JP2015146287A - Method for inspecting fuel battery - Google Patents

Method for inspecting fuel battery Download PDF

Info

Publication number
JP2015146287A
JP2015146287A JP2014019288A JP2014019288A JP2015146287A JP 2015146287 A JP2015146287 A JP 2015146287A JP 2014019288 A JP2014019288 A JP 2014019288A JP 2014019288 A JP2014019288 A JP 2014019288A JP 2015146287 A JP2015146287 A JP 2015146287A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
voltage
electrolyte membrane
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014019288A
Other languages
Japanese (ja)
Inventor
森田 亮
Akira Morita
亮 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014019288A priority Critical patent/JP2015146287A/en
Publication of JP2015146287A publication Critical patent/JP2015146287A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting a fuel battery by which a determination can be made on whether the bonding state at the interface of a catalyst layer and an electrolytic film and the bonding state at the interface of the catalyst layer and a diffusion layer are appropriate or not.SOLUTION: A method for inspecting a fuel battery comprises: a preparation step; a voltage measurement step; and a determination step. In the preparation step, a fuel battery including an electrolytic film, and first and second electrodes provided on two opposing sides of the electrolytic film respectively is prepared, provided that each electrode includes a catalyst layer and a gas diffusion layer. In the voltage measurement step, a constant oxidation current is caused to flow between the first and second electrodes while supplying at least one kind of humidification gas selected from a group consisting of nitrogen, helium, argon or air to the first and second electrodes and in this condition, a voltage of the fuel battery is measured. In the determination step, a first voltage detected in an initial stage of causing the oxidation current to flow, and a second voltage which is higher than the first voltage, and detected after the detection of the first voltage are used to make a determination on whether the bonding state at the interface of the catalyst layer and the gas diffusion layer is appropriate or not.

Description

本発明は、燃料電池の検査方法に関する。   The present invention relates to a fuel cell inspection method.

燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。そのため、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。
特許文献1には、少なくとも一方の面に拡散層が配置された膜電極接合体を準備する工程と、膜電極接合体を液体に浸す工程と、液体に浸した膜電極接合体の含水量を変化させて、膜電極接合体の抵抗値を測定する工程と、抵抗値を用いて膜電極接合体と拡散層との密着の良否を評価する工程と、を備える燃料電池の評価方法が開示されている。
A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Therefore, since the fuel cell is not subject to the Carnot cycle, it exhibits high energy conversion efficiency.
Patent Document 1 discloses a step of preparing a membrane electrode assembly in which a diffusion layer is disposed on at least one surface, a step of immersing the membrane electrode assembly in a liquid, and a water content of the membrane electrode assembly immersed in the liquid. Disclosed is a method for evaluating a fuel cell, comprising: changing a resistance value of a membrane electrode assembly, and evaluating a quality of adhesion between the membrane electrode assembly and a diffusion layer using the resistance value. ing.

特開2009−277613号公報JP 2009-277613 A

燃料電池の触媒層に、高い弾性率を有するイオン伝導性高分子電解質材料を用いる場合、電解質膜と触媒層との界面及び触媒層と拡散層との界面の接合性が確保しづらくなるため、電解質膜と触媒層との界面及び触媒層と拡散層との界面の接合状態について検査する必要がある。
しかし、特許文献1に記載の方法では、電解質膜と触媒層との界面の接合状態の良否を判定することができないという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、電解質膜と触媒層との界面及び触媒層と拡散層との界面の接合状態の良否を判定することができる燃料電池の検査方法を提供することである。
When an ion conductive polymer electrolyte material having a high elastic modulus is used for the catalyst layer of the fuel cell, it becomes difficult to ensure the bondability between the interface between the electrolyte membrane and the catalyst layer and the interface between the catalyst layer and the diffusion layer. It is necessary to inspect the bonding state of the interface between the electrolyte membrane and the catalyst layer and the interface between the catalyst layer and the diffusion layer.
However, the method described in Patent Document 1 has a problem that it is not possible to determine the quality of the bonding state at the interface between the electrolyte membrane and the catalyst layer.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is a fuel capable of determining the quality of the joining state of the interface between the electrolyte membrane and the catalyst layer and the interface between the catalyst layer and the diffusion layer. It is to provide a battery inspection method.

本発明の燃料電池の検査方法は、電解質膜と、該電解質膜の一方の面に設けられ、且つ、該電解質膜側から順に第一触媒層と第一ガス拡散層とが配置されてなる第一電極と、該電解質膜の他方の面に設けられ、且つ、該電解質膜側から順に第ニ触媒層と第ニガス拡散層とが配置されてなる第ニ電極とを備える燃料電池を準備する準備工程と、
窒素、ヘリウム、アルゴン及び空気からなる群より選ばれる少なくとも一種の加湿ガスを前記第一電極に供給し、且つ、窒素、ヘリウム、アルゴン及び水素からなる群より選ばれる少なくとも一種の加湿ガスを前記第二電極に供給しながら、前記加湿ガスから前記第一電極に供給された水を酸化させる一定の酸化電流を前記第一電極と前記第二電極との間に通電し、前記燃料電池の電圧を測定する、電圧測定工程と、
前記電圧測定工程において、前記酸化電流の通電初期に検出される第一電圧が、所定時間、定常に維持されるか否かで、前記電解質膜と前記第一触媒層との界面の接合状態の良否を判定し、前記第一電圧が検出された後に検出される第一電圧よりも高い第ニ電圧が、所定時間、定常に維持されるか否かで、前記第一触媒層と前記第一ガス拡散層との界面の接合状態の良否を判定する判定工程と、
を有することを特徴とする。
The method for inspecting a fuel cell of the present invention comprises an electrolyte membrane, a first catalyst layer and a first gas diffusion layer which are provided on one surface of the electrolyte membrane and are arranged in order from the electrolyte membrane side. Preparation for preparing a fuel cell comprising one electrode and a second electrode provided on the other surface of the electrolyte membrane and having a second catalyst layer and a second gas diffusion layer arranged in order from the electrolyte membrane side Process,
Supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and air to the first electrode, and supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and hydrogen to the first electrode; While supplying to the two electrodes, a constant oxidation current for oxidizing the water supplied to the first electrode from the humidified gas is passed between the first electrode and the second electrode, and the voltage of the fuel cell is set. Measuring voltage measuring step;
In the voltage measurement step, whether or not the first voltage detected in the initial stage of the current application of the oxidation current is maintained constantly for a predetermined time, the bonding state of the interface between the electrolyte membrane and the first catalyst layer is determined. Whether the second voltage higher than the first voltage detected after the first voltage is detected is maintained constant for a predetermined time, the first catalyst layer and the first A determination step of determining whether the bonding state of the interface with the gas diffusion layer is good or bad;
It is characterized by having.

