JP6153368B2 - Colored anti-fog mirror for vehicle outer mirror - Google Patents

Colored anti-fog mirror for vehicle outer mirror Download PDF

Info

Publication number
JP6153368B2
JP6153368B2 JP2013075533A JP2013075533A JP6153368B2 JP 6153368 B2 JP6153368 B2 JP 6153368B2 JP 2013075533 A JP2013075533 A JP 2013075533A JP 2013075533 A JP2013075533 A JP 2013075533A JP 6153368 B2 JP6153368 B2 JP 6153368B2
Authority
JP
Japan
Prior art keywords
reflectance
layer
mirror
film thickness
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075533A
Other languages
Japanese (ja)
Other versions
JP2014202759A (en
Inventor
正俊 中村
正俊 中村
俊吾 池野
俊吾 池野
伸也 ▲高柳▼
伸也 ▲高柳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2013075533A priority Critical patent/JP6153368B2/en
Priority to CN201480019430.6A priority patent/CN105074510B/en
Priority to DE112014001779.5T priority patent/DE112014001779T5/en
Priority to PCT/JP2014/058031 priority patent/WO2014162909A1/en
Publication of JP2014202759A publication Critical patent/JP2014202759A/en
Application granted granted Critical
Publication of JP6153368B2 publication Critical patent/JP6153368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/0602Rear-view mirror arrangements mounted on vehicle exterior comprising means for cleaning or deicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Description

この発明は、反射色が青色系または緑色系を呈しかつ防曇性を有する、表面鏡による車両アウターミラー用有色防曇鏡に関し、従来品に比べて光触媒性能を向上させつつ、視認者の視線が鏡面に対面する角度の変化による色調ズレを軽減したものである。 The present invention relates to a colored antifogging mirror for a vehicle outer mirror using a surface mirror, which has a blue or green reflection color and has antifogging properties, and improves the photocatalytic performance as compared with conventional products, and the line of sight of the viewer This reduces the color shift caused by the change in the angle facing the mirror surface.

車両用アウターミラーとして、反射色が青色系を呈しかつ防曇性を有する表面鏡による有色防曇鏡が実用化されている。図2は従来実用化されていた有色防曇鏡10の積層構造を模式的に示す。有色防曇鏡10は基材12の表面に、反射層14、光触媒層16、親水層18を順次積層して構成される。基材12はソーダガラス等のガラス基板で構成される。反射層14はCr等の金属で構成される。光触媒層16はTiO2で構成される。親水層18は多孔質SiO2で構成される。光触媒層16の膜厚は反射色を青色系にするために75nm程度に設定される。有色防曇鏡10は各層での反射光の干渉により、青色系または緑色系の反射色を生じさせる。また親水層18により防曇性が得られる。また親水層18の表面に付着した有機物汚れを光触媒層16による光触媒作用で分解して除去することにより、親水層18の防曇性が維持される。このような構造を有する有色防曇鏡は下記特許文献1,2に記載されている。 As a vehicle outer mirror, a colored antifogging mirror using a surface mirror having a blue reflection color and having antifogging properties has been put into practical use. FIG. 2 schematically shows a laminated structure of the colored anti-fog mirror 10 that has been put to practical use. The colored anti-fog mirror 10 is configured by sequentially laminating a reflective layer 14, a photocatalyst layer 16, and a hydrophilic layer 18 on the surface of a substrate 12. The base 12 is made of a glass substrate such as soda glass. The reflective layer 14 is made of a metal such as Cr. Photocatalytic layer 16 is composed of TiO 2. The hydrophilic layer 18 is made of porous SiO 2 . The film thickness of the photocatalyst layer 16 is set to about 75 nm in order to make the reflected color blue. The colored antifogging mirror 10 generates a blue or green reflection color by interference of reflected light in each layer. Further, the hydrophilic layer 18 provides antifogging properties. Moreover, the anti-fogging property of the hydrophilic layer 18 is maintained by decomposing and removing the organic matter adhering to the surface of the hydrophilic layer 18 by the photocatalytic action of the photocatalytic layer 16. The colored anti-fog mirror having such a structure is described in Patent Documents 1 and 2 below.

特開2001−141916号公報JP 2001-141916 A 特開2007−286491号公報JP 2007-286491 A

特許文献1によれば、光触媒TiO2層の膜厚について「TiO2膜10の膜厚が厚くなるに伴い、可視光域内での反射率のピークの数が増加する。このため鏡表面14の反射光は、波長が400〜510nmの範囲に1つのピークを有し青色系を保持しているものの、他の色が重なり合った色調を呈し、視線の角度によって色調が変化する。特に複合曲面ミラーのような小さな曲率半径を有するミラーにおいては、色調ズレの原因となる。したがって、色調ズレを防止するためには、TiO2膜10の膜厚を150nm以下に設定し、もって可視光域で単一のピークを有するように設定するのが好適である。」(明細書0023段)との知見が記載されている。 According to Patent Document 1, regarding the film thickness of the photocatalytic TiO 2 layer, “as the film thickness of the TiO 2 film 10 increases, the number of reflectance peaks in the visible light region increases. Although the reflected light has one peak in the wavelength range of 400 to 510 nm and has a blue color, it exhibits a color tone in which other colors overlap, and the color tone changes depending on the angle of line of sight. Therefore, in order to prevent color misregistration, the thickness of the TiO 2 film 10 is set to 150 nm or less so that it can be easily observed in the visible light range. It is preferable to set so as to have one peak ”(the description, 0023).

特許文献2によれば、光触媒TiO2層の膜厚について「光触媒性膜16の膜厚は、有色防曇鏡10の反射光が上述の条件を満足するような分光反射スペクトルを有するように、設定されたものであれば、特に限定されない。ただし、その膜厚は、50〜130nmであると好ましい。光触媒性膜16の膜厚が上記下限値未満であると、可視光反射域内に分光反射ピークが発生しなくなる傾向にあり、上記上限値を超えると、可視光反射域内での分光反射ピークが複数出現し、他の色が重なり合った色調を呈し、視線の角度によって色調が変化する傾向にある。」(明細書0038段)との知見が記載されている。 According to Patent Document 2, regarding the film thickness of the photocatalytic TiO 2 layer, “the film thickness of the photocatalytic film 16 has a spectral reflection spectrum such that the reflected light of the colored antifogging mirror 10 satisfies the above-described conditions. However, the film thickness is preferably 50 to 130 nm, and if the film thickness of the photocatalytic film 16 is less than the lower limit, the spectral reflection is within the visible light reflection region. When the above upper limit is exceeded, multiple spectral reflection peaks appear in the visible light reflection region, and other colors overlap with each other, and the color tone tends to change depending on the angle of the line of sight. There is a description of "Yes" (specification 0038).

