JP6144084B2 - Support member - Google Patents

Support member Download PDF

Info

Publication number
JP6144084B2
JP6144084B2 JP2013066720A JP2013066720A JP6144084B2 JP 6144084 B2 JP6144084 B2 JP 6144084B2 JP 2013066720 A JP2013066720 A JP 2013066720A JP 2013066720 A JP2013066720 A JP 2013066720A JP 6144084 B2 JP6144084 B2 JP 6144084B2
Authority
JP
Japan
Prior art keywords
carbon fiber
support member
reinforcing
derived
prepreg sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013066720A
Other languages
Japanese (ja)
Other versions
JP2014188853A (en
Inventor
竹村 振一
振一 竹村
青柳 健一
健一 青柳
敏郎 江村
敏郎 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013066720A priority Critical patent/JP6144084B2/en
Priority to TW102148258A priority patent/TWI611917B/en
Priority to KR1020140010159A priority patent/KR102001817B1/en
Priority to CN201410093839.4A priority patent/CN104070708B/en
Publication of JP2014188853A publication Critical patent/JP2014188853A/en
Application granted granted Critical
Publication of JP6144084B2 publication Critical patent/JP6144084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、一端部において片持ち梁状態に固定される中空パイプ状の支持部材に関する。 The present invention relates to a hollow pipe-shaped support member that is fixed in a cantilever state at one end.

上記技術分野の従来の技術として、特許文献1には、例えば液晶表示装置(LCD)基板カセット等において片持ち梁状態に設けられるサポートバーといった支持部材が記載されている。特許文献1に記載の支持部材は、断面が円形であり炭素繊維以外の強化繊維を含む強化繊維複合樹脂材料からなるベースパイプと、炭素繊維強化複合樹脂材料によってベースパイプ上に形成された補強層とを備えている。特に、この支持部材においては、補強層は、支持部材を使用する際の鉛直上下方向にあたるベースパイプの外面上に形成されている。   As a conventional technique in the above technical field, Patent Document 1 describes a support member such as a support bar provided in a cantilever state in a liquid crystal display (LCD) substrate cassette, for example. The support member described in Patent Literature 1 includes a base pipe made of a reinforced fiber composite resin material having a circular cross section and containing reinforcing fibers other than carbon fibers, and a reinforcing layer formed on the base pipe by the carbon fiber reinforced composite resin material And. In particular, in this support member, the reinforcing layer is formed on the outer surface of the base pipe corresponding to the vertical vertical direction when the support member is used.

また、特許文献2には、断面角形状の長尺上の芯材に繊維強化樹脂製のプリプレグを複数層巻きつけて内筒体を形成する内筒体形成工程と、前記内筒体の側面に、該内筒体の軸方向に沿って、繊維強化樹脂製のプリプレグからなる補強層を積層して予備成形体を形成する積層工程と、前記予備成形体の外層にラッピングテープを巻きつけるラッピング工程と、前記ラッピングされた予備成形体を加熱する加熱硬化工程と、を備えた、軽量かつ高い剛性を備えた繊維強化樹脂製サポートバーを早いサイクルで安価に製造する、基板収納カセット用繊維強化樹脂製サポートバーの製造方法が記載されている。   Patent Document 2 discloses an inner cylinder forming step in which a plurality of layers of fiber reinforced resin prepregs are wound around a long core material having a square cross section to form an inner cylinder, and a side surface of the inner cylinder. A lamination step in which a reinforcing layer made of a fiber-reinforced resin prepreg is laminated along the axial direction of the inner cylindrical body to form a preform, and wrapping in which a wrapping tape is wound around the outer layer of the preform Fiber reinforcement for substrate storage cassette for manufacturing a lightweight and high-rigidity fiber-reinforced resin support bar in a fast cycle at a low cost with a process and a heat-curing process for heating the lapped preform. A method for manufacturing a resin support bar is described.

特開2007−196615号公報JP 2007-196615 A 特開2013−010346号公報JP 2013-010346 A

上述したように、特許文献1に記載の支持部材は、支持部材を使用する際のベースパイプの鉛直上下方向にあたる部分上のみに炭素繊維強化複合樹脂材料からなる補強層を設けている。その結果、特許文献1に記載の支持部材によれば、炭素繊維の使用量を削減することにより材料費を低減しつつ、優れた荷重撓み特性を達成している。このように、上記技術分野の支持部材においては、曲げ剛性を維持しつつ材料費を低減することが望まれている。   As described above, the support member described in Patent Document 1 is provided with the reinforcing layer made of the carbon fiber reinforced composite resin material only on the portion corresponding to the vertical vertical direction of the base pipe when the support member is used. As a result, according to the support member described in Patent Document 1, excellent load deflection characteristics are achieved while reducing material costs by reducing the amount of carbon fiber used. As described above, in the support members in the above technical field, it is desired to reduce the material cost while maintaining the bending rigidity.