本発明によれば、電解質膜と触媒層との界面及び触媒層と拡散層との界面の接合状態の良否を判定することができる。   According to the present invention, it is possible to determine the quality of the bonding state of the interface between the electrolyte membrane and the catalyst layer and the interface between the catalyst layer and the diffusion layer.

本発明に用いる燃料電池の構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a structure of the fuel cell used for this invention. 実施例1〜3の電圧値と時間との関係を示す図である。It is a figure which shows the relationship between the voltage value of Examples 1-3, and time.

本発明の燃料電池の検査方法は、電解質膜と、該電解質膜の一方の面に設けられ、且つ、該電解質膜側から順に第一触媒層と第一ガス拡散層とが配置されてなる第一電極と、該電解質膜の他方の面に設けられ、且つ、該電解質膜側から順に第ニ触媒層と第ニガス拡散層とが配置されてなる第ニ電極とを備える燃料電池を準備する準備工程と、
窒素、ヘリウム、アルゴン及び空気からなる群より選ばれる少なくとも一種の加湿ガスを前記第一電極に供給し、且つ、窒素、ヘリウム、アルゴン及び水素からなる群より選ばれる少なくとも一種の加湿ガスを前記第二電極に供給しながら、前記加湿ガスから前記第一電極に供給された水を酸化させる一定の酸化電流を前記第一電極と前記第二電極との間に通電し、前記燃料電池の電圧を測定する、電圧測定工程と、
前記電圧測定工程において、前記酸化電流の通電初期に検出される第一電圧が、所定時間、定常に維持されるか否かで、前記電解質膜と前記第一触媒層との界面の接合状態の良否を判定し、前記第一電圧が検出された後に検出される第一電圧よりも高い第ニ電圧が、所定時間、定常に維持されるか否かで、前記第一触媒層と前記第一ガス拡散層との界面の接合状態の良否を判定する判定工程と、
を有することを特徴とする。
The method for inspecting a fuel cell of the present invention comprises an electrolyte membrane, a first catalyst layer and a first gas diffusion layer which are provided on one surface of the electrolyte membrane and are arranged in order from the electrolyte membrane side. Preparation for preparing a fuel cell comprising one electrode and a second electrode provided on the other surface of the electrolyte membrane and having a second catalyst layer and a second gas diffusion layer arranged in order from the electrolyte membrane side Process,
Supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and air to the first electrode, and supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and hydrogen to the first electrode; While supplying to the two electrodes, a constant oxidation current for oxidizing the water supplied to the first electrode from the humidified gas is passed between the first electrode and the second electrode, and the voltage of the fuel cell is set. Measuring voltage measuring step;
In the voltage measurement step, whether or not the first voltage detected in the initial stage of the current application of the oxidation current is maintained constantly for a predetermined time, the bonding state of the interface between the electrolyte membrane and the first catalyst layer is determined. Whether the second voltage higher than the first voltage detected after the first voltage is detected is maintained constant for a predetermined time, the first catalyst layer and the first A determination step of determining whether the bonding state of the interface with the gas diffusion layer is good or bad;
It is characterized by having.

燃料電池の第一電極及び第一電極の対極である第二電極に加湿ガスを供給しながら、加湿ガスから第一電極に供給された水を酸化させる一定の酸化電流を第一電極と第二電極との間に通電することにより、第一電極の触媒層(以下、第一触媒層と称する)において下記式(1)のような水の酸化反応が進行する。
O→1/2O+2H+2e・・・式(1)
そして、前記酸化電流の通電後所定の時間が経過すると、第一触媒層の触媒が不活性化することにより式(1)の反応が終止し、その後、第一触媒層と第一電極のガス拡散層(以下、第一ガス拡散層と称する)との界面において下記式(2)のようなカーボンの酸化反応が進行する。
C+2HO→CO+4H+4e・・・式(2)
式(1)、式(2)で生じる電子は、外部回路を経由し、第二電極に到達する。そして、式(1)、式(2)で生じたプロトンは、水と水和した状態で、電気浸透により電解質膜内を第一電極側から第二電極側に移動する。
一方、第二電極では下記式(3)のような還元反応が進行する。
2H+2e→H・・・式(3)
本発明者は、上記式(1)の反応持続時間の最大値は、通電する酸化電流値、触媒層に含まれる触媒の種類及び量、通電処理時の温度が同じであれば第一触媒層の面積の大きさで決まり、上記式(1)の反応持続時間は、第一触媒層と電解質膜との界面の接合状態が悪い場合、最大値に満たないことを見出した。
また、上記式(2)の反応持続時間の最大値は、通電する酸化電流値、触媒層に含まれる触媒の種類及び量、通電処理時の温度が同じであれば第一ガス拡散層の面積の大きさで決まり、上記式(2)の反応持続時間は、第一触媒層と第一ガス拡散層との界面の接合状態が悪い場合、最大値に満たないことを見出した。
さらに、上記式(1)及び式(2)の反応時に観測される燃料電池の電圧がそれぞれ異なることを見出した。
上記知見から、式(1)及び式(2)の反応持続時間が所定時間を満たすか否かによって、電解質膜と触媒層との界面及び触媒層とガス拡散層との界面の接合状態の良否を判定することができることを見出し、本発明を完成させるに至った。
本発明の燃料電池の検査方法は、従来の一般的な方法により作製した燃料電池に対して、加湿ガスを供給しつつ電極間に電流を通電するものであり、非常に簡便である。
本発明の燃料電池の検査方法は、生産ラインにおける抜き取り検査や、試作品の検査に好適に用いられる。
While supplying the humidified gas to the first electrode of the fuel cell and the second electrode that is the counter electrode of the first electrode, a constant oxidation current that oxidizes water supplied from the humidified gas to the first electrode is applied to the first electrode and the second electrode. By energizing between the electrodes, a water oxidation reaction such as the following formula (1) proceeds in the catalyst layer of the first electrode (hereinafter referred to as the first catalyst layer).
H 2 O → 1 / 2O 2 + 2H + + 2e (1)
When a predetermined time elapses after the oxidation current is passed, the catalyst of the first catalyst layer is deactivated to stop the reaction of the formula (1), and then the gas of the first catalyst layer and the first electrode At the interface with the diffusion layer (hereinafter referred to as the first gas diffusion layer), an oxidation reaction of carbon as represented by the following formula (2) proceeds.
C + 2H 2 O → CO 2 + 4H + + 4e (2)
The electrons generated in the equations (1) and (2) reach the second electrode via the external circuit. The protons generated in the formulas (1) and (2) move in the electrolyte membrane from the first electrode side to the second electrode side by electroosmosis in a state of being hydrated with water.
On the other hand, in the second electrode, a reduction reaction such as the following formula (3) proceeds.
2H + + 2e → H 2 Formula (3)
The present inventor believes that the maximum value of the reaction duration of the above formula (1) is the same as the first catalyst layer as long as the oxidation current value to be energized, the type and amount of catalyst contained in the catalyst layer, and the temperature during the energization treatment are the same. The reaction duration of the above formula (1) was found to be less than the maximum value when the bonding state at the interface between the first catalyst layer and the electrolyte membrane was poor.
In addition, the maximum value of the reaction duration of the above formula (2) is the area of the first gas diffusion layer if the oxidation current value to be energized, the type and amount of the catalyst contained in the catalyst layer, and the temperature during the energization treatment are the same. The reaction duration of the above formula (2) was found to be less than the maximum value when the bonding state at the interface between the first catalyst layer and the first gas diffusion layer was poor.
Furthermore, it discovered that the voltage of the fuel cell observed at the time of reaction of the said Formula (1) and Formula (2) differs, respectively.
From the above findings, whether the bonding state of the interface between the electrolyte membrane and the catalyst layer and the interface between the catalyst layer and the gas diffusion layer is good or not depends on whether or not the reaction duration time of the formulas (1) and (2) satisfies a predetermined time. Has been found to be able to be determined, and the present invention has been completed.
The method for inspecting a fuel cell according to the present invention is very simple because a current is passed between electrodes while supplying a humidified gas to a fuel cell produced by a conventional general method.
The fuel cell inspection method of the present invention is suitably used for sampling inspection on a production line and inspection of a prototype.