このように、従来は、反射色が青色系を呈しかつ防曇性を有する表面鏡による有色防曇鏡について、視認者の視線が鏡面に対面する角度(以下「視線角度」という。視線角度は鏡面に真正面から対面する角度を0度とする)の変化による色調ズレ(視線角度が0度のときの色調に対する色調の変化)を防止するために、光触媒TiO2層の膜厚を薄く形成することが推奨されていた。ところが、光触媒TiO2層の膜厚が140nmよりも薄くなると、近年急速に普及してきた撥水洗車に対する耐久性に問題があることがわかった。すなわち撥水洗車で使用する撥水洗車剤に含まれる撥水剤はシリコーン樹脂を主成分とするため、鏡の表面に付着すると光触媒作用では除去できない。このため、撥水洗車を繰り返すうちに撥水剤が鏡の表面に蓄積され、光触媒性能を低下させる。この場合、光触媒TiO2層の膜厚が厚ければ光触媒性能に余裕があるので、鏡の表面に撥水剤が多少蓄積されても、その上に付着した汚れを分解して親水性を回復させることができる。これに対しTiO2層の膜厚が薄いと、光触媒性能に余裕がないので、鏡の表面に撥水剤が少し蓄積されただけでも、その上に付着した汚れを分解することができなくなり、親水性を回復させることができなくなる。 Thus, conventionally, with respect to a colored antifogging mirror using a surface mirror having a blue reflection color and having antifogging properties, the angle at which the viewer's line of sight faces the mirror surface (hereinafter referred to as “line of sight angle”). The thickness of the photocatalyst TiO 2 layer is made thin in order to prevent color shift (change in color tone with respect to the color tone when the line-of-sight angle is 0 degree) due to a change in the angle facing the mirror surface from the front. It was recommended. However, it has been found that when the film thickness of the photocatalytic TiO 2 layer becomes thinner than 140 nm, there is a problem in durability against a water-repellent washing car that has been rapidly spread in recent years. That is, since the water repellent contained in the water repellent car wash used in the water repellent car is mainly composed of a silicone resin, it cannot be removed by photocatalysis when it adheres to the mirror surface. For this reason, the water repellent is accumulated on the surface of the mirror while the water-repellent car wash is repeated, thereby reducing the photocatalytic performance. In this case, if the film thickness of the photocatalytic TiO 2 layer is large, the photocatalytic performance is sufficient, so even if some water repellent is accumulated on the surface of the mirror, the dirt adhering to it is decomposed to restore hydrophilicity. Can be made. On the other hand, if the thickness of the TiO 2 layer is thin, there is no room for photocatalytic performance, so even if a little water repellent is accumulated on the surface of the mirror, it becomes impossible to decompose the dirt attached on it. The hydrophilicity cannot be recovered.

この発明は上述の点に鑑みてなされたもので、反射色が青色系または緑色系を呈しかつ防曇性を有する表面鏡による車両アウターミラー用有色防曇鏡について、撥水洗車剤に対する耐久性を高めつつ視線角度の変化による色調ズレを軽減した車両アウターミラー用有色防曇鏡を提供しようとするものである。 The present invention has been made in view of the above-mentioned points . The colored anti-fog mirror for a vehicle outer mirror using a surface mirror having a blue or green reflection color and having anti-fogging properties is durable against water-repellent car wash agents. An object of the present invention is to provide a colored anti-fog mirror for a vehicle outer mirror that reduces color tone shift due to a change in line-of-sight angle while increasing the angle of view.

この発明は、基材の表面に反射層、反射率調整層、光触媒層、親水層を順次積層した構造を有し、前記光触媒層が実質的にTiO2で構成され、該光触媒層の膜厚が140〜200nmであり、前記親水層が実質的に多孔質SiO2で構成され、もって、可視光域での反射率の極大値が波長430〜560nmに存在し、反射色が青色系または緑色系を呈し、可視光域の反射率の極大値と極小値の比が2以上、4以下である有色防曇鏡である。この発明によれば、TiO2光触媒層の膜厚を厚くしたので光触媒性能が向上し、撥水洗車剤に対する耐久性が向上する。また、TiO2光触媒層の膜厚を厚くすると、可視光域の反射率が低下し、しかも可視光域に反射率の極大値と極小値が生じて視線角度の変化による色調ズレが目立つようになるが、この発明では反射層と光触媒層の間に反射率調整層を配置したので、可視光域の反射率の低下が抑制され、しかも可視光域の反射率の極大値と極小値の比の増大が抑制され、視線角度の変化による色調ズレを軽減することができる。また可視光域の反射率の極大値と極小値の比が2以上であることにより反射色を有色(青色系または緑色系)とすることができ、同比が4以下であることにより色調ズレを軽減することができる。なおこの発明は光触媒層の膜厚が140〜200nm程度のときに所期の効果を奏するが、光触媒効果は光触媒層の膜厚がある厚さ以上ではあまり増加しないので、光触媒層の膜厚は165±20nm程度が実用的である。また光触媒層の膜厚は150nmより大とすることもできる。 This invention has a structure in which a reflective layer, a reflectance adjustment layer, a photocatalyst layer, and a hydrophilic layer are sequentially laminated on the surface of a substrate, and the photocatalyst layer is substantially composed of TiO 2 , and the film thickness of the photocatalyst layer 140 to 200 nm, the hydrophilic layer is substantially composed of porous SiO 2 , the maximum value of the reflectance in the visible light region exists at a wavelength of 430 to 560 nm, and the reflection color is blue or green. This is a colored anti-fog mirror that exhibits a system and has a ratio between the maximum value and the minimum value of the reflectance in the visible light region of 2 or more and 4 or less. According to this invention, since the film thickness of the TiO 2 photocatalyst layer is increased, the photocatalytic performance is improved and the durability against the water-repellent car wash is improved. Further, when the thickness of the TiO 2 photocatalyst layer is increased, the reflectance in the visible light region is lowered, and the maximum value and the minimum value of the reflectance are generated in the visible light region so that the color shift due to the change in the viewing angle is noticeable. However, in this invention, since the reflectance adjustment layer is disposed between the reflective layer and the photocatalyst layer, a decrease in the reflectance in the visible light region is suppressed, and the ratio between the maximum value and the minimum value of the reflectance in the visible light region is suppressed. Is suppressed, and a color shift due to a change in the viewing angle can be reduced. In addition, when the ratio between the maximum value and the minimum value of the reflectance in the visible light region is 2 or more, the reflected color can be colored (blue or green), and when the ratio is 4 or less, the color deviation is reduced. Can be reduced. In addition, although this invention has an expected effect when the film thickness of a photocatalyst layer is about 140-200 nm, since the photocatalyst effect does not increase so much when the film thickness of the photocatalyst layer exceeds a certain thickness, the film thickness of the photocatalyst layer is About 165 ± 20 nm is practical. Moreover, the film thickness of a photocatalyst layer can also be made larger than 150 nm.

