JP6147614B2 - Dry alumina fine particles and production method thereof - Google Patents

Dry alumina fine particles and production method thereof Download PDF

Info

Publication number
JP6147614B2
JP6147614B2 JP2013181583A JP2013181583A JP6147614B2 JP 6147614 B2 JP6147614 B2 JP 6147614B2 JP 2013181583 A JP2013181583 A JP 2013181583A JP 2013181583 A JP2013181583 A JP 2013181583A JP 6147614 B2 JP6147614 B2 JP 6147614B2
Authority
JP
Japan
Prior art keywords
fine particles
alumina
alumina fine
dry
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181583A
Other languages
Japanese (ja)
Other versions
JP2015038012A (en
Inventor
慶二 佐伯
慶二 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2013181583A priority Critical patent/JP6147614B2/en
Publication of JP2015038012A publication Critical patent/JP2015038012A/en
Application granted granted Critical
Publication of JP6147614B2 publication Critical patent/JP6147614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池セパレータ用耐熱粒子として好適に使用できる新規な乾式アルミナ微粒子及びその製造方法に関する。   The present invention relates to a novel dry alumina fine particle that can be suitably used as a heat-resistant particle for a lithium ion secondary battery separator and a method for producing the same.

アルミナは、絶縁性、耐熱性、耐食性等に優れ、特に平均粒子径が5μm以下の微細なアルミナ粉末は焼結体材料、樹脂の耐熱フィラー用途、リチウム二次電池用セパレータの耐熱粒子として用いられている。近年リチウムイオン二次電池におけるセパレータ(以下、単に「セパレータ」ともいう)は、高機能化、特に安全性向上の為に、耐熱性が求められており、セパレータの基材である多孔性樹脂フィルムの表面に形成する無機粒子層を形成した構造が採用されつつある。上記無機粒子層を形成するための無機粒子として、耐熱性、絶縁性に優れたアルミナを使用することが注目されている。即ち、アルミナのような化学的に安定な無機粒子層をセパレータ表面に積層させることにより、高温異常時にセパレータの破膜を防ぎ、両極の短絡を防ぐ効果を得ることができる。ところが、セパレータ上に積層させる無機粒子層の厚さを増加させることは、短絡の問題には効果がみられる一方、電池中でのセパレータの占有体積が増加するため、電池の高容量化という観点からは不利となる。また、無機粒子層の厚さを増加させると、電解液の浸透性が低下し、電池自体の性能を低下させるという問題が生じる。   Alumina is excellent in insulation, heat resistance, corrosion resistance, etc. Especially, fine alumina powder with an average particle diameter of 5 μm or less is used as sintered material, heat resistant filler for resin, and heat resistant particles for lithium secondary battery separator. ing. In recent years, separators in lithium ion secondary batteries (hereinafter also simply referred to as “separators”) have been required to have high heat resistance in order to improve functionality, in particular to improve safety, and are porous resin films that are base materials for separators. A structure in which an inorganic particle layer to be formed on the surface is formed is being adopted. As inorganic particles for forming the inorganic particle layer, attention has been paid to using alumina having excellent heat resistance and insulation. That is, by laminating a chemically stable inorganic particle layer such as alumina on the surface of the separator, it is possible to prevent the separator from being broken at the time of abnormally high temperature and to prevent the short circuit between the two electrodes. However, increasing the thickness of the inorganic particle layer to be laminated on the separator is effective for the short circuit problem, but the occupied volume of the separator in the battery increases, so that the capacity of the battery is increased. Is disadvantageous. Further, when the thickness of the inorganic particle layer is increased, there is a problem that the permeability of the electrolytic solution is lowered and the performance of the battery itself is lowered.

そこで、電池性能を低下させることなく耐熱性、絶縁性の効果を発揮させるためには、無機粒子層の厚さを薄くする必要があり、このためには充填性の良い球状かつ粗粒が少なく、分散性の良いアルミナ微粒子が求められている(特許文献1、2参照)。   Therefore, in order to exert the effects of heat resistance and insulation without deteriorating the battery performance, it is necessary to reduce the thickness of the inorganic particle layer. For this purpose, there are few spherical and coarse particles with good filling properties. There is a need for alumina fine particles with good dispersibility (see Patent Documents 1 and 2).

しかし、現在用いられているアルミナ粒子は湿式法で製造されたものが多く、かかるアルミナ微粒子は、アルミナ中に水分が残存し易く、また粒子形状が不定形のものであった。上記のように、水分量が多いアルミナを使用した場合、電池中で電解液と反応しフッ化水素が発生し、電池自体を劣化させる恐れがある。また、アルミナ粒子は摩耗性が高く、特に、不定形の粒子形状では電池の製造工程で、角部が摩耗により破壊され、電池中に金属不純物として混入し、電池内で反応し発熱の原因となることが考えられ、電池自体の安全性を低下させる恐れがある。   However, many of the alumina particles currently used are produced by a wet method, and such alumina fine particles are likely to have moisture remaining in the alumina and have an irregular particle shape. As described above, when alumina having a large amount of water is used, there is a possibility that hydrogen fluoride is generated by reacting with the electrolyte in the battery, and the battery itself is deteriorated. Alumina particles are highly wearable, especially in the case of irregular shaped particles, the corners are destroyed by wear in the battery manufacturing process, mixed as metal impurities in the battery, reacting in the battery and causing heat generation. This may reduce the safety of the battery itself.

従って、上述したリチウムイオン二次電池セパレータ用の耐熱粒子における問題を克服するために、かかる用途に使用されるアルミナ微粒子には次の特徴が求められる。   Therefore, in order to overcome the above-described problems with the heat-resistant particles for lithium ion secondary battery separators, the following characteristics are required for the alumina fine particles used in such applications.

(a)形状が球状であること。   (A) The shape is spherical.

(b)数μm以上の粗大粒子を含まないこと。   (B) Do not contain coarse particles of several μm or more.

(c)粒度分布がシャープであること。   (C) The particle size distribution is sharp.

(d)粒子に付着した水分量が少ないこと。   (D) The amount of water adhering to the particles is small.

(e)摩耗性が小さいこと。   (E) Abrasion is small.

(f)バインダー中への充填性が高く、また分散性が高いこと。   (F) High filling property in the binder and high dispersibility.

一方、球状アルミナ微粒子の製造方法も種々提案されており、代表的な製造方法として以下の方法が知られている。   On the other hand, various methods for producing spherical alumina fine particles have been proposed, and the following methods are known as typical production methods.

(1)ゾルゲル法(特許文献3参照)
(2)塩化アルミニウムの火炎加水分解法(特許文献4参照)
(3)アルミニウム粉末の燃焼法(特許文献5参照)
(4)アルミナもしくはアルミナ水酸化物粉末の溶融法(特許文献6参照)。
(1) Sol-gel method (see Patent Document 3)
(2) Flame hydrolysis method of aluminum chloride (see Patent Document 4)
(3) Combustion method of aluminum powder (see Patent Document 5)
(4) A method of melting alumina or alumina hydroxide powder (see Patent Document 6).

前記(1)のゾルゲル法の場合、単分散の粒子が得られるので粒子径や粒度分布は制御し易いものの、アルミナ中に含まれる水分を除去するための乾燥及び焼成段階で粒子同士が固く凝集し、粗大粒子が発生するという問題がある。   In the case of the sol-gel method (1), monodispersed particles can be obtained, so that the particle size and particle size distribution are easy to control, but the particles are hardly agglomerated in the drying and firing steps for removing water contained in the alumina. However, there is a problem that coarse particles are generated.

また、前記(2)の塩化アルミニウムの火炎加水分解法の場合には、通常実施されている条件によれば、微小な一次粒子同士が融着した凝集性の強い粒子が生成し易く、比表面積が大きいアルミナ微粒子が得られるため、取扱中に雰囲気中の水分を吸収し易く、その結果、電池中に水分を持ち込み易くなるという問題がある。   In addition, in the flame hydrolysis method of aluminum chloride of the above (2), a highly cohesive particle in which fine primary particles are fused together is easily formed according to the usual conditions, and the specific surface area. Therefore, there is a problem that moisture in the atmosphere is easily absorbed during handling, and as a result, moisture is easily brought into the battery.

更に、前記(3)のアルミニウム粉末の燃焼法や、前記(4)のアルミナもしくはアルミナ水酸化物粉末の溶融法では、原料に固体を用いることから、ガス中での原料濃度が不均一となり、粒子径が均一になりにくく、粗粒が生成し易くなる。また数μmサイズのアルミナ微粒子に関しては、分級により粒度分布の制御を行うことが困難である為、粗粒が残存し易いという問題がある。   Furthermore, in the combustion method of aluminum powder of (3) and the melting method of alumina or alumina hydroxide powder of (4), since the solid is used as the raw material, the raw material concentration in the gas becomes non-uniform, The particle diameter is difficult to be uniform and coarse particles are easily generated. Further, regarding alumina fine particles having a size of several μm, since it is difficult to control the particle size distribution by classification, there is a problem that coarse particles are likely to remain.

従って、前述した(a)〜(f)の特性を有する乾式アルミナ微粒子を得る方法として(1)〜(4)の方法によっては、前記目的を十分達成するアルミナ微粒子が得られるに至っていないのが現状である。   Therefore, according to the methods (1) to (4) as the method for obtaining the dry alumina fine particles having the above-mentioned characteristics (a) to (f), the alumina fine particles that sufficiently achieve the object have not been obtained. Currently.

特開2009−129668公報JP 2009-129668 A 特開2009−26733公報JP 2009-26733 A 特開昭63−17220公報JP 63-17220 A 特表2009−500288公報Special table 2009-500288 gazette 特開昭60−255602公報JP 60-255602 A 特開2001−19425公報JP 2001-19425 A

従って、本発明の目的は、付着水分量が少なく、樹脂バインダーへの分散性に優れ、樹脂バインダーへ分散してセパレータの基材である微多孔質樹脂フィルム表面に積層して形成される無機粒子層の特性を向上させることが可能な乾式アルミナ微粒子及びその製造方法を提供することにある。   Accordingly, the object of the present invention is an inorganic particle that is formed by laminating on the surface of a microporous resin film that is a base material of a separator by dispersing in a resin binder, having a small amount of moisture adhering, having excellent dispersibility in a resin binder. An object of the present invention is to provide a dry alumina fine particle capable of improving the properties of a layer and a method for producing the same.