本発明の燃料電池の検査方法は、(1)準備工程、(2)電圧測定工程、(3)判定工程を有する。本発明は、必ずしも上記3工程のみに限定されることはない。
以下、本発明の検査方法について、工程ごとに説明する。
The fuel cell inspection method of the present invention includes (1) a preparation step, (2) a voltage measurement step, and (3) a determination step. The present invention is not necessarily limited to only the above three steps.
Hereinafter, the inspection method of the present invention will be described for each process.

(1)準備工程
準備工程は、電解質膜と、該電解質膜の一方の面に設けられ、且つ、該電解質膜側から順に第一触媒層と第一ガス拡散層とが配置されてなる第一電極と、該電解質膜の他方の面に設けられ、且つ、該電解質膜側から順に第ニ触媒層と第ニガス拡散層とが配置されてなる第ニ電極とを備える燃料電池を準備する工程である。
(1) Preparatory Step The preparatory step is a first step in which an electrolyte membrane and a first catalyst layer and a first gas diffusion layer are provided in order from the electrolyte membrane side on one surface of the electrolyte membrane. A step of preparing a fuel cell comprising an electrode and a second electrode provided on the other surface of the electrolyte membrane and having a second catalyst layer and a second gas diffusion layer disposed in order from the electrolyte membrane side; is there.

図1は、本発明に用いられる燃料電池の一例を示す断面模式図である。
燃料電池100は、電解質膜1と、電解質膜1を挟持する一対の第一電極6及び第二電極7とを有する膜電極接合体8を含む。第一電極6は、電解質膜1側から順に第一触媒層2と第一ガス拡散層4とが積層した構造を有し、第ニ電極7は、電解質膜1側から順に第ニ触媒層3と第ニガス拡散層5とが積層した構造を有している。
燃料電池100は、膜電極接合体8を電極6、7の外側から一対のセパレータ9及び10で挟持され、セパレータ9、10と電極6、7との境界に確保されるガス流路11及び12を介して、各電極6、7にガスが供給可能となっている。
FIG. 1 is a schematic cross-sectional view showing an example of a fuel cell used in the present invention.
The fuel cell 100 includes a membrane electrode assembly 8 having an electrolyte membrane 1 and a pair of first electrode 6 and second electrode 7 that sandwich the electrolyte membrane 1. The first electrode 6 has a structure in which the first catalyst layer 2 and the first gas diffusion layer 4 are laminated in order from the electrolyte membrane 1 side, and the second electrode 7 has the second catalyst layer 3 in order from the electrolyte membrane 1 side. And the second gas diffusion layer 5 are stacked.
In the fuel cell 100, the membrane electrode assembly 8 is sandwiched between a pair of separators 9 and 10 from the outside of the electrodes 6 and 7, and gas flow paths 11 and 12 are secured at the boundary between the separators 9 and 10 and the electrodes 6 and 7. The gas can be supplied to the electrodes 6 and 7 via.

燃料電池は、少なくとも電解質膜と、該電解質膜の一方の面に設けられた第一電極と、該電解質膜の他方の面に設けられた第二電極を備える膜電極接合体を有し、必要に応じ、ガス流路を有するセパレータで膜電極接合体が狭持された構成を有する。
電解質膜としては、Nafion(登録商標:DuPont社製)等のパーフルオロスルホン酸ポリマー系電解質膜のようなフッ素系高分子電解質を含むフッ素系高分子電解質膜の他、ポリエーテルエーテルケトン等のエンジニアリングプラスチックや、ポリエチレン等の汎用プラスチック等の炭化水素系高分子にスルホン酸基、カルボン酸基、リン酸基、ボロン酸基等のプロトン酸基(プロトン伝導性基)を導入した炭化水素系高分子電解質を含む炭化水素系高分子電解質膜等が挙げられる。
電解質膜の厚み、面積は、特に限定されない。
The fuel cell has a membrane electrode assembly including at least an electrolyte membrane, a first electrode provided on one surface of the electrolyte membrane, and a second electrode provided on the other surface of the electrolyte membrane, and is necessary Accordingly, the membrane electrode assembly is sandwiched by the separator having the gas flow path.
As the electrolyte membrane, engineering such as polyether ether ketone as well as fluorine-based polymer electrolyte membranes containing fluorine-based polymer electrolytes such as perfluorosulfonic acid polymer-based electrolyte membranes such as Nafion (registered trademark: DuPont) Hydrocarbon polymers in which protonic acid groups (proton conductive groups) such as sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, and boronic acid groups are introduced into hydrocarbon polymers such as plastics and general-purpose plastics such as polyethylene. Examples thereof include a hydrocarbon polymer electrolyte membrane containing an electrolyte.
The thickness and area of the electrolyte membrane are not particularly limited.