この発明は、前記反射率調整層が実質的にAl23と、Ta25、SnO2、ZrO2のうちのいずれか1つまたは複数との混合物で構成されるものとすることができる。この場合、該反射率調整層に含まれるAl23の体積百分率(以下、含有率の%は体積百分率を意味する)は、該反射率調整層が実質的にAl23とTa25の混合物で構成される場合は50%以上、95%以下、該反射率調整層が実質的にAl23とSnO2の混合物で構成される場合は30%以上、90%以下、該反射率調整層が実質的にAl23とZrO2の混合物で構成される場合は40%以上、90%以下であるものとすることができる。これによれば、反射率調整層はTa25、SnO2、ZrO2のいずれかを含むので、Al23による耐水性の低下を抑制することができる。より詳しく言えば、反射率調整層が実質的にAl23とTa25の混合物で構成される場合は、反射率調整層に含まれるAl23が50%以上(またはTa25が50%以下)であることにより実用上十分な反射率と色調ズレを軽減する効果が得られる。また反射率調整層に含まれるAl23が95%以下(またはTa25が5%以上)であることにより、実用上十分な耐水性が得られる。反射率調整層が実質的にAl23とTa25の混合物で構成される場合はさらに、前記反射率調整層に含まれるAl23が70%以上(またはTa25が30%以下)、95%以下(またはTa25が5%以上)であるものとすることができる。これによれば反射率調整層に含まれるAl23が70%以上であることによりさらに十分な反射率が得られ、かつ色調ズレをさらに軽減する効果が得られる。また反射率調整層が実質的にAl23とSnO2の混合物で構成される場合は、反射率調整層に含まれるAl23が30%以上(またはSnO2が70%以下)であることにより実用上十分な反射率と色調ズレを軽減する効果が得られる。また反射率調整層に含まれるAl23が90%以下(またはSnO2が10%以上)であることにより、実用上十分な耐水性が得られる。また反射率調整層が実質的にAl23とZrO2の混合物で構成される場合は、反射率調整層に含まれるAl23が40%以上(またはZrO2が60%以下)であることにより実用上十分な反射率と色調ズレを軽減する効果が得られる。また反射率調整層に含まれるAl23が90%以下(またはZrO2が10%以上)であることにより、実用上十分な耐水性が得られる。反射率調整層の膜厚は例えば35〜85nmに設定することができる。 According to the present invention, the reflectance adjusting layer is substantially composed of a mixture of Al 2 O 3 and any one or more of Ta 2 O 5 , SnO 2 , and ZrO 2. it can. In this case, the volume percentage of Al 2 O 3 contained in the reflectance adjustment layer (hereinafter,% of content means volume percentage) is such that the reflectance adjustment layer is substantially composed of Al 2 O 3 and Ta 2. 50% or more and 95% or less when composed of a mixture of O 5 , and 30% or more and 90% or less when the reflectance adjustment layer is substantially composed of a mixture of Al 2 O 3 and SnO 2 , When the reflectance adjusting layer is substantially composed of a mixture of Al 2 O 3 and ZrO 2 , it can be 40% or more and 90% or less. According to this, since the reflectance adjustment layer contains any of Ta 2 O 5 , SnO 2 , and ZrO 2 , it is possible to suppress a decrease in water resistance due to Al 2 O 3 . More specifically, when the reflectance adjustment layer is substantially composed of a mixture of Al 2 O 3 and Ta 2 O 5 , Al 2 O 3 contained in the reflectance adjustment layer is 50% or more (or Ta 2 When O 5 is 50% or less, a practically sufficient reflectance and color tone deviation can be reduced. Further, when Al 2 O 3 contained in the reflectance adjustment layer is 95% or less (or Ta 2 O 5 is 5% or more), practically sufficient water resistance can be obtained. When the reflectance adjusting layer is substantially composed of a mixture of Al 2 O 3 and Ta 2 O 5 , the Al 2 O 3 contained in the reflectance adjusting layer is 70% or more (or Ta 2 O 5 30% or less) or 95% or less (or Ta 2 O 5 is 5% or more). According to this, when Al 2 O 3 contained in the reflectance adjustment layer is 70% or more, a further sufficient reflectance can be obtained, and an effect of further reducing color shift can be obtained. When the reflectance adjustment layer is substantially composed of a mixture of Al 2 O 3 and SnO 2 , Al 2 O 3 contained in the reflectance adjustment layer is 30% or more (or SnO 2 is 70% or less). As a result, a practically sufficient reflectance and color tone shift can be reduced. Further, when Al 2 O 3 contained in the reflectance adjusting layer is 90% or less (or SnO 2 is 10% or more), practically sufficient water resistance can be obtained. When the reflectance adjustment layer is substantially composed of a mixture of Al 2 O 3 and ZrO 2 , Al 2 O 3 contained in the reflectance adjustment layer is 40% or more (or ZrO 2 is 60% or less). As a result, a practically sufficient reflectance and color tone shift can be reduced. Further, when Al 2 O 3 contained in the reflectance adjusting layer is 90% or less (or ZrO 2 is 10% or more), practically sufficient water resistance can be obtained. The film thickness of the reflectance adjustment layer can be set to 35 to 85 nm, for example.

この発明による有色防曇鏡の実施の形態を示す模式断面図である。It is a schematic cross section which shows embodiment of the colored anti-fog mirror by this invention. 従来実用化されていた有色防曇鏡の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the colored anti-fog mirror utilized conventionally. TiO2光触媒層の膜厚と光触媒性能の関係を示す線図である。Is a diagram showing the relationship between the film thickness and the photocatalytic performance of TiO 2 photocatalyst layer. 図1の有色防曇鏡の反射率調整層20、光触媒層16、親水層18を蒸着法で成膜する場合の成膜条件の一例を示す図表である。3 is a chart showing an example of film forming conditions when the reflectance adjusting layer 20, the photocatalyst layer 16, and the hydrophilic layer 18 of the colored antifogging mirror of FIG. 1 are formed by vapor deposition. 実施例1〜8および比較例1〜4の主な仕様を示す図表である。It is a graph which shows the main specifications of Examples 1-8 and Comparative Examples 1-4. 実施例1の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 1. 実施例2の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 2. 実施例3の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 3. 実施例4の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 4. 比較例1の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light range of the comparative example 1. 比較例2の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of the comparative example 2. 比較例3の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of the comparative example 3. 比較例4の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of the comparative example 4. 実施例1〜4および比較例1〜4の主な特性を示す図表である。It is a graph which shows the main characteristics of Examples 1-4 and Comparative Examples 1-4. (a)は実施例2について視線角度を変化させたときの可視光域での分光反射スペクトルを示す線図であり、(b)は(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比(反射率極大値/反射率極小値をいう)を示す図表である。(A) is a diagram which shows the spectral reflection spectrum in a visible light region when changing a gaze angle about Example 2, (b) is the reflectance maximum value in the visible light region by the characteristic of (a). FIG. 11 is a chart showing a minimum reflectance value and a maximum / minimum reflectance ratio (referring to a maximum reflectance value / a minimum reflectance value). (a)は実施例3について視線角度を変化させたときの可視光域での分光反射スペクトルを示す線図であり、(b)は(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す図表である。(A) is a diagram which shows the spectral reflection spectrum in a visible light region when changing a visual line angle about Example 3, (b) is the reflectance maximum value in the visible light region by the characteristic of (a). It is a graph which shows a reflectance minimum value and a maximum / minimum reflectance ratio. (a)は実施例4について視線角度を変化させたときの可視光域での分光反射スペクトルを示す線図であり、(b)は(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す図表である。(A) is a diagram which shows the spectral reflection spectrum in a visible light region when changing a gaze angle about Example 4, (b) is the reflectance maximum value in the visible light region by the characteristic of (a). It is a graph which shows a reflectance minimum value and a maximum / minimum reflectance ratio. (a)は比較例4について視線角度を変化させたときの可視光域での分光反射スペクトルを示す線図であり、(b)は(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す図表である。(A) is a diagram which shows the spectral reflection spectrum in a visible light region when changing a visual line angle about the comparative example 4, (b) is the reflectance maximum value in the visible light region by the characteristic of (a). It is a graph which shows a reflectance minimum value and a maximum / minimum reflectance ratio. 図2に示す従来の有色防曇鏡10の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light range of the conventional colored anti-fog mirror 10 shown in FIG. 実施例1〜4の有色防曇鏡11と図2の従来の有色防曇鏡10について、撥水洗車剤に対する光触媒性能の耐久性を比較テストした結果を示す線図である。It is a diagram which shows the result of having compared the durability of the photocatalytic performance with respect to a water-repellent car wash about the colored anti-fog mirror 11 of Examples 1-4 and the conventional colored anti-fog mirror 10 of FIG. 実施例5の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 5. 実施例6の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 6. 実施例7の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 7. 実施例8の可視光域での分光反射スペクトルを示す線図である。It is a diagram which shows the spectral reflection spectrum in the visible light region of Example 8.

