JP6146338B2 - Electric wire / cable manufacturing method - Google Patents

Electric wire / cable manufacturing method Download PDF

Info

Publication number
JP6146338B2
JP6146338B2 JP2014033871A JP2014033871A JP6146338B2 JP 6146338 B2 JP6146338 B2 JP 6146338B2 JP 2014033871 A JP2014033871 A JP 2014033871A JP 2014033871 A JP2014033871 A JP 2014033871A JP 6146338 B2 JP6146338 B2 JP 6146338B2
Authority
JP
Japan
Prior art keywords
superheated steam
crosslinking
cable
rubber
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014033871A
Other languages
Japanese (ja)
Other versions
JP2015157434A (en
Inventor
西 甫
甫 西
新吾 芦原
新吾 芦原
貴 青山
貴 青山
孔亮 中村
孔亮 中村
福地 悦夫
悦夫 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014033871A priority Critical patent/JP6146338B2/en
Priority to CN201410682656.6A priority patent/CN104859126B/en
Publication of JP2015157434A publication Critical patent/JP2015157434A/en
Application granted granted Critical
Publication of JP6146338B2 publication Critical patent/JP6146338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material

Description

本発明は、電線・ケーブルの製造方法に関するものである。 The present invention relates to the production how the wires and cables.

絶縁電線・ケーブルの被覆材料の加硫方法には、流動床法、熱風架橋法、電子線照射法、溶融塩法、加圧蒸気法、高周波加硫法等の連続加硫方法や、鉛、ポリメチルペンテン(TPX:登録商標)などを被覆し、ドラム巻き取り後、缶加硫するバッチ加硫方法がある。これらは、対象物の厚さ、形状、構造、長さ、被覆材料の種類等によりどの加硫方法が最も適しているか選定され、適用されているが、加硫装置価格、加硫速度、取り扱い性、製品性能等々からそれぞれ一長一短がある。   Insulation wire / cable coating materials include vulcanization methods such as fluidized bed method, hot air crosslinking method, electron beam irradiation method, molten salt method, pressurized steam method, high-frequency vulcanization method, lead, There is a batch vulcanization method in which polymethylpentene (TPX: registered trademark) or the like is coated, wound on a drum, and then vulcanized in a can. These vulcanization methods are selected and applied according to the thickness, shape, structure, length, type of coating material, etc. of the object. There are advantages and disadvantages in terms of performance, product performance, etc.

連続加硫方法のうち、流動床法や熱風架橋法は、常圧下、高温にした管中に加硫対象物を通し加熱・加硫する方法である。前者はガラスビーズが存在するが、空気伝熱が主体であるため加硫対象物への伝熱特性が劣り、製造スピードが遅い欠点がある。   Among the continuous vulcanization methods, the fluidized bed method and the hot air cross-linking method are methods of heating and vulcanizing an object to be vulcanized through a pipe heated to a high temperature under normal pressure. The former has glass beads, but has the disadvantage that the heat transfer characteristics to the object to be vulcanized are inferior and the manufacturing speed is slow because air heat transfer is the main component.

電子線照射法は、電子線の強度により材料への浸透厚さに制限があり、一般的に厚肉の製品よりも薄肉絶縁電線の製造に適している。更に、押出し工程と照射工程とが別工程になるため、一旦ドラムに巻き取る必要があり、その場合、未加硫被覆材料は変形を受ける問題があるため、絶縁材料は常温で変形し難いものに限られている。   The electron beam irradiation method has a limitation on the penetration thickness into the material depending on the intensity of the electron beam, and is generally more suitable for manufacturing a thin insulated wire than a thick product. Furthermore, since the extrusion process and the irradiation process are separate processes, it is necessary to take up the drum once. In that case, the unvulcanized coating material is subject to deformation, so the insulating material is difficult to deform at room temperature. It is limited to.

無機塩(例えば、トーレック:硝酸カリウム、硝酸ナトリウム、亜硝酸ナトリウムの混合物)の溶融高温液体中で加硫させる溶融塩法は、常圧・加圧下の両者で加硫可能であるが、塩を加熱・溶融するのに長時間を要することや、一旦溶融後、冷却固化するのを防ぐため、長期間加熱しておく必要があり、多大な電力量を必要とする。更に、加硫後、加硫対象物に付着した塩を水洗する必要があり、この水処理が必要などの欠点がある。   The molten salt method of vulcanizing an inorganic salt (for example, TOREC: a mixture of potassium nitrate, sodium nitrate, and sodium nitrite) in a molten high-temperature liquid can be vulcanized under both normal pressure and pressure, but the salt is heated. -It takes a long time to melt, or it needs to be heated for a long time in order to prevent it from being cooled and solidified once melted, and requires a large amount of electric power. Furthermore, after vulcanization, it is necessary to wash the salt adhering to the vulcanized object with water, and this water treatment is necessary.

加圧水蒸気法は、長尺加硫対象物の加硫方法として製造スピードが速く、電線・ケーブル等の加硫には多用されている。絶縁電線ではあまり問題ないが、加硫時に高圧が加わることからケーブルの場合、ゴム被覆層そのものの変形、ゴム被覆層のコアへの凹みによる変形、絶縁体そのものの変形を受ける問題がある。   The pressurized steam method has a high production speed as a vulcanization method for a long vulcanization object, and is often used for vulcanization of electric wires, cables and the like. There is not much problem with an insulated wire, but since a high pressure is applied during vulcanization, a cable has problems of deformation of the rubber coating layer itself, deformation due to a recess in the core of the rubber coating layer, and deformation of the insulator itself.

この問題をさけるため、バッチ式で温度がやや低く、高い圧力が加わらない缶加硫方法がある。   In order to avoid this problem, there is a can vulcanization method in which the temperature is somewhat low and high pressure is not applied.