第一電極は、第一触媒層、第一ガス拡散層を有し、電解質膜側から順に、第一触媒層と第一ガス拡散層とが積層するように配置されていれば特に限定されない。
第一触媒層に用いる触媒は、特に限定されず、例えば、白金、イリジウム、ルテニウム、ロジウム、および金並びにこれらから選ばれる金属を含む合金等が挙げられる。
第一触媒層の形成方法は、特に限定されず、例えば、電解質膜表面に触媒インクを塗布、乾燥することによって、電解質膜表面に第一触媒層を形成することができる。或いは、基材表面に触媒インクを塗布、乾燥して作製した触媒層転写シートを用い、電解質膜表面に第一触媒層を転写する方法も採用することができる。
触媒インクは、例えば、触媒、分散媒、高分子電解質を混合することで調製することができる。
触媒インクの分散媒としては、特に限定されず、使用される高分子電解質等によって適宜選択することができ、例えば、メタノール等のアルコール類、N−メチル−2−ピロリドン(NMP)等の有機溶媒、又はこれら有機溶媒の混合物やこれら有機溶媒と水との混合物を用いることができる。触媒インクには、必要に応じて結着剤や撥水性樹脂等のその他の成分を含有させてもよい。
触媒インクの高分子電解質としては特に限定されないが、電解質膜同様の材料を用いることができる。
触媒インクは、上記材料を、例えば、ホモジナイザー等により混合することで調製することができる。
触媒インクの塗布方法、乾燥方法等は適宜選択することができる。例えば、塗布方法としては、スプレー法等が挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥などが挙げられる。減圧乾燥、加熱乾燥における具体的な条件に制限はなく、適宜設定すればよい。
触媒インクの塗布量は、触媒インクの組成や、触媒金属の触媒性能等によって異なるが、単位面積当りの触媒成分量が、0.05〜1.0mg/cm程度となるようにすればよい。
第一触媒層の厚み、面積は、特に限定されない。
The first electrode has a first catalyst layer and a first gas diffusion layer, and is not particularly limited as long as the first catalyst layer and the first gas diffusion layer are stacked in this order from the electrolyte membrane side.
The catalyst used for the first catalyst layer is not particularly limited, and examples thereof include platinum, iridium, ruthenium, rhodium, gold, and an alloy containing a metal selected from these.
The method for forming the first catalyst layer is not particularly limited. For example, the first catalyst layer can be formed on the surface of the electrolyte membrane by applying and drying the catalyst ink on the surface of the electrolyte membrane. Alternatively, a method of transferring the first catalyst layer to the electrolyte membrane surface using a catalyst layer transfer sheet prepared by applying a catalyst ink to the substrate surface and drying it can also be employed.
The catalyst ink can be prepared, for example, by mixing a catalyst, a dispersion medium, and a polymer electrolyte.
The dispersion medium of the catalyst ink is not particularly limited and can be appropriately selected depending on the polymer electrolyte used. For example, alcohols such as methanol and organic solvents such as N-methyl-2-pyrrolidone (NMP) Alternatively, a mixture of these organic solvents or a mixture of these organic solvents and water can be used. The catalyst ink may contain other components such as a binder and a water repellent resin as necessary.
The polymer electrolyte of the catalyst ink is not particularly limited, but the same material as the electrolyte membrane can be used.
The catalyst ink can be prepared by mixing the above materials with, for example, a homogenizer.
The method for applying the catalyst ink, the drying method, and the like can be selected as appropriate. For example, a spray method etc. are mentioned as a coating method. Examples of the drying method include vacuum drying, heat drying, and vacuum heat drying. There is no restriction | limiting in the specific conditions in reduced pressure drying and heat drying, What is necessary is just to set suitably.
The amount of catalyst ink applied varies depending on the composition of the catalyst ink and the catalyst performance of the catalyst metal, but the catalyst component amount per unit area may be about 0.05 to 1.0 mg / cm 2. .
The thickness and area of the first catalyst layer are not particularly limited.

第一ガス拡散層を形成するガス拡散層シートとしては、通常、カーボンペーパー、カーボンクロス、カーボンフェルト等の炭素質多孔質体等が用いられる。
ガス拡散層シートは、必要に応じ、触媒層に面する側に撥水層を有する。撥水層は、通常、炭素粒子や炭素繊維等の導電性粉粒体、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂等を含む多孔質構造を有するものである。
第一ガス拡散層の厚み、面積は、特に限定されない。
As the gas diffusion layer sheet for forming the first gas diffusion layer, carbonaceous porous bodies such as carbon paper, carbon cloth, carbon felt and the like are usually used.
The gas diffusion layer sheet has a water repellent layer on the side facing the catalyst layer, if necessary. The water-repellent layer usually has a porous structure containing conductive particles such as carbon particles and carbon fibers, water-repellent resin such as polytetrafluoroethylene (PTFE), and the like.
The thickness and area of the first gas diffusion layer are not particularly limited.

第二電極は、第一電極の対極となるものである。第二電極は、電圧測定工程において上記式(3)の反応が進行するものであればよい。
第二電極は、第二触媒層、第二ガス拡散層を有し、電解質膜側から順に、第ニ触媒層と第ニガス拡散層とが積層するように配置されていれば特に限定されない。第二電極の材料、厚み、面積、形成方法は、第一電極と同様とすることができる。
The second electrode is a counter electrode of the first electrode. The 2nd electrode should just be what the reaction of the above-mentioned formula (3) advances in a voltage measurement process.
The second electrode is not particularly limited as long as it has a second catalyst layer and a second gas diffusion layer, and is arranged so that the second catalyst layer and the second gas diffusion layer are laminated in this order from the electrolyte membrane side. The material, thickness, area, and formation method of the second electrode can be the same as those of the first electrode.