本発明者等は、上記技術課題を解決すべく、得られる乾式アルミナ微粒子のリチウムイオン二次電池セパレータ用耐熱粒子としての性能との関係について鋭意検討を行った結果、該アルミニウム化合物として、気体状のアルミニウム化合物を使用し、その燃焼条件を特定の範囲に調整することにより、前記目的を達成した乾式アルミナ微粒子を得ることに成功し、本発明を完成するに至った。   In order to solve the above technical problems, the present inventors have conducted extensive studies on the relationship between the resulting dry alumina fine particles and the performance as heat-resistant particles for lithium ion secondary battery separators. By using this aluminum compound and adjusting the combustion conditions to a specific range, the present inventors have succeeded in obtaining dry alumina fine particles that have achieved the above object, and have completed the present invention.

本発明によれば、粒子表面に存在するOH基数が20個/nm以下、BET比表面積が10〜50m/gであり、且つ、濃度0.2重量%の水懸濁液としたとき、波長700nmの光に対する吸光度τが下記式(1)を満足していることを特徴とするアルミナ微粒子が提供される。 According to the present invention, when the number of OH groups present on the particle surface is 20 / nm 2 or less, the BET specific surface area is 10 to 50 m 2 / g, and the aqueous suspension has a concentration of 0.2% by weight. There is provided an alumina fine particle characterized in that the absorbance τ with respect to light having a wavelength of 700 nm satisfies the following formula (1).

τ≦170S−1.4−0.1(1)
(式中、Sは、アルミナ微粒子のBET比表面積(m/g)である)
本発明の乾式アルミナ微粒子においては、
(1)画像解析法により求めた体積換算粒子径分布において、1μm以上のアルミナ粒子の割合が5容量%以下であること、
(2)アルミナ粒子の平均円形度が0.85以上であること、
が好ましく、
また、本発明の乾式アルミナ微粒子の保存は、製造直後に、25℃における酸素透過度が10L/m・day・atm以下、透湿度が50g/m・24hr以下のシートよりなる包装袋に収納することが好ましい。
τ ≦ 170S −1.4 −0.1 (1)
(Wherein S is the BET specific surface area (m 2 / g) of the alumina fine particles)
In the dry alumina fine particles of the present invention,
(1) In the volume conversion particle size distribution obtained by the image analysis method, the proportion of alumina particles of 1 μm or more is 5% by volume or less,
(2) The average circularity of the alumina particles is 0.85 or more,
Is preferred,
The dry alumina fine particles of the present invention are stored in a packaging bag made of a sheet having an oxygen permeability of 10 L / m 2 · day · atm or less and a moisture permeability of 50 g / m 2 · 24 hr or less immediately after production. It is preferable to store.

更に、多孔質樹脂フィルムの表面に、前記乾式アルミナ微粒子を含む無機粒子層を積層したものは、リチウムイオン二次電池用セパレータとして有用であり、安定した性能を有する電池を構成することができる。   Furthermore, what laminated | stacked the inorganic particle layer containing the said dry-type alumina fine particle on the surface of a porous resin film is useful as a separator for lithium ion secondary batteries, and can comprise the battery which has the stable performance.

更にまた、本発明の乾式アルミナ微粒子は、気体状のアルミニウム化合物と酸素と可燃性ガスにより形成される火炎中で、前記アルミニウム化合物から球状のアルミナ微粒子を生成せしめる方法において、中心管および中心管から同心円状に広がる複数の環状管より構成される多重管バーナを使用して拡散火炎又は予混合火炎を形成し、且つ、以下の条件を満足する方法によって得ることができる。
Furthermore, the dry alumina fine particles of the present invention are produced from a central tube and a central tube in a method of producing spherical alumina fine particles from the aluminum compound in a flame formed by a gaseous aluminum compound, oxygen and a combustible gas. A diffusion flame or a premixed flame can be formed using a multi-tube burner composed of a plurality of concentric circular tubes, and the following conditions can be satisfied.

(1)断熱火炎温度が2500K以上である。   (1) The adiabatic flame temperature is 2500K or higher.

(2)原料が気体状のアルミニウム化合物である。   (2) The raw material is a gaseous aluminum compound.

(3)バーナから供給される可燃性ガスの和と原料となるアルミニウム化合物が完全に反応するために必要な可燃性ガス量の比が、下記式(2)を満足している。   (3) The ratio of the amount of combustible gas required for the total reaction of the sum of combustible gas supplied from the burner and the aluminum compound as a raw material satisfies the following formula (2).

/R≧5 (2)
(式中、Sは供給された可燃性ガス量の和(mol/h)、Rは供給した原料が完全に反応するために必要な可燃性ガス量(mol/h))
(4)最外環状管導入ガスが酸素又は酸素と窒素等の不活性ガスの混合ガスであり、生成するアルミナ1kgあたりの最外環状管導入ガス量が下記式(3)を満たす値である。
S H / R H ≧ 5 (2)
(In the formula, SH is the sum of the supplied combustible gas amount (mol / h), and RH is the combustible gas amount (mol / h) necessary for the supplied raw material to completely react).
(4) The outermost annular tube introduction gas is a mixed gas of oxygen or an inert gas such as oxygen and nitrogen, and the outermost annular tube introduction gas amount per 1 kg of produced alumina is a value satisfying the following formula (3). .

1.0<Gout/PAl<5.0 (3)
out:最外環状管導入ガス量(Nm/H)
Al:生成するアルミナ重量(kg/H)
1.0 <G out / P Al <5.0 (3)
G out : outermost annular pipe introduction gas amount (Nm 3 / H)
P Al : Generated alumina weight (kg / H)

上記本発明によれば、前記特定の製造方法を採用することにより、球状で、単分散性に優れ、しかも、粒子表面に存在するOH基数が極めて少ない乾式アルミナ微粒子を提供することができ、かかる乾式アルミナ微粒子は、その特性により、バインダーへの分散性に優れ、例えばバインダーに多量分散配合した場合に粘度の上昇を抑えることができる。そのため、セパレータを構成する無機粒子層として多孔質フィルム上に塗布した際、十分な強度と耐熱性を付与することができる。   According to the present invention, by adopting the above specific production method, it is possible to provide dry alumina fine particles that are spherical, excellent in monodispersity, and have very few OH groups present on the particle surface. The dry alumina fine particles have excellent dispersibility in the binder due to their properties, and can suppress an increase in viscosity when, for example, a large amount of the fine particles are blended in the binder. Therefore, sufficient strength and heat resistance can be imparted when it is applied on the porous film as the inorganic particle layer constituting the separator.

また、かかる乾式アルミナ微粒子は粗大な粒子の含有量が極めて少なく、この結果、前記特性を維持したまま、無機粒子層を薄層化させることが可能となり、これにより、良好な電解液浸透性を示し、その結果、セパレータとして高い信頼性を発揮することができる。   In addition, such dry alumina fine particles have a very small content of coarse particles, and as a result, it is possible to make the inorganic particle layer thinner while maintaining the above characteristics, thereby improving the electrolyte permeability. As a result, high reliability can be exhibited as a separator.

従って、本発明の乾式アルミナ微粒子は、リチウムイオン二次電池セパレータにおける無機粒子層の形成に使用する用途に極めて有用である。   Therefore, the dry alumina fine particles of the present invention are extremely useful for applications used to form an inorganic particle layer in a lithium ion secondary battery separator.

<乾式アルミナ微粒子>
本発明の乾式アルミナ微粒子において、粒子表面に存在するOH基数は、20個/nm以下、好ましくは18個/nm以下の範囲にあることに特徴を有する。上記粒子表面に存在するOH基数が20個を超える場合には、粒子に付着した水分量が多くなり、電池中への持ち込み水分量が増加し、電解液と反応しフッ化水素が発生する為好ましくない。上記粒子表面に存在するOH基数は、湿式法においては達成できない特性である。
<Dry alumina fine particles>
The dry alumina fine particles of the present invention are characterized in that the number of OH groups present on the particle surface is in the range of 20 / nm 2 or less, preferably 18 / nm 2 or less. When the number of OH groups present on the particle surface exceeds 20, the amount of water adhering to the particle increases, the amount of moisture brought into the battery increases, and reacts with the electrolyte to generate hydrogen fluoride. It is not preferable. The number of OH groups present on the particle surface is a characteristic that cannot be achieved by the wet method.

また、本発明の乾式アルミナ微粒子は、BET比表面積が10〜50m/g、好ましくは10〜30m/gの範囲にある。比表面積が50m/gを超える場合には、1次粒子径が小さくなりセパレータの細孔部分に入り込み、セパレータへの電解液の浸透性を悪化させる原因となる。比表面積が10m/gより小さい場合には、同時に1μm以上の粗大な粒子が合成され易くなり、粗大な粒子に起因して耐熱無機粒子層中の粒子間の隙間が不均一となり、電解液浸透性の悪化が生じやすくなる。また、粗大な粒子による摩耗等が顕著となり、電池の製造工程で摩耗により金属不純物が混入し易くなり、安全性を低下させる恐れがある。 Further, the dry alumina particles of the present invention, BET specific surface area of 10 to 50 m 2 / g, preferably in the range of 10 to 30 m 2 / g. When the specific surface area exceeds 50 m 2 / g, the primary particle diameter becomes small and enters the pore portion of the separator, which causes deterioration of the permeability of the electrolytic solution into the separator. When the specific surface area is smaller than 10 m 2 / g, coarse particles having a size of 1 μm or more are easily synthesized at the same time, and the gaps between the particles in the heat-resistant inorganic particle layer are uneven due to the coarse particles. Penetration deterioration is likely to occur. In addition, wear due to coarse particles becomes prominent, and metal impurities are likely to be mixed due to wear in the battery manufacturing process, which may reduce safety.

