JP6151947B2 - Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery - Google Patents

Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery Download PDF

Info

Publication number
JP6151947B2
JP6151947B2 JP2013070881A JP2013070881A JP6151947B2 JP 6151947 B2 JP6151947 B2 JP 6151947B2 JP 2013070881 A JP2013070881 A JP 2013070881A JP 2013070881 A JP2013070881 A JP 2013070881A JP 6151947 B2 JP6151947 B2 JP 6151947B2
Authority
JP
Japan
Prior art keywords
felt
carbon fiber
groove
fiber felt
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070881A
Other languages
Japanese (ja)
Other versions
JP2014194093A (en
Inventor
高見 祐介
祐介 高見
赤松 哲也
哲也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2013070881A priority Critical patent/JP6151947B2/en
Publication of JP2014194093A publication Critical patent/JP2014194093A/en
Application granted granted Critical
Publication of JP6151947B2 publication Critical patent/JP6151947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Nonwoven Fabrics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、導電性が高く、溶融状態にある活物質など流体の透過性、浸透性の良い炭素繊維フェルト、その製造方法、そのフェルトからなる陽極集電材、及びその陽極集電材を有するナトリウム-硫黄蓄電池に関する。   The present invention relates to a carbon fiber felt having a high conductivity and a fluid permeability such as an active material in a molten state and a good permeability, a manufacturing method thereof, an anode current collector made of the felt, and sodium having the anode current collector It relates to a sulfur storage battery.

近年、クリーンな電気エネルギーの需要が急速に伸び、太陽光発電や風力発電といった新エネルギーの導入が積極的に進められている。しかし、これらの発電方式は、天候に左右される為、発電周波数や出力が安定化せず、制御が難しいという課題がある。その対策として、蓄電池を経由して出力することで、出力変動の平準化、余剰電力の貯蔵、負荷平準化を図ることが検討されている。   In recent years, the demand for clean electric energy has increased rapidly, and the introduction of new energy such as solar power generation and wind power generation has been actively promoted. However, since these power generation methods are influenced by the weather, the power generation frequency and output are not stabilized, and there is a problem that control is difficult. As countermeasures, it has been studied to achieve output leveling, surplus power storage, and load leveling by outputting via a storage battery.

蓄電池の一つであるナトリウム-硫黄蓄電池は、エネルギー密度が高く、容量あたりの単価が安いと共に、充放電の繰り返しによる性能低下が少なく、長寿命である等、大型の蓄電池として期待されている。   A sodium-sulfur storage battery, which is one of storage batteries, is expected to be a large storage battery with high energy density, low unit price per capacity, low performance degradation due to repeated charge and discharge, and long life.

図15は、ナトリウム-硫黄蓄電池の動作原理を示す概念図である。   FIG. 15 is a conceptual diagram showing the operating principle of a sodium-sulfur storage battery.

図15において52はナトリウム-硫黄蓄電池であり、2箇の有底同軸円筒からなる外側容器(陽極管)54と内側容器(陰極管)56とを備えている。陰極管56の材料としてはβ−アルミナなどの固体電解質が用いられ、その内側には負極活物質の溶融金属ナトリウム58が収納されている。ナトリウム58は、充電・放電時に脱イオン化・イオン化され陰極管56を構成する固体電解質を通過する。陽極管54−陰極管56間には正極活物質の溶融硫黄を含有する陽極集電材60の内周面を陰極管56の外周面に接触させて巻かれ、集電材60は陽極管54の内周面に接触している。   In FIG. 15, reference numeral 52 denotes a sodium-sulfur storage battery, which includes an outer container (anode tube) 54 and an inner container (cathode tube) 56 formed of two bottomed coaxial cylinders. A solid electrolyte such as β-alumina is used as a material of the cathode tube 56, and a molten metal sodium 58 as a negative electrode active material is accommodated inside the cathode. The sodium 58 is deionized and ionized at the time of charging / discharging and passes through the solid electrolyte constituting the cathode tube 56. The anode current collector 60 is wound between the anode tube 54 and the cathode tube 56 so that the inner peripheral surface of the anode current collector 60 containing molten sulfur of the positive electrode active material is in contact with the outer peripheral surface of the cathode tube 56. It is in contact with the peripheral surface.

放電時には、負極活物質としてのナトリウム58が外部回路に電子を放出してナトリウムイオンとなり、陰極管56内を透過して正極側に移動し、正極活物質としての硫黄及び外部回路から供給される電子と反応した多硫化ソーダを生成することにより、電力を供給させる。   At the time of discharge, sodium 58 as the negative electrode active material emits electrons to the external circuit to become sodium ions, passes through the cathode tube 56 and moves to the positive electrode side, and is supplied from the external circuit and sulfur as the positive electrode active material. Electric power is supplied by producing sodium polysulfide that reacts with electrons.

一方、充電時には外部回路から蓄電池に電圧を印加することによって、多硫化ソーダが外部回路に電子を放出して硫黄とナトリウムイオンを生成し、陰極管56内を透過して負極側に移動したナトリウムイオンを外部回路から供給する電子と反応させて、電気的に中性化することにより、電気エネルギーを化学エネルギーに変換する。   On the other hand, during charging, by applying a voltage from the external circuit to the storage battery, sodium polysulfide emits electrons to the external circuit to generate sulfur and sodium ions, and the sodium that has passed through the cathode tube 56 and moved to the negative electrode side Electric energy is converted into chemical energy by reacting ions with electrons supplied from an external circuit and neutralizing them electrically.

陽極集電材60としては、導電性があり、化学的に安定な素材であることから炭素材料が好ましく用いられている。この炭素材料のうちでも、電極反応を効率的に進行させる必要から表面積が大きいことが好ましいため、細い繊維の集合体である炭素繊維フェルトが更に好ましく用いられている。   As the anode current collector 60, a carbon material is preferably used because it is conductive and is a chemically stable material. Among these carbon materials, since it is preferable that the surface area is large because the electrode reaction needs to proceed efficiently, a carbon fiber felt that is an aggregate of thin fibers is more preferably used.

陽極集電材として使用される炭素繊維フェルトとしては、例えば特許文献1では、陽極集電材内部に含浸された溶融硫黄中で多硫化ソーダが均一に反応できるように、絶縁物としてのガラス繊維をパンチングにより炭素繊維フェルトに打ち込んだものが開示されている。絶縁物をパンチングすることにより、充電時に陰極管と陽極集電材との接触面近傍のみで電子の授受反応が行われることを回避できる。即ち、充電時に、当該部分に集中して絶縁物である硫黄が析出し、充電反応の進行と共に電池の内部抵抗が上昇することに起因する充電回復性の低下(多硫化ソーダが残存しているにも拘らず充電反応が進行せず、充電が完結しない現象)を防止できる。ただ、炭素繊維フェルトは脆い為、ガラス繊維のニードルパンチングに際し繊維が損傷し、毛羽が脱落すると共に、強度が低下する等が懸念される。   As a carbon fiber felt used as an anode current collector, for example, in Patent Document 1, glass fiber as an insulator is punched so that sodium polysulfide can react uniformly in molten sulfur impregnated inside the anode current collector. In which a carbon fiber felt is driven. By punching the insulator, it is possible to avoid an electron transfer reaction only in the vicinity of the contact surface between the cathode tube and the anode current collector during charging. That is, during charging, sulfur, which is an insulator, concentrates on the portion, and the charge recovery is deteriorated due to the internal resistance of the battery increasing with the progress of the charging reaction (sodium polysulfide remains). Nevertheless, the charging reaction does not proceed and the charging is not completed). However, since the carbon fiber felt is brittle, there is a concern that the fiber is damaged during needle punching of the glass fiber, the fluff falls off, and the strength decreases.

特許文献2には、特許文献1のニードルパンチングで得られる炭素繊維フェルトは、その剛性が高いため、細い円筒状の固体電解質管の外周面にセットするのに、裁断し、金型を用いて円弧状に湾曲し、硫黄を含浸して成型する工程が必要となる旨が記載されている。   In Patent Document 2, since the carbon fiber felt obtained by needle punching of Patent Document 1 has high rigidity, it is cut and set in the outer peripheral surface of a thin cylindrical solid electrolyte tube using a mold. It is described that a process of bending in an arc shape and impregnating with sulfur is necessary.

ただ、特許文献1、2のようにして得られる炭素繊維フェルトは裁断して使用する必要があるため、数箇所の繋ぎ目が発生し、溶融硫黄、多硫化ソーダ、ナトリウムイオンが陽極集電材内に均一に流れないこと、成型後は脆くなること、成型時や、固体電解質管の外周部へのセット時に破損すること等の課題が生じている。   However, since the carbon fiber felt obtained as in Patent Documents 1 and 2 needs to be cut and used, several joints occur, and molten sulfur, sodium polysulfide, and sodium ions are contained in the anode current collector. Problems such as non-uniform flow, fragility after molding, and breakage during molding or setting to the outer periphery of the solid electrolyte tube.

特許3416607号公報Japanese Patent No. 3416607 特許3363124号公報Japanese Patent No. 3363124

本発明は、上記従来技術の問題点を解決し、優れた導電性と、溶融硫黄などの流体の厚み方向への高い透過性と、曲げ易く陰極管への接触性が良好で、優れた取扱性とを有する炭素繊維フェルト、その製造方法、そのフェルトからなる陽極集電材、及びその陽極集電材を有するナトリウム-硫黄蓄電池を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, has excellent electrical conductivity, high permeability in the thickness direction of fluid such as molten sulfur, is easy to bend and has good contact with the cathode tube, and has excellent handling. It is an object of the present invention to provide a carbon fiber felt having properties, a method for producing the same, an anode current collector made of the felt, and a sodium-sulfur storage battery having the anode current collector.

本発明者らは、上記課題について鋭意検討しているうち、炭素繊維前駆体フェルトの一面に切込みを形成し、このフェルトの表裏の熱収縮率の制御や、炭素化工程での張力を制御して炭素化することにより、炭素繊維フェルトに溝が形成されることを見出した。   The inventors of the present invention have been diligently studying the above problems, and forming a cut on one surface of the carbon fiber precursor felt to control the thermal contraction rate of the front and back of the felt and to control the tension in the carbonization process. It was found that a groove was formed in the carbon fiber felt by carbonization.

得られる炭素繊維フェルトは、溶融硫黄など流体の厚み方向への透過性、浸透性や、厚み方向への導電性に優れ、且つ陰極管への接触性が良好で、取扱性に優れ、溝部分における反応に寄与する表面積が大きくなりフェルト自体の反応に寄与する表面積が大きくなることで反応性に優れていることを見出し、本発明を完成するに至った。   The resulting carbon fiber felt has excellent permeability and permeability in the thickness direction of fluid, such as molten sulfur, and excellent conductivity in the thickness direction, good contact with the cathode tube, excellent handling properties, and groove portion. The surface area that contributes to the reaction in the above and the surface area that contributes to the reaction of the felt itself are found to be excellent in reactivity, and the present invention has been completed.

上記目的を達成する本発明は、以下に記載のものである。   The present invention for achieving the above object is as follows.

[1] 少なくとも片面に帯状に外方に突出する複数の畝部分と、前記複数の畝部分の間に形成される溝部分とからなる凹凸形状を有する、厚みが11〜55mmの炭素繊維フェルト。   [1] A carbon fiber felt having a thickness of 11 to 55 mm, having a concavo-convex shape composed of a plurality of flange portions protruding outward in a band shape on at least one surface and a groove portion formed between the plurality of flange portions.

[2] 溝部分が、フェルト表面において、直線状、格子状、ダイヤ状、又は、波状に形成されている[1]に記載の炭素繊維フェルト。   [2] The carbon fiber felt according to [1], wherein the groove portion is formed in a linear shape, a lattice shape, a diamond shape, or a wave shape on the felt surface.

[3] 溝幅が0.5〜10mm、溝深さが炭素繊維フェルトの厚みに対して10〜90%、溝ピッチが0.5〜100mmで形成されている[1]又は[2]に記載の炭素繊維フェルト。   [3] In [1] or [2], the groove width is 0.5 to 10 mm, the groove depth is 10 to 90% with respect to the thickness of the carbon fiber felt, and the groove pitch is 0.5 to 100 mm. The described carbon fiber felt.