セパレータとしては、導電性及びガスシール性を有し、集電体及びガスシール体として機能しうるもの、例えば、炭素繊維を高濃度に含有し、樹脂との複合材からなるカーボンセパレータや、金属材料を用いた金属セパレータ等を用いることができる。金属セパレータとしては、耐腐食性に優れた金属材料からなるものや、表面をカーボンや耐腐食性に優れた金属材料等で被覆し、耐腐食性を高めるコーティングが施されたもの等が挙げられる。   The separator has conductivity and gas sealing properties, and can function as a current collector and gas sealing body, for example, a carbon separator containing a high concentration of carbon fiber and made of a composite material with resin, metal A metal separator using a material can be used. Examples of the metal separator include those made of a metal material excellent in corrosion resistance, and those coated with a coating that enhances the corrosion resistance by coating the surface with carbon or a metal material excellent in corrosion resistance. .

(2)電圧測定工程
窒素、ヘリウム、アルゴン及び空気からなる群より選ばれる少なくとも一種の加湿ガスを前記第一電極に供給し、且つ、窒素、ヘリウム、アルゴン及び水素からなる群より選ばれる少なくとも一種の加湿ガスを前記第二電極に供給しながら、前記加湿ガスから前記第一電極に供給された水を酸化させる一定の酸化電流を前記第一電極と前記第二電極との間に通電し、前記燃料電池の電圧を測定する工程である。
(2) Voltage measurement step At least one humidified gas selected from the group consisting of nitrogen, helium, argon and air is supplied to the first electrode, and at least one selected from the group consisting of nitrogen, helium, argon and hydrogen While supplying the humidified gas to the second electrode, a constant oxidation current that oxidizes water supplied from the humidified gas to the first electrode is passed between the first electrode and the second electrode, A step of measuring a voltage of the fuel cell;

本発明において、加湿ガスとは、供給される燃料電池の温度条件において相対湿度(RH)60%以上であるものとする。上記式(1)、(2)の反応が効率良く進行するようにするためには、RH80%以上、特にRH100%以上であることが好ましい。
第一電極に供給する加湿ガスは、水の酸化反応を起こさせる観点から、窒素、ヘリウム、アルゴン等の不活性ガス、及び空気からなる群より選ばれる少なくとも一種であればよく、第ニ電極に供給する加湿ガスは、プロトンを水素に還元させる観点から、窒素、ヘリウム、アルゴン等の不活性ガス、及び水素ガスからなる群より選ばれる少なくとも一種であればよい。なお、第一電極及び第二電極に供給する加湿ガスは、同じであってもよい。
加湿ガスの供給流量は、特に限定されないが、電極1cmあたり10〜100sccm(≒0.019〜0.19Pa・m/s)であることが好ましい。
酸化電流は、第一電極に供給された水を酸化させることができる一定の電流値であれば特に限定されず、0.01〜1.0A/cmであることが好ましい。
酸化電流を第一電極と第二電極との間に一定に通電する方法は特に限定されず、例えば、第一電極及び第二電極に電流通電装置を接続し、第一電極と第二電極との間に一定の電流を通電する方法が挙げられる。
電流通電装置としては、ガルバノスタット、ポテンショ・ガルバノスタット等を用いることができる。
In the present invention, the humidified gas is assumed to have a relative humidity (RH) of 60% or more under the temperature condition of the supplied fuel cell. In order to allow the reactions of the above formulas (1) and (2) to proceed efficiently, RH is preferably 80% or more, particularly preferably RH 100% or more.
The humidified gas supplied to the first electrode may be at least one selected from the group consisting of an inert gas such as nitrogen, helium, and argon, and air from the viewpoint of causing an oxidation reaction of water. The humidified gas to be supplied may be at least one selected from the group consisting of an inert gas such as nitrogen, helium, and argon, and hydrogen gas from the viewpoint of reducing protons to hydrogen. The humidified gas supplied to the first electrode and the second electrode may be the same.
The supply flow rate of the humidified gas is not particularly limited, but is preferably 10 to 100 sccm (≈0.019 to 0.19 Pa · m 3 / s) per 1 cm 2 of the electrode.
The oxidation current is not particularly limited as long as it is a constant current value that can oxidize water supplied to the first electrode, and is preferably 0.01 to 1.0 A / cm 2 .
There is no particular limitation on the method of supplying the oxidation current between the first electrode and the second electrode in a constant manner. For example, a current supply device is connected to the first electrode and the second electrode, and the first electrode and the second electrode are connected. A method of applying a constant current during
A galvanostat, a potentio galvanostat, etc. can be used as a current supply device.

(3)判定工程
判定工程は、前記電圧測定工程において、前記酸化電流の通電初期に検出される第一電圧が、所定時間、定常に維持されるか否かで、前記電解質膜と前記第一触媒層との界面の接合状態の良否を判定し、前記第一電圧が検出された後に検出される第一電圧よりも高い第ニ電圧が、所定時間、定常に維持されるか否かで、前記第一触媒層と前記第一ガス拡散層との界面の接合状態の良否を判定する工程である。
(3) Determination Step The determination step includes determining whether or not the first voltage detected in the initial stage of the current application of the oxidation current in the voltage measurement step is constantly maintained for a predetermined time. Whether the bonding state of the interface with the catalyst layer is good or not, whether or not the second voltage higher than the first voltage detected after the first voltage is detected is maintained constant for a predetermined time, It is a step of determining the quality of the bonding state of the interface between the first catalyst layer and the first gas diffusion layer.

