JP6149695B2 - Manufacturing method of membrane-electrode assembly for fuel cell - Google Patents

Manufacturing method of membrane-electrode assembly for fuel cell Download PDF

Info

Publication number
JP6149695B2
JP6149695B2 JP2013230447A JP2013230447A JP6149695B2 JP 6149695 B2 JP6149695 B2 JP 6149695B2 JP 2013230447 A JP2013230447 A JP 2013230447A JP 2013230447 A JP2013230447 A JP 2013230447A JP 6149695 B2 JP6149695 B2 JP 6149695B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode catalyst
layer
electrolyte
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013230447A
Other languages
Japanese (ja)
Other versions
JP2015090811A (en
Inventor
遠藤 美登
美登 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013230447A priority Critical patent/JP6149695B2/en
Publication of JP2015090811A publication Critical patent/JP2015090811A/en
Application granted granted Critical
Publication of JP6149695B2 publication Critical patent/JP6149695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料電池用膜−電極アッセンブリの製造方法に関する。 The present invention relates to a method for manufacturing a fuel cell membrane-electrode assembly .

固体高分子形燃料電池(Polymer Electrolyte Fuel Cell、以下「PEFC」という)では、燃料ガスの電気化学反応を促進させる触媒を含有する触媒層が設けられるとともに、その触媒層に隣接してガス拡散層が設けられる。触媒層及びガス拡散層は互いに接合され、両者は一体となってPEFCを構成する。   In a polymer electrolyte fuel cell (hereinafter referred to as “PEFC”), a catalyst layer containing a catalyst for promoting an electrochemical reaction of fuel gas is provided, and a gas diffusion layer is adjacent to the catalyst layer. Is provided. The catalyst layer and the gas diffusion layer are joined to each other, and both constitute a PEFC.

要求電力の変動等によりPEFCの運転条件が変化し、それに伴って触媒層及びガス拡散層の使用環境が変化すると、触媒層及びガス拡散層に寸法変化が繰り返し生じる。このとき、触媒層とガス拡散層とで寸法の変化量に差異があるため、両者の接合部において歪が生じ、そこを起点とした破損が生じるおそれがある。このため、触媒層及びガス拡散層の接合力の確保は、PEFCの発電性能を維持する上でも重要な課題となる。   When the operating conditions of the PEFC change due to fluctuations in the required power and the usage environment of the catalyst layer and the gas diffusion layer changes accordingly, dimensional changes repeatedly occur in the catalyst layer and the gas diffusion layer. At this time, since there is a difference in the dimensional change between the catalyst layer and the gas diffusion layer, there is a risk that distortion occurs at the joint between the two, and damage starting from that occurs. For this reason, securing the bonding force between the catalyst layer and the gas diffusion layer is an important issue in maintaining the power generation performance of the PEFC.

下記特許文献1には、ガス拡散層の一側面をコーティングしている撥水層に、ポリテトラフルオロエチレン(PTFE)樹脂を含有させたPEFCが記載されている。このPEFCでは、製造時にガス拡散層をPTFE樹脂の融点以上の温度となるまで加熱することにより、PTFE樹脂を溶融させて撥水層の外表面へと移動させる。このように外表面に偏析させたPTFE樹脂を用いて接合することにより、触媒層及びガス拡散層の接合力の向上が図られている。   Patent Document 1 listed below describes a PEFC in which a polytetrafluoroethylene (PTFE) resin is contained in a water repellent layer that coats one side of a gas diffusion layer. In this PEFC, the PTFE resin is melted and moved to the outer surface of the water repellent layer by heating the gas diffusion layer to a temperature equal to or higher than the melting point of the PTFE resin during production. Thus, the joining force of a catalyst layer and a gas diffusion layer is improved by joining using PTFE resin segregated on the outer surface.

特開2012−190752号公報JP 2012-190752 A

しかしながら、上記特許文献1に記載されたPEFCでは、十分な量のPTFE樹脂が外表面に偏析しなかった場合、触媒層及びガス拡散層の接合力が保証できないという問題があった。この結果、触媒層及びガス拡散層が分離してしまい、PEFCの発電性能の低下を招くという問題があった。   However, the PEFC described in Patent Document 1 has a problem that the bonding force between the catalyst layer and the gas diffusion layer cannot be guaranteed when a sufficient amount of PTFE resin does not segregate on the outer surface. As a result, the catalyst layer and the gas diffusion layer are separated, and there is a problem that the power generation performance of the PEFC is lowered.