[4] 目付が500〜5000g/m2、嵩密度が0.05〜0.30g/cm3、厚み方向の電気抵抗値が1000mΩ/cm2以下である[1]乃至[3]の何れかに記載の炭素繊維フェルト。 [4] Any one of [1] to [3] having a basis weight of 500 to 5000 g / m 2 , a bulk density of 0.05 to 0.30 g / cm 3 , and an electric resistance value in the thickness direction of 1000 mΩ / cm 2 or less. The carbon fiber felt described in 1.

[5] 溝幅方向をフェルト長手方向とする試験片について測定した剛軟度が4000N・cm以下である[1]乃至[4]の何れかに記載の炭素繊維フェルト。   [5] The carbon fiber felt according to any one of [1] to [4], wherein the bending resistance measured for a test piece whose groove width direction is the felt longitudinal direction is 4000 N · cm or less.

[6] [1]乃至[5]の何れかに記載の炭素繊維フェルトからなる陽極集電材。   [6] An anode current collector comprising the carbon fiber felt according to any one of [1] to [5].

[7] [6]に記載の陽極集電材と、陽極管と、前記陽極管と軸を一致させて陽極管内に挿入した陰極管と、を有するナトリウム-硫黄蓄電池であって、陽極集電材がその凹凸形状を有する面を陰極管の外周面に接触させて巻かれ、陽極集電材の外周面を陽極管の内周面に接触してなるナトリウム-硫黄蓄電池。   [7] A sodium-sulfur storage battery comprising the anode current collector according to [6], an anode tube, and a cathode tube inserted into the anode tube so that the axis of the anode tube coincides with the anode tube, A sodium-sulfur storage battery in which the surface having the irregular shape is wound in contact with the outer peripheral surface of the cathode tube, and the outer peripheral surface of the anode current collector is in contact with the inner peripheral surface of the anode tube.

[8] 厚み12〜100mmの炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、片面又は両面に切込みを入れた前駆体フェルトを、切込み方向と直交する方向に張力を付与しながら炭素化することを特徴とする炭素繊維フェルトの製造方法。   [8] A method for producing a carbon fiber felt in which a carbon fiber precursor felt having a thickness of 12 to 100 mm is carbonized under an inert atmosphere, wherein the precursor felt cut on one or both sides is orthogonal to the cutting direction. A method for producing a carbon fiber felt, characterized in that carbonization is performed while applying tension in a direction.

[9] 厚み12〜100mmの炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する炭素繊維フェルトの製造方法であって、前駆体フェルトが表裏面で熱収縮率が異なる構造のフェルトであり、且つその高収縮側のフェルトに切込みを入れたフェルトを炭素化することを特徴とする炭素繊維フェルトの製造方法。   [9] A method for producing a carbon fiber felt in which a carbon fiber precursor felt having a thickness of 12 to 100 mm is carbonized under an inert atmosphere, the precursor felt having a structure having different heat shrinkage rates on the front and back surfaces, A method for producing a carbon fiber felt, characterized in that the felt obtained by cutting the felt on the high shrinkage side is carbonized.

本発明の炭素繊維フェルトは、表面に形成された溝部分により、溶融硫黄などの流体の流路がフェルトの厚み方向に形成される。また、本発明の炭素繊維フェルトは、畝部分におけるフェルトの厚み方向に沿ってフェルトの厚み全体に亘るフェルト部分の嵩密度[嵩密度(畝部分)]が、溝部分における溝深さより深いフェルト部分の嵩密度[嵩密度(溝部分)]よりも高いため、炭素繊維フェルト表面に形成された溝部分が潰れにくく、溶融物質の流通を阻害しないと共に、ナトリウムイオンの移動が促進され、ナトリウム−硫黄電池の充放電効率を高めることができる。そのため、本発明の炭素繊維フェルトは、陽極集電材の材料として好適に使用できる。   In the carbon fiber felt of the present invention, a flow path of fluid such as molten sulfur is formed in the thickness direction of the felt by the groove portion formed on the surface. Further, the carbon fiber felt of the present invention is a felt part in which the bulk density of the felt part over the entire thickness of the felt along the thickness direction of the felt in the heel part [bulk density (ridge part)] is deeper than the groove depth in the groove part. Is higher than the bulk density [bulk density (groove part)], so that the groove part formed on the surface of the carbon fiber felt is not easily crushed, does not hinder the flow of the molten material, and promotes the movement of sodium ions. The charge / discharge efficiency of the battery can be increased. Therefore, the carbon fiber felt of the present invention can be suitably used as a material for the anode current collector.

本発明の炭素繊維フェルトの製造方法によれば、表裏での熱収縮率の制御や、炭素化工程での張力を制御しながら不活性雰囲気下で炭素化しているので、得られる炭素繊維フェルトの畝部分の嵩密度を高くでき、炭素繊維フェルト表面に形成される溝は潰れにくい。そのため、上記陽極集電材、及びその陽極集電材を有するナトリウム-硫黄蓄電池の材料として好適に使用できる炭素繊維フェルトを得ることができる。   According to the method for producing a carbon fiber felt of the present invention, since carbonization is performed in an inert atmosphere while controlling the thermal contraction rate on the front and back sides and controlling the tension in the carbonization process, The bulk density of the heel portion can be increased, and the grooves formed on the surface of the carbon fiber felt are not easily crushed. Therefore, it is possible to obtain a carbon fiber felt that can be suitably used as a material for the anode current collector and a sodium-sulfur storage battery having the anode current collector.

本発明の炭素繊維フェルトの一例であってフェルト表面における溝部分の形状が直線状である例を示す概念図であって、(A)は溝の長手方向に直交する面に沿った断面図であり、(B)は平面図である。FIG. 2 is a conceptual diagram showing an example of the carbon fiber felt of the present invention and an example in which the shape of the groove portion on the felt surface is a straight line, and FIG. Yes, (B) is a plan view. 本発明の炭素繊維フェルトの一例であってフェルト表面における溝部分の形状が直線状である例を示す概略平面図である。It is a schematic plan view which shows an example which is an example of the carbon fiber felt of this invention, and the shape of the groove part in a felt surface is linear. 本発明の炭素繊維フェルトの他の例であってフェルト表面における溝部分の形状が格子状である例を示す概略平面図である。It is a schematic plan view which shows the example which is another example of the carbon fiber felt of this invention, and the shape of the groove part in a felt surface is a grid | lattice form. 本発明の炭素繊維フェルトの更に他の例であってフェルト表面における溝部分の形状がダイヤ状である例を示す概略平面図である。It is a schematic plan view which shows the example which is another example of the carbon fiber felt of this invention, and the shape of the groove part in a felt surface is a diamond shape. 本発明の炭素繊維フェルトの更に他の例であってフェルト表面における溝部分の形状が波状である例を示す概略平面図である。It is a schematic plan view which shows another example of the carbon fiber felt of this invention, and shows the example where the shape of the groove part in a felt surface is a wave shape. 本発明の炭素繊維フェルトの一例において溝部分の断面形状を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove part in an example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove part. 本発明の炭素繊維フェルトの他の例において溝部分の断面形状を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove part in the other example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove part. 本発明の炭素繊維フェルトの更に他の例において溝部分の断面形状を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the cross-sectional shape of a groove part in the further another example of the carbon fiber felt of this invention, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove part. 本発明の炭素繊維フェルトを、ナトリウム-硫黄蓄電池内における円筒状の陽極集電材として陰極管と陽極管との間に取付けた時の一例を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows an example when the carbon fiber felt of this invention is attached between a cathode tube and an anode tube as a cylindrical anode current collection material in a sodium-sulfur storage battery, Comprising: It is orthogonal to the longitudinal direction of a groove part. It is sectional drawing along the surface to do. 本発明の炭素繊維フェルトを、ナトリウム-硫黄蓄電池内における円筒状の陽極集電材として陰極管と陽極管との間に取付けた時の他の例を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。FIG. 5 is a conceptual diagram showing another example when the carbon fiber felt of the present invention is attached between a cathode tube and an anode tube as a cylindrical anode current collector in a sodium-sulfur storage battery, and is a longitudinal direction of a groove portion. It is sectional drawing along the surface orthogonal to. 本発明の炭素繊維フェルトを、ナトリウム-硫黄蓄電池内における円筒状の陽極集電材として陰極管と陽極管との間に取付けた時の更に他の例を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。FIG. 6 is a conceptual diagram showing still another example when the carbon fiber felt of the present invention is attached between a cathode tube and an anode tube as a cylindrical anode current collector in a sodium-sulfur storage battery, wherein It is sectional drawing along the surface orthogonal to a direction. 本発明の炭素繊維フェルトの製造方法に原料として用いる、フェルトに切込みを入れた炭素繊維前駆体フェルトの一例を示す概念図であって、炭素繊維前駆体フェルトの表面に直交する面に沿った断面図である。It is a conceptual diagram which shows an example of the carbon fiber precursor felt which cut into the felt used as a raw material for the manufacturing method of the carbon fiber felt of this invention, Comprising: Section along a surface orthogonal to the surface of a carbon fiber precursor felt FIG. 本発明の炭素繊維フェルトの製造方法に原料として用いる、フェルトに切込みを入れた炭素繊維前駆体フェルトの他の例を示す概念図であって、炭素繊維前駆体フェルトの表面に直交する面に沿った断面図である。It is a conceptual diagram which shows the other example of the carbon fiber precursor felt which used the raw material for the manufacturing method of the carbon fiber felt of this invention, and cut the felt, Comprising: It is along the surface orthogonal to the surface of a carbon fiber precursor felt FIG. 畝部分、溝部分の嵩密度測定用試料の作製方法を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。It is a conceptual diagram which shows the preparation methods of the sample for a bulk density measurement of a collar part and a groove part, Comprising: It is sectional drawing along the surface orthogonal to the longitudinal direction of a groove part. ナトリウム-硫黄蓄電池の構造を示す概念図である。It is a conceptual diagram which shows the structure of a sodium-sulfur storage battery.

本発明の炭素繊維フェルトの一例を図1に示す。図1中、2は炭素繊維フェルトで、このフェルト2の片面には所定間隔で離れた複数(本図では5本)の畝部分4が、フェルト2の片面から外方に帯状に突出して形成されている。この畝部分4の帯の長さ方向に直交する断面は、矩形に形成されている。6は溝部分で、前記互いに隣接する畝部分4の間に、フェルト2の内方に向かって形成されている。   An example of the carbon fiber felt of the present invention is shown in FIG. In FIG. 1, reference numeral 2 denotes a carbon fiber felt, and a plurality of (5 in this figure) flange portions 4 spaced apart from each other by a predetermined interval are formed on one side of the felt 2 so as to protrude outward from the one side of the felt 2. Has been. The cross section perpendicular to the length direction of the band of the flange portion 4 is formed in a rectangular shape. A groove portion 6 is formed toward the inside of the felt 2 between the flange portions 4 adjacent to each other.

畝部分4におけるフェルトの厚み方向に沿ってフェルトの厚み全体に亘るフェルト部分の嵩密度[嵩密度(畝部分)]は、溝部分6の底壁8を構成するフェルトの嵩密度即ち溝部分6における溝深さより深いフェルト部分の嵩密度[嵩密度(溝部分)]の嵩密度より高い。本発明において、嵩密度(畝部分)は、嵩密度(溝部分)の1.05〜2倍であることが好ましい。   The bulk density of the felt portion over the entire thickness of the felt along the thickness direction of the felt in the heel portion 4 [bulk density (畝 portion)] is the bulk density of the felt constituting the bottom wall 8 of the groove portion 6, that is, the groove portion 6. The bulk density [bulk density (groove part)] of the felt part deeper than the groove depth at is higher than the bulk density. In the present invention, the bulk density (the ridge portion) is preferably 1.05 to 2 times the bulk density (the groove portion).

嵩密度(畝部分)を、嵩密度(溝部分)より高く構成することで、陽極集電材として陰極管と陽極管との間に組み込まれる時に、圧力で畝部分4が潰され難く、溝部分6が安定して確保できる。   By configuring the bulk density (the ridge portion) higher than the bulk density (the groove portion), the ridge portion 4 is not easily crushed by pressure when incorporated between the cathode tube and the anode tube as an anode current collector. 6 can be secured stably.