本発明において「電圧が定常に維持される」とは、測定電圧が、所定の電圧値±0.1Vの範囲内で一定に保持されることをいい、検出される定常電圧の波形は、直線であっても波線であってもよい。
第一電圧は、上記式(1)の反応時に検出される電圧値であり、電解質膜と第一触媒層との界面の接合状態が良い場合、通常、1.5〜1.8Vであり、電解質膜と第一触媒層との界面の接合状態が悪いと上昇する。したがって、1.8V以下の電圧値が検出された場合、電解質膜と第一触媒層の少なくとも一部が接触していると判断することができる。
第一電圧が定常に維持される時間は、式(1)の反応の持続時間であり、通電する酸化電流値、触媒層に含まれる触媒の種類及び量、通電処理時の温度が同じであれば触媒層の面積の大きさで最大値が決まり、電解質膜と第一触媒層との界面の接合状態が悪いと最大値に満たない。
そのため、電解質膜と第一触媒層との界面の接合状態の良否判断に用いる所定時間は、通電する酸化電流値、触媒層に含まれる触媒の種類及び量、通電処理時の温度、触媒層の面積に応じて適宜設定することができる。
そして、所定時間を満たす場合は、電解質膜と第一触媒層との界面の接合状態が良いと判断し、所定時間を満たさない場合は、電解質膜と第一触媒層との界面の接合状態が悪いと判断することができる。
なお、第一電極に第一ガス拡散層が設けられておらず、第一電極が第一触媒層のみで構成されている場合であっても、電解質膜と第一触媒層との界面の接合状態の良否判断をすることができる。
In the present invention, “the voltage is constantly maintained” means that the measured voltage is kept constant within a predetermined voltage value ± 0.1 V, and the waveform of the detected steady voltage is a straight line. Or wavy lines.
The first voltage is a voltage value detected during the reaction of the above formula (1), and is usually 1.5 to 1.8 V when the bonding state of the interface between the electrolyte membrane and the first catalyst layer is good. It rises when the bonding state at the interface between the electrolyte membrane and the first catalyst layer is poor. Therefore, when a voltage value of 1.8 V or less is detected, it can be determined that at least a part of the electrolyte membrane and the first catalyst layer are in contact.
The time during which the first voltage is kept constant is the duration of the reaction of formula (1), and the oxidation current value to be energized, the type and amount of the catalyst contained in the catalyst layer, and the temperature during the energization treatment are the same. For example, the maximum value is determined by the size of the area of the catalyst layer, and if the bonding state at the interface between the electrolyte membrane and the first catalyst layer is poor, the maximum value is not reached.
Therefore, the predetermined time used to judge the quality of the joining state of the interface between the electrolyte membrane and the first catalyst layer is the oxidation current value to be energized, the type and amount of the catalyst contained in the catalyst layer, the temperature during the energization treatment, the catalyst layer It can set suitably according to an area.
If the predetermined time is satisfied, it is determined that the interface state between the electrolyte membrane and the first catalyst layer is good. If the predetermined time is not satisfied, the interface state between the electrolyte membrane and the first catalyst layer is Can be judged bad.
Even when the first electrode is not provided with the first gas diffusion layer and the first electrode is composed only of the first catalyst layer, the interface between the electrolyte membrane and the first catalyst layer is joined. It is possible to judge whether the state is good or bad.

第ニ電圧は、上記式(2)の反応時に検出される電圧値であり、第一ガス拡散層と第一触媒層との界面の接合状態が良い場合、通常、2.0〜2.3Vであり、第一ガス拡散層と第一触媒層との界面の接合状態が悪いと上昇する。したがって、2.0V以上2.3V以下の電圧値が検出された場合、第一ガス拡散層と第一触媒層の少なくとも一部が接触していると判断することができる。
第ニ電圧が定常に維持される時間は、式(2)の反応の持続時間であり、通電する酸化電流値、第一ガス拡散層に用いる材料、通電処理時の温度が同じであれば第一ガス拡散層の面積の大きさで最大値が決まり、第一ガス拡散層と第一触媒層との界面の接合状態が悪いと最大値に満たない。
そのため、第一ガス拡散層と第一触媒層との界面の接合状態の良否判断に用いる所定時間は、通電する酸化電流値、第一ガス拡散層に用いる材料、通電処理時の温度、第一ガス拡散層の面積に応じて適宜設定することができる。
そして、所定時間を満たす場合は、第一ガス拡散層と第一触媒層との界面の接合状態が良いと判断し、所定時間を満たさない場合は、第一ガス拡散層と第一触媒層との界面の接合状態が悪いと判断することができる。
なお、本発明においては、第二電極を第一電極、第一電極を第二電極として用いることにより、電解質膜と第ニ触媒層との界面の接合状態の良否判断及び第ニガス拡散層と第ニ触媒層との界面の接合状態の良否判断をすることができる。
The second voltage is a voltage value detected at the time of the reaction of the above formula (2), and is generally 2.0 to 2.3 V when the interface state between the first gas diffusion layer and the first catalyst layer is good. It rises when the bonding state at the interface between the first gas diffusion layer and the first catalyst layer is poor. Therefore, when a voltage value of 2.0 V or more and 2.3 V or less is detected, it can be determined that at least a part of the first gas diffusion layer and the first catalyst layer are in contact with each other.
The time during which the second voltage is kept constant is the duration of the reaction of formula (2). If the oxidation current value to be energized, the material used for the first gas diffusion layer, and the temperature during the energization treatment are the same, The maximum value is determined by the size of the area of one gas diffusion layer, and if the bonding state at the interface between the first gas diffusion layer and the first catalyst layer is poor, the maximum value is not reached.
Therefore, the predetermined time used for determining the quality of the bonding state of the interface between the first gas diffusion layer and the first catalyst layer is the oxidation current value to be energized, the material used for the first gas diffusion layer, the temperature during the energization treatment, It can set suitably according to the area of a gas diffusion layer.
And when satisfy | filling predetermined time, it judges that the joining state of the interface of a 1st gas diffusion layer and a 1st catalyst layer is good, and when not satisfy | filling predetermined time, a 1st gas diffusion layer and a 1st catalyst layer It can be determined that the bonding state of the interface is poor.
In the present invention, by using the second electrode as the first electrode and the first electrode as the second electrode, it is possible to determine whether the interface state between the electrolyte membrane and the second catalyst layer is good or not, and the second gas diffusion layer and the second electrode. It is possible to judge whether the bonding state at the interface with the dual catalyst layer is good or bad.

(実施例1)
白金担持カーボンと、パーフルオロカーボンスルホン酸樹脂(商品名:Nafion、DuPont社製)と、エタノール、水を攪拌混合し、触媒インクを調製した。
パーフルオロカーボンスルホン酸樹脂膜(面積42cm)の両面に上記触媒インクをスプレー塗布した。このとき、触媒層の面積が13cm、触媒層の単位面積当たりの白金量が0.4mg/cmとなるように触媒インクを塗布した。該インクを乾燥させ、第一触媒層及び第二触媒層を形成し、膜触媒層接合体を得た。
得られた膜触媒層接合体を、ガス拡散層用カーボンペーパー(厚さ250μm、面積13cm)で挟持し、熱圧着して、膜電極接合体を得た。さらに、膜電極接合体を、2枚のセパレータ(カーボン製)で挟持し、燃料電池を作製した。
Example 1
Platinum-supported carbon, perfluorocarbon sulfonic acid resin (trade name: Nafion, manufactured by DuPont), ethanol, and water were mixed with stirring to prepare a catalyst ink.
The catalyst ink was spray-coated on both sides of a perfluorocarbon sulfonic acid resin film (area 42 cm 2 ). In this case, the area is 13cm 2 of the catalyst layer, the amount of platinum per unit area of the catalyst layer was coated catalyst ink so that 0.4 mg / cm 2. The ink was dried to form a first catalyst layer and a second catalyst layer to obtain a membrane / catalyst layer assembly.
The obtained membrane catalyst layer assembly was sandwiched between carbon papers for gas diffusion layers (thickness 250 μm, area 13 cm 2 ) and thermocompression bonded to obtain a membrane electrode assembly. Further, the membrane electrode assembly was sandwiched between two separators (made of carbon) to produce a fuel cell.