本発明はこのような課題に鑑みてなされたものであり、その目的は、触媒層及びガス拡散層をより確実に接合させることが可能な燃料電池用膜−電極アッセンブリの製造方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a method of manufacturing a fuel cell membrane-electrode assembly capable of more reliably joining a catalyst layer and a gas diffusion layer. It is in.

上記課題を解決するために、本発明は、燃料電池用膜−電極アッセンブリの製造方法であって、電気化学反応を促進させる触媒と、フッ素成分を有する電解質と、分散媒と、を含み、前記分散媒の溶解性パラメーターが18以上であるペーストを、基材表面に薄膜に塗布する第1工程と、前記基材表面に塗布されたペーストを乾燥させることにより、内部において前記電解質が前記基材表面側の面に偏析した触媒層とする第2工程と、前記触媒層の前記基材表面側の面をガス拡散層と接合する第3工程と、を含み、前記第3工程において、別途接着剤を用いないことを特徴とする燃料電池用膜−電極アッセンブリの製造方法であることを特徴としている。 In order to solve the above problems, the present invention is a method for producing a membrane-electrode assembly for a fuel cell, comprising a catalyst for promoting an electrochemical reaction, an electrolyte having a fluorine component, and a dispersion medium, A first step of applying a paste having a solubility parameter of a dispersion medium of 18 or more to the thin film on the surface of the base material, and drying the paste applied to the surface of the base material so that the electrolyte is contained inside the base material. A second step of forming a catalyst layer segregated on the surface side surface, and a third step of bonding the surface of the catalyst layer on the substrate surface side to the gas diffusion layer, and in the third step, separately bonding It is a method for producing a membrane-electrode assembly for a fuel cell, characterized in that no agent is used .

本発明によれば、触媒層及びガス拡散層をより確実に接合させることが可能な燃料電池用膜−電極アッセンブリの製造方法を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the manufacturing method of the membrane-electrode assembly for fuel cells which can join a catalyst layer and a gas diffusion layer more reliably.

燃料電池触媒層用ペーストを基材表面に塗布した状態を表す模式図である。It is a schematic diagram showing the state which apply | coated the paste for fuel cell catalyst layers on the base-material surface. 含フッ素フィルム表面近傍の水素極触媒層及び酸素極触媒層を表す拡大図である。It is an enlarged view showing the hydrogen electrode catalyst layer and oxygen electrode catalyst layer of the fluorine-containing film surface vicinity. 水素極触媒層及び酸素極触媒層の電解質膜への転写を表す模式図である。It is a schematic diagram showing transfer of the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer to the electrolyte membrane. 水素極触媒層及び酸素極触媒層を電解質膜に転写した後に基材を除去した状態を表す模式図である。It is a schematic diagram showing the state which removed the base material after transcribe | transferring a hydrogen electrode catalyst layer and an oxygen electrode catalyst layer to an electrolyte membrane. ガス拡散層を表す模式図である。It is a schematic diagram showing a gas diffusion layer. 膜−電極アッセンブリを表す模式図である。It is a schematic diagram showing a membrane-electrode assembly. 燃料電池触媒層用ペーストの分散媒の溶解性パラメーターを互いに異ならせた試料を用いた接合力の試験結果を表す表である。It is a table | surface showing the test result of the joining force using the sample from which the solubility parameter of the dispersion medium of the paste for fuel cell catalyst layers differed mutually.

以下、添付図面を参照しながら本発明の実施形態について説明する。理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In order to facilitate understanding, the same components are denoted by the same reference numerals as much as possible in the drawings, and redundant description is omitted.