この発明の実施の形態を以下説明する。図1はこの発明による有色防曇鏡11の積層構造を模式的に示す。有色防曇鏡11は車両用アウターミラーの鏡本体部分を構成するものである。有色防曇鏡11は、基材12の表面に、反射層14、反射率調整層20、光触媒層16、親水層18を順次積層して構成される。有色防曇鏡11は各層での反射光の干渉により、青色系または緑色系の反射色を生じさせる。各層について説明する。
《基材12》
基材12はソーダガラス等のガラス基板等で構成される。
《反射層14》
反射層14はCr等の金属で構成される。
《光触媒層16》
光触媒層16はTiO2で構成される。従来実用化されていた図2の有色防曇鏡10は反射色を青色系にするためにTiO2光触媒層16の膜厚を75nm程度に設定していたのに対し、図1の有色防曇鏡11は反射色を青色系(または緑色系)にするために、光触媒層16の膜厚を140〜200nmの厚い膜厚に設定する。光触媒層16は親水層18の表面に付着した有機物汚れを光触媒作用で分解して除去することにより、親水層18の防曇性を維持する。
《親水層18》
親水層18は多孔質SiO2で構成される。膜厚は例えば15nmに設定される。親水層18により防曇性が得られる。
《反射率調整層20》
反射率調整層20は光触媒層16よりも屈折率が低い材料で構成されるもので、例えばAl23とTa25の混合物、Al23とSnO2の混合物、Al23とZrO2の混合物等で構成される。反射率調整層20は光触媒層16の膜厚を厚く(140〜200nm)設定したことに伴う反射率の低下を抑制するとともに、視線角度の変化による色調ズレを軽減する。反射率の低下および色調ズレを軽減する機能は主にAl23で得られる。但し反射率調整層20をAl23のみで構成すると、耐水性が不十分であるので、Ta25、SnO2、ZrO2等を混合することにより、耐水性を向上させる。反射率調整層20に含まれるAl23は、反射率調整層20がAl23とTa25の混合物の場合は、50%以上、95%以下(好ましくは70%以上、95%以下)に設定する。このとき反射率調整層20に含まれるTa25は50%以下、5%以上(好ましくは30%以下、5%以上)に設定する。また反射率調整層20に含まれるAl23は、反射率調整層20がAl23とSnO2の混合物の場合は、30%以上、90%以下に設定する。このとき反射率調整層20に含まれるSnO2は70%以下、10%以上に設定する。また反射率調整層20に含まれるAl23は、反射率調整層20がAl23とZrO2の混合物の場合は、40%以上、90%以下に設定する。このとき反射率調整層20に含まれるZrO2は60%以下、10%以上に設定する。有色防曇鏡11は反射率調整層20の膜厚が厚くなるほど極大/極小反射率比が小さくなるが、反射率調整層20の膜厚を厚くした場合に薄い場合と同様の反射色を得るためには、該薄い場合に比べて光触媒層16を薄くしなければならず、光触媒性能が低下する。ここで、光触媒層16の膜厚と光触媒性能の関係は図3のようになる。すなわち、膜厚が薄いときは膜厚の増加に従い光触媒性能も増加するが、膜厚が所定以上になると光触媒性能は飽和する。そこで、先に光触媒層16の膜厚を、飽和値付近の光触媒性能が得られる最低膜厚(140〜200nm)に設定し、この条件下で所定の反射色(ここでは青色系または緑色系)が得られかつ極大/極小反射率比が2以上、4以下となるように反射率調整層20の膜厚を設定する。反射率調整層20の膜厚を35〜85nmに設定すると、要求される条件を満たす特性(自動車用ミラーとして必要な反射率、飽和値付近の光触媒性能、青色系または緑色系の反射色、極大/極小反射率比が2以上、4以下)が得られる。
Embodiments of the present invention will be described below. FIG. 1 schematically shows a laminated structure of a colored anti-fog mirror 11 according to the present invention. The colored anti-fog mirror 11 constitutes a mirror body portion of an outer mirror for vehicles. The colored anti-fog mirror 11 is configured by sequentially laminating a reflective layer 14, a reflectance adjustment layer 20, a photocatalyst layer 16, and a hydrophilic layer 18 on the surface of a substrate 12. The colored antifogging mirror 11 generates a blue or green reflection color by interference of reflected light in each layer. Each layer will be described.
<< Substrate 12 >>
The substrate 12 is made of a glass substrate such as soda glass.
<< Reflection layer 14 >>
The reflective layer 14 is made of a metal such as Cr.
<< Photocatalyst layer 16 >>
Photocatalytic layer 16 is composed of TiO 2. The colored anti-fog mirror 10 of FIG. 2 that has been put to practical use in the past has been set to about 75 nm in thickness of the TiO 2 photocatalyst layer 16 in order to make the reflected color blue, whereas the colored anti-fog mirror of FIG. The mirror 11 sets the film thickness of the photocatalyst layer 16 to a thick film thickness of 140 to 200 nm in order to make the reflection color blue (or green). The photocatalyst layer 16 maintains the anti-fogging property of the hydrophilic layer 18 by decomposing and removing the organic matter adhering to the surface of the hydrophilic layer 18 by photocatalytic action.
<< Hydrophilic layer 18 >>
The hydrophilic layer 18 is made of porous SiO 2 . The film thickness is set to 15 nm, for example. The hydrophilic layer 18 provides antifogging properties.
<< Reflectance adjusting layer 20 >>
The reflectance adjustment layer 20 is made of a material having a lower refractive index than the photocatalyst layer 16, and for example, a mixture of Al 2 O 3 and Ta 2 O 5, a mixture of Al 2 O 3 and SnO 2 , Al 2 O 3. And a mixture of ZrO 2 and the like. The reflectivity adjustment layer 20 suppresses a decrease in reflectivity caused by setting the film thickness of the photocatalyst layer 16 to be thick (140 to 200 nm), and reduces a color shift due to a change in line-of-sight angle. The function of reducing the decrease in reflectance and the color shift is mainly obtained with Al 2 O 3 . However, if the reflectance adjusting layer 20 is composed of only Al 2 O 3 , the water resistance is insufficient. Therefore, the water resistance is improved by mixing Ta 2 O 5 , SnO 2 , ZrO 2 or the like. When the reflectance adjusting layer 20 is a mixture of Al 2 O 3 and Ta 2 O 5 , the Al 2 O 3 contained in the reflectance adjusting layer 20 is 50% or more and 95% or less (preferably 70% or more, 95 % Or less). At this time, Ta 2 O 5 contained in the reflectance adjustment layer 20 is set to 50% or less, 5% or more (preferably 30% or less, 5% or more). Further, Al 2 O 3 contained in the reflectance adjustment layer 20 is set to 30% or more and 90% or less when the reflectance adjustment layer 20 is a mixture of Al 2 O 3 and SnO 2 . At this time, SnO 2 contained in the reflectance adjustment layer 20 is set to 70% or less and 10% or more. Further, Al 2 O 3 contained in the reflectance adjustment layer 20 is set to 40% or more and 90% or less when the reflectance adjustment layer 20 is a mixture of Al 2 O 3 and ZrO 2 . At this time, ZrO 2 contained in the reflectance adjustment layer 20 is set to 60% or less and 10% or more. The colored anti-fog mirror 11 has a smaller maximum / minimum reflectance ratio as the film thickness of the reflectance adjustment layer 20 increases. However, when the film thickness of the reflectance adjustment layer 20 is increased, the same reflection color as that obtained when the film thickness is thin is obtained. Therefore, the photocatalyst layer 16 must be made thinner than in the case of the thin case, and the photocatalytic performance is lowered. Here, the relationship between the film thickness of the photocatalyst layer 16 and the photocatalyst performance is as shown in FIG. That is, when the film thickness is thin, the photocatalytic performance increases as the film thickness increases, but when the film thickness exceeds a predetermined value, the photocatalytic performance saturates. Therefore, the film thickness of the photocatalyst layer 16 is first set to the minimum film thickness (140 to 200 nm) at which the photocatalytic performance near the saturation value is obtained, and a predetermined reflection color (blue or green here) under this condition And the film thickness of the reflectance adjustment layer 20 is set so that the maximum / minimum reflectance ratio is 2 or more and 4 or less. When the film thickness of the reflectance adjustment layer 20 is set to 35 to 85 nm, characteristics satisfying the required conditions (reflectance necessary as an automobile mirror, photocatalytic performance near a saturation value, blue or green-based reflection color, maximum / Minimum reflectance ratio of 2 or more and 4 or less).