本発明の乾式アルミナ微粒子は、これを0.2重量%の濃度で水に分散させて懸濁液を調製したとき、該懸濁液の波長700nmの光に対する吸光度τが下記式(1)を満足していることが極めて重要である。   When the dry alumina fine particles of the present invention are dispersed in water at a concentration of 0.2% by weight to prepare a suspension, the absorbance τ of the suspension with respect to light having a wavelength of 700 nm is expressed by the following formula (1). Satisfaction is extremely important.

τ≦170S−1.4−0.1(1)
(式中、Sは、乾式アルミナ微粒子のBET比表面積(m/g)である)
一般に、水懸濁物中のアルミナの1次粒子径が小さくなるほど、即ち、高比表面積のアルミナほど、吸光度τが小さくなる傾向にある。しかし、ヒュームドアルミナのように、一次粒子の数個〜数十個が比較的強く結合した集団(2次粒子)を形成し、それらが更に他の2次粒子と結合した凝集構造をとる場合には、吸光度τは大きな値をとる。
τ ≦ 170S −1.4 −0.1 (1)
(Wherein S is the BET specific surface area (m 2 / g) of the dry alumina fine particles)
In general, the smaller the primary particle diameter of alumina in the water suspension, that is, the higher the specific surface area alumina, the smaller the absorbance τ tends to be. However, in the case of fumed alumina, a group (secondary particles) in which several to several tens of primary particles are relatively strongly bonded and formed into an aggregate structure in which they are further bonded to other secondary particles. The absorbance τ takes a large value.

従って、同じ比表面積のアルミナにおいて、吸光度τの値が小さいということは、1次粒子そのものが小さく且つ融着した2次粒子を形成しておらず、独立した小径の一次粒子として存在していることを示し、さらには、粒子が凝集構造をとらず、粗大粒子を含んでおらず、1次粒子の粒度分布が狭い(シャープな粒度分布を示す)ことを意味している。つまり、同じ比表面積で比較した場合、吸光度τの値が小さいアルミナ微粒子ほど、樹脂に対して本質的に分散性能が良い特性を持ったアルミナ粒子であると言える。なお、上記吸光度τの測定法は後述実施例で詳細に説明する。   Therefore, in the alumina having the same specific surface area, the small value of the absorbance τ means that the primary particles themselves are small and do not form fused secondary particles, and exist as independent primary particles having a small diameter. Furthermore, it means that the particles do not have an agglomerated structure, do not contain coarse particles, and the primary particle size distribution is narrow (shows a sharp particle size distribution). That is, when compared with the same specific surface area, it can be said that alumina particles having a smaller absorbance τ are alumina particles having essentially good dispersion performance with respect to the resin. In addition, the measuring method of the said light absorbency (tau) is demonstrated in detail in the below-mentioned Example.

本発明の乾式アルミナ微粒子は、前記特定の比表面積を有していると同時に、吸光度τが式(1)の条件を満足しているため、1次粒子の融着による2次粒子をほとんど有しておらず、凝集構造を有しておらず、また、粗大粒子を含まず、シャープな粒度分布を有している。そして、このような粒子特性を有していることから、樹脂やバインダー液に対する分散性が極めて良好である。即ち、前記吸光度τの値が式(1)の条件を満足しない場合、バインダー液中への分散性が悪く、耐熱無機粒子層中の粒子間の隙間が不均一となり、セパレータの無機粒子層として使用した際の電解液浸透性の悪化が生じ易くなる。   Since the dry alumina fine particles of the present invention have the specific specific surface area and the absorbance τ satisfies the condition of the formula (1), the dry alumina fine particles have almost secondary particles by fusion of primary particles. It does not have an agglomerated structure, does not contain coarse particles, and has a sharp particle size distribution. And since it has such a particle characteristic, the dispersibility with respect to resin or a binder liquid is very favorable. That is, when the value of the absorbance τ does not satisfy the condition of the formula (1), the dispersibility in the binder liquid is poor, the gaps between the particles in the heat-resistant inorganic particle layer are non-uniform, and the inorganic particle layer of the separator Deterioration of electrolyte permeability when used is likely to occur.

本発明の乾式アルミナ微粒子は、画像解析法により求めた体積換算粒子径分布において、1μm以上の乾式アルミナ微粒子の割合が5容量%以下であるであることが好ましく、3容量%以下であることがさらに好ましい。このような画像解析法により求めた体積換算粒子径分布において、1μm以上の乾式アルミナ微粒子の割合が5容量%を超えるときには、粗大な粒子に起因して耐熱無機粒子層中の粒子間の隙間が不均一となり、電解液浸透性の悪化が生じやすくなる。また、粗大な粒子による摩耗等が顕著となり、電池の製造工程で摩耗により金属不純物が混入し易くなり、安全性を低下させる恐れがある。   In the dry alumina fine particles of the present invention, the ratio of the dry alumina fine particles of 1 μm or more is preferably 5% by volume or less, preferably 3% by volume or less, in the volume conversion particle size distribution obtained by the image analysis method. Further preferred. In the volume conversion particle size distribution obtained by such an image analysis method, when the proportion of dry alumina fine particles of 1 μm or more exceeds 5% by volume, gaps between particles in the heat-resistant inorganic particle layer are caused by coarse particles. It becomes non-uniform and the electrolyte permeability is likely to deteriorate. In addition, wear due to coarse particles becomes prominent, and metal impurities are likely to be mixed due to wear in the battery manufacturing process, which may reduce safety.

また、本発明の乾式アルミナ微粒子の平均円形度は0.85以上であることが好ましく、0.90以上であることがより好ましい。平均円形度が0.85よりも小さい場合には不定形の粒子の割合が多くなり、電池の製造工程で摩耗により金属不純物が混入し易くなる。   The average circularity of the dry alumina fine particles of the present invention is preferably 0.85 or more, and more preferably 0.90 or more. When the average circularity is less than 0.85, the proportion of irregularly shaped particles increases, and metal impurities are likely to be mixed due to wear in the battery manufacturing process.

<乾式アルミナ微粒子の製造>
本発明の乾式アルミナ微粒子の製造方法は特に制限されないが、以下の方法が好適に採用される。
<Production of dry alumina fine particles>
The production method of the dry alumina fine particles of the present invention is not particularly limited, but the following method is suitably employed.

即ち、気体状のアルミニウム化合物と酸素と可燃性ガスにより形成される火炎中で、前記アルミニウム化合物から球状のアルミナ微粒子を生成せしめる方法において、以下の条件を満足する乾式アルミナ微粒子の製造方法であることが好ましい。   That is, in the method of producing spherical alumina fine particles from the aluminum compound in a flame formed by a gaseous aluminum compound, oxygen and a combustible gas, the dry alumina fine particle production method satisfies the following conditions: Is preferred.

(1)断熱火炎温度が2500K以上である。   (1) The adiabatic flame temperature is 2500K or higher.

(2)原料が気体状のアルミニウム化合物である。   (2) The raw material is a gaseous aluminum compound.

(3)バーナから供給される可燃性ガスの和と原料となるアルミニウム化合物が完全に反応するために必要な可燃性ガス量の比が、下記式(2)を満足している。   (3) The ratio of the amount of combustible gas required for the total reaction of the sum of combustible gas supplied from the burner and the aluminum compound as a raw material satisfies the following formula (2).

/R≧5 (2)
(式中、Sは供給された可燃性ガス量の和(mol/h)、Rは供給した原料が完全に反応するために必要な可燃性ガス量(mol/h))
(4)最外環状管導入ガスが酸素と窒素等の不活性ガスの混合ガスであり、生成するアルミナ1kgあたりの最外環状管導入ガス量が下記式(3)を満たす値である。
S H / R H ≧ 5 (2)
(In the formula, SH is the sum of the supplied combustible gas amount (mol / h), and RH is the combustible gas amount (mol / h) necessary for the supplied raw material to completely react).
(4) The outermost annular tube introduction gas is a mixed gas of an inert gas such as oxygen and nitrogen, and the outermost annular tube introduction gas amount per 1 kg of the produced alumina is a value satisfying the following formula (3).

1.0<Gout/PAl<5.0 (3)
out:最外環状管導入ガス量(Nm/H)
Al:生成するアルミナ重量(kg/H)。
1.0 <G out / P Al <5.0 (3)
G out : outermost annular pipe introduction gas amount (Nm 3 / H)
P Al : Weight of produced alumina (kg / H).

上記気体状のアルミニウム化合物の火炎加水分解反応において、燃焼火炎は、生成する乾式アルミナ微粒子が分散性に優れ、分散粒子の粒度分布が狭い特性を達成できるよう広い粒子成長領域を有することが必要である。即ち、燃焼火炎の温度を2500K以上とし、かつ燃焼火炎の冷却を抑止する条件を採用することにより、本発明の乾式アルミナ微粒子を得ることができる。   In the flame hydrolysis reaction of the gaseous aluminum compound described above, the combustion flame needs to have a wide particle growth region so that the dry alumina fine particles produced are excellent in dispersibility and can achieve the characteristics that the particle size distribution of the dispersed particles is narrow. is there. That is, the dry alumina fine particles of the present invention can be obtained by setting the temperature of the combustion flame to 2500 K or more and adopting the conditions for suppressing the cooling of the combustion flame.