まず、図1乃至図4を参照して、触媒層の成形並びに電解質膜への転写について説明する。図1は、燃料電池触媒層用ペーストPを含フッ素フィルム11、12表面に塗布した状態を表す模式図である。図2は、含フッ素フィルム11、12表面近傍の水素極触媒層21及び酸素極触媒層22を表す拡大図である。図3は、水素極触媒層21及び酸素極触媒層22の電解質膜30への転写を表す模式図である。図4は、水素極触媒層21及び酸素極触媒層22を電解質膜30に転写した後に含フッ素フィルム11、12を除去した状態を表す模式図である。   First, the formation of the catalyst layer and the transfer to the electrolyte membrane will be described with reference to FIGS. FIG. 1 is a schematic view showing a state in which the fuel cell catalyst layer paste P is applied to the surfaces of the fluorine-containing films 11 and 12. FIG. 2 is an enlarged view showing the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 in the vicinity of the surfaces of the fluorine-containing films 11 and 12. FIG. 3 is a schematic diagram showing transfer of the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 to the electrolyte membrane 30. FIG. 4 is a schematic view showing a state in which the fluorine-containing films 11 and 12 are removed after the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 are transferred to the electrolyte membrane 30.

燃料電池触媒層用ペーストP(以下、単に「ペーストP」という)は、触媒、フッ素成分を有する電解質、及び分散媒を含有する液状の物質である。このペーストPに含有される触媒としては、白金あるいは白金コバルト、白金カーボン等の白金合金等が使用される。また、電解質としては、テトラフルオロエチレンを主鎖としてプロトン電導性を有するナフィオン(登録商標)DE2020等が使用される。また、分散媒としては、水が使用される。ペーストPにおける水の溶解性パラメーターは、約24に設定されている。   The fuel cell catalyst layer paste P (hereinafter simply referred to as “paste P”) is a liquid substance containing a catalyst, an electrolyte having a fluorine component, and a dispersion medium. As the catalyst contained in the paste P, platinum or platinum alloys such as platinum cobalt and platinum carbon are used. As the electrolyte, Nafion (registered trademark) DE2020 having a proton conductivity with tetrafluoroethylene as the main chain is used. Further, water is used as the dispersion medium. The solubility parameter of water in the paste P is set to about 24.

以下、上記ペーストPを用いたPEFCの製造手順について説明する。   Hereinafter, the manufacturing procedure of PEFC using the paste P will be described.

(水素極触媒層21及び酸素極触媒層22の成形)
まず、基材となる含フッ素フィルム11、12をそれぞれ用意する。そして、図1に表すように、含フッ素フィルム11、12のそれぞれの表面にペーストPを塗布する。ペーストPの塗布は、スプレーやダイコーダー等を用いて行えばよい。
(Formation of hydrogen electrode catalyst layer 21 and oxygen electrode catalyst layer 22)
First, the fluorine-containing films 11 and 12 used as a base material are prepared. And as shown in FIG. 1, the paste P is apply | coated to each surface of the fluorine-containing films 11 and 12. FIG. The paste P may be applied using a spray or a die coder.

含フッ素フィルム11、12の表面に塗布されたペーストPは、乾燥してそれぞれ上面側の一側面21a、22aと、下面側(含フッ素フィルム11、12の表面側)の他側面21b、22bとを有する膜状の水素極触媒層21及び酸素極触媒層22となる。このとき、図2に表すように、水素極触媒層21及び酸素極触媒層22の内部では、その他側面21b、22b側に電解質が偏析することで、電解質層21c、22cがそれぞれ形成される。この電解質層21c、22cはいずれも数十〜数百nmの厚みを有し、後述するように接着剤として機能する。   The paste P applied to the surfaces of the fluorine-containing films 11 and 12 is dried and has one side surface 21a and 22a on the upper surface side, and the other side surface 21b and 22b on the lower surface side (surface side of the fluorine-containing films 11 and 12) A film-like hydrogen electrode catalyst layer 21 and an oxygen electrode catalyst layer 22 having At this time, as shown in FIG. 2, the electrolyte layers 21c and 22c are formed in the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22, respectively, by the electrolyte segregating on the other side surfaces 21b and 22b. The electrolyte layers 21c and 22c each have a thickness of several tens to several hundreds of nanometers and function as an adhesive as will be described later.