そのため、本発明の炭素繊維フェルトを用いる陽極集電材は、溶融活物質の流通を阻害しないと共に、ナトリウムイオンの移動が促進され、ナトリウム−硫黄電池の充放電効率を高めることができる。嵩密度の差は、用いる前駆体繊維又は耐炎繊維の比重の差や、混合する物質(混綿物質)の種類や量を調節することで制御できる。   Therefore, the anode current collector using the carbon fiber felt of the present invention does not hinder the flow of the molten active material, promotes the movement of sodium ions, and can increase the charge / discharge efficiency of the sodium-sulfur battery. The difference in bulk density can be controlled by adjusting the difference in specific gravity of the precursor fiber or flame resistant fiber to be used and the type and amount of the substance to be mixed (mixed cotton substance).

本発明の炭素繊維フェルトにおいては、畝部分4及び溝部分6をフェルト2の片面のみに有する炭素繊維フェルトの方が、これらをフェルト2の両面に有する炭素繊維フェルトよりも好ましい。陽極管の内周面との接触面積を広く確保でき、導電抵抗を低減でき、充放電効率を高めることができるためである。   In the carbon fiber felt of the present invention, the carbon fiber felt having the flange portion 4 and the groove portion 6 only on one side of the felt 2 is more preferable than the carbon fiber felt having these on both sides of the felt 2. This is because a wide contact area with the inner peripheral surface of the anode tube can be secured, the conductive resistance can be reduced, and the charge / discharge efficiency can be increased.

嵩密度(畝部分)は、0.1g/cm3以上が好ましく、0.1〜0.3g/cm3がより好ましい。0.1g/cm3未満の場合は、陰極管と陽極管との間に陽極集電材としてフェルトが組み込まれた時の圧力により、畝部分が潰れ、溝部分が閉塞しやすい傾向がある。 Bulk density (ridge portion), 0.1 g / cm 3 or more preferably, 0.1 to 0.3 g / cm 3 is more preferable. In the case of less than 0.1 g / cm 3 , the heel portion tends to be crushed and the groove portion tends to be closed due to the pressure when the felt is incorporated as the anode current collector between the cathode tube and the anode tube.

嵩密度(溝部分)は、0.05g/cm3以上が好ましく、0.05〜0.25g/cm3がより好ましい。0.05g/cm3未満の場合は、厚み方向の電気抵抗値が高く、電池の内部抵抗が高くなる傾向がある。 The bulk density (groove portion) is preferably 0.05 g / cm 3 or more, and more preferably 0.05 to 0.25 g / cm 3 . When it is less than 0.05 g / cm 3 , the electric resistance value in the thickness direction is high, and the internal resistance of the battery tends to be high.

嵩密度は、炭素繊維前駆体フェルト作製時のパンチング数、原料繊維となる前駆体繊維、特に耐炎繊維の比重、原料繊維に混合する物質(混綿物質)の種類や量により制御できる。   The bulk density can be controlled by the number of punching at the time of producing the carbon fiber precursor felt, the specific gravity of the precursor fiber as the raw fiber, particularly the flame resistant fiber, and the kind and amount of the substance (mixed cotton substance) mixed with the raw fiber.

本発明においてフェルト表面における溝部分の形態は、図2〜5に示すような、直線状、格子状、ダイヤ状、波状であることが好ましい。   In the present invention, the shape of the groove portion on the felt surface is preferably linear, grid, diamond, or wave as shown in FIGS.

本発明における溝部分の断面形状の例を、図6〜8に示す。図6は、フェルト2の内部に向かうに従って狭くなる断面V形状の溝部分を示す。図7は、断面が矩形の溝部分を示す。図8は、断面形状が逆台形の溝部分を示す。図2〜8において、4は畝部分であり、6は溝部分である。   The example of the cross-sectional shape of the groove part in this invention is shown to FIGS. FIG. 6 shows a groove portion having a V-shaped cross section that becomes narrower toward the inside of the felt 2. FIG. 7 shows a groove portion having a rectangular cross section. FIG. 8 shows a groove portion having an inverted trapezoidal cross section. 2-8, 4 is a ridge part and 6 is a groove part.

本発明の炭素繊維フェルトをナトリウム-硫黄蓄電池に取付けた例を、図9〜11に示す。炭素繊維フェルトは、円筒状の陽極集電材として陰極管と陽極管との間に挿入されている。図9は、図8の断面形状が逆台形の溝部分を有する炭素繊維フェルトを取付けた時の例を示す概念図であって、溝部分の長手方向に直交する面に沿った平面断面図である。図10は、図6の断面V形状の溝部分を有する炭素繊維フェルトを取付けた時の例を示す概念図であって、溝部分の長手方向に直交する面に沿った平面断面図である。図11は、図7の断面が矩形の溝部分を有する炭素繊維フェルトを取付けた時の例を示す概念図であって、溝部分の長手方向に直交する面に沿った平面断面図である。   The example which attached the carbon fiber felt of this invention to the sodium-sulfur storage battery is shown to FIGS. The carbon fiber felt is inserted between the cathode tube and the anode tube as a cylindrical anode current collector. FIG. 9 is a conceptual diagram illustrating an example when a carbon fiber felt having a groove portion with an inverted trapezoidal cross-sectional shape in FIG. 8 is attached, and is a plan sectional view along a plane orthogonal to the longitudinal direction of the groove portion. is there. FIG. 10 is a conceptual diagram illustrating an example when a carbon fiber felt having a groove portion having a V-shaped cross section in FIG. 6 is attached, and is a plan sectional view along a plane orthogonal to the longitudinal direction of the groove portion. FIG. 11 is a conceptual diagram showing an example when a carbon fiber felt having a groove portion having a rectangular cross section in FIG. 7 is attached, and is a plan sectional view along a plane perpendicular to the longitudinal direction of the groove portion.

図9〜11において12はナトリウム−硫黄電池であり、内側容器(陰極管)14を外側容器(陽極管)16内に中心軸を一致させて挿入されている。陰極管−陽極管間には陽極活物質の硫黄を含有した陽極集電材18としての炭素繊維フェルトがその内周面(図2〜9の炭素繊維フェルト2の上面)を陰極管14の外周面に接触させて巻かれている。フェルト18の外周面(図2〜9の炭素繊維フェルト2の下面)は陽極管16の内周面に接触している。   9 to 11, reference numeral 12 denotes a sodium-sulfur battery, in which an inner container (cathode tube) 14 is inserted into an outer container (anode tube) 16 with the central axis aligned. Between the cathode tube and the anode tube, the carbon fiber felt as the anode current collector 18 containing sulfur as the anode active material has its inner peripheral surface (the upper surface of the carbon fiber felt 2 in FIGS. 2 to 9) as the outer peripheral surface of the cathode tube 14. It is wound in contact with. The outer peripheral surface of the felt 18 (the lower surface of the carbon fiber felt 2 in FIGS. 2 to 9) is in contact with the inner peripheral surface of the anode tube 16.

陰極管14としては固体電解質のセラミック管が用いられ、その内側には陰極活物質のナトリウム20が貯留されている。ナトリウム20は、充電・放電時にイオン化され、固体電解質である陰極管を透過する。   As the cathode tube 14, a solid electrolyte ceramic tube is used, and sodium 20 as a cathode active material is stored inside the cathode tube 14. Sodium 20 is ionized during charging and discharging, and passes through a cathode tube that is a solid electrolyte.

電池の充電時には、陰極管14内側のナトリウム20がナトリウムイオンと電子に分かれ、陰極管−陽極管間部材の陽極集電材18としての炭素繊維フェルト内に進入し、陽極集電材18に含浸した陽極活物質としての溶融硫黄と反応して多硫化ソーダを生成する。   At the time of charging the battery, the sodium 20 inside the cathode tube 14 is divided into sodium ions and electrons, enters the carbon fiber felt as the anode current collector 18 of the cathode tube-anode tube member, and the anode impregnated in the anode current collector 18 It reacts with molten sulfur as an active material to produce sodium polysulfide.

図2〜8における溝6は、図9〜11においては溶融硫黄、多硫化ソーダ、ナトリウムイオンが移動する流路22として働く。また、図2〜8における畝部分4自体も炭素繊維から構成されている為、図9〜11においては陽極集電材18として機能し、反応可能な有効面積を低下させることがない。   The grooves 6 in FIGS. 2 to 8 function as flow paths 22 through which molten sulfur, sodium polysulfide, and sodium ions move in FIGS. Moreover, since the collar part 4 itself in FIGS. 2-8 is also comprised from the carbon fiber, in FIGS. 9-11, it functions as the anode current collection material 18, and does not reduce the effective area which can react.

本発明の炭素繊維フェルトにおいて溝幅方向を試験片の長手方向とする試験片について測定した剛軟度は、4000N・cm以下であり、3000N・cm以下が好ましく、500〜2500N・cmがより好ましい。   In the carbon fiber felt of the present invention, the bending resistance measured for the test piece having the groove width direction as the longitudinal direction of the test piece is 4000 N · cm or less, preferably 3000 N · cm or less, more preferably 500 to 2500 N · cm. .

剛軟度が4000N・cmを超える場合は、柔軟性が十分でなく陰極管と陽極管との間に陽極集電材としてフェルトを組み込む時に、フェルトと陰極管又は陽極管との間に空隙が発生して、これらの間の接触性が悪化する為、フェルトの柔軟性を高める成型工程が必要となる。そのため、フェルト組込み時の工程が複雑化するなど好ましくない。   When the bending resistance exceeds 4000 N · cm, the flexibility is not sufficient, and when a felt is incorporated as an anode current collector between the cathode tube and the anode tube, a gap is generated between the felt and the cathode tube or anode tube. And since the contact property between these deteriorates, the shaping | molding process which raises the softness | flexibility of a felt is needed. Therefore, the process at the time of felt integration is not preferable.

フェルト2の表面における溝幅は、0.5〜10mmが好ましく、0.7〜5mmがより好ましい。   The groove width on the surface of the felt 2 is preferably 0.5 to 10 mm, and more preferably 0.7 to 5 mm.

溝幅が0.5mm未満の場合は、柔軟性が十分でなく、陰極管と陽極管との間に陽極集電材としてフェルトを組み込む時に前記空隙が発生してフェルトと陰極管又は陽極管との接触性が悪化する。   When the groove width is less than 0.5 mm, the flexibility is not sufficient, and when the felt is incorporated as an anode current collector between the cathode tube and the anode tube, the gap is generated, and the felt and the cathode tube or anode tube Contactability deteriorates.

溝幅が10mmを超える場合は、後述する切込み(スリット)を利用して溝部分を形成する方法によっては作製が困難になる。   When the groove width exceeds 10 mm, it becomes difficult to manufacture depending on the method of forming the groove portion using a notch (slit) described later.

図6〜8に示す溝部分の深さ(t)は、フェルト厚み(T)を基準として、30〜90%が好ましく、40〜80%がより好ましい。   The depth (t) of the groove portion shown in FIGS. 6 to 8 is preferably 30 to 90%, more preferably 40 to 80% based on the felt thickness (T).

フェルト厚み(T)を基準とする溝部分の深さ(t)が30%未満の場合は、厚み方向への溶融硫黄の浸透性が十分でなく、充放電効率が低下する。更には、柔軟性が十分でなく、陰極管と陽極管との間に陽極集電材としてフェルトを組み込む時に空隙が発生してフェルトと陰極管又は陽極管との接触性が悪化する。   When the depth (t) of the groove portion based on the felt thickness (T) is less than 30%, the permeability of molten sulfur in the thickness direction is not sufficient, and the charge / discharge efficiency is lowered. Furthermore, the flexibility is not sufficient, and when a felt is incorporated as an anode current collector between the cathode tube and the anode tube, a gap is generated, and the contact between the felt and the cathode tube or anode tube is deteriorated.