前記本発明のアルミナ微粒子の製造方法において、気体状のアルミニウム化合物による火炎は、多重管バーナを用いて形成することが好ましい。多重管バーナは、中心管および中心管から同心円状に広がる複数の環状管より構成されることが好ましい。例えば、中心管および2本の環状管から構成される3重管バーナが挙げられる。また、火炎については可燃性ガスと支燃性ガスをそれぞれ別のノズルから供給する拡散火炎と、可燃性ガスと支燃性ガスをあらかじめ混合した後にノズルへ供給する予混合火炎のいずれでも良いが、安定的に火炎を形成させること、かつ断熱火炎温度を高くすることが可能な拡散火炎を用いることが好ましい。予混合火炎である場合には、火炎温度の調整は火炎の逆火、吹き飛びの虞がない範囲で実施する必要がある。このため、中心管のガス流速は、10〜200Nm/sの範囲が好ましく、20〜180Nm/sの範囲であることがより好ましい。なお、流速の単位であるNm/sは、温度273K、大気圧で換算した場合の流速である。   In the method for producing alumina fine particles of the present invention, it is preferable that the flame of the gaseous aluminum compound is formed using a multi-tube burner. The multi-tube burner is preferably composed of a central tube and a plurality of annular tubes extending concentrically from the central tube. For example, a triple tube burner composed of a central tube and two annular tubes can be mentioned. The flame may be either a diffusion flame that supplies a combustible gas and a combustion-supporting gas from separate nozzles, or a premixed flame that is supplied to the nozzle after mixing the combustible gas and the combustion-supporting gas in advance. It is preferable to use a diffusion flame capable of stably forming a flame and increasing the adiabatic flame temperature. In the case of a premixed flame, it is necessary to adjust the flame temperature within a range where there is no risk of backfire and blow-off of the flame. For this reason, the gas flow rate of the central tube is preferably in the range of 10 to 200 Nm / s, and more preferably in the range of 20 to 180 Nm / s. Note that Nm / s, which is a unit of flow velocity, is a flow velocity when converted at a temperature of 273 K and atmospheric pressure.

また、前記可燃性ガスは水素、又はメタン、プロパン、ブタン等の炭化水素ガスのいずれでもよいが、生成したアルミナに炭素が残存しないこと、また環境負荷の観点から水素を用いることが好ましい。   The combustible gas may be either hydrogen or a hydrocarbon gas such as methane, propane, or butane. However, it is preferable to use hydrogen from the viewpoint of no carbon remaining in the produced alumina and environmental load.

アルミナ粒子の原料としては気体状のアルミニウム化合物を用いる。原料に固体を用いると、ガス中での原料濃度が不均一となり、粒子径が均一になりにくく粗粒が生成し易くなる為好ましくない。好ましい気体状のアルミニウム化合物はハロゲン化アルミニウム等の安価な化合物であり、特に気化させて水素と容易に混合できる塩化アルミニウム、AlClがより好ましい。気体状のアルミニウム化合物は、高純度なアルミナが得られるよう、鉄、ナトリウム、カリウムなど不純物の含有量が少ないものを使用するとよい。 A gaseous aluminum compound is used as a raw material for the alumina particles. If a solid is used as the raw material, the concentration of the raw material in the gas is not uniform, and the particle diameter is difficult to be uniform, and coarse particles are easily generated. A preferable gaseous aluminum compound is an inexpensive compound such as aluminum halide, and aluminum chloride and AlCl 3 that can be vaporized and easily mixed with hydrogen are more preferable. As the gaseous aluminum compound, one having a low impurity content such as iron, sodium or potassium may be used so that high-purity alumina can be obtained.

混合する可燃性ガスは、気体状のアルミニウム化合物の加水分解反応に要する当量以上の量を混合することが必須である。この際、酸素等の支燃性ガスを混合しても良く、さらには窒素などの不活性ガスを混合しても良い。   It is essential that the combustible gas to be mixed is mixed in an amount equal to or greater than the equivalent amount required for the hydrolysis reaction of the gaseous aluminum compound. At this time, a combustion-supporting gas such as oxygen may be mixed, and further an inert gas such as nitrogen may be mixed.

本発明のアルミナ微粒子を得るために、バーナから供給される可燃性ガスの和と原料となるアルミニウム化合物が完全に反応するために必要な可燃性ガス量の比が、下記式(2)を満足することが好ましい
/R≧5(2)
(式中、Sは供給された可燃性ガス量の和(mol/h)、Rは供給した原料が完全に反応するために必要な可燃性ガス量(mol/h))
上記式(2)の値が5よりも小さい場合には、高い火炎温度を維持できず、一次粒子が強く凝集し、分散性の良い球状粒子を得ることが困難である。
In order to obtain the alumina fine particles of the present invention, the ratio of the flammable gas supplied from the burner and the amount of flammable gas necessary for the complete reaction of the aluminum compound as a raw material satisfies the following formula (2) Preferably SH / R H ≧ 5 (2)
(In the formula, SH is the sum of the supplied combustible gas amount (mol / h), and RH is the combustible gas amount (mol / h) necessary for the supplied raw material to completely react).
When the value of the above formula (2) is smaller than 5, the high flame temperature cannot be maintained, the primary particles are strongly aggregated, and it is difficult to obtain spherical particles with good dispersibility.

中心管の外側にある第1環状管には、燃焼補助火炎形成のため水素や炭化水素などの可燃性ガスを導入する。このとき、窒素などの不活性ガス、および/または酸素などの支燃性ガスを混合してもよい。   A flammable gas such as hydrogen or hydrocarbon is introduced into the first annular tube outside the central tube to form a combustion auxiliary flame. At this time, an inert gas such as nitrogen and / or a combustion-supporting gas such as oxygen may be mixed.

多重管バーナの最も外側にある最外環状管には、火炎冷却および火炎燃焼安定化のため酸素などの支燃性ガスを導入する。このとき、窒素などの不活性ガスを混合しても良い。   A flame-supporting gas such as oxygen is introduced into the outermost annular tube at the outermost side of the multi-tube burner for flame cooling and flame combustion stabilization. At this time, an inert gas such as nitrogen may be mixed.

本発明の乾式アルミナ微粒子の製造方法において、断熱火炎温度は2500Kから4000Kであることが好ましく、2800Kから3500Kであることがさらに好ましい。断熱火炎温度が2500K未満の場合、火炎温度が低すぎる結果、生成するアルミナ微粒子のBET比表面積が50m/g以上となるか、50m/g未満であっても、アルミナ微粒子の溶融時間が短いため、アルミナ粒子同士の化学結合で形成された融着大粒子・粗大粒子や分散不可能であるほど物理的に強固に凝集した大粒子・粗大粒子が消失せず、残留する。一方、4000Kを超えると、燃焼火炎中でアルミナ微粒子の溶融時間が長いため、成長時間が長くなり1次粒子径が1μmを超える粗大粒子が生成し易くなる。 In the method for producing dry alumina fine particles of the present invention, the adiabatic flame temperature is preferably 2500 K to 4000 K, more preferably 2800 K to 3500 K. When the adiabatic flame temperature is less than 2500K, the flame temperature is too low. As a result, the BET specific surface area of the generated alumina fine particles is 50 m 2 / g or more, or the melting time of the alumina fine particles is less than 50 m 2 / g. Since the particles are short, the fused large particles / coarse particles formed by the chemical bond between the alumina particles and the large particles / coarse particles that are physically aggregated so strongly that they cannot be dispersed do not disappear and remain. On the other hand, when it exceeds 4000K, the melting time of the alumina fine particles is long in the combustion flame, so that the growth time becomes long and coarse particles having a primary particle diameter exceeding 1 μm are easily generated.

本発明における断熱火炎温度は、燃焼反応における反応熱を燃焼によって得られた熱量により生成する成分、もしくは残存する成分の各々の熱容量に対して均等に分配する時の反応系の温度と定義付けられる。例えば、原料として塩化アルミニウムを用いた場合に、燃焼反応により生成、副生、残存する塩化アルミニウム(AlCl)、アルミナ(Al)、水蒸気(HO)、塩化水素(HCl)酸素(O)、窒素(N)の時間当たりの量をNAlCl3、NAl2O3、NH2O、NHCl、NO2、NN2(mol/h)、
生成熱をΔHAlCl3、ΔHAl2O3、ΔHH2O、ΔHHCl(J/mol)、熱容量をCpAl2O3、CpHCl、CpH2O、CpO2、CpN2(J/mol・K)とすると、断熱火炎温度をT(K)としたときに以下の式で表すことができる。
The adiabatic flame temperature in the present invention is defined as the temperature of the reaction system when the reaction heat in the combustion reaction is evenly distributed with respect to the heat capacity of the component generated by the amount of heat obtained by combustion or the remaining component. . For example, when aluminum chloride is used as a raw material, it is generated and by-produced by a combustion reaction, remaining aluminum chloride (AlCl 3 ), alumina (Al 2 O 3 ), water vapor (H 2 O), hydrogen chloride (HCl) oxygen (O 2 ), the amount of nitrogen (N 2 ) per hour is changed to N AlCl 3 , N Al 2 O 3 , N H 2 O , N HCl , N O 2 , N N2 (mol / h),
When the heat of formation is ΔH AlCl 3 , ΔH Al 2 O 3 , ΔH H 2 O , ΔH HCl (J / mol), and the heat capacity is Cp Al 2 O 3 , Cp HCl , Cp H 2 O , Cp O 2 , Cp N 2 (J / mol · K), the adiabatic flame temperature is When T (K), it can be expressed by the following formula.

T=(ΔHAl2O3Al2O3+ΔHH2OH2O+ΔHHClHCl−ΔHAlCl3AlCl3)/(NAl2O3CpAl2O3+NH2OCpH2O+NHClCpHCl+NO2CpO2+NN2CpN2
なお、前記熱容量Cp(J/mol・K)の値はJANAF熱化学表により得ることが可能であり、今回は一律に3000Kにおける値を使用している。
T = (ΔH Al2O3 N Al2O3 + ΔH H2O N H2O + ΔH HCl N HCl -ΔH AlCl3 N AlCl3) / (N Al2O3 Cp Al2O3 + N H2O Cp H2O + N HCl Cp HCl + N O2 Cp O2 + N N2 Cp N2)
The value of the heat capacity Cp (J / mol · K) can be obtained from the JANAF thermochemical table, and this time the value at 3000 K is uniformly used.

本発明の乾式アルミナ微粒子を得るには、燃焼安定性に支障のない範囲で、燃焼火炎の冷却を抑止することが特に重要である。すなわち、燃焼火炎の冷却を抑止するために、以下の二つの要素が満足されることが必要である。   In order to obtain the dry alumina fine particles of the present invention, it is particularly important to suppress the cooling of the combustion flame as long as the combustion stability is not hindered. That is, in order to suppress the cooling of the combustion flame, the following two elements must be satisfied.