得られた燃料電池の第一電極と第二電極にポテンショ・ガルバノスタットを接続し、80℃の条件下、第一電極には、相対湿度(RH)100%(バブラ露点80℃)の窒素ガスを500sccm(≒0.95Pa・m/s)、第二電極にはRH100%(バブラ露点80℃)の水素ガスを500sccm(≒0.95Pa・m/s)で供給しながら、第二電極から第一電極へ+0.1A/cmの酸化電流が流れるように通電し、燃料電池の電圧を測定した。測定した電圧と時間との関係を示した結果を図2に示す。 A potentio galvanostat is connected to the first electrode and the second electrode of the obtained fuel cell, and under the condition of 80 ° C., nitrogen gas having a relative humidity (RH) of 100% (bubbler dew point 80 ° C.) is applied to the first electrode. Is supplied at 500 sccm (≈0.95 Pa · m 3 / s) and hydrogen gas of 100% RH (bubbler dew point 80 ° C.) is supplied to the second electrode at 500 sccm (≈0.95 Pa · m 3 / s). Electricity was applied so that an oxidation current of +0.1 A / cm 2 would flow from the electrode to the first electrode, and the voltage of the fuel cell was measured. The results showing the relationship between the measured voltage and time are shown in FIG.

(実施例2)
基材表面に触媒インクを塗布、乾燥して作製した触媒層転写シートを用い、電解質膜表面に触媒層を130℃、3MPaで転写して膜電極接合体を得たこと以外は、実施例1と同様である。
(Example 2)
Example 1 except that a catalyst layer transfer sheet prepared by applying and drying a catalyst ink on the surface of the substrate and transferring the catalyst layer to the electrolyte membrane surface at 130 ° C. and 3 MPa to obtain a membrane electrode assembly It is the same.

(実施例3)
基材表面に触媒インクを塗布、乾燥して作製した触媒層転写シートを用い、電解質膜表面に触媒層を130℃、3MPaで転写して膜電極接合体を得た後、160℃の熱履歴をかけ、その後、ガス拡散層を熱圧着したこと以外は、実施例1と同様である。
(Example 3)
Using a catalyst layer transfer sheet prepared by applying catalyst ink on the substrate surface and drying, transfer the catalyst layer to the electrolyte membrane surface at 130 ° C. and 3 MPa to obtain a membrane electrode assembly, and then heat history at 160 ° C. After that, the same as Example 1 except that the gas diffusion layer was thermocompression bonded.

<良否判定>
電解質膜と第一触媒層との界面の接合状態の良否判断をするための所定時間を120秒、第一触媒層と第一ガス拡散層との界面の接合状態の良否判断をするための所定時間を120秒に設定し、実施例1〜3について良否判定を行った。
図2に示すように、実施例1では、酸化電流の通電初期に、第一電圧として1.69Vの定常電圧が120秒観測され(第一電圧定常領域)、その後、第一電圧よりも高い第二電圧として2.00Vの定常電圧が120秒以上(360秒)観測された(第二電圧定常領域)。したがって、実施例1は、電解質膜と第一触媒層との界面及び第一触媒層と第一ガス拡散層との界面の接合状態が良いと判定できた。
一方、実施例2では、酸化電流の通電初期に、第一電圧として1.75Vの定常電圧が60秒しか観測されなかったが、その後、第二電圧として2.30Vの定常電圧が180秒以上観測された。したがって、実施例2は、電解質膜と第一触媒層との界面の接合状態が悪いと判定でき、第一触媒層と第一ガス拡散層との界面の接合状態が良いと判定することができた。
また、実施例3では、酸化電流の通電初期に、第一電圧として1.75Vの定常電圧が60秒しか観測されず、その後、第二電圧としての定常電圧が観測されなかった。したがって、実施例3は、電解質膜と第一触媒層との界面の接合状態及び第一触媒層と第一ガス拡散層との界面の接合状態が悪いと判定することができた。
なお、実施例1が、実施例2よりも、電解質膜と第一触媒層との界面の接合状態が良いのは、触媒インクを電解質膜へ直接塗布する方が、電解質膜を溶媒によって柔らかくできるため、転写法よりも電解質膜と第一触媒層との接合性が向上したためと考えられる。
また、実施例3が実施例2よりも、第一ガス拡散層と第一触媒層との界面の接合状態が悪いのは、熱履歴によって触媒層が高弾性化したため、第一ガス拡散層と第一触媒層との接合性が低下したためと考えられる。
<Pass / fail judgment>
A predetermined time for determining the quality of the bonding state at the interface between the electrolyte membrane and the first catalyst layer is 120 seconds, and a predetermined time for determining the quality of the bonding state at the interface between the first catalyst layer and the first gas diffusion layer. The time was set to 120 seconds, and pass / fail judgment was performed for Examples 1 to 3.
As shown in FIG. 2, in Example 1, a steady voltage of 1.69 V was observed as the first voltage for 120 seconds in the initial stage of the oxidation current application (first voltage steady region), and then higher than the first voltage. A steady voltage of 2.00 V was observed as the second voltage for 120 seconds or longer (360 seconds) (second voltage steady region). Therefore, in Example 1, it was determined that the bonding state of the interface between the electrolyte membrane and the first catalyst layer and the interface between the first catalyst layer and the first gas diffusion layer was good.
On the other hand, in Example 2, a steady voltage of 1.75 V as the first voltage was observed for only 60 seconds at the initial stage of the oxidation current application, but then a steady voltage of 2.30 V as the second voltage was 180 seconds or more. Observed. Therefore, in Example 2, it can be determined that the bonding state of the interface between the electrolyte membrane and the first catalyst layer is poor, and it can be determined that the bonding state of the interface between the first catalyst layer and the first gas diffusion layer is good. It was.
Further, in Example 3, a steady voltage of 1.75 V was observed as the first voltage for only 60 seconds in the initial stage of the oxidation current application, and thereafter a steady voltage as the second voltage was not observed. Therefore, Example 3 was able to determine that the bonding state at the interface between the electrolyte membrane and the first catalyst layer and the bonding state at the interface between the first catalyst layer and the first gas diffusion layer were poor.
In addition, the bonding state of the interface between the electrolyte membrane and the first catalyst layer in Example 1 is better than that in Example 2. The direct application of the catalyst ink to the electrolyte membrane can soften the electrolyte membrane with a solvent. For this reason, it is considered that the bondability between the electrolyte membrane and the first catalyst layer is improved as compared with the transfer method.
In addition, the bonding state of the interface between the first gas diffusion layer and the first catalyst layer in Example 3 is worse than that in Example 2, because the catalyst layer has become highly elastic due to the thermal history. This is considered to be because the bonding property with the first catalyst layer was lowered.