フェルト厚み(T)を基準とする溝部分の深さ(t)が90%を超える場合は、強力が低減し、炭素化時の張力や、積層時の張力により破断する可能性がある為、好ましくない。溝部分の深さ(t)は、後述するスリットの深さにより制御できる。   If the depth (t) of the groove portion based on the felt thickness (T) exceeds 90%, the strength is reduced, and there is a possibility of breaking due to the tension during carbonization or the tension during lamination. It is not preferable. The depth (t) of the groove portion can be controlled by the depth of the slit described later.

溝ピッチ(並行する溝部分の中心間の距離)は、0.5〜50mmが好ましく、0.8〜50mmがより好ましい。   The groove pitch (distance between the centers of the parallel groove portions) is preferably 0.5 to 50 mm, and more preferably 0.8 to 50 mm.

溝ピッチが0.5mm未満の場合は、間隔が狭く、スリット加工できない。   When the groove pitch is less than 0.5 mm, the interval is narrow and slitting cannot be performed.

溝ピッチが50mmを超える場合は、厚み方向への溶融硫黄の浸透性が十分でなく、充放電効率が低下する。更には、柔軟性が十分でなく、円筒陰極管と陽極管との間に陽極集電材としてフェルトを組み込む時に空隙が発生してフェルトの陰極管や陽極管との接触性が悪化する。溝ピッチは、スリット刃の間隔等で制御できる。   When the groove pitch exceeds 50 mm, the permeability of the molten sulfur in the thickness direction is not sufficient, and the charge / discharge efficiency decreases. Furthermore, the flexibility is not sufficient, and when a felt is incorporated as an anode current collector between the cylindrical cathode tube and the anode tube, a gap is generated, and the contact of the felt with the cathode tube or anode tube is deteriorated. The groove pitch can be controlled by the interval of the slit blades.

溝部分の断面形状は、スリット刃の形状や工程張力で制御できる。   The cross-sectional shape of the groove portion can be controlled by the shape of the slit blade and the process tension.

本炭素繊維フェルトの厚み(T)は、11〜55mmであり、15〜25mmが好ましい。   The carbon fiber felt has a thickness (T) of 11 to 55 mm, preferably 15 to 25 mm.

炭素繊維フェルトの厚み(T)が11mm未満の場合は、溝部分が浅くなって溝部分における反応に寄与する表面積が小さくなり、惹いては炭素繊維フェルト自体の反応に寄与する表面積も小さくなる為、好ましくない。   When the thickness (T) of the carbon fiber felt is less than 11 mm, the groove portion becomes shallow and the surface area contributing to the reaction in the groove portion is reduced, and consequently the surface area contributing to the reaction of the carbon fiber felt itself is also reduced. It is not preferable.

炭素繊維フェルトの厚み(T)が55mmを超えると、システムが大きくなりすぎ、設計の自由度が下がる為、好ましくない。厚みは、フェルトの製造時における混綿物質の仕込み量(目付)やパンチング数により制御できる。   If the thickness (T) of the carbon fiber felt exceeds 55 mm, the system becomes too large, and the degree of freedom in design decreases, which is not preferable. The thickness can be controlled by the amount (weight per unit) of the mixed cotton material and the number of punching during the production of the felt.

畝部分、溝部分を有する本炭素繊維フェルト2の目付は、500〜5000g/m2が好ましく、1000〜3000g/m2がより好ましい。 Ridge portion, the basis weight of the carbon fiber felt 2 having a groove portion is preferably 500 to 5000 g / m 2, 1000 to 3000 g / m 2 is more preferable.

目付が500g/m2未満の場合は、反応に寄与する表面積が小さくなる為、好ましくない。 When the basis weight is less than 500 g / m 2 , the surface area contributing to the reaction becomes small, which is not preferable.

目付が5000g/m2を超える場合は、システムが大きくなりすぎ、設計の自由度が下がる為、好ましくない。目付は、原料物質(目付)の仕込み量やウェブの積層数により制御できる。 If the basis weight exceeds 5000 g / m 2 , the system becomes too large and the degree of design freedom is lowered, which is not preferable. The basis weight can be controlled by the amount of raw material (weight per unit) charged and the number of laminated webs.

厚み方向の電気抵抗値は1000mΩ/cm2以下が好ましく、500mΩ/cm2がより好ましい。 The electrical resistance value in the thickness direction is preferably 1000 mΩ / cm 2 or less, and more preferably 500 mΩ / cm 2 .

厚み方向の電気抵抗値が1000mΩ/cm2を超える場合は、フェルトを陽極集電材として使用したときに、電気抵抗が高く、充放電のロスが大きくなる為、好ましくない。厚み方向の電気抵抗値は、パンチング数や炭素化温度により制御できる。 When the electric resistance value in the thickness direction exceeds 1000 mΩ / cm 2 , when felt is used as the anode current collector, the electric resistance is high and the charge / discharge loss increases, which is not preferable. The electric resistance value in the thickness direction can be controlled by the punching number and the carbonization temperature.

畝部分、溝部分を有する本炭素繊維フェルトの嵩密度は、0.05〜0.30g/cm3が好ましい。嵩密度が0.05g/cm3未満の場合は、繊維間の接触点が十分でなく、電気抵抗値が高くなる。嵩密度が0.30g/cm3を超える場合はパンチング数が多すぎるので、この場合は繊維損傷がひどく強度が低下すると共に、単糸の脱落が多量に発生する等により好ましくない。 As for the bulk density of this carbon fiber felt which has a ridge part and a groove part, 0.05-0.30 g / cm < 3 > is preferable. When the bulk density is less than 0.05 g / cm 3 , the contact points between the fibers are not sufficient, and the electric resistance value becomes high. When the bulk density exceeds 0.30 g / cm 3 , the punching number is too large. In this case, the fiber damage is severely reduced and the strength is lowered.

嵩密度は、炭素繊維前駆体フェルト作製時のパンチング数、原料繊維となる前駆体繊維、特に耐炎繊維の比重、原料繊維に混合する物質(混綿物質)の種類や量により制御できる。   The bulk density can be controlled by the number of punching at the time of producing the carbon fiber precursor felt, the specific gravity of the precursor fiber as the raw fiber, particularly the flame resistant fiber, and the kind and amount of the substance (mixed cotton substance) mixed with the raw fiber.

溝部分の幅方向の断面積は1.5〜500mm2が好ましく、5〜100mm2がより好ましい。 Sectional area of the width direction of the groove portion is preferably 1.5~500mm 2, 5~100mm 2 is more preferable.

溝部分の幅方向の断面積が1.5mm2未満の場合は、厚み方向への溶融硫黄の浸透性が十分でなく、充放電効率が低下する。 When the cross-sectional area in the width direction of the groove portion is less than 1.5 mm 2 , the permeability of the molten sulfur in the thickness direction is not sufficient, and the charge / discharge efficiency decreases.

溝部分の幅方向の断面積が500mm2を超える場合は、本製造方法で作製することが困難である。上記断面積の範囲内であれば、溝部分の形状は特に指定されない。断面積は、溝幅、溝深さ、張力、フェルトの表裏熱収縮差、混綿物質の種類により制御できる。 When the cross-sectional area in the width direction of the groove portion exceeds 500 mm 2 , it is difficult to produce by this manufacturing method. If it is in the range of the said cross-sectional area, the shape of a groove part will not be specified in particular. The cross-sectional area can be controlled by the groove width, groove depth, tension, felt front / back heat shrinkage difference, and type of blended material.

フェルト断面積に対する溝断面積の割合は、1〜75%であり、好ましくは1.5〜60%であり、より好ましくは5〜50%である。   The ratio of the groove cross-sectional area to the felt cross-sectional area is 1 to 75%, preferably 1.5 to 60%, and more preferably 5 to 50%.

フェルト断面積に対する溝断面積の割合が1%未満の場合は、厚み方向への溶融硫黄の浸透性が十分でなく、充放電効率が低下する。   When the ratio of the groove cross-sectional area to the felt cross-sectional area is less than 1%, the permeability of the molten sulfur in the thickness direction is not sufficient, and the charge / discharge efficiency decreases.

フェルト断面積に対する溝断面積の割合が75%を超える場合は、電気抵抗値が大きくなること、必要な強度が確保できないこと等、不具合が生ずる。   When the ratio of the groove cross-sectional area to the felt cross-sectional area exceeds 75%, problems such as an increase in the electric resistance value and inability to secure a necessary strength occur.

[炭素繊維フェルトの製造方法]
本発明の炭素繊維フェルトの製造方法は特に限定されるものではなく、何れの方法で製造しても良いが、以下の方法が好ましい。
[Method for producing carbon fiber felt]
The method for producing the carbon fiber felt of the present invention is not particularly limited and may be produced by any method, but the following method is preferred.

(製造方法A)
この方法においては、先ず炭素繊維前駆体フェルトの片面又は両面に溝形成用の切込みが形成された炭素繊維前駆体フェルトを用意する。この炭素繊維前駆体フェルトの厚みは、12〜100mmであり、15〜70mmが好ましく、15〜50mmがより好ましい。次いで、切込み幅が拡がる方向に張力を付与しながら不活性雰囲気下で炭素化する。これにより本発明の炭素繊維フェルトが得られる。
(Production method A)
In this method, first, a carbon fiber precursor felt in which notches for forming grooves are formed on one side or both sides of the carbon fiber precursor felt is prepared. The carbon fiber precursor felt has a thickness of 12 to 100 mm, preferably 15 to 70 mm, and more preferably 15 to 50 mm. Next, carbonization is performed in an inert atmosphere while applying tension in a direction in which the cut width increases. Thereby, the carbon fiber felt of the present invention is obtained.

炭素繊維フェルトの製造原料としては、ポリアクリロニトリル(PAN)系耐炎繊維、又は、ピッチ系繊維、レーヨン繊維、セルロース等の従来公知の炭素繊維前駆体繊維が挙げられる。なお、各種製造原料の中でも、繊維の柔軟性や加工性の面から、PAN系耐炎繊維が好ましい。PAN系耐炎繊維とは、PAN系原料繊維を空気中で200〜400℃で酸化処理することによって得られる繊維である。   Examples of the raw material for producing the carbon fiber felt include polyacrylonitrile (PAN) flame resistant fibers, or conventionally known carbon fiber precursor fibers such as pitch fibers, rayon fibers, and cellulose. Among various production raw materials, PAN-based flame resistant fibers are preferable from the viewpoints of fiber flexibility and processability. The PAN-based flame resistant fiber is a fiber obtained by oxidizing a PAN-based raw fiber at 200 to 400 ° C. in the air.

先ず、炭素繊維前駆体繊維又は耐炎繊維を公知の方法でフェルト化する。フェルト化の方法はカードによって開繊し、多層化し、多層化されたウェブをニードルパンチを用いてフェルト化する方法があるが、フェルトにする方法であればこの方法に限定されない。   First, the carbon fiber precursor fiber or the flame resistant fiber is felted by a known method. As a felting method, there is a method in which a card is opened and multilayered, and the multilayered web is felted using a needle punch. However, the felting method is not limited to this method as long as the felt is used.

また、フェルトの表裏において熱収縮の差を付ける為に、異なった種類、量の原料繊維等からなるウェブを多層積層してフェルト化したり、異なった種類、量の原料繊維等を混合してウェブを作製し、フェルト化しても良い。   Also, in order to make a difference in heat shrinkage between the front and back of the felt, webs made of different types and amounts of raw fibers are laminated in layers to make a felt, or different types and amounts of raw fibers are mixed to create a web. May be made and felted.

次に、前記のようにして製造したフェルトに、スリット刃などを用いて切込み(スリット)を入れる。   Next, the felt produced as described above is cut (slit) using a slit blade or the like.

図12は、本発明の炭素繊維フェルトの製造に用いるフェルトを示す。このフェルトは均一に形成されている。フェルト32には切込み34が形成されている。   FIG. 12 shows a felt used for producing the carbon fiber felt of the present invention. This felt is formed uniformly. A cut 34 is formed in the felt 32.

切込み34が形成されていないプレーン層38と、切込み34を形成されているスリット層36とからなるフェルト32は、切込み幅が拡がる方向に張力S、Rを付与しながら不活性雰囲気下で炭素化される。この場合は、切込み方向に直角方向である。   The felt 32 composed of the plain layer 38 in which the notches 34 are not formed and the slit layer 36 in which the notches 34 are formed is carbonized under an inert atmosphere while applying tensions S and R in the direction in which the notch width increases. Is done. In this case, the direction is perpendicular to the cutting direction.