第一の要素は、高温であるため溶融状態のアルミナ融液の粘度が十分に低くなり、アルミナ微粒子の形状転換が容易となることである。第二の要素は、形状転換が容易になる領域を広くとれることである。この二つ要素が満足される場合、アルミナ粒子同士の化学結合で形成された融着大粒子・粗大粒子と分散不可能な物理的に強固に凝集した大粒子・粗大粒子に対し、生成の抑止あるいは形状転換による消失促進が起こる。その結果、該乾式アルミナ微粒子は分散性に優れた特性、分散粒子粒度分布が狭い特性、分散粒子粒度分布が特に大きい粒子側にロングテイルを引かない特性、を発揮することが可能である。   The first factor is that the viscosity of the molten alumina melt is sufficiently low because of the high temperature, and the shape change of the alumina fine particles is facilitated. The second factor is that a region where shape change is easy can be taken. If these two elements are satisfied, the generation of fused large particles and coarse particles formed by chemical bonding of alumina particles and physically strongly aggregated large particles and coarse particles that cannot be dispersed are suppressed. Or disappearance promotion by shape change occurs. As a result, the dry alumina fine particles can exhibit excellent dispersibility, a narrow dispersed particle size distribution, and a characteristic that does not draw a long tail on the side of particles having a particularly large dispersed particle size distribution.

具体的には、上記燃焼火炎の冷却は、気体状のアルミニウム化合物の火炎加水分解反応によって生成するアルミナ量に合わせて、多重管バーナの最も外側にある最外環状管に導入するガス量を調整することでなされる。詳述すると、生成するアルミナ1kgあたりの最外環状管導入ガス量が下記式(3)を満たすように調整する。   Specifically, the cooling of the combustion flame adjusts the amount of gas introduced into the outermost annular tube at the outermost side of the multi-tube burner according to the amount of alumina produced by the flame hydrolysis reaction of the gaseous aluminum compound. Is done. More specifically, the outermost annular pipe introduction gas amount per 1 kg of the produced alumina is adjusted so as to satisfy the following formula (3).

1.0<Gout/PAl<5.0(3)
out:最外環状管導入ガス量(Nm/H)
Al:生成するアルミナ重量(kg/H)。
1.0 <G out / P Al <5.0 (3)
G out : outermost annular pipe introduction gas amount (Nm 3 / H)
P Al : Weight of produced alumina (kg / H).

上記Gout/PAlが1.0(Nm/kg)以下であると、高温燃焼ガスの浮力がガス流れを乱し、生成したアルミナ微粒子が火炎に再度舞い戻る結果、大粒子あるいは極端に大きな粗大粒子、ならびに、一次粒子の化学結合あるいは強固な物理結合で形成された大きな凝集体が生成する。またバーナノズル本体が火炎と接触し損傷させる可能性がある。 When the G out / P Al is 1.0 (Nm 3 / kg) or less, the buoyancy of the high-temperature combustion gas disturbs the gas flow, and as a result, the generated alumina particles return to the flame again, resulting in large particles or extremely large particles. Coarse particles and large aggregates formed by chemical bonds or strong physical bonds of primary particles are generated. Also, the burner nozzle body may come into contact with the flame and be damaged.

一方、上記Gout/PAlが5.0(Nm/kg)以上であると、燃焼火炎が急速に冷却される結果、数十nmの微小粒子が発生する問題と溶融状態のアルミナ融液の粘度が高い領域が増え形状転換が困難になる問題が生じ、一次粒子の化学結合あるいは強固な物理結合で形成された凝集体が生成する。加えて、乾式アルミナ微粒子の比表面積が50m/g以上になり易い問題も生じる。 On the other hand, when G out / P Al is 5.0 (Nm 3 / kg) or more, the combustion flame is rapidly cooled, resulting in the problem that fine particles of several tens of nm are generated, and the molten alumina melt There is a problem that the region having a high viscosity increases and the shape change becomes difficult, and aggregates formed by chemical bonds or strong physical bonds of primary particles are generated. In addition, there is a problem that the specific surface area of the dry alumina fine particles tends to be 50 m 2 / g or more.

本発明の乾式アルミナ微粒子は火炎中および火炎近傍で生成・成長・凝集させることで得られるが、その回収は金属フィルター、セラミックフィルター、バックフィルター等によるフィルター分離やサイクロン等による遠心分離で燃焼ガスと分離させて、回収することでなされる。   The dry alumina fine particles of the present invention can be obtained by generating, growing and agglomerating in and near the flame, but the recovery can be performed by filtering with a metal filter, a ceramic filter, a back filter, etc., or by centrifugation with a cyclone, etc. It is done by separating and collecting.

回収後のアルミナ微粒子はアルミナ表面中に残留する酸性ガスを大気雰囲気化もしくは、窒素雰囲気化で加熱又は水蒸気処理等を行って除去する。また酸性ガス除去後にアルミナ表面に付着した水分を熱処理により除去しても構わない。   The collected alumina fine particles are removed by heating the acidic gas remaining on the alumina surface or by performing a steam treatment or the like in an air atmosphere or a nitrogen atmosphere. Moreover, you may remove the water | moisture content adhering to the alumina surface after acid gas removal by heat processing.

本発明の乾式アルミナ微粒子は、従来の火炎燃焼法によって得られる乾式アルミナ微粒子に比べて微細な粒子は極めて少ないため、特に、取扱時における水分の吸収による問題は起こり難いが、保存中、取扱時等における水分の吸収を極力防止するため、25℃における酸素透過度が10L/m・day・atm以下、透湿度が50g/m・24hr以下のシートよりなる包装袋に、製造直後、好ましくは、製造後10時間以内、好ましくは、2時間以内、特に好ましくは、1時間以内に、収納することが好ましい。 The dry alumina fine particles of the present invention have very few fine particles compared to the dry alumina fine particles obtained by the conventional flame combustion method, and in particular, problems due to moisture absorption during handling are unlikely to occur. In order to prevent the absorption of moisture as much as possible, a packaging bag made of a sheet having an oxygen permeability at 25 ° C. of 10 L / m 2 · day · atm or less and a moisture permeability of 50 g / m 2 · 24 hr or less is preferred immediately after production. Is preferably stored within 10 hours after production, preferably within 2 hours, particularly preferably within 1 hour.

本発明は、前記乾式アルミナ微粒子を、樹脂バインダー分散液中に、体積容量が30容量%を超える割合で含有し、測定温度は25℃、せん断速度は10s−1で測定した時の粘度が20Pa・s以下であることを特徴とするアルミナ含有樹脂バインダー分散液をも提供する。 In the present invention, the dry alumina fine particles are contained in a resin binder dispersion at a volume capacity exceeding 30% by volume, the measurement temperature is 25 ° C., and the viscosity when measured at a shear rate of 10 s −1 is 20 Pa. The present invention also provides an alumina-containing resin binder dispersion characterized by being s or less.

前記アルミナ含有樹脂バインダー分散液は、本発明の乾式アルミナ微粒子と樹脂バインダーとを溶媒に分散させることより得られるが、本発明の乾式アルミナ微粒子は、前記特性により、樹脂バインダーを含有する溶媒中に、極めて高濃度まで分散させても粘度の上昇が極めて少ない為、高濃度まで充填することが可能である。その為従来の耐熱無機粒子層よりも厚みを薄くしても機械的強度を維持することが可能であり、耐熱無機粒子層用の塗工液として極めて有用である。   The alumina-containing resin binder dispersion is obtained by dispersing the dry alumina fine particles of the present invention and the resin binder in a solvent, but the dry alumina fine particles of the present invention are contained in a solvent containing a resin binder according to the above characteristics. Even when dispersed to a very high concentration, the increase in viscosity is extremely small, so that it can be filled to a high concentration. Therefore, the mechanical strength can be maintained even if the thickness is smaller than that of the conventional heat-resistant inorganic particle layer, and it is extremely useful as a coating solution for the heat-resistant inorganic particle layer.

上記樹脂バインダーとしては、例えば、スチレン−ブタジエン共重合体およびその水素化物、アクリロニトリル−ブタジエン共重合体およびその水素化物、アクリロニトリル−ブタジエン−スチレン共重合体およびその水素化物、メタクリル酸エステル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニルなどのゴム類、ポリフッ化ビニリデンやポリテトラフルオロエチレンなどの含フッ素樹脂、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステルなどの樹脂が挙げられる。これらは1種を単独で、又は2種以上を併用することも可能である。これらのバインダー樹脂の中で、特に、ポリビニルアルコールが好適である。   Examples of the resin binder include styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic ester-acrylic ester. Copolymers, styrene-acrylic acid ester copolymers, acrylonitrile-acrylic acid ester copolymers, rubbers such as ethylene propylene rubber, polyvinyl alcohol and polyvinyl acetate, fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene , Resins such as polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, polyamide, and polyester. These can be used alone or in combination of two or more. Among these binder resins, polyvinyl alcohol is particularly preferable.

前記溶媒としては、樹脂バインダーが均一かつ安定に溶解可能であり、また、乾式アルミナ微粒子が良好に分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N−メチルピロリドンやN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、キシレン、ヘキサンなどが挙げられる。これらの溶媒の内、前記ポリビニルアルコールを樹脂バインダーとして使用する場合、水またはN−メチルピロリドンが好ましい。   As the solvent, it is preferable to use a solvent in which the resin binder can be uniformly and stably dissolved and in which the dry alumina fine particles can be well dispersed. Examples of such a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, xylene, hexane, and the like. Of these solvents, water or N-methylpyrrolidone is preferred when the polyvinyl alcohol is used as a resin binder.

本発明の乾式アルミナ微粒子を使用することにより、30容量%を超える、特に、35容量%以上の高い濃度で該乾式アルミナ微粒子を分散液中に分散させることが可能である。   By using the dry alumina fine particles of the present invention, it is possible to disperse the dry alumina fine particles in the dispersion at a high concentration exceeding 30% by volume, particularly 35% by volume or more.