1 電解質膜
2 第一触媒層
3 第二触媒層
4 第一ガス拡散層
5 第二ガス拡散層
6 第一電極
7 第二電極
8 膜電極接合体
9,10 セパレータ
11,12 ガス流路
100 燃料電池
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 1st catalyst layer 3 2nd catalyst layer 4 1st gas diffusion layer 5 2nd gas diffusion layer 6 1st electrode 7 2nd electrode 8 Membrane electrode assembly 9, 10 Separator 11, 12 Gas flow path 100 Fuel battery

Claims (1)

電解質膜と、該電解質膜の一方の面に設けられ、且つ、該電解質膜側から順に第一触媒層と第一ガス拡散層とが配置されてなる第一電極と、該電解質膜の他方の面に設けられ、且つ、該電解質膜側から順に第ニ触媒層と第ニガス拡散層とが配置されてなる第ニ電極とを備える燃料電池を準備する準備工程と、
窒素、ヘリウム、アルゴン及び空気からなる群より選ばれる少なくとも一種の加湿ガスを前記第一電極に供給し、且つ、窒素、ヘリウム、アルゴン及び水素からなる群より選ばれる少なくとも一種の加湿ガスを前記第二電極に供給しながら、前記加湿ガスから前記第一電極に供給された水を酸化させる一定の酸化電流を前記第一電極と前記第二電極との間に通電し、前記燃料電池の電圧を測定する、電圧測定工程と、
前記電圧測定工程において、前記酸化電流の通電初期に検出される第一電圧が、所定時間、定常に維持されるか否かで、前記電解質膜と前記第一触媒層との界面の接合状態の良否を判定し、前記第一電圧が検出された後に検出される第一電圧よりも高い第ニ電圧が、所定時間、定常に維持されるか否かで、前記第一触媒層と前記第一ガス拡散層との界面の接合状態の良否を判定する判定工程と、
を有することを特徴とする燃料電池の検査方法。
An electrolyte membrane, a first electrode provided on one surface of the electrolyte membrane and having a first catalyst layer and a first gas diffusion layer disposed in order from the electrolyte membrane side; and the other electrode of the electrolyte membrane A preparatory step of preparing a fuel cell comprising a second electrode provided on the surface and having a second catalyst layer and a second gas diffusion layer arranged in order from the electrolyte membrane side;
Supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and air to the first electrode, and supplying at least one humidifying gas selected from the group consisting of nitrogen, helium, argon and hydrogen to the first electrode; While supplying to the two electrodes, a constant oxidation current for oxidizing the water supplied to the first electrode from the humidified gas is passed between the first electrode and the second electrode, and the voltage of the fuel cell is set. Measuring voltage measuring step;
In the voltage measurement step, whether or not the first voltage detected in the initial stage of the current application of the oxidation current is maintained constantly for a predetermined time, the bonding state of the interface between the electrolyte membrane and the first catalyst layer is determined. Whether the second voltage higher than the first voltage detected after the first voltage is detected is maintained constant for a predetermined time, the first catalyst layer and the first A determination step of determining whether the bonding state of the interface with the gas diffusion layer is good or bad;
A method for inspecting a fuel cell, comprising:
JP2014019288A 2014-02-04 2014-02-04 Method for inspecting fuel battery Pending JP2015146287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014019288A JP2015146287A (en) 2014-02-04 2014-02-04 Method for inspecting fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019288A JP2015146287A (en) 2014-02-04 2014-02-04 Method for inspecting fuel battery

Publications (1)

Publication Number Publication Date
JP2015146287A true JP2015146287A (en) 2015-08-13

Family

ID=53890435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019288A Pending JP2015146287A (en) 2014-02-04 2014-02-04 Method for inspecting fuel battery

Country Status (1)

Country Link
JP (1) JP2015146287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067635A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP2019067633A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP2019067634A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP7239502B2 (en) 2020-01-06 2023-03-14 株式会社日立製作所 X-ray imaging device and X-ray imaging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067635A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP2019067633A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP2019067634A (en) * 2017-09-29 2019-04-25 本田技研工業株式会社 Method for inspecting output of fuel cell
JP7239502B2 (en) 2020-01-06 2023-03-14 株式会社日立製作所 X-ray imaging device and X-ray imaging method

Similar Documents

Publication Publication Date Title
KR20060048001A (en) Membrane electrode assembly and method of producing the same
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2015146287A (en) Method for inspecting fuel battery
JP2002298867A (en) Solid polymer fuel cell
JP2008041371A (en) Manufacturing method of membrane electrode assembly for fuel cell
CN111902982A (en) Membrane electrode assembly and solid polymer fuel cell
JP2006344525A (en) Gas diffuser, its manufacturing method and fuel cell
JP4647902B2 (en) Method for manufacturing membrane-electrode structure
JP2009272217A (en) Activation method for membrane electrode assembly, and membrane electrode assembly as well as solid polymer fuel cell using same
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP5292751B2 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE SAME
JP3779171B2 (en) Polymer electrolyte fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP4214918B2 (en) Fuel cell
JP2008198437A (en) Membrane electrode assembly for fuel cell, its manufacturing method, and fuel cell using it
JP2008300133A (en) Method for manufacturing fuel cell
JP2008270062A (en) Evaluation method and evaluation device of membrane electrode assembly for fuel cell
JP5989344B2 (en) Fuel cell
JP2008270063A (en) Evaluation method and evaluation device of electrolyte film for fuel cell
KR20190036809A (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly and fuel cell
JP2010027271A (en) Fuel cell catalyst layer forming method
JP2010272222A (en) Membrane electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2009176523A (en) Membrane-electrode assembly
JP2003282069A (en) Membrane electrode assembly for fuel cell
JP2007220443A (en) Manufacturing method of cation exchange membrane/catalyst layer jointed body for solid polymer type fuel cell