張力は、100N/m以下が好ましく、2〜100N/mがより好ましく、3〜50N/mが特に好ましい。2N/m以上の場合は、目標とする溝幅が得られ易い。100N/mを超える場合は、張力により変形(ウネリや折れ目)が発生し、得られる本発明の炭素繊維フェルトは電極として使用できない。   The tension is preferably 100 N / m or less, more preferably 2 to 100 N / m, and particularly preferably 3 to 50 N / m. In the case of 2 N / m or more, a target groove width is easily obtained. When it exceeds 100 N / m, deformation (undel or crease) occurs due to tension, and the obtained carbon fiber felt of the present invention cannot be used as an electrode.

(製造方法B)
図13は、本発明の炭素繊維フェルトの他の製造方法を示す説明図である。
(Production method B)
FIG. 13 is an explanatory view showing another method for producing the carbon fiber felt of the present invention.

この方法においては、先ず炭素化する際に熱収縮する低収縮層42を用意する。次いで、低収縮層42よりも炭素化する際の熱収縮率が高い高収縮層44を低収縮層42に積層して一体化する。一体化はパンチング等による。   In this method, first, a low shrinkage layer 42 that is thermally shrunk when carbonized is prepared. Next, a high shrinkage layer 44 having a higher thermal shrinkage rate when carbonized than the low shrinkage layer 42 is laminated and integrated with the low shrinkage layer 42. Integration is by punching.

その後、切込み34を形成する。この切込みを形成した部分はスリット層36となり、切込みを形成していない部分はプレーン層38になる。この切込みを形成したフェルトを張力を負荷せずに又は所定の張力下で炭素化すると、低収縮層42と高収縮層44との炭素化時の収縮率の違いに基いて、切込み34の切込み幅が広がり、溝部分を自然に形成する。   Then, the notch 34 is formed. The portion where the cut is formed becomes the slit layer 36, and the portion where the cut is not formed becomes the plane layer 38. When the felt in which the cut is formed is carbonized without applying a tension or under a predetermined tension, the cut of the cut 34 is made based on the difference in shrinkage rate between the low shrinkage layer 42 and the high shrinkage layer 44 at the time of carbonization. The width widens and the groove part is formed naturally.

この場合、高収縮層と低収縮層とからなる炭素繊維前駆体フェルトにおいて溝部分を形成する為の張力は、100N/m以下が好ましく、0.05〜100N/mがより好ましく、1〜50N/mが特に好ましい。100N/mを超える場合には、焼成時に延伸によりウネリが生じ、外観不良となる為、好ましくない。   In this case, the tension for forming the groove portion in the carbon fiber precursor felt composed of the high shrinkage layer and the low shrinkage layer is preferably 100 N / m or less, more preferably 0.05 to 100 N / m, and more preferably 1 to 50 N. / M is particularly preferred. When it exceeds 100 N / m, undulation is generated by stretching during firing, resulting in poor appearance.

炭素繊維前駆体フェルトにおいて、低収縮層と高収縮層との熱収縮差は、400℃において、2%以上が好ましく、5〜50%がより好ましい。熱収縮差が2%未満の場合は、無張力下で炭素化した場合、溝形成が不十分である。   In the carbon fiber precursor felt, the thermal shrinkage difference between the low shrinkage layer and the high shrinkage layer is preferably 2% or more, more preferably 5 to 50% at 400 ° C. When the heat shrinkage difference is less than 2%, groove formation is insufficient when carbonized under no tension.

高収縮層の作製方法としては、主原料の耐炎繊維として低比重の耐炎繊維を用いる方法、主原料の耐炎繊維にそれより低比重の耐炎繊維を混綿する方法、又は、ポリビニルアルコール(PVA)、ポリエステル(PET)、ポリプロピレン(PP)、アクリル、セルロース等の有機繊維や天然繊維などの高収縮繊維(混綿物質)を主原料の耐炎繊維に混綿する方法などで、高収縮層を形成することができる。   As a method for producing the high shrinkage layer, a method using a flame resistant fiber having a low specific gravity as the flame resistant fiber of the main material, a method of blending a flame resistant fiber having a lower specific gravity into the flame resistant fiber of the main material, or polyvinyl alcohol (PVA), A high shrinkage layer can be formed by a method of blending high shrinkage fibers (blend material) such as organic fibers such as polyester (PET), polypropylene (PP), acrylic, and cellulose, and natural fibers into a flame resistant fiber as a main raw material. it can.

なかでも、繊維が柔らかく交絡処理が容易であることから、有機繊維や天然繊維を用いることが好ましく、特に炭素化時の残渣の少ないポリビニルアルコール(PVA)がより好ましい。耐炎繊維の比重は、製造時の処理温度や処理時間により制御できる。収縮量は、低比重の耐炎繊維量や高収縮繊維の含有量により制御できる。   Among these, organic fibers and natural fibers are preferably used because the fibers are soft and easy to be entangled, and polyvinyl alcohol (PVA) is particularly preferable because it has little residue during carbonization. The specific gravity of the flame resistant fiber can be controlled by the treatment temperature and treatment time during production. The amount of shrinkage can be controlled by the amount of low specific gravity flame resistant fiber and the content of high shrinkage fiber.

低収縮層は、主として比重が1.38を超える耐炎繊維を使用する方法により形成できる。熱収縮率の差が2%以上確保できれば、いかなる方法で作製しても良い。   The low shrinkage layer can be formed mainly by a method using flame resistant fibers having a specific gravity exceeding 1.38. Any method may be used as long as the difference in heat shrinkage rate can be 2% or more.

また、本発明の2つの炭素繊維フェルトの製造方法(製造方法A及びB)を組み合わせてもよい。   Moreover, you may combine the manufacturing method (manufacturing method A and B) of the two carbon fiber felts of this invention.

形成される溝のフェルト表面における形態は、直線状、格子状、ダイヤ状、波状があり、これらの形状はスリット刃の形状等で制御できる。   The form of the groove formed on the felt surface includes a straight line shape, a lattice shape, a diamond shape, and a wave shape, and these shapes can be controlled by the shape of the slit blade.

耐炎繊維の密度は特に限定されるものではないが、1.33〜1.45g/cm3であることが好ましい。耐炎繊維の密度が1.33g/cm3未満の場合は、炭素化時の収縮が大きく、工程が不安定になり易い傾向がある。耐炎繊維の密度が1.45g/cm3を超える場合は、繊維が脆く、フェルト加工等の交絡処理時に脱落が多く、加工性が低下する傾向にある。 The density of the flame resistant fiber is not particularly limited, but is preferably 1.33-1.45 g / cm 3 . When the density of the flame resistant fiber is less than 1.33 g / cm 3 , the shrinkage during carbonization is large and the process tends to become unstable. When the density of the flame resistant fiber exceeds 1.45 g / cm 3 , the fiber is fragile, and often falls during confounding treatment such as felt processing, so that the workability tends to be lowered.

原料繊維の繊度は、原料繊維が炭素繊維前駆体繊維の場合、0.1〜5.0dtexであることが好ましく、0.5〜3.5dtexであることがより好ましく、1.0〜3.3dtexが特に好ましい。炭素繊維前駆体の繊度が0.1dtex未満の場合は、開繊性が悪く、均質な混合が難しい。炭素繊維前駆体の繊度が5.0dtexを超える場合は、強度の高いフェルトが得られない。また、繊維間の接点が低減し、炭素化後の電気抵抗値が高くなる。   When the raw fiber is a carbon fiber precursor fiber, the fineness of the raw fiber is preferably 0.1 to 5.0 dtex, more preferably 0.5 to 3.5 dtex, and 1.0 to 3. 3 dtex is particularly preferred. When the fineness of the carbon fiber precursor is less than 0.1 dtex, the spreadability is poor and uniform mixing is difficult. When the fineness of the carbon fiber precursor exceeds 5.0 dtex, a high strength felt cannot be obtained. Moreover, the contact between fibers decreases and the electrical resistance value after carbonization becomes high.

原料繊維の中でも特にPAN系耐炎繊維の場合、その繊度は0.5〜3.5dtexであることが好ましく、1.0〜3.3dtexがより好ましい。   Among the raw material fibers, in particular, in the case of a PAN-based flame resistant fiber, the fineness is preferably 0.5 to 3.5 dtex, and more preferably 1.0 to 3.3 dtex.

本発明の炭素繊維前駆体フェルトに用いる炭素繊維前駆体としては、繊維長が30〜75mm、繊度が0.5〜3.5dtex、クリンプ数4〜20ヶ/2.54cm、クリンプ率4〜20%に加工したものが好ましい。   The carbon fiber precursor used in the carbon fiber precursor felt of the present invention has a fiber length of 30 to 75 mm, a fineness of 0.5 to 3.5 dtex, a crimp number of 4 to 20 pieces / 2.54 cm, and a crimp rate of 4 to 20 % Processed into a preferable percentage.

フェルト加工等の交絡処理は、ニードルパンチ方法が好ましい。交絡処理回数が50回/cm2未満の場合は、交絡処理回数が少なく、強度が低くなる。また厚み方向の電気抵抗値が高くなる。交絡処理回数が2500回/cm2を超える場合は、交絡処理による繊維への損傷が大きく、脱落毛羽などが大量に発生する虞がある為、好ましくない。 The entanglement process such as felting is preferably a needle punch method. When the number of entanglement processes is less than 50 times / cm 2 , the number of entanglement processes is small and the strength is low. Moreover, the electrical resistance value in the thickness direction increases. When the number of entanglement treatments exceeds 2500 times / cm 2 , damage to the fiber due to the entanglement treatment is large, and a large amount of falling fluff may occur, which is not preferable.

作製された炭素繊維前駆体フェルトの厚みは、12〜100mmであり、15〜70mmが好ましく、15〜50mmがより好ましい。   The produced carbon fiber precursor felt has a thickness of 12 to 100 mm, preferably 15 to 70 mm, and more preferably 15 to 50 mm.

以上のように炭素繊維前駆体フェルトを作製した後、無張力又は所定の張力下でこれを炭素化処理することで、溝部分を有する炭素繊維フェルトが得られる。   After producing the carbon fiber precursor felt as described above, the carbon fiber felt having a groove portion is obtained by subjecting the carbon fiber precursor felt to carbonization under no tension or a predetermined tension.

炭素化処理は、製造方法A、B共に、炭素繊維前駆体フェルトを不活性雰囲気下、最高温度を1300〜2300℃にして、0.5〜10分間焼成することにより行う。好ましくは、第1炭素化処理と第2炭素化処理との2段階で行う。その場合、第1炭素化処理は、交絡処理後の炭素繊維前駆体フェルトを、不活性雰囲気下300〜1000℃で焼成する。第2炭素化処理は、第1炭素化処理された炭素繊維前駆体フェルトを、不活性雰囲気下、最高温度1300〜2300℃にして0.5〜10分間焼成して行うことが好ましい。この第2炭素化処理時の最高温度は、1400℃〜2300℃の範囲であることがより好ましい。   The carbonization treatment is performed in both production methods A and B by firing the carbon fiber precursor felt under an inert atmosphere at a maximum temperature of 1300 to 2300 ° C. for 0.5 to 10 minutes. Preferably, the first carbonization treatment and the second carbonization treatment are performed in two stages. In that case, a 1st carbonization process bakes the carbon fiber precursor felt after a confounding process at 300-1000 degreeC by inert atmosphere. The second carbonization treatment is preferably performed by firing the carbon fiber precursor felt subjected to the first carbonization treatment at a maximum temperature of 1300 to 2300 ° C. in an inert atmosphere for 0.5 to 10 minutes. As for the maximum temperature at the time of this 2nd carbonization process, it is more preferable that it is the range of 1400 degreeC-2300 degreeC.