有色防曇鏡11は基材の表面に、蒸着法、スパッタリング法等のPVD法その他の薄膜形成工程により、反射層14、反射率調整層20、光触媒層16、親水層18を順次成膜することにより製造することができる。反射率調整層20、光触媒層16、親水層18を蒸着法で成膜する場合の成膜条件の一例を図4に示す。   The colored antifogging mirror 11 sequentially forms a reflective layer 14, a reflectance adjustment layer 20, a photocatalyst layer 16, and a hydrophilic layer 18 on the surface of a base material by a PVD method such as a vapor deposition method or a sputtering method, or other thin film forming steps. Can be manufactured. FIG. 4 shows an example of film forming conditions when the reflectance adjusting layer 20, the photocatalytic layer 16, and the hydrophilic layer 18 are formed by vapor deposition.

この発明の実施例並びに比較例を説明する。ここでは図1の積層構造を有する有色防曇鏡11について、光触媒層16の膜厚および反射率調整層20の組成が異なる図5に示す仕様の実施例1〜8および比較例1〜4を製作し(比較例4は反射率調整層20がない)、各種特性を測定した。なお実施例1〜8および比較例1〜4は、親水層18の膜厚をいずれも15nmに設定した。実施例1〜4および比較例1〜4の可視光域での分光反射スペクトルを図6〜図13にそれぞれ示す。また実施例1〜4および比較例1〜4の主な特性(積分球反射率、可視光域での反射率極大値および反射率極小値、極大/極小反射率比、視線角度の変化による色調ズレの大小、耐水性能、耐酸性能)を図14に示す。「積分球反射率」はJIS規格D5705の積分球による間接測定法で測定した反射率である。「耐水性」は各試料を水道水に浸漬して2時間煮沸した後の膜の剥離の有無を観察したものである。「耐酸性」は濃度が0.1Nの硫酸を各試料の表面に滴下し、24時間放置して膜の剥離の有無を観察したものである。「耐水性」「耐酸性」とも、○は剥離または変色なし、△は剥離または変色ありを意味する。図6〜図14によれば、次が言える。
(a)実施例1〜4および比較例1〜4は反射率極大値における波長がほぼ等しく、反射色はいずれも青色系である。
(b)比較例4の積分球反射率はJIS規格D5705で規定された自動車用ミラーの反射率の下限値35%に近い値であり(40%以上の積分球反射率が自動車用ミラーとして適切である)、十分とは言えない。比較例4の反射率が低いのは、光触媒層16の膜厚を厚く形成したことによるものである。これに対し、実施例1〜4は自動車用ミラーとして十分に高い反射率が得られている。実施例1〜4の反射率が高いのは、光触媒層16の膜厚を厚く形成したことによる反射率の低下が、反射率調整層20を構成するAl23によって抑制されているためである。
(c)極大/極小反射率比が大きい(すなわち強く反射する色調の反射率と反射が弱い色調の反射率の比率が大きい)比較例2,3は視線角度の変化による色調ズレが大きい。これに対し、極大/極小反射率比が小さい実施例1〜4は視線角度の変化による色調ズレが小さい。極大/極小反射率比が4以下であれば、色調ズレを実用上問題がない程度に軽減することができる。
(d)実施例1〜4どうしを対比すると、実施例1よりも実施例2〜4の方が積分球反射率が高く、極大/極小反射率比が小さい。したがって実施例1よりも実施例2〜4の方がより高い反射率が得られ、かつ色調ズレをより軽減することができる。
(e)比較例は耐水性が十分でない。これに対し、実施例1〜4は耐水性、耐酸性とも十分である。
Examples of the present invention and comparative examples will be described. Here, with respect to the colored antifogging mirror 11 having the laminated structure of FIG. 1, the film thickness of the photocatalyst layer 16 and the composition of the reflectance adjusting layer 20 are different from those of Examples 1-8 and Comparative Examples 1-4 shown in FIG. It was manufactured (Comparative Example 4 has no reflectance adjustment layer 20), and various characteristics were measured. In Examples 1 to 8 and Comparative Examples 1 to 4, the thickness of the hydrophilic layer 18 was set to 15 nm. The spectral reflection spectra in the visible light range of Examples 1 to 4 and Comparative Examples 1 to 4 are shown in FIGS. Further, main characteristics of Examples 1 to 4 and Comparative Examples 1 to 4 (integral sphere reflectance, reflectance maximum value and reflectance minimum value in visible light range, maximum / minimum reflectance ratio, color tone due to change in line-of-sight angle) FIG. 14 shows the amount of displacement, water resistance, and acid resistance. “Integral sphere reflectance” is a reflectance measured by an indirect measurement method using an integrating sphere of JIS standard D5705. “Water resistance” is the observation of the presence or absence of film peeling after each sample was immersed in tap water and boiled for 2 hours. “Acid resistance” is a method in which sulfuric acid having a concentration of 0.1 N was dropped onto the surface of each sample and left for 24 hours to observe the presence or absence of film peeling. For both “water resistance” and “acid resistance”, ◯ means no peeling or discoloration, and Δ means peeling or discoloration. The following can be said according to FIGS.
(a) In Examples 1 to 4 and Comparative Examples 1 to 4, the wavelengths at the reflectance maximum are almost equal, and the reflection colors are all blue.
(b) The integrating sphere reflectance of Comparative Example 4 is a value close to the lower limit of 35% of the reflectance of the automotive mirror specified in JIS standard D5705 (an integrating sphere reflectance of 40% or more is suitable as an automotive mirror) Is not enough). The reason why the reflectance of Comparative Example 4 is low is that the photocatalyst layer 16 is formed thick. On the other hand, Examples 1-4 have sufficiently high reflectivity as a mirror for automobiles. The reason why the reflectance of Examples 1 to 4 is high is that the decrease in reflectance due to the formation of the photocatalyst layer 16 having a large thickness is suppressed by Al 2 O 3 constituting the reflectance adjustment layer 20. is there.
(c) maximum / minimum reflectance ratio is high (i.e. strong ratio of the reflectance of the reflectance and reflection is weak color tone of reflection is large) Comparative Example 2 has a large color shift due to a change in viewing angle. On the other hand, Examples 1 to 4 having a small maximum / minimum reflectance ratio have a small color shift due to a change in the viewing angle. If the maximum / minimum reflectance ratio is 4 or less, the color tone shift can be reduced to such a degree that there is no practical problem.
(d) When comparing Examples 1 to 4, Examples 2 to 4 have a higher integrating sphere reflectance and a maximum / minimum reflectance ratio is smaller than Example 1. Therefore, the higher reflectance can be obtained in the second to fourth embodiments than in the first embodiment, and the color shift can be further reduced.
(e) The water resistance of Comparative Example 1 is not sufficient. On the other hand, Examples 1-4 are sufficient in both water resistance and acid resistance.