かかる高濃度の乾式アルミナ微粒子を分散しながら、20Pa・s以下という、乾式アルミナ微粒子の濃度に対して極めて低粘度のアルミナ含有樹脂バインダー分散液が提供される。前記アルミナ含有樹脂バインダー分散液の粘度は塗工性の良さから20Pa・s以下であることが好ましく、15Pa・s以下であることがより好ましく、10Pa・s以下であることが特に好ましい。   While dispersing such high-concentration dry alumina fine particles, an alumina-containing resin binder dispersion liquid having an extremely low viscosity with respect to the concentration of dry alumina fine particles of 20 Pa · s or less is provided. The viscosity of the alumina-containing resin binder dispersion is preferably 20 Pa · s or less, more preferably 15 Pa · s or less, and particularly preferably 10 Pa · s or less because of good coating properties.

尚、前記乾式アルミナ微粒子の濃度の上限は、上記粘度を超えない範囲であれば特に制限されない。   The upper limit of the concentration of the dry alumina fine particles is not particularly limited as long as it does not exceed the above viscosity.

また、本発明において、前記乾式アルミナ微粒子の容積割合を求める際の乾式アルミナ微粒子の容量は、常温における乾式アルミナ微粒子の重量とアルミナの真密度とより求めた値である。   In the present invention, the volume of the dry alumina fine particles when determining the volume ratio of the dry alumina fine particles is a value obtained from the weight of the dry alumina fine particles at normal temperature and the true density of alumina.

本発明のアルミナ含有樹脂分散液には、分散液の安定化、あるいは多孔質樹脂膜への塗工性の向上の為に、界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含むpH調製剤、等の各種添加剤を加えてもよい。   The alumina-containing resin dispersion liquid of the present invention includes a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent in order to stabilize the dispersion liquid or improve the coating property to the porous resin film. Various additives such as an agent, a pH adjusting agent containing acid or alkali, and the like may be added.

また、本発明は、上記アルミナ含有樹脂バインダー分散液を、微多孔質樹脂フィルムの表面に塗布することにより形成された耐熱無機粒子層を有することを特徴とするリチウムイオン二次電池用セパレータをも提供する。   The present invention also provides a separator for a lithium ion secondary battery comprising a heat-resistant inorganic particle layer formed by applying the alumina-containing resin binder dispersion to the surface of a microporous resin film. provide.

即ち、前記本発明の乾式アルミナ微粒子、樹脂バインダー、溶媒を含むアルミナ含有樹脂バインダー分散液を微多孔質樹脂フィルム膜上に塗布することにより、耐熱無機粒子層の厚みを薄くした場合にも緻密な無機粒子層を形成することができ、高い耐熱性と強度を有するリチウムイオン二次電池用セパレータとして機能する。   That is, even when the thickness of the heat-resistant inorganic particle layer is reduced by applying the alumina-containing resin binder dispersion containing the dry alumina fine particles, resin binder, and solvent of the present invention on the microporous resin film film, An inorganic particle layer can be formed and functions as a separator for a lithium ion secondary battery having high heat resistance and strength.

具体的には、前記アルミナ含有樹脂バインダー分散液を、前記微多孔質樹脂フィルム膜の片面もしくは両面に塗布した後、溶媒を除去することにより微多孔質樹脂膜の表面に耐熱層として機能する無機粒子層を形成したリチウムイオン二次電池用セパレータを得ることができる。上記リチウムイオン二次電池用セパレータの機械的強度は、突刺し試験で測定することが可能であり、前記アルミナ含有樹脂バインダー分散液を塗布して形成された無機粒子層により、本発明のリチウムイオン二次電池用セパレータは、3N以上、特に、3.5N以上の突き差し強度を達成することができる。   Specifically, after the alumina-containing resin binder dispersion is applied to one or both sides of the microporous resin film membrane, the solvent is removed to remove the solvent and thereby function as an inorganic heat-resistant layer on the surface of the microporous resin membrane. A separator for a lithium ion secondary battery in which a particle layer is formed can be obtained. The mechanical strength of the lithium ion secondary battery separator can be measured by a piercing test, and the lithium ion of the present invention is formed by the inorganic particle layer formed by applying the alumina-containing resin binder dispersion. The secondary battery separator can achieve a puncture strength of 3N or more, particularly 3.5N or more.

本発明のリチウムイオン二次電池用セパレータにおいて、基材を構成する微多孔質樹脂膜は、かかる用途に使用される特性を有するものが特に制限無く使用される。例えば、樹脂の材質としては、ポリオレフィン、とりわけ、ポリエチレンが一般的である。また、微多孔質樹脂膜の厚みは、1〜50μm程度が一般的である。   In the separator for a lithium ion secondary battery of the present invention, as the microporous resin film constituting the base material, those having characteristics used for such applications are used without particular limitation. For example, as a material of the resin, polyolefin, especially polyethylene is common. The thickness of the microporous resin film is generally about 1 to 50 μm.

また、前記無機粒子層の厚みは、本発明のアルミナ含有樹脂バインダー分散液を用いることにより、0.5〜10μm、より好ましくは0.5〜5μm、特に好ましくは0.5〜3μmとなるように前記アルミナ含有樹脂バインダー分散液を塗布することが好ましい。   The inorganic particle layer has a thickness of 0.5 to 10 μm, more preferably 0.5 to 5 μm, and particularly preferably 0.5 to 3 μm by using the alumina-containing resin binder dispersion of the present invention. It is preferable to apply the alumina-containing resin binder dispersion to the above.

上記アルミナ含有樹脂バインダー分散液を微多孔質樹脂膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はない。例えば、グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、キャストコーター法、スクイズコーター法、ダイコーター法等などの方法が挙げられる。中でも、均一な多孔膜が得られる点でグラビアコーター法が好ましい。   The method for applying the alumina-containing resin binder dispersion to the microporous resin film is not particularly limited as long as the required layer thickness and application area can be realized. For example, gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, cast coater method, squeeze coater method, die coater Examples of the method include a law. Among these, the gravure coater method is preferable in that a uniform porous film can be obtained.

本発明の乾式アルミナ微粒子は、前述したリチウムイオン二次電池セパレータ用の無機粒子層を構成する耐熱粒子としての用途に好適に使用されるが、かかる用途に限定されるものでなく、単独で或いは他の粒子と組み合わせて、その他の用途に使用することも可能である。例えば、半導体用途、焼結体材料、樹脂の耐熱フィラー用途、CMP等の研磨材、窒化アルミニウム等のアルミニウム化合物原料、単結晶用原料、耐摩耗用充填剤、ガス等の分離膜、化粧品、精密樹脂成形品充填材、歯科材用充填材、トナー外添材、金属・セラミックス等への被膜材等の用途にも好適に使用することができる。   The dry alumina fine particles of the present invention are suitably used for the use as the heat-resistant particles constituting the inorganic particle layer for the lithium ion secondary battery separator described above, but are not limited to such use, either alone or It can also be used in other applications in combination with other particles. For example, semiconductor applications, sintered body materials, resin heat-resistant filler applications, polishing materials such as CMP, aluminum compound materials such as aluminum nitride, single crystal materials, antiwear fillers, gas separation membranes, cosmetics, precision It can also be suitably used for applications such as resin molding fillers, dental fillers, toner external additives, coating materials on metals, ceramics, and the like.

<実施例>
本発明を具体的に説明するために実施例及び比較例を示すが、本発明はこれらの実施例に限定されるものではない。
なお、以下の実施例及び比較例における各種の物性測定等は以下の方法による。
実施例1〜4、比較例1〜4
乾式アルミナ微粒子合成
気体状の塩化アルミニウムを同心円3重管バーナで燃焼させ乾式アルミナ微粒子を製造した。
<Example>
Examples and comparative examples are shown to specifically describe the present invention, but the present invention is not limited to these examples.
In addition, various physical property measurements in the following examples and comparative examples are based on the following methods.
Examples 1-4, Comparative Examples 1-4
Dry Alumina Fine Particle Synthesis Dry alumina fine particles were produced by burning gaseous aluminum chloride with a concentric triple tube burner.

実施例1〜3、比較例1〜3においては、加熱気化させた原料と水素を混合した後、バーナ中心管に導入した。また、窒素を中心管の外周に配置した第1環状管に導入し、酸素を第1環状管の外周に配置した第2環状管に導入し、乾式アルミナ微粒子を得た。第2環状管が本バーナにおける最外環状管となる。
また実施例4、比較例4においては、加熱気化させた原料と水素、窒素、酸素を混合した後、バーナ中心管に導入した。また、水素、窒素を中心管の外周に配置した第1環状管に導入し、酸素を第1環状管の外周に配置した第2環状管に導入し乾式アルミナ微粒子を得た。
In Examples 1 to 3 and Comparative Examples 1 to 3, the heat-vaporized raw material and hydrogen were mixed and then introduced into the burner center tube. Further, nitrogen was introduced into a first annular tube disposed on the outer periphery of the central tube, and oxygen was introduced into a second annular tube disposed on the outer periphery of the first annular tube to obtain dry alumina fine particles. The second annular tube is the outermost annular tube in the burner.
In Example 4 and Comparative Example 4, the raw material heated and vaporized was mixed with hydrogen, nitrogen, and oxygen, and then introduced into the burner center tube. Further, hydrogen and nitrogen were introduced into a first annular tube disposed on the outer periphery of the central tube, and oxygen was introduced into a second annular tube disposed on the outer periphery of the first annular tube to obtain dry alumina fine particles.

得られた乾式アルミナ微粒子はバグフィルターで回収後、空気、水蒸気を用いて脱酸を行いアルミナ微粒子に付着したCl分を除去した。この脱酸後の乾式アルミナ微粒子のBET比表面積、吸光度、粒子表面のOH基数、画像解析法により求める体積頻度、平均円形度を測定した。   The obtained dry alumina fine particles were recovered by a bag filter and then deoxidized using air and water vapor to remove Cl content adhering to the alumina fine particles. The BET specific surface area, the absorbance, the number of OH groups on the particle surface, the volume frequency determined by image analysis, and the average circularity of the dry alumina fine particles after deoxidation were measured.