一方、支持部材の曲げ剛性を高めるためには、補強層に使用する炭素繊維として高弾性率のものを使用することが好ましいが、高弾性率の炭素繊維は低弾性率の炭素繊維に比較して高価であるとの問題がある。   On the other hand, in order to increase the bending rigidity of the support member, it is preferable to use a carbon fiber having a high elastic modulus as the carbon fiber used for the reinforcing layer, but the carbon fiber having a high elastic modulus is compared with the carbon fiber having a low elastic modulus. And expensive.

本発明は、そのような事情に鑑みてなされたものであり、曲げ剛性を維持しつつ高弾性率の炭素繊維の使用量を削減して材料費を低減することが可能な支持部材を提供することを課題とする。   This invention is made | formed in view of such a situation, and provides the supporting member which can reduce the usage-amount of a high elastic modulus carbon fiber and can reduce material cost, maintaining bending rigidity. This is the issue.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、次のような知見を得た。すなわち、ベースパイプ部上に形成する補強部においては、使用時に固定される固定端側の領域に対して相対的に高い引張弾性率の炭素繊維の炭素繊維強化複合樹脂材料を使用すると共に、使用時に固定されない自由端側の領域に対して相対的に小さい引張弾性率の炭素繊維の炭素繊維強化複合樹脂材料を使用すれば、全体の曲げ剛性を維持しつつ、相対的に引張弾性率の大きく高価な炭素繊維の炭素繊維強化複合樹脂材料の使用量を削減しして材料費を低減可能である。本発明は、このような知見に基づいてなされたものである。   As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge. That is, in the reinforcing part formed on the base pipe part, a carbon fiber reinforced composite resin material of carbon fiber having a relatively high tensile elastic modulus is used with respect to the region on the fixed end side that is fixed during use. If a carbon fiber reinforced composite resin material of carbon fiber with a relatively small tensile modulus relative to the region of the free end that is not fixed at times is used, the tensile modulus of elasticity is relatively large while maintaining the overall bending rigidity. It is possible to reduce material costs by reducing the amount of expensive carbon fiber carbon fiber reinforced composite resin material used. The present invention has been made based on such knowledge.

すなわち、本発明に係る支持部材は、一端部が固定されると共に他端部が固定されずに片持ち梁状態で使用される中空パイプ形状の支持部材であって、一端部から他端部にわたって延在するベースパイプ部と、ベースパイプ部における使用時に鉛直方向上側となる上側部分及び上側部分に対向する下側部分のそれぞれの上に形成され、一端部から他端部にわたって延在する補強部と、を備え、ベースパイプ部は、繊維強化複合樹脂材料から構成されており、補強部は、一端部から他端部に向かう方向に配列された第1の補強領域及び第2の補強領域を含み、第1及び第2の補強領域は、炭素繊維強化複合樹脂材料から構成されており、第1及び第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の配向方向は、一端部から他端部に向かう方向に略一致しており、第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率よりも大きい、ことを特徴とする。   That is, the support member according to the present invention is a hollow pipe-shaped support member that is used in a cantilever state in which one end is fixed and the other end is not fixed, and extends from one end to the other end. Reinforcing portion that extends from one end to the other end, and is formed on each of the extending base pipe portion, the upper portion that is the upper side in the vertical direction when used in the base pipe portion, and the lower portion that faces the upper portion. And the base pipe part is made of a fiber reinforced composite resin material, and the reinforcing part includes a first reinforcing area and a second reinforcing area arranged in a direction from one end to the other end. The first and second reinforcing regions are made of a carbon fiber reinforced composite resin material, and the orientation direction of the carbon fibers of the carbon fiber reinforced composite resin material constituting the first and second reinforcing regions is one end. From the other end The tensile elastic modulus of the carbon fibers of the carbon fiber reinforced composite resin material constituting the first reinforcing region is substantially the same as the direction in which the carbon fiber reinforced composite resin material constituting the second reinforcing region is formed. It is characterized by being larger than the tensile modulus.