炭素化処理時の最高温度が1300℃未満の場合は、得られる炭素繊維フェルトの炭素含有率が93質量%以上にならない。かかる炭素繊維フェルトは、電気伝導性が低く、良好な燃料電池性能を提供できないため好ましくない。炭素化処理時の最高温度が2300℃を超える場合は、炭素繊維フェルトが剛直となって、強度が低下し、更には、炭素微粉末が発生する等の不具合が生ずる為、好ましくない。   When the maximum temperature at the time of carbonization is less than 1300 ° C., the carbon content of the obtained carbon fiber felt is not 93% by mass or more. Such carbon fiber felt is not preferred because it has low electrical conductivity and cannot provide good fuel cell performance. When the maximum temperature during the carbonization treatment exceeds 2300 ° C., the carbon fiber felt becomes stiff, the strength is lowered, and furthermore, problems such as the generation of fine carbon powder occur.

炭素繊維フェルトの炭素含有率は93質量%以上が好ましく、95質量%以上がより好ましい。炭素含有率が93質量%未満の場合は、電気抵抗が高く、電池に組み込んだ場合、充放電時に抵抗熱が多量に発生して電力のロスとなる為、電池効率が低下する傾向がある。   The carbon content of the carbon fiber felt is preferably 93% by mass or more, and more preferably 95% by mass or more. When the carbon content is less than 93% by mass, the electric resistance is high, and when incorporated in a battery, a large amount of resistance heat is generated during charge and discharge, resulting in a loss of power, and thus the battery efficiency tends to decrease.

炭素繊維フェルトに用いられる炭素繊維の単繊維直径は5〜20μmであることが好ましく、6〜15μmがより好ましい。炭素繊維の単繊維直径が5μm未満の場合は、単繊維直径が細すぎて、カード工程などの加工性が悪く、また繊維の強力が低いため、炭素繊維フェルトから炭素繊維が脱落しやすくなる虞がある。炭素繊維の単繊維直径が20μmを超える場合は、繊維間の接触点が減少することで電気抵抗値が上昇して、充放電効率が低下しやすくなる。更に、炭素化後の繊維が剛直であり、脆くなる為、炭素繊維微粉末が多量に発生しやすくなる虞がある。   It is preferable that the single fiber diameter of the carbon fiber used for carbon fiber felt is 5-20 micrometers, and 6-15 micrometers is more preferable. When the single fiber diameter of the carbon fiber is less than 5 μm, the single fiber diameter is too thin, the processability such as the carding process is poor, and the strength of the fiber is low, so that the carbon fiber may be easily dropped from the carbon fiber felt. There is. When the single fiber diameter of the carbon fiber exceeds 20 μm, the contact point between the fibers decreases, the electrical resistance value increases, and the charge / discharge efficiency tends to decrease. Furthermore, since the carbonized fiber is rigid and brittle, a large amount of fine carbon fiber powder may be easily generated.

このようにして得られる本発明の炭素繊維フェルトは、例えば導電性と通液性などが必要とされる集電材や、電極や、燃料電池用のガス拡散層や、コンポジットや、摺動材などの強化繊維としても、適用できる。中でも、ナトリウム-硫黄蓄電池の陽極集電材、その他導電性と通液性、通水性などが必要とされる構造材として好ましく用いることができる。   The carbon fiber felt of the present invention thus obtained is, for example, a current collector that requires conductivity and liquid permeability, an electrode, a gas diffusion layer for a fuel cell, a composite, a sliding material, etc. It can also be applied as a reinforcing fiber. Among them, it can be preferably used as an anode current collector for sodium-sulfur storage batteries and other structural materials that require electrical conductivity, liquid permeability, water permeability, and the like.

また、ナトリウム-硫黄電池の陽極集電材として用いる場合には、溝形成面に更にガラス繊維をパンチングして用いることもできる。   Further, when used as an anode current collector of a sodium-sulfur battery, glass fibers can be further punched on the groove forming surface.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、操作条件の評価、各物性の測定は次の方法によった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, evaluation of operation conditions and measurement of each physical property were based on the following methods.

[溝深さ(t)]
溝形成面において、形成された溝の最深部を深さとした。
[Groove depth (t)]
On the groove forming surface, the deepest portion of the formed groove was defined as the depth.

[溝幅]
フェルト表面での溝の広さを幅とした。
[Groove width]
The width of the groove on the felt surface was taken as the width.

[溝ピッチ]
並行する隣り合った溝について、溝幅方向に沿って溝中心部間の距離を測定し、これを溝ピッチとした。
[Groove pitch]
About the adjacent groove | channel adjacent in parallel, the distance between groove | channel center parts was measured along the groove width direction, and this was made into groove pitch.

[溝断面積]
溝の長手方向に直交する裁断面で、10cm長さにフェルトのサンプルを切り出し、n=5の溝断面を、その断面形状に応じて三角形、台形、長方形近似し、n=5で個々の溝の断面積を算出した。それら断面積の平均値を求め、これを溝断面積とした。
[Groove cross section]
Cut a felt sample to a length of 10 cm with a cross section orthogonal to the longitudinal direction of the groove, and approximate the groove cross section of n = 5 to a triangle, trapezoid, or rectangle according to the cross sectional shape, and each groove with n = 5 The cross-sectional area of was calculated. The average value of the cross-sectional areas was determined and this was used as the groove cross-sectional area.

[溝断面積比]
溝の長手方向に直交する裁断面で、10cm長さにフェルトのサンプルを切り出し、n=5の溝断面を、その断面形状に応じて三角形、台形、長方形近似し、n=5で算出した個々の溝の断面積について総和を求め、この総和を、上記溝の長手方向に直交する裁断面の面積[10cm長さ×厚み(T)]で除したものを溝断面積比とした。
[Groove cross-sectional area ratio]
A felt sample was cut out to a length of 10 cm with a cut surface orthogonal to the longitudinal direction of the groove, and an n = 5 groove cross section was approximated to a triangle, trapezoid, or rectangle according to the cross sectional shape, and each calculated with n = 5 The total sum of the cross-sectional areas of the grooves was determined, and the total sum was divided by the area [10 cm length × thickness (T)] of the cut surface perpendicular to the longitudinal direction of the grooves.

[目付]
サンプルとして20cm角(0.2m角)のフェルトを3枚切り出し、これを105℃、1時間乾燥した後の重量を、サンプル面積(0.2m×0.2m=0.04m2)で除したものの3枚の平均値を目付とした。
[Body weight]
Three 20 cm square (0.2 m square) felts were cut out as samples, and the weight after drying this at 105 ° C. for 1 hour was divided by the sample area (0.2 m × 0.2 m = 0.04 m 2 ). The average value of three items was taken as the basis weight.

[熱収縮率]
縦20cm×横20cmの耐炎繊維フェルトを切り出し、窒素雰囲気下で400℃で30分間熱処理した時の、縦横の寸法変化量を元の長さで除したものの平均値を熱収縮率(400℃)とした。
[Heat shrinkage]
Heat-shrinkage ratio (400 ° C) is the average value of the length-width and dimensional-change amount divided by the original length when heat-resistant fiber felt of 20cm length x 20cm width is cut out and heat-treated at 400 ° C for 30 minutes in a nitrogen atmosphere. It was.

[フェルト厚み(T)]
シックネスゲージ(6.9kPa)を用いて厚みを測定した。畝部分の幅方向に沿って5点厚みを測定した。測定した厚みの平均値をフェルト厚み(T)とした。
[Felt thickness (T)]
The thickness was measured using a thickness gauge (6.9 kPa). Five-point thickness was measured along the width direction of the heel part. The average value of the measured thickness was defined as felt thickness (T).

[嵩密度]
図14は、畝部分、溝部分の嵩密度測定用試料の作製方法の一例を示す概念図であって、溝部分の長手方向に直交する面に沿った断面図である。この図14では、溝部分の形状が断面V形状である図6の例に沿って説明する。図7の例の断面矩形、図8の例の断面逆台形、その他の溝形状の炭素繊維フェルトについても、図14の例と同様の嵩密度測定用試料の作製方法を使用することができる。
[The bulk density]
FIG. 14 is a conceptual diagram showing an example of a method for producing a sample for measuring the bulk density of the flange portion and the groove portion, and is a cross-sectional view along a plane perpendicular to the longitudinal direction of the groove portion. In FIG. 14, description will be made along the example of FIG. For the rectangular cross section of the example of FIG. 7, the inverted trapezoid of the cross section of the example of FIG. 8, and other groove-shaped carbon fiber felts, the same method for preparing a sample for measuring bulk density as in the example of FIG. 14 can be used.

図14中、2は炭素繊維フェルトであり、上面に帯状に外方に突出する複数の畝部分4と、複数の畝部分4の間に形成される断面V形状の溝部分6とからなる凹凸形状を有する。   In FIG. 14, reference numeral 2 denotes a carbon fiber felt, which is an uneven surface comprising a plurality of flange portions 4 protruding outward in a band shape on the upper surface and a groove portion 6 having a V-shaped cross section formed between the plurality of flange portions 4. Has a shape.

切出し箇所は、畝部分4の上端面において、畝部分4と溝部分6との境界線Bに沿って、上端面に直交するように切り出し、これら切出し片4p、6pを、畝部分、溝部分の嵩密度測定用試料とした。   The cut-out location is cut out at the upper end surface of the flange portion 4 along the boundary line B between the flange portion 4 and the groove portion 6 so as to be orthogonal to the upper end surface, and these cut pieces 4p and 6p are cut into the flange portion and the groove portion. The bulk density measurement sample was used.

前記試料を用いて測定した厚みと目付から、それぞれ嵩密度(畝部分)、嵩密度(溝部分)を算出した。n=20の算出値を平均して、それぞれ平均嵩密度を求めた。   From the thickness and basis weight measured using the sample, the bulk density (the ridge portion) and the bulk density (the groove portion) were calculated, respectively. The calculated values of n = 20 were averaged to obtain the average bulk density.

[厚み方向の電気抵抗値]
50mm角のサンプルを切り出し、そのサンプルを2枚の50mm角(厚み10mm)の金メッキした電極で、全面接触するように挟み、サンプルの厚み方向に10kPaの荷重をかけたときの、厚み方向の電気抵抗値を測定し、電極面積で除して単位面積あたりの電気抵抗値を求めた。
[Electrical resistance value in the thickness direction]
A 50 mm square sample was cut out, and the sample was sandwiched between two 50 mm square (10 mm thick) gold-plated electrodes so that they were in full contact with each other, and a 10 kPa load was applied in the thickness direction of the sample. The resistance value was measured and divided by the electrode area to obtain the electric resistance value per unit area.

[剛軟度]
溝幅方向が試験片の長手方向となるように、2cm×約15cmの大きさでフェルトから試験片を切り出し、5枚の試験片を得た。試験長を10cmとなるようにセットし、たわみを測定した。たわみは、両面を測定した値の平均値とした。測定は、JIS-L-1096剛軟性 B法(スライド法)に準拠し、以下
剛軟度(N・cm)=WL4/8σ
W:試験片の単位面積当たりの重力(N/cm2
L:試験片の長さ;10cm
σ:試験片のたわみ(cm)
の数式より求めた。
[Bending softness]
The test piece was cut out from the felt with a size of 2 cm × about 15 cm so that the groove width direction was the longitudinal direction of the test piece, and five test pieces were obtained. The test length was set to 10 cm and the deflection was measured. Deflection was taken as the average of the values measured on both sides. The measurement is based on JIS-L-1096 Bending Softness Method B (Slide Method), and the following bending strength (N · cm) = WL 4 / 8σ.
W: Gravity per unit area of the specimen (N / cm 2 )
L: Length of test piece; 10 cm
σ: Deflection of specimen (cm)
It calculated | required from the numerical formula.

[実施例1]
高収縮層として、ポリビニルアルコール(PVA)ステープル20質量%を、炭素繊維前駆体としてPAN系耐炎繊維(OPF)ステープル(繊維長51mm、クリンプ率10%、クリンプ数4ヶ/cm)に混合し、目付200g/m2のPVA混綿PAN系耐炎繊維ウェッブを作製した。これを8枚積層させ、スリット層用のウェッブ積層体を得た。
[Example 1]
As a high shrinkage layer, 20% by mass of polyvinyl alcohol (PVA) staple is mixed with PAN-based flame resistant fiber (OPF) staple (fiber length 51 mm, crimp rate 10%, number of crimps 4 / cm) as a carbon fiber precursor, A PVA blended cotton PAN flame resistant fiber web having a basis weight of 200 g / m 2 was produced. Eight of these were laminated | stacked and the web laminated body for slit layers was obtained.