(電解質膜30への転写)
次に、膜状の電解質膜30を用意する。電解質膜30は、固体高分子材料としてのフッ素系スルホン酸ポリマーにより形成された高分子電解質膜(例えばナフィオン(登録商標)NRE212)であり、湿潤状態において良好なプロトン伝導性を有する。なお、電解質膜30としては、ナフィオン(登録商標)に限定されず、例えば、アシプレックス(登録商標)やフレミオン(登録商標)等の他のフッ素系スルホン酸膜が用いられるとしてもよい。また、電解質膜30として、フッ素系ホスホン酸膜、フッ素系カルボン酸膜、フッ素炭化水素系グラフト膜、炭化水素系グラフト膜、芳香族膜等が用いられてもよいし、PTFE、ポリイミド等の補強材を含む機械的特性を強化した複合高分子膜が用いられてもよい。
(Transfer to the electrolyte membrane 30)
Next, a membrane electrolyte membrane 30 is prepared. The electrolyte membrane 30 is a polymer electrolyte membrane (for example, Nafion (registered trademark) NRE212) formed of a fluorine-based sulfonic acid polymer as a solid polymer material, and has good proton conductivity in a wet state. The electrolyte membrane 30 is not limited to Nafion (registered trademark), and other fluorine-based sulfonic acid membranes such as Aciplex (registered trademark) and Flemion (registered trademark) may be used. Further, as the electrolyte membrane 30, a fluorine-based phosphonic acid film, a fluorine-based carboxylic acid film, a fluorine-hydrocarbon-based graft film, a hydrocarbon-based graft film, an aromatic film, or the like may be used, or a reinforcement such as PTFE or polyimide may be used. A composite polymer film with enhanced mechanical properties including a material may be used.

このような電解質膜30の両側に、水素極触媒層21及び酸素極触媒層22を含フッ素フィルム11、12の表面に載せた状態のままで配置し、図3に表すように、それぞれの一側面21a、22aで電解質膜30を挟み込むようにして転写を行う。   On both sides of the electrolyte membrane 30, the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 are placed on the surfaces of the fluorine-containing films 11 and 12, and as shown in FIG. Transfer is performed such that the electrolyte membrane 30 is sandwiched between the side surfaces 21a and 22a.

水素極触媒層21及び酸素極触媒層22を電解質膜30に転写した後、図4に表すように含フッ素フィルム11、12を除去することで、水素極触媒層21及び酸素極触媒層22の他側面21b、22bが露呈した状態となる。上述したように、他側面21b、22b側には接着剤として機能する電解質層21c、22cが形成されているが、基材として含フッ素フィルム11、12を用いたことで、転写後は容易に除去(剥離)することが可能となる。   After the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 are transferred to the electrolyte membrane 30, the fluorine-containing films 11 and 12 are removed as shown in FIG. The other side surfaces 21b and 22b are exposed. As described above, the electrolyte layers 21c and 22c functioning as adhesives are formed on the other side surfaces 21b and 22b. However, the use of the fluorine-containing films 11 and 12 as the base material makes it easy after transfer. It becomes possible to remove (peel).

続いて図5及び図6を参照して、ガス拡散層並びに膜−電極アッセンブリの作成について説明する。図5は、ガス拡散層GDLを表す模式図であり、図6は、膜−電極アッセンブリ50を表す模式図である。   Next, the creation of the gas diffusion layer and the membrane-electrode assembly will be described with reference to FIGS. FIG. 5 is a schematic diagram showing the gas diffusion layer GDL, and FIG. 6 is a schematic diagram showing the membrane-electrode assembly 50.

(ガス拡散層GDLの作成)
上述した水素極触媒層21及び酸素極触媒層22の成形並びに電解質膜30への転写とは別途で、水素極触媒層21及び酸素極触媒層22に隣接して設けられるガス拡散層GDLを複数作成する。ガス拡散層GDLは、電気化学反応に用いられる燃料ガス(アノードガスおよびカソードガス)を電解質膜30の面方向に沿って拡散させる層であり、図5に表すように、膜状のガス拡散層基材40の表面に、同じく膜状のカーボン層41を積層させて成る。
(Create gas diffusion layer GDL)
Separately from the formation of the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 and the transfer to the electrolyte membrane 30, a plurality of gas diffusion layers GDL provided adjacent to the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 are provided. create. The gas diffusion layer GDL is a layer for diffusing the fuel gas (anode gas and cathode gas) used for the electrochemical reaction along the surface direction of the electrolyte membrane 30, and as shown in FIG. Similarly, a film-like carbon layer 41 is laminated on the surface of the substrate 40.