この支持部材においては、その使用時において鉛直方向上側となるベースパイプ部の上側部分とその上側部分に対向する下側部分との上に、炭素繊維強化複合樹脂材料からなる補強部が形成されている。特に、補強部は、使用時に固定端となる一端部側の第1の補強領域を、相対的に引張弾性率が大きい炭素繊維の炭素繊維強化複合樹脂材料から構成し、使用時に自由端となる他端部側の第2の補強領域を、相対的に引張弾性率が小さい炭素繊維の炭素繊維強化複合樹脂材料から構成している。したがって、この支持部材によれば、曲げ剛性を維持しつつ材料費を低減することが可能となる。   In this support member, a reinforcing portion made of a carbon fiber reinforced composite resin material is formed on the upper portion of the base pipe portion which is the upper side in the vertical direction and the lower portion facing the upper portion when used. Yes. In particular, the reinforcing portion is formed of a carbon fiber reinforced composite resin material of carbon fiber having a relatively large tensile elastic modulus in the first reinforcing region on the one end side that becomes a fixed end during use, and becomes a free end during use. The second reinforcing region on the other end side is composed of a carbon fiber reinforced composite resin material of carbon fibers having a relatively small tensile elastic modulus. Therefore, according to this support member, it is possible to reduce the material cost while maintaining the bending rigidity.

本発明に係る支持部材においては、第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、400GPa以上900GPa以下であり、第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、200GPa以上400GPa未満であるものとすることができる。また、本発明に係る支持部材においては、一端部から他端部に向かう方向において、第1の補強領域の長さは、当該支持部材の全長の30%以上70%以下であり、一端部から他端部に向かう方向において、第2の補強領域の長さは、第1の領域の長さとの合計が当該支持部材の全長の100%以下となる範囲において、当該支持部材の全長の30%以上70%以下であるものとすることができる。これらの場合、好適に、曲げ剛性を維持しつつ材料費を低減することが可能となる。   In the support member according to the present invention, the tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region is 400 GPa or more and 900 GPa or less, and the carbon fiber reinforced constituting the second reinforcing region. The tensile elastic modulus of the carbon fiber of the composite resin material can be 200 GPa or more and less than 400 GPa. Further, in the support member according to the present invention, in the direction from the one end portion to the other end portion, the length of the first reinforcement region is 30% or more and 70% or less of the entire length of the support member. In the direction toward the other end, the length of the second reinforcing region is 30% of the total length of the support member in a range where the total length of the first region is 100% or less of the total length of the support member. It may be 70% or less. In these cases, it is possible to reduce the material cost while preferably maintaining the bending rigidity.

本発明に係る支持部材においては、第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維は、ピッチ由来の炭素繊維であり、第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維は、ポリアクリロニトリル(PAN)由来の炭素繊維であるものとすることができる。この場合には、固定端である一端部側の第1の領域に対して、引張弾性率の大きいピッチ由来の炭素繊維の炭素繊維強化複合樹脂材料を用いるので、曲げ剛性を十分に維持することができる。また、自由端である他端部側の第2の領域に対して、比較的安価なPAN由来の炭素繊維の炭素繊維強化複合材料を用いるので、比較的高価なピッチ由来の炭素繊維の炭素繊維強化複合樹脂材料の使用量を減らして材料費を十分に低減することができる。   In the support member according to the present invention, the carbon fibers of the carbon fiber reinforced composite resin material constituting the first reinforcing region are pitch-derived carbon fibers, and the carbon fiber reinforced composite resin material constituting the second reinforcing region. The carbon fiber may be a carbon fiber derived from polyacrylonitrile (PAN). In this case, since the carbon fiber reinforced composite resin material of the carbon fiber derived from the pitch having a large tensile elastic modulus is used for the first region on the one end side which is the fixed end, the bending rigidity should be sufficiently maintained. Can do. Moreover, since the carbon fiber reinforced composite material of carbon fiber derived from PAN that is relatively inexpensive is used for the second region on the other end side which is the free end, carbon fiber of carbon fiber derived from relatively expensive pitch is used. The amount of the reinforced composite resin material can be reduced to sufficiently reduce the material cost.

本発明に係る支持部材は、一端部の外周の長さが他端部の外周の長さよりも長いテーパ形状を呈することができる。この場合には、振動減衰特性を向上することができる。   The support member according to the present invention can have a tapered shape in which the outer circumference of one end is longer than the outer circumference of the other end. In this case, vibration damping characteristics can be improved.

本発明に係る支持部材においては、ベースパイプ部は、ガラス繊維強化複合樹脂材料から構成されているものとすることができる。このように、ベースパイプ部に対して、比較的安価なガラス繊維強化複合材料を使用すれば、さらなる材料費の低減が可能となる。   In the support member according to the present invention, the base pipe portion may be made of a glass fiber reinforced composite resin material. As described above, if a relatively inexpensive glass fiber reinforced composite material is used for the base pipe portion, the material cost can be further reduced.