しかし、本方法では、押出直後、缶加硫前のドラム巻取時に起こるゴム材料の変形を抑えるため、押出し後、鉛やポリメチルペンテン(TPX:登録商標)などを一旦被覆・加硫後、これらを剥離するなど面倒な工程を伴い、製造に長時間を要する。また、変形抑制のための被覆を行っても抑制が不十分なため、架橋後に変形を修理する工程があり、製造コストが高いという問題があった。さらに、丸型ケーブルの変形抑制に適用可能な被覆工程も、平型ケーブルの場合には適用できず、架橋後の変形修理工程が必要不可欠となっていた。   However, in this method, immediately after extrusion, in order to suppress the deformation of the rubber material that occurs during drum winding before vulcanizing the can, after extrusion, lead, polymethylpentene (TPX: registered trademark), etc. are once coated and vulcanized, This involves a troublesome process such as peeling them, and requires a long time for production. Moreover, even if the coating for suppressing deformation is performed, since the suppression is insufficient, there is a step of repairing the deformation after crosslinking, and there is a problem that the manufacturing cost is high. Furthermore, the covering process applicable to the deformation suppression of the round cable cannot be applied to the case of the flat cable, and the deformation repairing process after the bridge has been indispensable.

一方、過熱水蒸気は、蒸気を大気圧下で加熱して100℃以上にしたもので、以前より存在したが、熱としての利用より動力として適用するだけであった。最近になり食品調理の分野への適用が見直され、過熱水蒸気つき電子レンジが各メーカーから上市されている。   On the other hand, superheated steam is steam heated to 100 ° C. or higher under atmospheric pressure, and has existed for a long time, but has only been applied as power rather than heat. Recently, application to the field of food preparation has been reviewed, and microwave ovens with superheated steam have been marketed by various manufacturers.

また、特許文献1〜3では、過熱水蒸気を用いてゴムや熱可塑性樹脂を加硫させることが提案されている。   In Patent Documents 1 to 3, it is proposed to vulcanize rubber or thermoplastic resin using superheated steam.

過熱水蒸気は、下記の特徴を有している。
(1)加熱空気に比べて熱容量が大きいので被加熱物を急速に加熱することができ、加熱時間を短縮できる。
(2)加熱空気に比べて約2倍程度の定圧比熱を有し、加熱能力に優れている。
(3)潜熱のエネルギーを有するので、加熱空気に比べエンタルピーが大きい。
(4)空気による伝熱は対流伝熱に限られるが、過熱水蒸気では対流伝熱に加えて放射伝熱、凝縮伝熱によっても伝熱する「複合伝熱作用」により熱効率が良い。
(5)飽和水蒸気に比べて単位体積あたりの水分量が少ないため、湿熱と乾熱の性質をあわせ持っている。
Superheated steam has the following characteristics.
(1) Since the heat capacity is larger than that of heated air, the object to be heated can be heated rapidly, and the heating time can be shortened.
(2) It has a constant-pressure specific heat of about twice that of heated air and has excellent heating capacity.
(3) Since it has latent heat energy, its enthalpy is larger than that of heated air.
(4) Heat transfer by air is limited to convection heat transfer, but superheated steam has good thermal efficiency due to “composite heat transfer action” that transfers heat by radiant heat and condensation heat transfer in addition to convective heat transfer.
(5) Since the amount of water per unit volume is smaller than that of saturated water vapor, it has both wet heat and dry heat properties.

過熱水蒸気の生成は電気ヒータによるものと電磁誘導加熱による方法がある。過熱水蒸気は100℃以下の対象物に当たると凝縮、この表面に水滴が発生し、過熱水蒸気の存在により再蒸発するが、その潜熱のため過熱水蒸気の熱を奪い、対象物の温度上昇が100℃でしばらく停滞する結果、100℃以上に上昇するまでに一定の時間が必要となる。   There are two methods for generating superheated steam: electric heater and electromagnetic induction heating. The superheated steam condenses when it hits an object of 100 ° C. or less, water droplets are generated on this surface, and it re-evaporates due to the presence of the superheated steam. As a result of stagnation for a while, a certain time is required until the temperature rises to 100 ° C. or higher.

絶縁電線・ケーブルの製造に過熱水蒸気を適用した公知例として、80℃以上の温度で押出し成形されたポリマやゴム材料を、加圧下で過熱水蒸気により連続的に加熱、加硫することにより、被覆材料の発泡を防止すると共に絶縁体を変形させることなく低加圧下(0.2MPa以上)で過熱水蒸気を熱媒体とし、連続的に絶縁電線・ケーブル等を加熱・加硫を行うことができる加硫方法がある(特許文献4参照)。   As a well-known example of applying superheated steam to the manufacture of insulated wires and cables, it is possible to coat polymers and rubber materials extruded at a temperature of 80 ° C or higher by continuous heating and vulcanization with superheated steam under pressure. It is possible to prevent the material from foaming and to heat and vulcanize insulated wires / cables continuously by using superheated steam as a heat medium under low pressure (0.2 MPa or more) without deforming the insulator. There is a sulfur method (see Patent Document 4).

特開2001−239528号公報JP 2001-239528 A 特開2001−323085号公報Japanese Patent Laid-Open No. 2001-323085 特開2004−50615号公報Japanese Patent Laid-Open No. 2004-50615 特開2011−5852号公報JP 2011-5852 A

しかし、特許文献4に記載された方法では、加圧下(0.2MPa以上)で過熱水蒸気により連続的に加熱、加硫するため、架橋処理によるゴム被覆層の変形率の点で改善の余地があった。また、従来の缶加硫のようにゴム被覆層の変形を抑えるために鉛やTPXのような被覆材を適用する方法では、架橋前のゴムをドラムに巻き取る工程が入るため、ドラム巻取時のゴム被覆層の変形率を改善する必要があった。   However, in the method described in Patent Document 4, since it is continuously heated and vulcanized with superheated steam under pressure (0.2 MPa or more), there is room for improvement in terms of the deformation rate of the rubber coating layer by the crosslinking treatment. there were. In addition, in the method of applying a covering material such as lead or TPX in order to suppress deformation of the rubber coating layer as in conventional can vulcanization, there is a step of winding the rubber before cross-linking onto the drum. It was necessary to improve the deformation rate of the rubber coating layer at the time.

従って、本発明の目的は、製造コストを抑えることができ、かつ押出直後にゴム材料の変形を抑えるための材料を被覆することなく、架橋時のゴム被覆層の変形及びドラム巻取時のゴム被覆層の変形を抑制可能な電線・ケーブルの製造方法を提供することにある。 Therefore, an object of the present invention is to reduce the manufacturing cost and to form a rubber coating layer during crosslinking and a rubber during drum winding without coating a material for suppressing deformation of the rubber material immediately after extrusion. the deformation of the covering layer is to provide a manufacturing how the suppressible wires and cables.