ガス拡散層基材40は、例えば、カーボンペーパーやカーボンクロス等のカーボン多孔質体や、金属メッシュや発泡金属等の金属多孔質体を用いることができる。このガス拡散層基材40へのカーボン層41の積層は、スプレーやダイコーダー等を用いてカーボンを塗布することで行えば良い。   As the gas diffusion layer base material 40, for example, a carbon porous body such as carbon paper or carbon cloth, or a metal porous body such as a metal mesh or a foam metal can be used. The carbon layer 41 may be laminated on the gas diffusion layer base material 40 by applying carbon using a spray or a die coder.

(膜−電極アッセンブリ50の作成)
次に、図6に表すように、ガス拡散層GDLのカーボン層41の一側面41a(上面)を、水素極触媒層21及び酸素極触媒層22の他側面21b、22bと接合させる。このとき、他側面21b、22bに偏析している電解質層21c、22cが接着材として機能する。上述したように、ペーストPにおける水の溶解性パラメーターを約24に設定したことで、水素極触媒層21及び酸素極触媒層22の電解質層21c、22cには十分な量の電解質が偏析しているため、別途接着剤を必要とすることなく、ガス拡散層GDLとの接合を強固なものとすることが可能となる。
(Preparation of membrane-electrode assembly 50)
Next, as shown in FIG. 6, one side surface 41 a (upper surface) of the carbon layer 41 of the gas diffusion layer GDL is joined to the other side surfaces 21 b and 22 b of the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22. At this time, the electrolyte layers 21c and 22c segregated on the other side surfaces 21b and 22b function as an adhesive. As described above, by setting the water solubility parameter in the paste P to about 24, a sufficient amount of electrolyte is segregated in the electrolyte layers 21c and 22c of the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22. Therefore, the bonding with the gas diffusion layer GDL can be strengthened without requiring an additional adhesive.

以上のように、電解質膜30を間に挟んだ水素極触媒層21及び酸素極触媒層22と、ガス拡散層GDLとが接合されることにより、膜−電極アッセンブリ(Membrane Electrode Assembly、以下「MEA」という)50が形成される。PEFCは、このMEA50をセパレータ等(図示せず)で挟持することで構成され、供給される燃料ガスによりMEA50内で電気化学反応を生じさせることで、起電力を得ることが可能となる。   As described above, the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 sandwiching the electrolyte membrane 30 and the gas diffusion layer GDL are joined together to form a membrane-electrode assembly (hereinafter referred to as “MEA”). 50) is formed. The PEFC is configured by sandwiching the MEA 50 with a separator or the like (not shown), and an electromotive force can be obtained by causing an electrochemical reaction in the MEA 50 by the supplied fuel gas.

次に、図7を参照して、ペーストPの分散媒の溶解性パラメーターと接合力との相関を評価した試験について説明する。図7は、ペーストPの分散媒の溶解性パラメーターを互いに異ならせた試料を用いた接合力の試験結果を表す表である。   Next, with reference to FIG. 7, the test which evaluated the correlation with the solubility parameter of the dispersion medium of the paste P and joining force is demonstrated. FIG. 7 is a table showing bonding force test results using samples in which the solubility parameters of the dispersion medium of the paste P are different from each other.

ここでは、分散媒の溶解性パラメーターを異ならせた3種類のペーストPを作成し、それらを用いて上述の製造方法によって作成した3種類のMEAを試料として試験を行った。試料1では、ペーストP中の分散媒に水を用いるとともに、その溶解性パラメーターを約24に設定した。また、試料2では、ペーストP中の分散媒に等量の水と1−プロパノールを用いるとともに、その溶解性パラメーターを約18に設定した。また、試料3では、ペーストP中の分散媒に水と1−プロパノールを用いるとともに、その溶解性パラメーターを約12に設定した。   Here, three types of pastes P having different solubility parameters of the dispersion medium were prepared, and the tests were performed using the three types of MEAs prepared by the above-described manufacturing method as samples. In sample 1, water was used as the dispersion medium in paste P, and its solubility parameter was set to about 24. In Sample 2, equal amounts of water and 1-propanol were used as the dispersion medium in the paste P, and the solubility parameter was set to about 18. In Sample 3, water and 1-propanol were used as the dispersion medium in the paste P, and the solubility parameter was set to about 12.

