-04-07 Equalizing discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078503A JP6194841B2 (en) 2014-04-07 2014-04-07 Equalizing discharge device

Publications (2)

Publication Number Publication Date
JP2015201939A JP2015201939A (en) 2015-11-12
JP6194841B2 true JP6194841B2 (en) 2017-09-13

Family

ID=54552773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078503A Active JP6194841B2 (en) 2014-04-07 2014-04-07 Equalizing discharge device

Country Status (1)

Country Link
JP (1) JP6194841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616257B2 (en) 2018-10-19 2023-03-28 Lg Energy Solution, Ltd. Battery management device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891745B (en) * 2015-12-18 2019-11-05 比亚迪股份有限公司 The control method of electric car and its onboard charger and onboard charger
JP2019121491A (en) * 2017-12-28 2019-07-22 京セラ株式会社 Flow battery system and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569460B2 (en) * 2005-12-16 2010-10-27 日産自動車株式会社 Battery pack capacity adjustment device
JP4772137B2 (en) * 2009-06-02 2011-09-14 トヨタ自動車株式会社 Control device for battery-powered equipment
WO2013024541A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cell monitoring device and cell control device provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616257B2 (en) 2018-10-19 2023-03-28 Lg Energy Solution, Ltd. Battery management device

Also Published As

Publication number Publication date
JP2015201939A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
Barai et al. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells
JP5261828B2 (en) Battery state estimation device
JP6300567B2 (en) Secondary battery system
JP5439126B2 (en) Status detector for power supply
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
Zheng et al. Study on the correlation between state of charge and coulombic efficiency for commercial lithium ion batteries
JP6672112B2 (en) Battery capacity measuring device and battery capacity measuring method
JP2013190274A (en) Device and method for estimating secondary battery status
CN108780931B (en) Lithium ion secondary battery life estimating device
JP7292404B2 (en) Method of estimating battery health
JP2015136268A (en) Battery pack equalization device and method
JP6867478B2 (en) Battery control and vehicle system
KR20160030264A (en) Method and system for managing the charging of a rechargeable battery comprising several branches of electrochemical elements connected in parallel
JP2012225713A (en) Charge rate estimation device
JP2018125977A (en) Control apparatus of battery module
Lv et al. Performance of LiFePO4 batteries in parallel based on connection topology
JP2019187027A (en) Power storage device
JP5482809B2 (en) Equalization equipment
JP6194841B2 (en) Equalizing discharge device
JP2013250078A (en) Abnormality determination device
JP2013208034A (en) Open-circuit voltage estimation device
KR101967863B1 (en) Device and method of balancing requirement time estimation in high voltage cell balancing
JP2021077516A (en) Battery system and battery status estimating method
JP2016220504A (en) Monitoring device for battery pack and capacity equalization method for battery pack
JP7174327B2 (en) Method for determining state of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R151 Written notification of patent or utility model registration

Ref document number: 6194841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250