上記目的を達成するため、本発明によれば、以下の電線・ケーブルの製造方法が提供される。 To achieve the above object, according to the present invention, the following wires and cables manufacturing how is provided.

[1]押出機によりゴム材料をコア材に被覆して被覆物を得る工程と、当該被覆物を前記押出機に連結した架橋設備に通し、前記被覆されたゴム材料を架橋する工程とを含み、前記架橋する工程は、前記架橋設備に、100℃以上180℃未満で、常圧から0.2MPa未満の過熱水蒸気が供給されて行なわれることを特徴とする電線・ケーブルの製造方法。
[2]前記架橋する工程は、3分間より長く行なわれることを特徴とする前記[1]記載の電線・ケーブルの製造方法。
[3]前記架橋する工程は、常圧の過熱水蒸気が供給されて行なわれることを特徴とする前記[1]又は前記[2]に記載の電線・ケーブルの製造方法。
[4]前記架橋する工程において、前記架橋設備は外部より加熱されることを特徴とする前記[1]〜[3]のいずれか1つに記載の電線・ケーブルの製造方法
[1] including a step of coating a rubber material on a core material by an extruder to obtain a coating, and a step of crosslinking the coated rubber material by passing the coating through a crosslinking facility connected to the extruder. The method for producing an electric wire / cable is characterized in that the cross-linking step is performed by supplying superheated steam of 100 to 180 ° C. and normal pressure to less than 0.2 MPa to the cross-linking facility.
[2] The method for manufacturing an electric wire / cable according to [1], wherein the crosslinking step is performed for longer than 3 minutes.
[3] The method for producing an electric wire / cable according to [1] or [2], wherein the cross-linking step is performed by supplying superheated steam at normal pressure.
[4] The method for manufacturing an electric wire / cable according to any one of [1] to [3], wherein in the step of crosslinking, the crosslinking facility is heated from the outside .

本発明によれば、製造コストを抑えることができ、かつ押出直後にゴム材料の変形を抑えるための材料を被覆することなく、架橋時のゴム被覆層の変形及びドラム巻取時のゴム被覆層の変形を抑制可能な電線・ケーブルの製造方法が提供される。 According to the present invention, it is possible to reduce the manufacturing cost, and without covering the material for suppressing the deformation of the rubber material immediately after the extrusion, the deformation of the rubber coating layer at the time of crosslinking and the rubber coating layer at the time of winding the drum producing how the suppressible wire and cable deformation is provided.

本発明の参考形態に係るケーブルの横断面図である。It is a cross-sectional view of the cable which concerns on the reference form of this invention. 本発明の実施形態に係る電線・ケーブルの製造方法の工程の概略を示す図である。It is a figure which shows the outline of the process of the manufacturing method of the electric wire and cable which concerns on embodiment of this invention. 本発明の他の実施形態に係る電線・ケーブルの製造方法の工程の概略を示す図である。It is a figure which shows the outline of the process of the manufacturing method of the electric wire and cable which concerns on other embodiment of this invention.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の参考形態に係るケーブルの横断面図である。例えば、銅からなる導体1に、EPR(エチレンプロピレンゴム)等からなる絶縁体2を被覆した電線10が形成され、その電線10を3本撚り合わせ、その外周に、ポリクロロプレン等からなるシース3が被覆されてケーブル100が形成される。 FIG. 1 is a cross-sectional view of a cable according to a reference embodiment of the present invention. For example, an electric wire 10 in which an insulator 2 made of EPR (ethylene propylene rubber) or the like is coated on a conductor 1 made of copper is formed, three wires 10 are twisted, and a sheath 3 made of polychloroprene or the like is formed on the outer periphery thereof. Is covered to form the cable 100.

〔電線・ケーブルの製造方法〕
図2は、本発明の実施形態に係る電線・ケーブルの製造方法の工程の概略を示す図であり、電線10やケーブル100の絶縁体やシースを構成するゴム材料を架橋する工程を中心に示したものである。
[Manufacturing method of electric wire / cable]
FIG. 2 is a diagram showing an outline of the steps of the method of manufacturing the electric wire / cable according to the embodiment of the present invention, and mainly shows the step of bridging the rubber material constituting the insulator and the sheath of the electric wire 10 and the cable 100. It is a thing.

本発明の実施形態に係る電線・ケーブルの製造方法は、押出機によりゴム材料をコア材に被覆して被覆物を得る工程と、当該被覆物を前記押出機に連結した架橋設備に通し、前記被覆されたゴム材料を架橋する工程とを含み、前記架橋する工程は、前記架橋設備に、100℃以上180℃未満で、常圧から0.2MPa未満の過熱水蒸気が供給されて行なわれることを特徴とする。   The method of manufacturing an electric wire / cable according to an embodiment of the present invention includes a step of coating a rubber material on a core material by an extruder to obtain a coating, and passing the coating through a crosslinking facility connected to the extruder, Cross-linking the coated rubber material, and the cross-linking step is carried out by supplying superheated steam at 100 ° C. or higher and lower than 180 ° C. and from normal pressure to less than 0.2 MPa to the cross-linking facility. Features.

先ず、ゴム材料が押出機20からダイス21に押し出され、コア送り出し機22から、導体や電線等のコア材23がダイス21を挿通するように送り出され、そのコア材23にゴム材料が押し出し被覆される。その後、当該被覆物はスプライスボックス24、過熱水蒸気架橋設備25に順次、通される。過熱水蒸気架橋設備25にて過熱水蒸気供給装置26から過熱水蒸気が供給されて押し出し被覆材が架橋される。架橋後の製品30(電線10、ケーブル100)は、水冷管27を通して冷却され、ウォーターシール28を通過後、製品巻き取り機29に巻き取られる。   First, the rubber material is extruded from the extruder 20 to the die 21, and the core material 23 such as a conductor or an electric wire is fed from the core feeder 22 so as to pass through the die 21, and the rubber material is extruded onto the core material 23. Is done. Thereafter, the coating is sequentially passed through a splice box 24 and a superheated steam bridge facility 25. Superheated steam is supplied from the superheated steam supply device 26 in the superheated steam crosslinking facility 25 to crosslink the extruded coating material. The product 30 (the electric wire 10 and the cable 100) after the crosslinking is cooled through the water-cooled tube 27, passes through the water seal 28, and is wound around the product winder 29.