上記3種類の試料(MEA)に対し、オートグラフを用いた剥離試験(JIS K6854-1(接着剤―はく離接着強さ試験方法―第1部:90度はく離))を実施することで、水素極触媒層21及び酸素極触媒層22と、ガス拡散層GDLとの接合力を評価した。   By carrying out a peeling test (JIS K6854-1 (Adhesive-peeling adhesive strength test method-Part 1: 90 degree peeling)) using the autograph on the above three types of samples (MEA) The joining force between the electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 and the gas diffusion layer GDL was evaluated.

また、水素極触媒層21及び酸素極触媒層22を電解質膜30に転写した後に、水素極触媒層21及び酸素極触媒層22の他側面21b、22bを光学顕微鏡で観察し、電解質の析出割合を画像処理によって評価した。詳細には、光学顕微鏡でカラー撮像した画像を、輝度値128をしきい値に設定して単純2値化し、評価を行った。   Moreover, after transferring the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 to the electrolyte membrane 30, the other side surfaces 21b and 22b of the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 are observed with an optical microscope, and the deposition rate of the electrolyte Were evaluated by image processing. Specifically, an image obtained by color imaging with an optical microscope was simply binarized by setting the luminance value 128 as a threshold value and evaluated.

上記試験の結果、図7に表すように、分散媒の溶解性パラメーターが比較的大きい(24、18)試料1及び2では、十分な量の電解質の析出が観察され、水素極触媒層21及び酸素極触媒層22と電解質膜30との間で高い接合力を発揮することが判った。一方、ペーストPの溶解性パラメーターが比較的小さい(12)試料3では、電解質の析出量が不十分となり、水素極触媒層21及び酸素極触媒層22が電解質膜30に接合できなくなることが判った。これより、分散媒の溶解性パラメーターは、概ね18以上とすることが好適であるといえる。   As a result of the above test, as shown in FIG. 7, in Samples 1 and 2 in which the solubility parameter of the dispersion medium is relatively large (24, 18), a sufficient amount of electrolyte was observed, and the hydrogen electrode catalyst layer 21 and It has been found that a high bonding force is exhibited between the oxygen electrode catalyst layer 22 and the electrolyte membrane 30. On the other hand, the solubility parameter of the paste P is relatively small (12) In Sample 3, the amount of electrolyte deposited was insufficient, and it was found that the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22 could not be joined to the electrolyte membrane 30. It was. From this, it can be said that the solubility parameter of the dispersion medium is preferably about 18 or more.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention.

例えば、上述した製造方法では、水素極触媒層21及び酸素極触媒層22の成形に含フッ素フィルム11、12を用いたが、これに代えて、非含フッ素フィルムの表面に撥水コーティング層を設けたものを基材とすることもできる。   For example, in the manufacturing method described above, the fluorine-containing films 11 and 12 are used for forming the hydrogen electrode catalyst layer 21 and the oxygen electrode catalyst layer 22, but instead, a water-repellent coating layer is provided on the surface of the non-fluorine-containing film. What was provided can also be used as a base material.

その他、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。   In addition, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.

11、12:含フッ素フィルム(基材)
21 :水素極触媒層
21c:(水素極触媒層の)電解質層
22 :酸素極触媒層
22c:(酸素極触媒層の)電解質層
30 :電解質層膜
GDL:ガス拡散層
11, 12: Fluorine-containing film (base material)
21: Hydrogen electrode catalyst layer 21c: Electrolyte layer (of hydrogen electrode catalyst layer) 22: Oxygen electrode catalyst layer 22c: Electrolyte layer (of oxygen electrode catalyst layer) 30: Electrolyte layer film GDL: Gas diffusion layer

Claims (1)