低収縮層として、目付200g/m2のPAN系耐炎繊維ウェッブを作製した。これを7枚積層させ、プレーン層用のウェッブ積層体を得た。 As the low shrinkage layer, a PAN-based flame resistant fiber web having a basis weight of 200 g / m 2 was prepared. Seven of these were laminated to obtain a web laminated body for a plain layer.

スリット層用のウェッブ積層体と、プレーン層用のウェッブ積層体とを積層し、1000回/cm2でニードルパンチを行い、表裏の収縮差を有する炭素繊維前駆体フェルトを作製した。 A web laminate for the slit layer and a web laminate for the plane layer were laminated, and needle punching was performed at 1000 times / cm 2 to produce a carbon fiber precursor felt having a difference in shrinkage between the front and back sides.

この炭素繊維前駆体フェルトの高収縮層側に、5mmピッチ、15mm深さのスリット処理を実施した。その後、700℃で、スリットによる切込面に直交する方向に10N/mの張力を付与しながら、10分間で前炭素化処理した後、1800℃、3分間で炭素化し、高収縮層側の表面に溝部分が形成された炭素繊維フェルトを得た。   A slit treatment with a pitch of 5 mm and a depth of 15 mm was performed on the highly shrinkable layer side of the carbon fiber precursor felt. Thereafter, pre-carbonization treatment was performed for 10 minutes at 700 ° C. while applying a tension of 10 N / m in a direction orthogonal to the slit cutting surface, and then carbonization was performed at 1800 ° C. for 3 minutes. A carbon fiber felt having a groove formed on the surface was obtained.

[実施例2〜4]
PVAを、表1に記載の混綿物質に変更した以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Examples 2 to 4]
A carbon fiber felt was produced in the same manner as in Example 1 except that PVA was changed to the mixed cotton material shown in Table 1.

[実施例5]
混綿物質を使用せずに耐炎繊維フェルト単味で、表裏の収縮差を有さない炭素繊維前駆体フェルトを作製し、焼成時の張力を20N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 5]
The same as in Example 1 except that a carbon fiber precursor felt that does not have a shrinkage difference between the front and back sides is prepared without using a mixed cotton substance, and the tension during firing is 20 N / m. Carbon fiber felt was produced by the method.

[実施例6]
焼成時の張力を0N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 6]
A carbon fiber felt was produced in the same manner as in Example 1 except that the tension during firing was 0 N / m.

[実施例7]
高収縮層において、目付400g/m2のPVA混綿PAN系耐炎繊維ウェッブ6枚積層させた上に、目付350g/m2のPAN系耐炎繊維ウェッブ2枚積層させた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 7]
In the high shrinkage layer, the same as Example 1 except that 6 PVA blended cotton PAN flame resistant fiber webs having a basis weight of 400 g / m 2 were laminated and 2 PAN flame resistant fiber webs having a basis weight of 350 g / m 2 were laminated. A carbon fiber felt was prepared by the method described above.

[実施例8]
高収縮層において、収縮の大きい低比重耐炎繊維のみを用いた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 8]
A carbon fiber felt was produced in the same manner as in Example 1 except that only the low specific gravity flame resistant fiber having large shrinkage was used in the high shrinkage layer.

[比較例1]
炭素化処理用の炭素繊維前駆体フェルトとして、表裏の収縮差を有さず、スリット処理を施していない炭素繊維前駆体単体フェルトを用いた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Comparative Example 1]
A carbon fiber felt is produced in the same manner as in Example 1 except that a carbon fiber precursor felt for carbonization treatment that does not have a difference in shrinkage between the front and back sides and that is not subjected to slit treatment is used. Was made.

[比較例2]
溝付け処理用の原料炭素繊維前駆体フェルトとして、表裏の収縮差を有さない炭素繊維前駆体単体フェルトを用い、溝幅1mm、溝深さ15mm、溝ピッチ6.5mmとなるように作製したプレス板にて、前記原料炭素繊維前駆体フェルトに、200℃、4.9MPa(50kgf/cm2)でヒートプレスを施し、溝付き炭素繊維前駆体フェルトを得た。それ以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Comparative Example 2]
As a raw material carbon fiber precursor felt for grooving treatment, a carbon fiber precursor simple felt having no front and back shrinkage differences was used, and the groove width was 1 mm, the groove depth was 15 mm, and the groove pitch was 6.5 mm. The raw carbon fiber precursor felt was subjected to heat press at 200 ° C. and 4.9 MPa (50 kgf / cm 2 ) with a press plate to obtain a grooved carbon fiber precursor felt. Otherwise, a carbon fiber felt was produced in the same manner as in Example 1.

[比較例3]
炭素化処理用の炭素繊維前駆体フェルトとして、表裏の収縮差を有さない炭素繊維前駆体単体フェルトを用い、炭素化時に張力を付与しなかった以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Comparative Example 3]
As a carbon fiber precursor felt for carbonization treatment, a carbon fiber precursor simple felt that does not have a difference in shrinkage between the front and back sides was used, and carbon was applied in the same manner as in Example 1 except that no tension was applied during carbonization. A fiber felt was prepared.

表1、2に示すように、実施例1〜8は、電気抵抗値と共に剛軟度が低い為、ナトリウム-硫黄蓄電池(NAS電池)用陽極集電材を用いた場合、流路により溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れ、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Tables 1 and 2, since Examples 1 to 8 have low resistance to bending as well as electrical resistance value, when an anode current collector for sodium-sulfur storage battery (NAS battery) is used, The material uniformly flowed into the carbon fiber felt of the anode current collector, and a carbon fiber felt showing good results was obtained.

比較例1は、剛軟度が高く、NAS電池用陽極集電材として使用する為に、円筒管にセットする際に、空隙が発生し、良好な充放電効率を得ることができなかった。   In Comparative Example 1, since the bending resistance was high and it was used as an anode current collector for NAS battery, voids were generated when it was set in a cylindrical tube, and good charge / discharge efficiency could not be obtained.

比較例2は、プレスにより溝部分を形成させた結果、嵩密度(畝部分)が嵩密度(溝部分)よりも低下し、セルに組んだ際に畝部分が潰れ、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率が低下する結果となった。   In Comparative Example 2, as a result of forming the groove portion by pressing, the bulk density (the ridge portion) is lower than the bulk density (the groove portion), the ridge portion is crushed when assembled in the cell, and the molten active material becomes the anode. As a result, the current did not flow uniformly to the carbon fiber felt of the current collector, resulting in a decrease in charge / discharge efficiency.

比較例3は、十分な溝部分が形成されず、流体の透過性が悪い結果となった。   In Comparative Example 3, a sufficient groove portion was not formed, resulting in poor fluid permeability.

Figure 0006151947
Figure 0006151947

Figure 0006151947
Figure 0006151947

[実施例9]
高収縮層のPVAの混率を5%とした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 9]
A carbon fiber felt was produced in the same manner as in Example 1 except that the mixing ratio of PVA in the high shrinkage layer was 5%.

[実施例10]
炭素化時の張力を2N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 10]
A carbon fiber felt was produced in the same manner as in Example 1 except that the tension during carbonization was 2 N / m.

[実施例11]
高収縮層のPVAの混率を50%とした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 11]
A carbon fiber felt was produced in the same manner as in Example 1 except that the mixing ratio of PVA in the high shrinkage layer was 50%.

[実施例12]
炭素化時の張力を50N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 12]
A carbon fiber felt was produced in the same manner as in Example 1 except that the tension during carbonization was 50 N / m.

[実施例13〜16]
表3、4のスリットの深さ、ピッチとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Examples 13 to 16]
Carbon fiber felts were produced in the same manner as in Example 1 except that the slit depths and pitches in Tables 3 and 4 were used.

表3、4に示すように、実施例9〜16は、電気抵抗値、剛軟度が共に低く、流路により溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れ、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Tables 3 and 4, in Examples 9 to 16, both the electrical resistance value and the bending resistance were low, and the active material melted by the flow path uniformly flowed to the carbon fiber felt of the anode current collector, and good results were obtained. The carbon fiber felt which shows was obtained.

[実施例17〜18]
表4のスリット形状、ピッチとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Examples 17 to 18]
A carbon fiber felt was produced in the same manner as in Example 1 except that the slit shape and pitch in Table 4 were used.

Figure 0006151947
Figure 0006151947

Figure 0006151947
Figure 0006151947

[実施例19]
表5のスリット形状、ピッチとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 19]
A carbon fiber felt was produced in the same manner as in Example 1 except that the slit shape and pitch in Table 5 were used.

[実施例20]
高収縮層において、目付400g/m2のPVA混綿PAN系耐炎繊維ウェッブ10枚に、目付400g/m2のPAN系耐炎繊維ウェッブを8枚積層させた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。
[Example 20]
In high shrinkage layer, the PVA cotton mixing PAN-based flame-resistant fiber web 10 sheets having a basis weight of 400 g / m 2, except that by laminating 8 sheets of PAN-based flame-resistant fiber web having a basis weight of 400 g / m 2 in a similar manner as in Example 1 Carbon fiber felt was produced.

表4、5に示すように実施例17〜20は、通液圧力損失、セル抵抗が共に低く、良好な結果を示す炭素繊維フェルトが得られた。   As shown in Tables 4 and 5, in Examples 17 to 20, both carbon flow loss and cell resistance were low, and carbon fiber felts showing good results were obtained.

[比較例4]
高収縮層において、目付200g/m2のPVA混綿PAN系耐炎繊維ウェッブ2枚に、目付200g/m2のPAN系耐炎繊維ウェッブを積層させた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、厚みが小さく、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率向上の効果はみられなかった。
[Comparative Example 4]
A carbon fiber was produced in the same manner as in Example 1 except that a PAN-based flame resistant fiber web having a basis weight of 200 g / m 2 was laminated on two PVA mixed cotton PAN-based flame resistant fiber webs having a basis weight of 200 g / m 2. A felt was prepared. As a result, the thickness was small, and the molten active material did not flow uniformly to the carbon fiber felt of the anode current collector, and the effect of improving the charge / discharge efficiency was not observed.

[比較例5]
高収縮層において、PVAの混率2%とし、炭素化時の張力を2N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、十分な溝幅を形成できず、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率が低下する結果となった。
[Comparative Example 5]
A carbon fiber felt was produced in the same manner as in Example 1 except that in the high shrinkage layer, the mixing ratio of PVA was 2% and the tension during carbonization was 2 N / m. As a result, a sufficient groove width could not be formed, and the molten active material did not flow uniformly to the carbon fiber felt of the anode current collector, resulting in a decrease in charge / discharge efficiency.

[比較例6]
高収縮層の耐炎繊維の比重を1.33とし、炭素化時の張力を110N/mとした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。溝幅が大きく、接触抵抗が低く、電気抵抗値が高い結果となった。また、炭素化後の変形が大きく、NAS電池としての電極評価は不可能であった。
[Comparative Example 6]
A carbon fiber felt was produced in the same manner as in Example 1 except that the specific gravity of the flame resistant fiber of the high shrinkage layer was 1.33 and the tension during carbonization was 110 N / m. The groove width was large, the contact resistance was low, and the electrical resistance value was high. Moreover, deformation after carbonization was large, and electrode evaluation as a NAS battery was impossible.

[比較例7]
スリットの深さを20.5mm(厚みに対し93%)とした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、炭素化時に破断し、評価できなかった。
[Comparative Example 7]
A carbon fiber felt was produced in the same manner as in Example 1 except that the slit depth was 20.5 mm (93% with respect to the thickness). As a result, it broke during carbonization and could not be evaluated.

[比較例8]
スリットの深さを5.5mm(厚みに対し25%)とした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、溝部分が十分に確保できず、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率向上の効果はみられなかった。
[Comparative Example 8]
A carbon fiber felt was produced in the same manner as in Example 1 except that the depth of the slit was 5.5 mm (25% with respect to the thickness). As a result, the groove portion could not be sufficiently secured, the molten active material did not flow uniformly to the carbon fiber felt of the anode current collector, and the effect of improving the charge / discharge efficiency was not observed.