過熱水蒸気供給装置26から過熱水蒸気架橋設備25に供給する過熱水蒸気は、過熱水蒸気架橋設備25の少なくとも一箇所から供給される。図2では、過熱水蒸気架橋設備25の入口部、中間部、出口部の三箇所から供給される。また、過熱水蒸気架橋設備25には圧力調整弁31が接続され、圧力調整弁31により、過熱水蒸気架橋設備25内の圧力が常圧(約0.1MPa)から0.2MPa未満となるように保持される。好ましくは、常圧から0.17MPa以下となるように保持され、より好ましくは、常圧から0.15MPa以下となるように保持され、さらに好ましくは、常圧から0.13MPa以下となるように保持される。最も好ましくは、常圧となるように保持される。   The superheated steam supplied from the superheated steam supply device 26 to the superheated steam bridge facility 25 is supplied from at least one location of the superheated steam bridge facility 25. In FIG. 2, it supplies from three places, the entrance part of the superheated steam bridge | crosslinking facility 25, an intermediate part, and an exit part. In addition, a pressure regulating valve 31 is connected to the superheated steam bridge facility 25, and the pressure regulating valve 31 holds the pressure in the superheated steam bridge facility 25 from normal pressure (about 0.1 MPa) to less than 0.2 MPa. Is done. Preferably, the pressure is maintained from normal pressure to 0.17 MPa or less, more preferably from normal pressure to 0.15 MPa or less, and even more preferably from normal pressure to 0.13 MPa or less. Retained. Most preferably, it is maintained at normal pressure.

過熱水蒸気は、常圧から0.2MPa未満、最も好ましくは常圧下で加熱されるため架橋時に高圧が加わることがなく、ケーブルに被覆されたゴム材料が変形を受けることがない。また、背景技術で述べた通り、被加熱物を急速に加熱できるためケーブルに被覆されたゴム材料の短時間の架橋が可能であり、ドラム巻取までに架橋させることでドラム巻取時のケーブル自重による変形を抑えることが可能である。   The superheated steam is heated from normal pressure to less than 0.2 MPa, and most preferably under normal pressure, so that no high pressure is applied during crosslinking, and the rubber material covered with the cable is not deformed. In addition, as described in the background art, since the object to be heated can be heated rapidly, the rubber material coated on the cable can be cross-linked in a short time. It is possible to suppress deformation due to its own weight.

架橋設備25内の温度は、生産性及びゴム材料の熱劣化を考慮すると100℃以上180℃未満に保持することが好ましく、140℃以上180℃未満に保持することがより好ましく、最も好ましくは150℃以上180℃未満に保持することが好ましい。   The temperature in the crosslinking equipment 25 is preferably maintained at 100 ° C. or more and less than 180 ° C., more preferably 140 ° C. or more and less than 180 ° C., most preferably 150 in consideration of productivity and thermal degradation of the rubber material. It is preferable to hold at a temperature not lower than 180 ° C. and lower than 180 ° C.

架橋時間は被覆材料の厚み(1〜10mm程度)を考慮すると、3分間より長く行なわれることが好ましい。3.5分以上10分以下であることがより好ましく、4分以上8分以下であることがさらに好ましく、4分以上6分以下であることが最も好ましい。ただし、シラン架橋のように架橋系の異なる材料や被覆材料の厚い製品に関しては更なる架橋時間が必要な場合もあり、具体的な架橋時間に関してはこの範囲に限定されるものではない。   In consideration of the thickness of the coating material (about 1 to 10 mm), the crosslinking time is preferably longer than 3 minutes. It is more preferably from 3.5 minutes to 10 minutes, further preferably from 4 minutes to 8 minutes, and most preferably from 4 minutes to 6 minutes. However, a material having a different crosslinking system such as silane crosslinking or a product having a thick coating material may require further crosslinking time, and the specific crosslinking time is not limited to this range.

図3は、本発明の他の実施形態に係る電線・ケーブルの製造方法の工程の概略を示す図であり、基本的には図2と同じであるが、過熱水蒸気架橋設備25の外周に加熱装置としての外部ヒータ32を設け、過熱水蒸気供給装置26からの過熱水蒸気を、過熱水蒸気架橋設備25の入口部、中間部の二箇所から供給する形態としたものである。   FIG. 3 is a diagram showing an outline of the steps of a method of manufacturing an electric wire / cable according to another embodiment of the present invention, which is basically the same as FIG. 2, but heated to the outer periphery of the superheated steam bridge facility 25. An external heater 32 is provided as an apparatus, and superheated steam from the superheated steam supply device 26 is supplied from two locations, an inlet portion and an intermediate portion of the superheated steam bridge facility 25.

以上において、電線・ケーブルの被覆材は、押出機20から押出されると共に、ダイス21でコア材23に被覆され、過熱水蒸気架橋設備25内では、常圧から0.2MPa未満の過熱水蒸気を熱媒体として連続的に加熱され、被覆材の架橋が行われる。   In the above, the wire / cable coating material is extruded from the extruder 20 and coated on the core material 23 with the die 21, and in the superheated steam bridging equipment 25, the superheated steam of less than 0.2 MPa is heated from normal pressure. It is continuously heated as a medium, and the coating material is crosslinked.

押出機20での押出し温度を80℃以上にすると、過熱水蒸気架橋設備25内で、過熱蒸気が被覆材に触れ、冷やされ、水になり、再蒸発する時間を極力短時間に抑えることができる。その結果、被覆材の温度上昇が100℃にとどまる時間を最小限にできる。   When the extrusion temperature in the extruder 20 is 80 ° C. or higher, the superheated steam is touched with the coating material in the superheated steam crosslinking facility 25, is cooled, becomes water, and can be kept for a short time as much as possible. . As a result, the time during which the temperature rise of the covering material remains at 100 ° C. can be minimized.

また、被覆材を常圧から0.2MPa未満の過熱水蒸気で加熱することにより、架橋時の材料の変形を防止することができる。   In addition, by heating the coating material with atmospheric superheated steam less than 0.2 MPa, deformation of the material at the time of crosslinking can be prevented.