ここで極大/極小反射率比と視線角度の変化による色調ズレの関係について説明する。図15(a)は実施例2について、視線角度が0度(鏡面の真正面から視認)、30度、45度のときの可視光域での分光反射スペクトルを示す。図15(b)は図15(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す。

図16(a)は同様に、実施例3について、視線角度が0度、30度、45度のときの可視光域での分光反射スペクトルを示す。図16(b)は図16(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す。

図17(a)は同様に、実施例4について、視線角度が0度、30度、45度のときの可視光域での分光反射スペクトルを示す。図17(b)は図17(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す。


図18(a)は同様に、比較例4について、視線角度が0度、30度、45度のときの可視光域での分光反射スペクトルを示す。図18(b)は図18(a)の特性による可視光域での反射率極大値、反射率極小値、極大/極小反射率比を示す。

図18(b)によれば、極大/極小反射率比が大きい比較例4は視線角度の変化による極大/極小反射率比の変動が大きいので、視線角度が0度から変動するに従い色調が大きく変動し、反射色が0度のときの青色系から、赤みがかった色に変化したり、色が薄くなったりする。これに対し、図15(b)、図16(b)、図17(b)によれば、極大/極小反射率比が小さい実施例2,3,4は、視線角度の変化による極大/極小反射率比の変動が小さいので、視線角度が0度から変動しても反射色の色調の変化は比較例4に比べて小さく抑える(すなわち色調ズレを軽減する)ことができる。因みに、図2の従来の有色防曇鏡10(光触媒層16の膜厚は75nm)の可視光域での分光反射スペクトルを図19に示す。光触媒層16の膜厚が75nmの場合は、可視光域に単一の極大値しか生じず、極小値は生じないので、波長による反射率の変化が緩やかであり、視線角度の変化による色調ズレの問題は起こらない。すなわち視線角度の変化による色調ズレの問題は波長による反射率の変化が急峻となる光触媒層16の膜厚が厚い場合に起こる。
Here, the relationship between the maximum / minimum reflectance ratio and the color shift due to the change in the viewing angle will be described. FIG. 15A shows a spectral reflection spectrum in the visible light region when the line-of-sight angle is 0 degree (viewed from directly in front of the mirror surface), 30 degrees, and 45 degrees with respect to Example 2. FIG. 15B shows the maximum reflectance value, the minimum reflectance value, and the maximum / minimum reflectance ratio in the visible light region according to the characteristics shown in FIG.

Similarly, FIG. 16A shows the spectral reflection spectrum in the visible light region when the line-of-sight angle is 0 degree, 30 degrees, and 45 degrees for Example 3. FIG. 16B shows the maximum reflectance value, the minimum reflectance value, and the maximum / minimum reflectance ratio in the visible light region according to the characteristics shown in FIG.

FIG. 17A similarly shows the spectral reflection spectrum in the visible light region when the line-of-sight angle is 0 degree, 30 degrees, and 45 degrees for Example 4. FIG. 17B shows the maximum reflectance value, the minimum reflectance value, and the maximum / minimum reflectance ratio in the visible light region according to the characteristics shown in FIG.


Similarly, FIG. 18A shows the spectral reflection spectrum in the visible light region when the line-of-sight angle is 0 degree, 30 degrees, and 45 degrees for Comparative Example 4. FIG. 18B shows the maximum reflectance value, the minimum reflectance value, and the maximum / minimum reflectance ratio in the visible light region according to the characteristics shown in FIG.

According to FIG. 18B, in Comparative Example 4 in which the maximum / minimum reflectance ratio is large, the variation in the maximum / minimum reflectance ratio due to the change in the line-of-sight angle is large, so that the color tone increases as the line-of-sight angle varies from 0 degrees. Fluctuates and changes from a blue color when the reflected color is 0 degrees to a reddish color or a lighter color. On the other hand, according to FIGS. 15 (b), 16 (b), and 17 (b), Examples 2, 3, and 4 having a small maximum / minimum reflectance ratio are the maximum / minimum due to the change in the viewing angle. Since the change in the reflectance ratio is small, even if the line-of-sight angle changes from 0 degree, the change in the color tone of the reflected color can be suppressed to a smaller value (that is, the color tone shift can be reduced) compared to the comparative example 4. Incidentally, FIG. 19 shows a spectral reflection spectrum in the visible light region of the conventional colored anti-fog mirror 10 (film thickness of the photocatalyst layer 16 is 75 nm) of FIG. When the film thickness of the photocatalyst layer 16 is 75 nm, only a single maximum value is generated in the visible light range, and no minimum value is generated. Therefore, the change in reflectance due to the wavelength is gradual, and the color tone shift due to the change in the viewing angle. The problem does not occur. That is, the problem of color misregistration due to a change in line-of-sight angle occurs when the film thickness of the photocatalyst layer 16 where the change in reflectance due to the wavelength is steep is large.

図1のこの発明による有色防曇鏡11と図2の従来の有色防曇鏡10の光触媒性能の違いを説明する。図20は実施例1〜4の有色防曇鏡11と図2の従来の有色防曇鏡10(光触媒層16の膜厚は70nm)について、これらを設置した車両に撥水洗車を行い、その後にミラーを取り外し、紫外線を照射した後、ミラー表面の水滴接触角を測定するテストを繰り返し行ったときのテスト結果を示すものである。図20によれば、実施例1〜4の有色防曇鏡11は従来の有色防曇鏡10に比べて、水滴接触角が急激に上昇するまでの繰り返し回数が2倍以上、3倍近くに達しており、従来の有色防曇鏡10に比べて光触媒性能が飛躍的に向上していることがわかる。   The difference in the photocatalytic performance of the colored anti-fog mirror 11 according to the present invention in FIG. 1 and the conventional colored anti-fog mirror 10 in FIG. 2 will be described. FIG. 20 shows the colored antifogging mirror 11 of Examples 1 to 4 and the conventional colored antifogging mirror 10 of FIG. 2 (the film thickness of the photocatalyst layer 16 is 70 nm). The test result when the test which measures the water droplet contact angle on the mirror surface after repeating a mirror to UV and irradiating with ultraviolet rays was repeated is shown. According to FIG. 20, the colored antifogging mirror 11 of Examples 1 to 4 is twice or more and nearly 3 times the number of repetitions until the water droplet contact angle suddenly increases as compared with the conventional colored antifogging mirror 10. It can be seen that the photocatalytic performance is dramatically improved as compared with the conventional colored anti-fog mirror 10.