[比較例9]
ピッチ間隔を大きくした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、フェルト断面に対する溝断面(溝断面積比)が小さく、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率向上の効果はみられなかった。
[Comparative Example 9]
A carbon fiber felt was produced in the same manner as in Example 1 except that the pitch interval was increased. As a result, the groove cross-section (groove cross-sectional area ratio) with respect to the felt cross-section was small, the molten active material did not flow uniformly into the carbon fiber felt of the anode current collector, and the effect of improving charge / discharge efficiency was not observed.

[比較例10]
高収縮層において、目付200g/m2のPVA混綿PAN系耐炎繊維ウェッブ2枚に、目付200g/m2のPAN系耐炎繊維ウェッブを積層させた以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、厚みが小さく、溶融した活物質が陽極集電材の炭素繊維フェルトに均一に流れず、充放電効率向上の効果はみられなかった。
[Comparative Example 10]
A carbon fiber was produced in the same manner as in Example 1 except that a PAN-based flame resistant fiber web having a basis weight of 200 g / m 2 was laminated on two PVA mixed cotton PAN-based flame resistant fiber webs having a basis weight of 200 g / m 2. A felt was prepared. As a result, the thickness was small, and the molten active material did not flow uniformly to the carbon fiber felt of the anode current collector, and the effect of improving the charge / discharge efficiency was not observed.

[比較例11]
炭素化温度を1200℃とした以外は、実施例1と同様の方法で炭素繊維フェルトを作製した。その結果、電気抵抗が高く、目標とするセル抵抗が得られなかった。
[Comparative Example 11]
A carbon fiber felt was produced in the same manner as in Example 1 except that the carbonization temperature was 1200 ° C. As a result, the electric resistance was high and the target cell resistance could not be obtained.

Figure 0006151947
Figure 0006151947

Figure 0006151947
Figure 0006151947

2 炭素繊維フェルト
4 畝部分
4p 畝部分の嵩密度測定用切出し片
6 溝部分
6p 溝部分の嵩密度測定用切出し片
8 溝部分の底壁
B 畝部分の上端面における畝部分と溝部分との境界線
t 炭素繊維フェルトの厚み
T 溝部分の深さ
12、52 ナトリウム-硫黄蓄電池
14、54 陽極管
16、56 陰極管
18、58 溶融金属ナトリウム
20、60 陽極集電材
22 溶融硫黄、多硫化ソーダ、ナトリウムイオンが移動する陽極集電材の流路
32 炭素繊維前駆体フェルト
34 切込み
36 フェルトにおける切込みを形成していない部分(プレーン層)
38 フェルトにおける切込みを形成している部分(スリット層)
S、R 張力の方向を示す矢印
42 低収縮層
44 高収縮層
2 Carbon fiber felt 4 ridge portion 4p cutout piece for measuring bulk density of heel portion 6 groove portion 6p cutout piece for measuring bulk density of groove portion 8 bottom wall of groove portion B between ridge portion and groove portion on upper end surface of ridge portion Boundary line t Carbon fiber felt thickness T Groove depth 12, 52 Sodium-sulfur battery 14, 54 Anode tube 16, 56 Cathode tube 18, 58 Molten metal sodium 20, 60 Anode current collector 22 Molten sulfur, sodium polysulfide , Flow path of anode current collector through which sodium ions move 32 carbon fiber precursor felt 34 notch 36 part where no notch is formed in the felt (plain layer)
38 The part that forms the cut in the felt (slit layer)
S, R Arrows indicating the direction of tension 42 Low shrinkage layer 44 High shrinkage layer

Claims (9)

少なくとも片面の外方に突出する複数の畝部分と、前記複数の畝部分の間に形成される溝部分とからなる凹凸形状を有する、厚みが11〜55mmの炭素繊維フェルトであって、畝部分のフェルトの嵩密度が、溝部分における溝深さよりも深いフェルト部分の嵩密度よりも高いことを特徴とする炭素繊維フェルト。 A plurality of ridges portion projecting on at least one side of the outer, an uneven shape composed of a groove portion formed between the plurality of ridges portions, thickness a carbon fiber felt 11~55Mm, ridge portion The carbon fiber felt is characterized in that the bulk density of the felt is higher than the bulk density of the felt part deeper than the groove depth in the groove part. 溝が、フェルト表面において、直線状、格子状、ダイヤ状、又は、波状に形成されている請求項1に記載の炭素繊維フェルト。   The carbon fiber felt according to claim 1, wherein the grooves are formed in a linear shape, a lattice shape, a diamond shape, or a wave shape on the felt surface. 溝幅が0.5〜10mm、溝深さが炭素繊維フェルトの厚みに対して10〜90%、溝ピッチが0.5〜100mmで形成されている請求項1又は2に記載の炭素繊維フェルト。   The carbon fiber felt according to claim 1 or 2, wherein the groove width is 0.5 to 10 mm, the groove depth is 10 to 90% of the thickness of the carbon fiber felt, and the groove pitch is 0.5 to 100 mm. . 目付が500〜5000g/m、嵩密度が0.05〜0.30g/cm、厚み方向の電気抵抗値が1000mΩ/cm以下である請求項1乃至3の何れかに記載の炭素繊維フェルト。 Basis weight of 500 to 5000 g / m 2, a bulk density of 0.05~0.30g / cm 3, the carbon fiber according to any one of claims 1 to 3 the electric resistance value in the thickness direction is 1000M / cm 2 or less felt. 溝幅方向をフェルト長手方向とする試験片について測定した剛軟度が4000N・cm以下である請求項1乃至4の何れかに記載の炭素繊維フェルト。   The carbon fiber felt according to any one of claims 1 to 4, wherein the bending resistance measured for a test piece having the groove width direction as a felt longitudinal direction is 4000 N · cm or less. 請求項1乃至5の何れかに記載の炭素繊維フェルトからなる陽極集電材。   An anode current collector comprising the carbon fiber felt according to any one of claims 1 to 5. 請求項6に記載の陽極集電材と、陽極管と、前記陽極管と軸を一致させて陽極管内に挿入した陰極管と、を有するナトリウム-硫黄蓄電池であって、陽極集電材がその凹凸形状を有する面を陰極管の外周面に接触させて巻かれ、陽極集電材の外周面を陽極管の内周面に接触してなるナトリウム-硫黄蓄電池。   A sodium-sulfur storage battery comprising: the anode current collector according to claim 6; an anode tube; and a cathode tube inserted into the anode tube with an axis aligned with the anode tube, wherein the anode current collector has an uneven shape. A sodium-sulfur storage battery which is wound by bringing the surface having a contact with the outer peripheral surface of the cathode tube and the outer peripheral surface of the anode current collector in contact with the inner peripheral surface of the anode tube. 厚み12〜100mmの炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する請求項1に記載の炭素繊維フェルトの製造方法であって、片面又は両面に切込みを入れた前駆体フェルトを、切込み方向と直交する方向に張力を付与しながら炭素化することを特徴とする炭素繊維フェルトの製造方法。 It is a manufacturing method of the carbon fiber felt of Claim 1 which carbonizes a carbon fiber precursor felt of thickness 12-100mm in inert atmosphere, Comprising: The cutting direction is made into the precursor felt which made the cut | incision in the single side | surface or both surfaces A carbon fiber felt manufacturing method, wherein carbonization is performed while applying tension in a direction orthogonal to the direction. 厚み12〜100mmの炭素繊維前駆体フェルトを不活性雰囲気下で炭素化する請求項1に記載の炭素繊維フェルトの製造方法であって、前駆体フェルトが表裏面で熱収縮率が異なる構造のフェルトであり、且つその高収縮側のフェルトに切込みを入れたフェルトを炭素化することを特徴とする炭素繊維フェルトの製造方法。 The method for producing a carbon fiber felt according to claim 1, wherein a carbon fiber precursor felt having a thickness of 12 to 100 mm is carbonized under an inert atmosphere, wherein the precursor felt has a structure having different heat shrinkage rates on the front and back surfaces. A carbon fiber felt manufacturing method comprising: carbonizing a felt which has been cut into the felt on the high shrinkage side.
JP2013070881A 2013-03-29 2013-03-29 Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery Active JP6151947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070881A JP6151947B2 (en) 2013-03-29 2013-03-29 Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070881A JP6151947B2 (en) 2013-03-29 2013-03-29 Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery

Publications (2)

Publication Number Publication Date
JP2014194093A JP2014194093A (en) 2014-10-09
JP6151947B2 true JP6151947B2 (en) 2017-06-21

Family

ID=51839503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070881A Active JP6151947B2 (en) 2013-03-29 2013-03-29 Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery

Country Status (1)

Country Link
JP (1) JP6151947B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374906A (en) * 1981-09-29 1983-02-22 United Technologies Corporation Ribbed electrode substrates
JPH01290515A (en) * 1988-05-17 1989-11-22 Oji Paper Co Ltd Preparation of molded body of porous carbon having uneven surface
JP2820376B2 (en) * 1994-10-31 1998-11-05 日本碍子株式会社 Carbon felt for sodium-sulfur battery and method for producing the same
JP3844103B2 (en) * 1998-06-10 2006-11-08 東洋紡績株式会社 Grooved electrode material for liquid flow type electrolytic cell and method for producing the same
JP3853193B2 (en) * 2000-10-31 2006-12-06 松下電器産業株式会社 Polymer electrolyte fuel cell
JP4823446B2 (en) * 2001-08-22 2011-11-24 株式会社フジコー Irregular surface felt material
JP3976580B2 (en) * 2002-02-12 2007-09-19 東邦テナックス株式会社 High density flame resistant non-woven fabric, carbon non-woven fabric and production method thereof
JP4599832B2 (en) * 2003-11-25 2010-12-15 東洋紡績株式会社 Grooved electrode material and electrode for liquid flow type electrolytic cell

Also Published As

Publication number Publication date
JP2014194093A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6018450B2 (en) Carbon fiber felt, method for producing the same, and electrode
US6416896B1 (en) Material for electrode comprising a non-woven fabric composed of a fluorine-containing resin fiber
EP1296392B1 (en) Current collector of positive electrode and sodium-sulfur battery using the same
KR101945585B1 (en) Carbon-fiber nonwoven cloth and gas diffusion electrode for polymer electrolyte fuel cell using same, polymer electrolyte fuel cell, method for manufacturing carbon-fiber nonwoven cloth, and composite sheet
KR20120091178A (en) Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
JP6577697B2 (en) Carbon fiber felt, method for producing the same, and liquid flow electrolytic cell
KR101209098B1 (en) Precursor felt for electroconductive material for electrode and method for producing electroconductive material for electrode
JP2008204824A (en) Carbon fiber sheet and its manufacturing method
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
US5584109A (en) Method of making a battery plate
JP2013144857A (en) Carbon fiber felt, method for producing the same, and electrode
JP6151947B2 (en) Carbon fiber felt, method for producing the same, anode current collector, and sodium-sulfur storage battery
WO2000049213A1 (en) Carbon fiber woven fabric and method for production thereof
JPH11158737A (en) Production of carbon fiber felt
JP4974700B2 (en) Carbon fiber sheet and manufacturing method thereof
JP2012012719A (en) Carbon fiber woven fabric and method for manufacturing the same
JP2003017076A (en) Carbon fiber structure
JP2820376B2 (en) Carbon felt for sodium-sulfur battery and method for producing the same
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JP2012201996A (en) Carbon fiber spun yarn woven fabric, method for producing carbon fiber spun yarn woven fabric, and gas diffusion electrode for fuel cell
JP2007031912A (en) Polyacrylonitrile-based oxidized fiber felt, carbon fiber felt and method for producing them
KR101932424B1 (en) Composite material for bipolar plate of fuel cell, bipolar plate of fuel cell and manufacturing method of the same
KR102219283B1 (en) Carbon fiber-active material composite and manufacturing method thereof, and lithium-ion battery comprising the same
WO2014042542A1 (en) Method of manufacturing a carbon fibre electrode of a lead-acid battery or cell
EP1449948B1 (en) Carbon fiber nonwoven band-shaped article and its manufacture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170526

R150 Certificate of patent or registration of utility model

Ref document number: 6151947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350