過熱水蒸気は、被過熱物体に接触すると、結露(蒸気の液化)し、温度が100℃に留まろうとする性質がある。そのため、80℃以上の温度で材料を押出すことにより、過熱水蒸気の結露による100℃での停滞時間を短縮することが可能となる。その結果、架橋の進行を早めることができる。また、80℃以下では100℃での停滞時間が長くなり、架橋の進行が遅くなるため、生産性に劣る。   When the superheated steam comes into contact with the object to be heated, it has the property of dew condensation (steam liquefaction) and the temperature tends to stay at 100 ° C. Therefore, by extruding the material at a temperature of 80 ° C. or higher, the stagnation time at 100 ° C. due to dew condensation of superheated steam can be shortened. As a result, the progress of crosslinking can be accelerated. In addition, at 80 ° C. or lower, the stagnation time at 100 ° C. becomes longer, and the progress of the crosslinking becomes slower, so that the productivity is inferior.

過熱水蒸気は、時間と共に100℃に戻ろうとする性質があり、過熱水蒸気架橋設備25が長い場合、途中で温度低下を招くおそれがある。これを防ぐため、次のような方法が取られる。   The superheated steam has a property of returning to 100 ° C. with time, and when the superheated steam crosslinking facility 25 is long, there is a risk of causing a temperature drop on the way. In order to prevent this, the following method is taken.

一つは過熱水蒸気の供給量を増す方法、二つ目は過熱水蒸気の架橋設備への導入を1箇所だけでなく、図2〜3に示すように複数箇所設け、温度の低下を防止する方法、三つ目は、図3に示すように架橋設備の一部を外部より加熱装置(ヒーター等)で加熱する方法である。   One is a method for increasing the supply amount of superheated steam, and the second is a method for preventing a decrease in temperature by providing superheated steam not only at one place but also at a plurality of places as shown in FIGS. The third is a method of heating a part of the crosslinking equipment from the outside with a heating device (heater or the like) as shown in FIG.

電線・ケーブルのサイズ構造にも左右されるが、これらを単独又は複数組み合わせることにより、架橋設備内部の温度の低下を防ぐことができ、被覆材料の架橋反応をスムーズに進めることができる。   Although it depends on the size structure of the electric wire / cable, by combining these alone or in combination, it is possible to prevent the temperature inside the crosslinking facility from being lowered, and the crosslinking reaction of the coating material can proceed smoothly.

過熱水蒸気は、最も好ましくは常圧下での使用のため、過熱水蒸気供給装置26は加圧仕様とする必要がなく、設備コストを抑えることができる。   Since the superheated steam is most preferably used under normal pressure, the superheated steam supply device 26 does not need to be pressurized and equipment costs can be reduced.

過熱水蒸気架橋設備25内の底部には未架橋被覆材料の変形・キズ防止のため、ガイドロール等を取り付けておくことが望ましい。   It is desirable to attach a guide roll or the like to the bottom of the superheated steam crosslinking facility 25 in order to prevent deformation and scratches on the uncrosslinked coating material.

ゴム材料としては、天然ゴム(NR)、イソプレンゴム(IR)、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ポリクロロプレンゴム(CR)、塩素化ポリエチレン(CPE)、クロロスルフォン化ポリエチレン(CSM)、フッ素ゴム(FKM)、アクリルゴム(ACM)、エピクロロヒドリンゴム(ECO)、シリコーンゴム(VMQ)、各種液状ゴム等のゴム材料が挙げられる。これらは架橋剤、可塑剤、滑剤、充填剤、難燃剤、着色剤等の一般的な配合剤を添加してよい。   Rubber materials include natural rubber (NR), isoprene rubber (IR), butyl rubber (IIR), ethylene / propylene rubber (EPR), ethylene / propylene / diene terpolymer (EPDM), butadiene rubber (BR), and styrene butadiene rubber. (SBR), acrylonitrile butadiene rubber (NBR), polychloroprene rubber (CR), chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSM), fluoro rubber (FKM), acrylic rubber (ACM), epichlorohydrin rubber ( Examples thereof include rubber materials such as ECO), silicone rubber (VMQ), and various liquid rubbers. These may be added with general compounding agents such as a crosslinking agent, a plasticizer, a lubricant, a filler, a flame retardant and a colorant.

対象製品としては、電線(絶縁電線)・ケーブル類であるが、この変形として異型を含むソリッド押出成型物、ホース類がある。後の二者は、内部に直線状金属線や金属、天然・合成ポリマ糸を編んだタイプを含んだ構造のものに特に適している。   The target products are electric wires (insulated electric wires) and cables, but there are solid extrusion moldings and hoses including irregular shapes as deformations. The latter two are particularly suitable for a structure including a type in which a linear metal wire, metal, or natural / synthetic polymer yarn is knitted inside.

押出機20の成型温度は、好ましくは80℃以上、100℃以下である。押出し温度がこれに以上になると、過熱水蒸気による架橋前のプレ架橋が進行し過ぎて、一部分の粘度が上昇してしまい、「つぶ」や「ふくれ」などの外観不良が生じるためである。   The molding temperature of the extruder 20 is preferably 80 ° C. or higher and 100 ° C. or lower. If the extrusion temperature is higher than this, pre-crosslinking before cross-linking with superheated steam proceeds too much, resulting in a partial increase in viscosity and appearance defects such as “crushing” and “blowing”.

押出機20前後には、図示していないが、芯線、コア送り出し機、これらのアキュムレータ、製品巻き取り機、外径測定器、アキュムレータ等の必要な設備を備えることができる。   Although not shown, before and after the extruder 20, necessary equipment such as a core wire, a core feeding machine, an accumulator thereof, a product winder, an outer diameter measuring instrument, and an accumulator can be provided.

〔電線・ケーブル〕
本発明の参考形態に係る電線・ケーブルは、本発明の実施形態に係る上記製造方法により製造されたものである。
[Wire / Cable]
The electric wire and cable which concern on the reference form of this invention are manufactured by the said manufacturing method which concerns on embodiment of this invention .