図1のこの発明による有色防曇鏡11の実施例5を説明する。これは反射色が緑色系を呈するものである。実施例5における各層の構成は次のとおりである。
《反射層14》組成:Cr。
《反射率調整層20》組成:Al23(70体積%)とTa25(30体積%)の混合物、膜厚70nm。
《光触媒層16》組成:TiO2、膜厚:165nm。
《親水層18》組成:多孔質SiO2、膜厚:15nm。
[Embodiment 5] A fifth embodiment of the colored antifogging mirror 11 according to the present invention shown in FIG. 1 will be described. This is one in which the reflected color is green. The configuration of each layer in Example 5 is as follows.
<< Reflection layer 14 >> Composition: Cr.
<< Reflectance adjusting layer 20 >> Composition: Al 2 O 3 (70% by volume) and Ta 2 O 5 (30% by volume) mixture, film thickness 70 nm.
<< Photocatalyst layer 16 >> Composition: TiO 2 , film thickness: 165 nm.
<< Hydrophilic layer 18 >> Composition: porous SiO 2 , film thickness: 15 nm.

実施例5の可視光域での分光反射スペクトルを図21に示す。これによれば次の特性が得られている。
・積分球反射率:62%
・反射率極大値:78.3%(at 532nm)
・反射率極小値:25.1%(at 707nm)
・極大/極小反射率比:3.1
・反射色:緑色系
The spectral reflection spectrum in the visible light region of Example 5 is shown in FIG. According to this, the following characteristics are obtained.
・ Integral sphere reflectance: 62%
・ Maximum reflectance: 78.3% (at 532 nm)
・ Minimum reflectance: 25.1% (at 707 nm)
・ Maximum / minimum reflectance ratio: 3.1
-Reflective color: Green

図1のこの発明による有色防曇鏡11の実施例6を説明する。これも反射色が緑色系を呈するものである。実施例6における各層の構成は次のとおりである。
《反射層14》組成:Cr。
《反射率調整層20》組成:Al23(70体積%)とTa25(30体積%)の混合物、膜厚35nm。
《光触媒層16》組成:TiO2、膜厚:200nm。
《親水層18》組成:多孔質SiO2、膜厚:15nm。
A sixth embodiment of the colored anti-fog mirror 11 according to the present invention shown in FIG. 1 will be described. This also has a green reflection color. The configuration of each layer in Example 6 is as follows.
<< Reflection layer 14 >> Composition: Cr.
<< Reflectance adjusting layer 20 >> Composition: Al 2 O 3 (70% by volume) and Ta 2 O 5 (30% by volume) mixture, film thickness 35 nm.
<< Photocatalyst layer 16 >> Composition: TiO 2 , film thickness: 200 nm.
<< Hydrophilic layer 18 >> Composition: porous SiO 2 , film thickness: 15 nm.

実施例6の可視光域での分光反射スペクトルを図22に示す。これによれば次の特性が得られている。
・積分球反射率:63%
・反射率極大値:75.2%(at 556nm)
・反射率極小値:18.8%(at 734nm)
・極大/極小反射率比:4.0
・反射色:緑色系
The spectral reflection spectrum in the visible light region of Example 6 is shown in FIG. According to this, the following characteristics are obtained.
・ Integral sphere reflectance: 63%
-Maximum value of reflectance: 75.2% (at 556 nm)
・ Minimum reflectance: 18.8% (at 734 nm)
・ Maximum / minimum reflectance ratio: 4.0
-Reflective color: Green

図1のこの発明による有色防曇鏡11の実施例7を説明する。これも反射色が緑色系を呈するものである。実施例7における各層の構成は次のとおりである。
《反射層14》組成:Cr。
《反射率調整層20》組成:Al23(50体積%)とSnO2(50体積%)の混合物、膜厚67nm。
《光触媒層16》組成:TiO2、膜厚:165nm。
《親水層18》組成:多孔質SiO2、膜厚:15nm。
Example 7 of the colored anti-fog mirror 11 according to the present invention shown in FIG. 1 will be described. This also has a green reflection color. The configuration of each layer in Example 7 is as follows.
<< Reflection layer 14 >> Composition: Cr.
<< Reflectance adjusting layer 20 >> Composition: Al 2 O 3 (50% by volume) and SnO 2 (50% by volume) mixture, film thickness 67 nm.
<< Photocatalyst layer 16 >> Composition: TiO 2 , film thickness: 165 nm.
<< Hydrophilic layer 18 >> Composition: porous SiO 2 , film thickness: 15 nm.

実施例7の可視光域での分光反射スペクトルを図23に示す。これによれば次の特性が得られている。
・積分球反射率:64%
・反射率極大値:78.4%(at 530nm)
・反射率極小値:24.1%(at 715nm)
・極大/極小反射率比:3.2
・反射色:緑色系
The spectral reflection spectrum in the visible light region of Example 7 is shown in FIG. According to this, the following characteristics are obtained.
・ Integral sphere reflectance: 64%
・ Maximum reflectance: 78.4% (at 530nm)
・ Minimum reflectance: 24.1% (at 715nm)
・ Maximum / minimum reflectance ratio: 3.2
-Reflective color: Green

図1のこの発明による有色防曇鏡11の実施例8を説明する。これも反射色が緑色系を呈するものである。実施例8における各層の構成は次のとおりである。
《反射層14》組成:Cr。
《反射率調整層20》組成:Al23(60体積%)とZrO2(40体積%)の混合物、膜厚60nm。
《光触媒層16》組成:TiO2、膜厚:170nm。
《親水層18》組成:多孔質SiO2、膜厚:15nm。
An embodiment 8 of the colored anti-fog mirror 11 according to the present invention shown in FIG. 1 will be described. This also has a green reflection color. The configuration of each layer in Example 8 is as follows.
<< Reflection layer 14 >> Composition: Cr.
<< Reflectance adjusting layer 20 >> Composition: Al 2 O 3 (60% by volume) and ZrO 2 (40% by volume) mixture, film thickness 60 nm.
<< Photocatalyst layer 16 >> Composition: TiO 2 , film thickness: 170 nm.
<< Hydrophilic layer 18 >> Composition: porous SiO 2 , film thickness: 15 nm.

実施例8の可視光域での分光反射スペクトルを図24に示す。これによれば次の特性が得られている。
・積分球反射率:65%
・反射率極大値:78.8%(at 530nm)
・反射率極小値:23.4%(at 716nm)
・極大/極小反射率比:3.4
・反射色:緑色系
The spectral reflection spectrum in the visible light region of Example 8 is shown in FIG. According to this, the following characteristics are obtained.
・ Integral sphere reflectance: 65%
・ Maximum reflectance: 78.8% (at 530nm)
・ Minimum reflectance: 23.4% (at 716nm)
・ Maximum / minimum reflectance ratio: 3.4
-Reflective color: Green

11…有色防曇鏡、12…基板(基材)、14…反射層、16…光触媒層、18…親水層、20…反射率調整層   DESCRIPTION OF SYMBOLS 11 ... Colored anti-fog mirror, 12 ... Board | substrate (base material), 14 ... Reflection layer, 16 ... Photocatalyst layer, 18 ... Hydrophilic layer, 20 ... Reflectance adjustment layer

Claims (7)