(1)比表面積測定:
BET比表面積は日本ベル製のBELSORP−max(商品名)により窒素吸着BET法により測定した。
(1) Specific surface area measurement:
The BET specific surface area was measured by the nitrogen adsorption BET method using BELSORP-max (trade name) manufactured by Nippon Bell.

(2)吸光度測定:
日本分光社製分光光度計(V−530)を用いて、波長700nmの光に対するアルミナ濃度0.2重量%の水懸濁物の吸光度τを測定した。
測定試料セルとしては、東京硝子器械社製合成石英セル(5面透明、10×10×45H)を用いた。
(2) Absorbance measurement:
Using a spectrophotometer (V-530) manufactured by JASCO Corporation, the absorbance τ of an aqueous suspension having an alumina concentration of 0.2% by weight with respect to light having a wavelength of 700 nm was measured.
As the measurement sample cell, a synthetic quartz cell (5-sided transparent, 10 × 10 × 45H) manufactured by Tokyo Glass Instruments Co., Ltd. was used.

アルミナ濃度0.2重量%の水懸濁物は、以下のように調製した。   A water suspension having an alumina concentration of 0.2% by weight was prepared as follows.

アルミナ微粒子0.04gと蒸留水20mlをガラス製のサンプル管瓶(アズワン社製、内容量30ml、外径約28mm)に入れ、超音波細胞破砕器(BRANSON社製SonifierIIModel250D、プローブ:1/4インチ)のプローブチップ下面が水面下15mmになるようにセットし、出力24W、分散時間5分の条件でアルミナ微粒子を蒸留水に分散した。   0.04 g of alumina fine particles and 20 ml of distilled water are placed in a glass sample tube bottle (manufactured by ASONE, inner volume of 30 ml, outer diameter of about 28 mm), and an ultrasonic cell crusher (BRANSON's Sonifier II Model 250D, probe: 1/4 inch). ) Was set so that the lower surface of the probe tip was 15 mm below the water surface, and alumina fine particles were dispersed in distilled water under the conditions of an output of 24 W and a dispersion time of 5 minutes.

(3)画像解析法により求める体積頻度測定:
日立ハイテクノロジーズ製電界放射型走査電子顕微鏡S−5500で粒子5000個を2次電子像で任意に撮影し、撮影した画像を画像解析装置(旭エンジニアリング社製、IP−1000C 商品名)で粒子径解析を行い、体積頻度を算出し、1μm以上の頻度の和を求めた。
(3) Volume frequency measurement obtained by image analysis method:
A secondary electron image of 5000 particles was arbitrarily photographed with Hitachi High-Technologies Field Emission Scanning Electron Microscope S-5500, and the photographed image was measured with an image analyzer (Asahi Engineering Co., Ltd., IP-1000C product name). Analysis was performed to calculate a volume frequency, and a sum of frequencies of 1 μm or more was obtained.

(4)平均円形度測定:
得られた乾式アルミナ微粒子5000個の円形度を画像解析装置(旭エンジニアリング社製IP−1000C)により算出し、平均値を算出した。
(4) Average circularity measurement:
The circularity of 5000 dry alumina fine particles obtained was calculated by an image analyzer (IP-1000C manufactured by Asahi Engineering Co., Ltd.), and the average value was calculated.

(5)粒子表面のOH基数測定方法:
本発明における粒子表面のOH基数の定量はカールフィッシャー法を用いて行った。カールフィッシャー水分計は、京都電子製電量式カールフィッシャー水分計MKC−610に鉱石用水分気化装置ADP−512を接続したものを使用した。水分気化装置には加熱炉が設置されており、気化した水分を乾燥窒素で水分計に導入し、水分量の測定を行った。設定温度は100℃から200℃に昇温させたとき、200℃から500℃に昇温させたとき、500℃から900℃に昇温させたときの3段階で測定を行い、その合計の水分量を算出した。なお、カールフィッシャー法において検出された水分量は、OH基2個が縮合して1個の水分子になると考え、次式により求めた。
OH基数(個/nm)=0.0662×水分量(ppm)/乾式アルミナ微粒子の比表面積(m/g)
表1に実施例1〜4の製造条件とアルミナ特性を、表2に比較例1〜3の製造条件とアルミナ特性をそれぞれ示す。
(5) Method for measuring the number of OH groups on the particle surface:
In the present invention, the number of OH groups on the particle surface was quantified using the Karl Fischer method. The Karl Fischer moisture meter used was a Kyoto Electric Co., Ltd. Karl Fischer moisture meter MKC-610 connected to an ore moisture vaporizer ADP-512. A heating furnace was installed in the moisture vaporizer, and the moisture content was measured by introducing the vaporized moisture into a moisture meter with dry nitrogen. The set temperature is measured in three stages when the temperature is raised from 100 ° C to 200 ° C, when the temperature is raised from 200 ° C to 500 ° C, and when the temperature is raised from 500 ° C to 900 ° C. The amount was calculated. Note that the amount of water detected by the Karl Fischer method was determined by the following equation, assuming that two OH groups were condensed to form one water molecule.
Number of OH groups (pieces / nm 2 ) = 0.0662 × water content (ppm) / specific surface area of dry alumina fine particles (m 2 / g)
Table 1 shows the production conditions and alumina characteristics of Examples 1 to 4, and Table 2 shows the production conditions and alumina characteristics of Comparative Examples 1 to 3, respectively.

Figure 0006147614
Figure 0006147614

Figure 0006147614
Figure 0006147614

注:Sは供給された可燃性ガス量の和(mol/h)、Rは供給した原料が完全に反応するために必要な可燃性ガス量(mol/h)、
F(S)=170S−1.4−0.1、
out:最外環状管導入ガス量(Nm/H)、
Al:生成するアルミナ重量(kg/H)
実施例5〜8、比較例5〜7
耐熱無機粒子層形成
アルミナを、PVA(重合度1700、ケン化度98%以上)濃度が3質量%の分散液に添加し、ホモジナイザーで分散させ、アルミナ含有樹脂バインダー分散液を調製した。実施例では上記実施例1により得られた乾式アルミナ微粒子を用い、比較例では他社アルミナ製品を用いた。比較例5では住友化学株式会社製、商品名:AKP−3000を用いた。また実施例5・6、比較例5・6では溶媒として水を、実施例7・8、比較例7では溶媒としてN−メチルピロリドンを用いた。上記アルミナ含有樹脂分散液中のアルミナの体積容量については、実施例5〜8、比較例6・7においては表3に記載の濃度で調製した。
Note: SH is the sum of the amount of flammable gas supplied (mol / h), RH is the amount of flammable gas necessary for the supplied raw material to completely react (mol / h),
F (S) = 170S −1.4 −0.1,
G out : outermost annular pipe introduction gas amount (Nm 3 / H),
P Al : Generated alumina weight (kg / H)
Examples 5-8, Comparative Examples 5-7
Formation of heat-resistant inorganic particle layer Alumina was added to a dispersion having a PVA (polymerization degree 1700, saponification degree 98% or more) concentration of 3% by mass and dispersed with a homogenizer to prepare an alumina-containing resin binder dispersion. In the examples, the dry alumina fine particles obtained in Example 1 were used, and in the comparative example, the alumina products of other companies were used. In Comparative Example 5, trade name: AKP-3000 manufactured by Sumitomo Chemical Co., Ltd. was used. In Examples 5 and 6 and Comparative Examples 5 and 6, water was used as the solvent, and in Examples 7 and 8 and Comparative Example 7, N-methylpyrrolidone was used as the solvent. About the volume capacity of the alumina in the said alumina containing resin dispersion liquid, it prepared in Examples 5-8 and the density | concentration of Table 3 in Comparative Examples 6-7.

上記分散液の粘度を測定した。粘度はレオメーター(AR2000EX、TA Instruments社製 商品名)を用い、測定温度は25℃、せん断速度は10s−1とした。 The viscosity of the dispersion was measured. The viscosity was measured using a rheometer (AR2000EX, trade name, manufactured by TA Instruments) at a measurement temperature of 25 ° C. and a shear rate of 10 s −1 .

次いで、前記アルミナ含有樹脂分散液を、グラビアコーターを用いて市販のポリエチレン微多孔膜に塗布し、60℃で乾燥させることで溶媒を除去し、無機粒子層を形成した。厚みは表3に記載した厚みで塗工した。かかる無機粒子層を形成したポリエチレン微多孔膜に対して、突刺し強度試験を行い、膜の突刺し強度を測定した。突刺し強度は、ハンディー圧縮試験器「KES−G5」(カトーテック製、商品名)を用いて、針先端の曲率半径は0.5mm、突刺速度は2mm/secの条件で突刺し試験を行うことにより求めた。得られた最大突刺荷重を突刺強度とした。結果を表3に示す。
表3に調製したアルミナ含有樹脂分散液の粘度、突刺し強度の測定結果を示す。
表3より、アルミナ含有樹脂バインダー分散液中のアルミナの体積容量が30容量%を超える場合にアルミナ含有樹脂分散液粘度と突刺し強度の値が特に好適な範囲となることが理解される。また比較例5のように分散性の異なるアルミナを用いた場合にはアルミナの体積容量が30容量%を超えるまでアルミナを充填することが困難である。
Next, the alumina-containing resin dispersion was applied to a commercially available polyethylene microporous film using a gravure coater and dried at 60 ° C. to remove the solvent, thereby forming an inorganic particle layer. The thickness was applied at the thickness described in Table 3. A puncture strength test was performed on the polyethylene microporous membrane on which the inorganic particle layer was formed, and the puncture strength of the membrane was measured. For the puncture strength, a puncture test is performed using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech Co., Ltd.) at a needle tip radius of curvature of 0.5 mm and a puncture speed of 2 mm / sec. Was determined by The obtained maximum puncture load was defined as the puncture strength. The results are shown in Table 3.
Table 3 shows the measurement results of the viscosity and puncture strength of the alumina-containing resin dispersion prepared.
From Table 3, it is understood that when the volume capacity of alumina in the alumina-containing resin binder dispersion exceeds 30% by volume, the values of the viscosity of the alumina-containing resin dispersion and the puncture strength are particularly suitable. When alumina having different dispersibility is used as in Comparative Example 5, it is difficult to fill the alumina until the volume capacity of alumina exceeds 30% by volume.