本発明の参考形態に係る電線・ケーブルの被覆層(ゴム材料)は、ASTM D621(圧縮クリープ試験法)に基づく、加熱変形試験機による荷重試験(40℃、700g/cm2で24時間)におけるドラム巻取時の圧縮変形率(永久変形)が3%以下である。好ましい参考形態においては、当該圧縮変形率が2.5%以下であり、より好ましい参考形態においては、当該圧縮変形率が2%以下であり、さらに好ましい参考形態においては、当該圧縮変形率が1.5%以下であり、最も好ましい参考形態においては、当該圧縮変形率が1%以下である。また、当該被覆層の架橋時の厚み変形率も3%以下である。好ましい参考形態においては、当該厚み変形率が2.5%以下であり、より好ましい参考形態においては、当該厚み変形率が2%以下であり、最も好ましい参考形態においては、当該厚み変形率が1.5%以下である。 The wire / cable coating layer (rubber material) according to the reference embodiment of the present invention is a load test (40 ° C., 700 g / cm 2 for 24 hours) using a heat deformation tester based on ASTM D621 (compression creep test method). The compression deformation rate (permanent deformation) at the time of drum winding is 3% or less. In a preferred reference embodiment, the compression deformation rate is 2.5% or less, in a more preferred reference embodiment, the compression deformation rate is 2% or less, and in a more preferred reference embodiment, the compression deformation rate is 1 and at .5% or less, in a most preferred reference embodiment, the pressure change rate is 1% or less. Moreover, the thickness deformation rate at the time of bridge | crosslinking of the said coating layer is also 3% or less. In a preferred reference form, the thickness deformation rate is 2.5% or less, in a more preferred reference form, the thickness deformation rate is 2% or less, and in a most preferred reference form, the thickness deformation rate is 1 .5% or less.

以下に、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

図1の構造のケーブル100を下記の通りの方法で作製した。   A cable 100 having the structure shown in FIG. 1 was produced by the following method.

ここで、ケーブル100(電線10:3本×22mm2)の各部位のサイズは以下の通りである。
導体構成(外径/素線本数/素線径):7mm/20本/0.45mm
絶縁体厚さ:1.2mm
シース厚さ:2.7mm
仕上り外径:26mm
Here, the size of each part of the cable 100 (electric wire 10: 3 pieces × 22 mm 2) is as follows.
Conductor configuration (outer diameter / number of strands / strand diameter): 7 mm / 20 strands / 0.45 mm
Insulator thickness: 1.2mm
Sheath thickness: 2.7 mm
Finished outer diameter: 26mm

絶縁体は、硫黄加硫EPR(赤、白、黒の各色)を導体上に所定の厚さに押出し被覆後、過熱水蒸気により架橋して得た。   The insulator was obtained by extrusion-coating sulfur vulcanized EPR (each color of red, white, and black) to a predetermined thickness on a conductor and then crosslinking with superheated steam.

これら3本撚り合わせた後、90mmベント式押出し機により、表1に示したポリクロロプレンを含むシース材料を5m/分及び10m/分の速度で押出し被覆した。   After twisting these three, the sheath material containing polychloroprene shown in Table 1 was extrusion coated at a speed of 5 m / min and 10 m / min by a 90 mm vent type extruder.

Figure 0006146338
Figure 0006146338

次に、表2に示す各条件により架橋を行ない、ケーブル製品(3 PNCT:3種EPゴム絶縁クロロプレンキャブタイヤケーブル)を得た。   Next, crosslinking was performed under the conditions shown in Table 2 to obtain a cable product (3 PNCT: 3 types of EP rubber-insulated chloroprene cabtyre cable).

架橋前後のケーブルのシース材料の厚みを比較し、架橋時の変形率を評価した。また、ドラム(巻き取り機29)巻取直前のケーブルのシース材料を採取し、その表面から2mmの厚さに切削したものを10mm×10mm×2mmのシートに加工し、ドラム巻取時の圧縮変形率の測定に供した。   The thickness of the sheath material of the cable before and after cross-linking was compared to evaluate the deformation rate during cross-linking. Also, the sheath material of the cable immediately before winding of the drum (winding machine 29) is collected, cut into a thickness of 2 mm from the surface, and processed into a sheet of 10 mm × 10 mm × 2 mm, and compressed when winding the drum It used for the measurement of a deformation rate.

実施例1〜3及び比較例1〜2と鉛被缶加硫標準品の製造条件と評価結果を表2に示す。   Table 2 shows production conditions and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 2 and lead can vulcanized standard products.

Figure 0006146338
Figure 0006146338

架橋時及びドラム巻取時の変形率は規格値≦3%とし、それ以外は鉛被缶加硫の標準条件で得られた製品の値と比較し、総合判断した。   The deformation rate at the time of cross-linking and drum winding was set to a standard value ≦ 3%, and other than that, it was compared with the value of the product obtained under the standard conditions of lead can vulcanization, and comprehensive judgment was made.

各特性の評価方法は、次の通りである。   The evaluation method of each characteristic is as follows.

(1)架橋時の厚み変形率:
架橋前後のケーブルのシース断面を顕微鏡にて観察し、シース厚みの変化を測定した。鉛被缶加硫標準品の場合も同様である。厚み変形率は、下記の式で算出した。
(1) Thickness deformation rate during crosslinking:
The cross section of the sheath of the cable before and after crosslinking was observed with a microscope, and the change in sheath thickness was measured. The same applies to lead can vulcanized standard products. The thickness deformation rate was calculated by the following formula.

厚み変形率(%)=[{架橋前のシース厚み−架橋後のシース厚み}/{架橋前のシース厚み}]×100   Thickness deformation rate (%) = [{Sheath thickness before crosslinking−Sheath thickness after crosslinking} / {Sheath thickness before crosslinking}] × 100

(2)ドラム巻取時の圧縮変形率:
ASTM D621(圧縮クリープ試験法)に基づき「加熱変形試験機」により、40℃、700g/cm2の条件で24時間、試料に荷重をかけ、その後、荷重を除き、23℃、50RH%の室内に24時間保管後のシート厚みを測定し、初期のシート厚みに対する圧縮変形率(永久変形)を評価した。温度条件(40℃)は、夏季の現場の温度より選定した。また、面圧条件(700g/cm2)は、製品ケーブルをドラムに全て巻いた状態で最下層のケーブルにかかる荷重と、ケーブル直径の10%変形した際の面積より見積もった。圧縮変形率は、下記の式で算出した。
(2) Compression deformation rate during drum winding:
Based on ASTM D621 (compression creep test method), the sample was loaded for 24 hours under conditions of 40 ° C. and 700 g / cm 2 using a “heat deformation tester”, and then the load was removed and the room was 23 ° C. and 50 RH%. The sheet thickness after storage for 24 hours was measured, and the compression deformation rate (permanent deformation) with respect to the initial sheet thickness was evaluated. The temperature condition (40 ° C.) was selected from the on-site temperature in summer. Further, the surface pressure condition (700 g / cm 2 ) was estimated from the load applied to the lowermost cable in a state where all the product cables were wound around the drum and the area when the cable diameter was deformed by 10%. The compression deformation rate was calculated by the following formula.