燃料電池用膜−電極アッセンブリの製造方法であって、
電気化学反応を促進させる触媒とフッ素成分を有する電解質と分散媒とを含み、前記分散媒の溶解性パラメーターが18以上であるペーストを、基材表面に薄膜に塗布する第1工程と、
前記基材表面に塗布されたペーストを乾燥させることにより、内部において前記電解質が前記基材表面側の面に偏析した触媒層とする第2工程と、
前記触媒層の前記基材表面側の面をガス拡散層と接合する第3工程と、を含み、
前記第3工程において、別途接着剤を用いないことを特徴とする燃料電池用膜−電極アッセンブリの製造方法。
A method for manufacturing a fuel cell membrane-electrode assembly , comprising:
And a catalyst to promote the electrochemical reaction, the electrolyte having a fluorine component comprises a dispersion medium, and the paste solubility parameter is 18 or more of the dispersion medium, a first step of applying a thin film on the surface of a substrate ,
A second step of drying the paste applied to the surface of the base material to form a catalyst layer in which the electrolyte is segregated on the surface of the base material surface;
A third step of bonding the surface of the catalyst layer on the substrate surface side with a gas diffusion layer,
In the third step, an adhesive is not separately used, and the method for manufacturing a fuel cell membrane-electrode assembly.
JP2013230447A 2013-11-06 2013-11-06 Manufacturing method of membrane-electrode assembly for fuel cell Active JP6149695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230447A JP6149695B2 (en) 2013-11-06 2013-11-06 Manufacturing method of membrane-electrode assembly for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230447A JP6149695B2 (en) 2013-11-06 2013-11-06 Manufacturing method of membrane-electrode assembly for fuel cell

Publications (2)

Publication Number Publication Date
JP2015090811A JP2015090811A (en) 2015-05-11
JP6149695B2 true JP6149695B2 (en) 2017-06-21

Family

ID=53194238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230447A Active JP6149695B2 (en) 2013-11-06 2013-11-06 Manufacturing method of membrane-electrode assembly for fuel cell

Country Status (1)

Country Link
JP (1) JP6149695B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9504713D0 (en) * 1995-03-09 1995-04-26 Johnson Matthey Plc Improved electrocatalytic material
DE50105123D1 (en) * 2001-05-22 2005-02-24 Umicore Ag & Co Kg A method of manufacturing a membrane electrode assembly and membrane electrode assembly made thereby
DE60230979D1 (en) * 2002-07-31 2009-03-12 Umicore Ag & Co Kg Aqueous catalyst inks and their use in the preparation of catalyst coated substrates
JP2004139899A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Electrode ink for solid polymer electrolyte fuel cell and manufacturing method of the same
JP2004220979A (en) * 2003-01-16 2004-08-05 Toyota Motor Corp Catalyst material-containing ink, electrode using the same, and fuel cell
JP2006344446A (en) * 2005-06-08 2006-12-21 Nissan Motor Co Ltd Ion conductor and energy device
WO2008050692A1 (en) * 2006-10-23 2008-05-02 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell

Also Published As

Publication number Publication date
JP2015090811A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5124273B2 (en) Membrane electrode assembly
KR102239198B1 (en) Sheet for transferring thin layer, thin-layer-transferring sheet with electrode catalyst layer, process for producing sheet for transferring thin layer, and process for producing membrane electrode assembly
KR20110001022A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
JP2001345110A (en) Solid polymer electrolyte fuel cell
JP2007103020A (en) Catalyst layer transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, and manufacturing method of them
JP2005071755A (en) Membrane electrode jointed body for fuel cell and its manufacturing method
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2008130416A (en) Manufacturing method of membrane electrode assembly
JP2009026493A (en) Membrane-electrode assembly and its manufacturing method
JP2019083113A (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2015146287A (en) Method for inspecting fuel battery
JP2009272217A (en) Activation method for membrane electrode assembly, and membrane electrode assembly as well as solid polymer fuel cell using same
JP6149695B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2008300133A (en) Method for manufacturing fuel cell
JP2019121551A (en) Manufacturing method of conjugate for fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2009080974A (en) Fuel cell
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP2009187872A (en) Method of manufacturing membrane-electrode assembly for fuel cell
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
JP2008053011A (en) Manufacturing method of solid polymer electrolyte fuel cell
JP5417687B2 (en) Method for producing solid polymer electrolyte fuel cell
JP2011165359A (en) Membrane-electrode-gas diffusion layer assembly used for fuel cell, and method of manufacturing the same
JP2013084427A (en) Method for manufacturing membrane-catalyst layer assembly and method for manufacturing membrane electrode assembly
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R151 Written notification of patent or utility model registration

Ref document number: 6149695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151