Figure 0006147614
Figure 0006147614

Claims (7)

粒子表面に存在するOH基数が20個/nm以下、BET比表面積が10〜50m/gであり、且つ、濃度0.2重量%の水懸濁液としたとき、波長700nmの光に対する吸光度τが下記式(1)を満足していることを特徴とする乾式アルミナ微粒子。
τ≦170S−1.4−0.1 (1)
(式中、Sは、アルミナ微粒子のBET比表面積(m/g)である)
When the number of OH groups present on the particle surface is 20 or less / nm 2 , the BET specific surface area is 10 to 50 m 2 / g and the concentration is 0.2% by weight, the aqueous suspension has a wavelength of 700 nm. Dry alumina fine particles characterized in that the absorbance τ satisfies the following formula (1).
τ ≦ 170S −1.4 −0.1 (1)
(Wherein S is the BET specific surface area (m 2 / g) of the alumina fine particles)
画像解析法により求めた体積換算粒子径分布において、1μm以上のアルミナ粒子の割合が5容量%以下である請求項1記載の乾式アルミナ微粒子。   2. The dry alumina fine particles according to claim 1, wherein the proportion of alumina particles of 1 μm or more is 5% by volume or less in a volume conversion particle size distribution obtained by an image analysis method. アルミナ粒子の平均円形度が0.85以上である請求項1記載の乾式アルミナ微粒子。   The dry alumina fine particles according to claim 1, wherein the average circularity of the alumina particles is 0.85 or more. 気体状のアルミニウム化合物と酸素と可燃性ガスにより形成される火炎中で、前記アルミニウム化合物から球状のアルミナ微粒子を生成せしめる方法において、中心管および中心管から同心円状に広がる複数の環状管より構成される多重管バーナを使用して拡散火炎又は予混合火炎を形成し、且つ、以下の条件を満足することを特徴とする請求項1記載の乾式アルミナ微粒子の製造方法。
(1)断熱火炎温度が2500K以上である。
(2)原料が気体状のアルミニウム化合物である。
(3)バーナから供給される可燃性ガスの和と原料となるアルミニウム化合物が完全に反応するために必要な可燃性ガス量の比が、下記式(2)を満足している。
/R≧5 (2)
(式中、Sは供給された可燃性ガス量の和(mol/h)、Rは供給した原料が完全に反応するために必要な可燃性ガス量(mol/h))
(4)前記多重管バーナの最外環状管導入ガスが酸素又は酸素と窒素等の不活性ガスの混合ガスであり、生成するアルミナ1kgあたりの最外環状管導入ガス量が下記式(3)を満たす値である。
1.0<Gout/PAl<5.0 (3)
out:最外環状管導入ガス量(Nm/H)
Al:生成するアルミナ重量(kg/H)
In a method of forming spherical alumina fine particles from the aluminum compound in a flame formed by a gaseous aluminum compound, oxygen and a combustible gas, the method comprises a central tube and a plurality of annular tubes concentrically extending from the central tube. 2. The method for producing dry alumina fine particles according to claim 1, wherein a multi-tube burner is used to form a diffusion flame or a premixed flame, and the following conditions are satisfied.
(1) The adiabatic flame temperature is 2500K or higher.
(2) The raw material is a gaseous aluminum compound.
(3) The ratio of the amount of combustible gas required for the total reaction of the sum of combustible gas supplied from the burner and the aluminum compound as a raw material satisfies the following formula (2).
S H / R H ≧ 5 (2)
(In the formula, SH is the sum of the supplied combustible gas amount (mol / h), and RH is the combustible gas amount (mol / h) necessary for the supplied raw material to completely react).
(4) The outermost annular tube introduction gas of the multi-tube burner is a mixed gas of oxygen or an inert gas such as oxygen and nitrogen, and the outermost annular tube introduction gas amount per 1 kg of the produced alumina is expressed by the following formula (3) It is a value that satisfies
1.0 <G out / P Al <5.0 (3)
G out : outermost annular pipe introduction gas amount (Nm 3 / H)
P Al : Generated alumina weight (kg / H)
請求項1記載の乾式アルミナ微粒子を、25℃における酸素透過度が10L/m・day・atm以下、透湿度が50g/m・24hr以下のシートよりなる包装袋に収納することを特徴とする乾式アルミナ微粒子の保存方法。 The dry alumina fine particles according to claim 1 are stored in a packaging bag made of a sheet having an oxygen permeability at 25 ° C. of 10 L / m 2 · day · atm or less and a moisture permeability of 50 g / m 2 · 24 hr or less. To store dry alumina fine particles. 請求項1記載の乾式アルミナ微粒子を、30容量%を超える割合で含有し、粘度が20Pa・s以下であることを特徴とするアルミナ含有樹脂バインダー分散液。   An alumina-containing resin binder dispersion comprising the dry alumina fine particles according to claim 1 in a proportion exceeding 30% by volume and having a viscosity of 20 Pa · s or less. 請求項6記載のアルミナ含有樹脂バインダー分散液を、微多孔質樹脂フィルムの表面に塗布することにより形成された無機粒子層を有することを特徴とするリチウムイオン二次電池用セパレータ。   A separator for a lithium ion secondary battery, comprising an inorganic particle layer formed by applying the alumina-containing resin binder dispersion according to claim 6 on the surface of a microporous resin film.
JP2013181583A 2013-07-17 2013-09-02 Dry alumina fine particles and production method thereof Active JP6147614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181583A JP6147614B2 (en) 2013-07-17 2013-09-02 Dry alumina fine particles and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013148797 2013-07-17
JP2013148797 2013-07-17
JP2013181583A JP6147614B2 (en) 2013-07-17 2013-09-02 Dry alumina fine particles and production method thereof

Publications (2)

Publication Number Publication Date
JP2015038012A JP2015038012A (en) 2015-02-26
JP6147614B2 true JP6147614B2 (en) 2017-06-14

Family

ID=52631396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181583A Active JP6147614B2 (en) 2013-07-17 2013-09-02 Dry alumina fine particles and production method thereof

Country Status (1)

Country Link
JP (1) JP6147614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381624B2 (en) * 2015-03-30 2019-08-13 Zeon Corporation Composition for secondary battery porous membrane, porous membrane for secondary battery and secondary battery
CN107248157A (en) * 2017-06-30 2017-10-13 中南大学 A kind of aluminium cell sees the method and its device of fire automatically
KR102142351B1 (en) * 2017-11-10 2020-08-07 아사히 가세이 가부시키가이샤 Separator for power storage device, and power storage device
JP7041426B2 (en) * 2018-03-28 2022-03-24 協和化学工業株式会社 Separator for non-water-based secondary battery and non-water-based secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739905A1 (en) * 1987-11-25 1989-06-08 Philips Patentverwaltung METHOD AND DEVICE FOR PRODUCING ALUMINUM OXIDE PARTICLES OF THE ALPHA MODIFICATION
JP2005017928A (en) * 2003-06-27 2005-01-20 Shin Etsu Chem Co Ltd Electrostatic charge developer
DE102004061700A1 (en) * 2004-12-22 2006-07-06 Degussa Ag Alumina powder, dispersion and coating composition
JP5110570B2 (en) * 2006-11-06 2012-12-26 独立行政法人産業技術総合研究所 Method for producing alumina fine particles and alumina sol
JP5320263B2 (en) * 2009-11-04 2013-10-23 電気化学工業株式会社 Spherical alumina powder, production method and use thereof

Also Published As

Publication number Publication date
JP2015038012A (en) 2015-02-26

Similar Documents

Publication Publication Date Title
JP6147614B2 (en) Dry alumina fine particles and production method thereof
JP5837529B2 (en) Micropore forming agent for porous resin film and composition for porous resin film comprising the same
EP2806493B1 (en) Inorganic oxide powder, inorganic oxide powder containing slurry, lithium ion secondary battery with the slurry, and process for producing the same
US9334391B2 (en) Sintered spherical BN particles, method of producing the same, and polymer material
JP6082464B2 (en) CMP silica, aqueous dispersion, and method for producing CMP silica
JP5451998B2 (en) Method for producing powdery alumina precursor
CN106552480B (en) For separating the zeolite molecular sieve film and its preparation method and application of hydrogen isotope and inert gas
JP6634543B2 (en) Power storage device separator and method for manufacturing the same, and power storage device and method for manufacturing the same
JP2007126712A (en) Powder for thermal spraying and method for forming thermally sprayed coating
TW201829312A (en) Fumed silica and production method therefor
WO2019009136A1 (en) Metal powder and method for producing same
JP6112888B2 (en) Dry silica fine particles
TW201034962A (en) Method for producing alumina
JP6901853B2 (en) Hydrophilic dry silica powder
JP6134548B2 (en) Spherical alumina particle powder and method for producing the same
JP5688321B2 (en) Porous carbon and method for producing the same
JP7160636B2 (en) Non-aqueous electrolyte secondary battery
CN113365943B (en) Silica powder, resin composition and dispersion
JP6453235B2 (en) Porous plate filler and heat insulating film
JP5046572B2 (en) Niobium monoxide
WO2020091059A1 (en) Nonaqueous electrolyte secondary battery
JP7267852B2 (en) Magnesium oxide, method for producing the same, and gas adsorbent made of the magnesium oxide
WO2014038005A1 (en) Porous carbon and method for producing same
JP2021020841A (en) Carbon material, method for producing carbon material, carbon material composition, and lubricity improving agent
WO2024029213A1 (en) Carbon material, method for producing carbon material, negative electrode, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150