圧縮変形率(%)=[{初期のシート厚み−除荷24時間後のシート厚み}/{初期のシート厚み}]×100   Compression deformation rate (%) = [{initial sheet thickness−sheet thickness after 24 hours of unloading} / {initial sheet thickness}] × 100

(3)製造コスト:
製造コストは、鉛被缶加硫標準品の製造コストと同等のものを×(不合格)、10%未満のコスト低減率のものを△(合格)、10%以上のコスト低減率のものを〇(合格)とした。
(3) Manufacturing cost:
The manufacturing cost is equivalent to the manufacturing cost of lead can vulcanized standard products x (failed), less than 10% cost reduction rate △ (passed), 10% or more cost reduction rate ○ (passed).

実施例1〜3は何れもシース材料(CR−1、CR−2)は標準的なポリクロロプレンゴムを使用し、押出し被覆後、常圧に近い圧力下で150℃に調整した過熱水蒸気で架橋したもので、架橋設備通過後の厚み変形率、ドラム巻取時の圧縮変形率は規格値(≦3%)を満足し、製造コストは従来の鉛被缶加硫で得られた製品よりも優れている。従って、実施例1〜3は何れも総合判定で合格であった。   In Examples 1 to 3, the sheath material (CR-1, CR-2) is a standard polychloroprene rubber, and after extrusion coating, is crosslinked with superheated steam adjusted to 150 ° C. under a pressure close to normal pressure. Therefore, the thickness deformation rate after passing through the bridge equipment and the compression deformation rate when winding the drum satisfy the standard value (≦ 3%), and the manufacturing cost is higher than the product obtained by conventional lead can vulcanization. Are better. Therefore, all of Examples 1 to 3 passed the comprehensive judgment.

これに対し、比較例1は過熱水蒸気処理を行っていないため、ドラム巻取時の耐変形性を全く有しておらず、変形率が22.3%と極めて大きい。従って、総合判定は不合格であった。   On the other hand, since the comparative example 1 does not perform the superheated steam treatment, it does not have any deformation resistance at the time of winding the drum, and the deformation rate is as extremely high as 22.3%. Therefore, the comprehensive judgment was unacceptable.

また、比較例2は過熱水蒸気の圧力を0.2MPaとしているため、未架橋のシース材料を変形させてしまう(変形率3.2%)。また、加圧仕様の設備としているため、製造コストも常圧使用の場合に比べて高くなってしまう。さらに、変形率が3%以上であり、変形修理コストを要するため、製造コストがアップする。従って、総合判定は不合格であった。   Moreover, since the pressure of the superheated steam is 0.2 MPa in Comparative Example 2, the uncrosslinked sheath material is deformed (deformation rate: 3.2%). Moreover, since it is the equipment of a pressurization specification, a manufacturing cost will also become high compared with the case of normal pressure use. Furthermore, since the deformation rate is 3% or more and a deformation repair cost is required, the manufacturing cost increases. Therefore, the comprehensive judgment was unacceptable.

従来の鉛被缶加硫標準品は、ドラム巻取前に架橋工程が入らないために、シース材料そのものの耐変形性はなく変形率は20.8%であった。また、製造コストは従来通りのため×(不合格)である。従って、総合判定は不合格であった。   Since the conventional lead can vulcanized standard product does not include a crosslinking step before winding the drum, the sheath material itself has no deformation resistance and the deformation rate is 20.8%. Moreover, since the manufacturing cost is the same as before, it is x (failed). Therefore, the comprehensive judgment was unacceptable.

以上より、ゴム材料を押出後、100℃以上180℃未満、常圧から0.2MPa未満の過熱水蒸気で架橋させることで、架橋中の変形が無く、ドラム巻取時の自重による変形も起こらない耐変形性を有し、製造コストの低いケーブルとすることができる。   From the above, after extruding the rubber material, it is cross-linked with superheated steam at 100 ° C. or higher and lower than 180 ° C. and from atmospheric pressure to less than 0.2 MPa, so that there is no deformation during the cross-linking, and no deformation due to its own weight when winding the drum. A cable having deformation resistance and a low manufacturing cost can be obtained.

上記実施例では、ケーブルのシース材料で説明したが、本発明はシース材料の他に種々の製品、例えば、異型を含むソリッド押出成型物、ホース類にも適用できる。   In the above embodiments, the cable sheath material has been described. However, the present invention can be applied to various products in addition to the sheath material, for example, solid extrusions including different shapes, and hoses.

1:導体、2:絶縁体、3:シース
10:電線、100:ケーブル
20:押出機、21:ダイス、22:コア送り出し機
23:コア材、24:スプライスボックス
25:過熱水蒸気架橋設備(過熱水蒸気加硫管)
26:過熱水蒸気供給装置
27:水冷管、28:ウォーターシール、29:巻き取り機
30:架橋後の製品、31:圧力調整弁、32:外部ヒータ
DESCRIPTION OF SYMBOLS 1: Conductor, 2: Insulator, 3: Sheath 10: Electric wire, 100: Cable 20: Extruder, 21: Die, 22: Core delivery machine 23: Core material, 24: Splice box 25: Superheated steam bridge equipment (superheat Steam vulcanization pipe)
26: superheated steam supply device 27: water cooling pipe, 28: water seal, 29: winder 30: product after crosslinking, 31: pressure regulating valve, 32: external heater

Claims (4)