基材の表面に反射層、反射率調整層、光触媒層、親水層を順次積層した構造を有し、
前記光触媒層が実質的にTiO2で構成され、該光触媒層の膜厚が140〜200nmであり、
前記親水層が実質的に多孔質SiO2で構成され、もって、
可視光域での反射率の極大値が波長430〜560nmに存在し、反射色が青色系または緑色系を呈し、可視光域の反射率の極大値と極小値の比が2以上、4以下である車両アウターミラー用有色防曇鏡。
It has a structure in which a reflective layer, a reflectance adjustment layer, a photocatalyst layer, and a hydrophilic layer are sequentially laminated on the surface of the substrate,
The photocatalyst layer is composed of substantially TiO 2, film thickness of the photocatalyst layer is 140~200Nm,
The hydrophilic layer is substantially composed of porous SiO 2 , and
The maximum value of the reflectance in the visible light region exists at a wavelength of 430 to 560 nm, the reflection color is blue or green, and the ratio between the maximum value and the minimum value of the reflectance in the visible light region is 2 or more and 4 or less. A colored anti-fog mirror for vehicle outer mirrors.
前記反射率調整層が実質的にAl23とTa25の混合物で構成され、該反射率調整層に含まれるAl23の体積百分率が50%以上、95%以下である請求項1に記載の車両アウターミラー用有色防曇鏡。 The reflectance adjustment layer is substantially composed of a mixture of Al 2 O 3 and Ta 2 O 5 , and the volume percentage of Al 2 O 3 contained in the reflectance adjustment layer is 50% or more and 95% or less. Item 10. A colored antifogging mirror for vehicle outer mirrors according to item 1. 前記反射率調整層が実質的にAl23とSnO2の混合物で構成され、該反射率調整層に含まれるAl23の体積百分率が30%以上、90%以下である請求項1に記載の車両アウターミラー用有色防曇鏡。 2. The reflectance adjusting layer is substantially composed of a mixture of Al 2 O 3 and SnO 2 , and the volume percentage of Al 2 O 3 contained in the reflectance adjusting layer is 30% or more and 90% or less. The colored anti-fog mirror for vehicle outer mirrors described in 1. 前記反射率調整層が実質的にAl23とZrO2の混合物で構成され、該反射率調整層に含まれるAl23の体積百分率が40%以上、90%以下である請求項1に記載の車両アウターミラー用有色防曇鏡。 2. The reflectance adjusting layer is substantially composed of a mixture of Al 2 O 3 and ZrO 2 , and the volume percentage of Al 2 O 3 contained in the reflectance adjusting layer is 40% or more and 90% or less. The colored anti-fog mirror for vehicle outer mirrors described in 1. 前記反射率調整層の膜厚が35〜85nmである請求項1から4のいずれか1つに記載の車両アウターミラー用有色防曇鏡。 The colored anti-fog mirror for a vehicle outer mirror according to any one of claims 1 to 4, wherein the reflectance adjustment layer has a thickness of 35 to 85 nm. 前記光触媒層の膜厚が165±20nmである請求項1から5のいずれか1つに記載の車両アウターミラー用有色防曇鏡。 The colored anti-fog mirror for a vehicle outer mirror according to claim 1, wherein the photocatalyst layer has a film thickness of 165 ± 20 nm. 前記光触媒層の膜厚が150nmより大である請求項1から6のいずれか1つに記載の車両アウターミラー用有色防曇鏡。 The colored anti-fog mirror for vehicle outer mirrors according to any one of claims 1 to 6, wherein the film thickness of the photocatalyst layer is larger than 150 nm.
JP2013075533A 2013-03-31 2013-03-31 Colored anti-fog mirror for vehicle outer mirror Active JP6153368B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013075533A JP6153368B2 (en) 2013-03-31 2013-03-31 Colored anti-fog mirror for vehicle outer mirror
CN201480019430.6A CN105074510B (en) 2013-03-31 2014-03-24 Color anti-fog mirror
DE112014001779.5T DE112014001779T5 (en) 2013-03-31 2014-03-24 Colored antifogging mirror
PCT/JP2014/058031 WO2014162909A1 (en) 2013-03-31 2014-03-24 Colored defogging mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075533A JP6153368B2 (en) 2013-03-31 2013-03-31 Colored anti-fog mirror for vehicle outer mirror

Publications (2)

Publication Number Publication Date
JP2014202759A JP2014202759A (en) 2014-10-27
JP6153368B2 true JP6153368B2 (en) 2017-06-28

Family

ID=51658208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075533A Active JP6153368B2 (en) 2013-03-31 2013-03-31 Colored anti-fog mirror for vehicle outer mirror

Country Status (4)

Country Link
JP (1) JP6153368B2 (en)
CN (1) CN105074510B (en)
DE (1) DE112014001779T5 (en)
WO (1) WO2014162909A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4184830B2 (en) * 2002-04-05 2008-11-19 株式会社村上開明堂 Composite
FR2845774B1 (en) * 2002-10-10 2005-01-07 Glaverbel HYDROPHILIC REFLECTING ARTICLE
CN1767777A (en) * 2003-05-14 2006-05-03 株式会社村上开明堂 Anti-fog mirror
WO2006048940A1 (en) * 2004-11-05 2006-05-11 Murakami Corporation Anti-dazzle/anti-fog device and mirror for automobile
EP1811318B1 (en) * 2004-11-12 2011-01-12 Murakami Corporation Anti-fog device and outside mirror
TW201016777A (en) * 2008-10-17 2010-05-01 Taiyo Ink Mfg Co Ltd Curable resin composition and reflective sheet

Also Published As

Publication number Publication date
JP2014202759A (en) 2014-10-27
WO2014162909A1 (en) 2014-10-09
CN105074510B (en) 2017-08-25
DE112014001779T5 (en) 2015-12-10
CN105074510A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP3701826B2 (en) Colored anti-fog mirror
JP4981347B2 (en) Colored anti-fog mirror
DE102010013865B4 (en) Reflector with high resistance to weathering and corrosion and process for its preparation
KR20180018782A (en) Head-up display system
US20160306194A1 (en) Optical product, and spectacle lens and spectacles
JP2008107425A (en) Mirror and hydrophilic composite film having photocatalytic activity
US10520647B2 (en) Anti-fog and anti-reflective dual-functional coating for optical articles
JPWO2004100731A1 (en) Anti-fog mirror
JP2006515681A (en) Hydrophilic reflective article
JP5043951B2 (en) Hydrophilic mirror in which a titanium dioxide (TiO2) thin film is coated on a chromium substrate and method for producing the same
WO2018110018A1 (en) Optical element
EP2192424A1 (en) Optical article and method for producing the same
JP6153368B2 (en) Colored anti-fog mirror for vehicle outer mirror
EP2881763B1 (en) Optical product and plastic eyeglass lens
JP2004001400A (en) Composite material
JP4408438B2 (en) Anti-fogging element and outer mirror
JP7335556B2 (en) OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT
CN113703077A (en) Antireflection film and optical member
JPH11302037A (en) Low reflectance and low transmittance glass
JP2005330148A (en) Anti-fogging element, anti-fogging mirror and electrochromic mirror
CA2584274A1 (en) Dichroic mirror
KR102615696B1 (en) Transparent gas with multilayer film
JPH06340450A (en) On-vehicle windshield
KR101662537B1 (en) Antifog mirror use for a car
WO2023208763A1 (en) Projection assembly comprising a composite pane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6153368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250