押出機によりゴム材料をコア材に被覆して被覆物を得る工程と、当該被覆物を前記押出機に連結した架橋設備に通し、前記被覆されたゴム材料を架橋する工程とを含み、前記架橋する工程は、前記架橋設備に、100℃以上180℃未満で、常圧から0.2MPa未満の過熱水蒸気が供給されて行なわれることを特徴とする電線・ケーブルの製造方法。   A step of coating a rubber material on a core material by an extruder to obtain a coating; and a step of cross-linking the coated rubber material by passing the coating through a crosslinking facility connected to the extruder. The electric wire / cable manufacturing method is characterized in that the step of performing is performed by supplying superheated steam at 100 ° C. or higher and lower than 180 ° C. to normal pressure to less than 0.2 MPa. 前記架橋する工程は、3分間より長く行なわれることを特徴とする請求項1記載の電線・ケーブルの製造方法。   The method of manufacturing an electric wire / cable according to claim 1, wherein the cross-linking step is performed for longer than 3 minutes. 前記架橋する工程は、常圧の過熱水蒸気が供給されて行なわれることを特徴とする請求項1又は請求2に記載の電線・ケーブルの製造方法 Wherein the step of crosslinking, wire and cable manufacturing method according to claim 1 or claim 2 superheated steam at atmospheric pressure, characterized in that the performed supplied. 前記架橋する工程において、前記架橋設備は外部より加熱されることを特徴とする請求項1〜3のいずれか1つに記載の電線・ケーブルの製造方法。   The method of manufacturing an electric wire / cable according to any one of claims 1 to 3, wherein in the cross-linking step, the cross-linking facility is heated from the outside.
JP2014033871A 2014-02-25 2014-02-25 Electric wire / cable manufacturing method Active JP6146338B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014033871A JP6146338B2 (en) 2014-02-25 2014-02-25 Electric wire / cable manufacturing method
CN201410682656.6A CN104859126B (en) 2014-02-25 2014-11-24 Electric wire, cable and its manufacture method and elastomeric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033871A JP6146338B2 (en) 2014-02-25 2014-02-25 Electric wire / cable manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017093495A Division JP2017147240A (en) 2017-05-10 2017-05-10 Rubber material and wire/cable

Publications (2)

Publication Number Publication Date
JP2015157434A JP2015157434A (en) 2015-09-03
JP6146338B2 true JP6146338B2 (en) 2017-06-14

Family

ID=53905501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033871A Active JP6146338B2 (en) 2014-02-25 2014-02-25 Electric wire / cable manufacturing method

Country Status (2)

Country Link
JP (1) JP6146338B2 (en)
CN (1) CN104859126B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360694A (en) * 2018-11-15 2019-02-19 国网福建省电力有限公司 A kind of corrosion-resistant wind resistance center of percussion strength aluminium alloy conductor overhead insulated cable process units and its working method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066183A (en) * 2015-09-28 2017-04-06 日立金属株式会社 Chloroprene rubber composition and manufacturing method therefor, wire and cable and manufacturing method therefor, crosslinking method and storing method of chloroprene rubber composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222980A (en) * 1977-09-29 1980-09-16 Anaconda Wire And Cable Company Method for continuously making cable
JPH064252B2 (en) * 1985-06-17 1994-01-19 株式会社明治ゴム化成 Hose continuous vulcanization method
JPH0699439A (en) * 1992-09-22 1994-04-12 Micro Denshi Kk Continuous bridging method for extrusion molded body such as organic-peroxide compounded polymer
CN100367432C (en) * 2002-09-10 2008-02-06 株式会社克拉比 Code-shaped temperature fuse and sheet-shaped temperature fuse
US7208682B2 (en) * 2002-12-11 2007-04-24 Prysmian Cavi E Sistemi Energia Srl Electrical cable with foamed semiconductive insulation shield
JP5358934B2 (en) * 2007-12-06 2013-12-04 信越化学工業株式会社 Method for producing silicone rubber
JP2011005852A (en) * 2009-05-29 2011-01-13 Hitachi Cable Ltd Vulcanizing method and vulcanizer
CN101579901B (en) * 2009-06-03 2011-03-16 白城天奇装备机械有限公司 Novel method for vulcanizing rubber-insulated electric wires and cables
JP5740817B2 (en) * 2010-02-12 2015-07-01 日立金属株式会社 High voltage cabtyre cable
JP2013103436A (en) * 2011-11-15 2013-05-30 Bridgestone Corp Apparatus and method for manufacturing rubber member
JP5768696B2 (en) * 2011-12-14 2015-08-26 日立金属株式会社 Method for producing electric wire coated with silane-crosslinked polyethylene and method for producing cable coated with silane-crosslinked polyethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360694A (en) * 2018-11-15 2019-02-19 国网福建省电力有限公司 A kind of corrosion-resistant wind resistance center of percussion strength aluminium alloy conductor overhead insulated cable process units and its working method

Also Published As

Publication number Publication date
CN104859126B (en) 2018-04-20
JP2015157434A (en) 2015-09-03
CN104859126A (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768696B2 (en) Method for producing electric wire coated with silane-crosslinked polyethylene and method for producing cable coated with silane-crosslinked polyethylene
KR102351466B1 (en) Continuous crosslinking apparatus for making a cable
JP6146338B2 (en) Electric wire / cable manufacturing method
US7446257B2 (en) Coaxial cable with fine wire inner conductor and method of manufacture
JP2011005852A (en) Vulcanizing method and vulcanizer
CN105427922B (en) Manufacturing method of high-voltage direct current cable
JP2017147240A (en) Rubber material and wire/cable
CN105741969B (en) A kind of coaxial cable
CN107680734A (en) Middle pressure 26/35kV and following PP power cables preparation technology
CN110534262B (en) Method for manufacturing ultrathin-wall heat-resistant low-voltage wire for automobile
KR101535851B1 (en) Electric heating wire and manufacturing method therefore
EP2755211B1 (en) Method and arrangement of crosslinking or vulcanizing an elongate element
CN103295681A (en) Towline cable and manufacturing process thereof
CN113871057B (en) Manufacturing method of F-level temperature-resistant flexible battery acid-resistant high-voltage cable
CN109326377A (en) A kind of electric power safeguard special vehicle locomotive cable and preparation method thereof
JP2009226760A (en) Microwave irradiation vulcanizing method and apparatus
JP2016037570A (en) Chloroprene rubber composition and manufacturing method therefor, and wire and cable
CN107936600B (en) Insulated cable and preparation method thereof
CN203721385U (en) Ultraviolet light irradiation crosslinking and automobile wire/cable plastic extrusion production line
CN105989932A (en) Processing method for novel environment-friendly high-elasticity spiral cable
CN207752804U (en) Automobile shielded cable
JP2017066183A (en) Chloroprene rubber composition and manufacturing method therefor, wire and cable and manufacturing method therefor, crosslinking method and storing method of chloroprene rubber composition
CN101335103A (en) Electric cable with silicon rubber sheath and manufacturing method
JP2002298673A (en) Manufacturing method of crosslinked polyethylene insulation power cable
RU2768789C1 (en) Method of making an insulated wire or cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350