本発明によれば、曲げ剛性を維持しつつ高弾性率の炭素繊維の使用量を削減して材料費を低減することが可能な支持部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the supporting member which can reduce the usage-amount of a high elastic modulus carbon fiber and can reduce material cost can be provided, maintaining bending rigidity.

本発明に係る支持部材の第1実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 1st Embodiment of the supporting member which concerns on this invention. 図1に示された支持部材の他の断面図である。FIG. 6 is another cross-sectional view of the support member shown in FIG. 1. 図1に示された支持部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the supporting member shown by FIG. 本発明に係る支持部材の第2実施形態の構成を示す断面図である。It is sectional drawing which shows the structure of 2nd Embodiment of the supporting member which concerns on this invention. 図4に示された支持部材の他の断面図である。FIG. 5 is another cross-sectional view of the support member shown in FIG. 4. 図4に示された支持部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the supporting member shown by FIG. 支持部材取り付け用部品の斜視図である。It is a perspective view of the component for supporting member attachment. 本発明に係る支持部材の実施例及び比較例の特性の測定結果を示す表である。It is a table | surface which shows the measurement result of the characteristic of the Example of a supporting member which concerns on this invention, and a comparative example. 本発明に係る支持部材の実施例及び比較例の特性の測定結果を示す表である。It is a table | surface which shows the measurement result of the characteristic of the Example of a supporting member which concerns on this invention, and a comparative example.

以下、本発明に係る支持部材の一実施形態について、図面を参照して詳細に説明する。なお、図面の説明において、同一の要素同士、或いは、相当する要素同士には、互いに同一の符号を付し、重複する説明を省略する。また、各図において、各部の寸法比率は実際のものとは異なる場合がある。
[第1実施形態]
Hereinafter, an embodiment of a support member according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. Moreover, in each figure, the dimension ratio of each part may differ from an actual thing.
[First Embodiment]

図1は、本発明に係る支持部材の第1実施形態の構成を示す断面図である。図2は、図1に示された支持部材の他の断面図である。特に、図2の(a)は、図1のIIA−IIA線に沿っての断面図であり、図2の(b)は、図1のIIB−IIB線に沿っての断面図である。なお、以下の説明においては、各図の紙面における上側及び下側を、それぞれ、支持部材の使用時の鉛直方向における上側及び下側とする。図1,2に示される支持部材1は、例えば、ロボットハンドのアーム部や基板カセットのサポートバーとして使用することができる。   FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of a support member according to the present invention. FIG. 2 is another cross-sectional view of the support member shown in FIG. 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. In the following description, the upper side and the lower side in the drawing of each drawing are the upper side and the lower side in the vertical direction when the support member is used, respectively. The support member 1 shown in FIGS. 1 and 2 can be used, for example, as an arm part of a robot hand or a support bar of a substrate cassette.

図1,2に示されるように、支持部材1は、長尺の中空パイプ形状を呈している。支持部材1は、その長手方向における一端部1aが固定され、片持ち梁状態で使用される。つまり、支持部材1の一端部1aは、使用時に固定端となる。一方、支持部材1においては、その長手方向における他端部1bは固定されない。つまり、支持部材1の他端部1bは、使用時に自由端となる。支持部材1は、一端部1aの外周の長さが他端部1bの外周の長さよりも長いテーパ形状を呈している。つまり、支持部材1は、一端部1aから他端部1bに向かって、長手方向に直交する断面における外形面積が徐々に縮小している。支持部材1においては、例えば、使用時に鉛直方向上側に位置する上面1sに対して、支持対象物(例えばガラス基板等)が載置される。支持部材1は、ロボット或いはLCD基板収納カセットへ取り付ける際に、支持部材1の固定端側に、金属等からなる取り付け用部品を強固に接合し、その支持部材取り付け用部品を介して、ロボット等に取り付ける構造とすることができる。この取り付け用部品の接合、或いは接着を容易に行うために、支持部材1の固定端側に、ストレート部分、すなわち、断面形状及び寸法が変化しない部分を設けることが好ましい。   As shown in FIGS. 1 and 2, the support member 1 has a long hollow pipe shape. The support member 1 is used in a cantilever state in which one end 1a in the longitudinal direction is fixed. That is, the one end 1a of the support member 1 becomes a fixed end when in use. On the other hand, in the support member 1, the other end 1b in the longitudinal direction is not fixed. That is, the other end 1b of the support member 1 is a free end when in use. The support member 1 has a tapered shape in which the outer circumference of the one end 1a is longer than the outer circumference of the other end 1b. That is, as for the support member 1, the external area in the cross section orthogonal to a longitudinal direction is reducing gradually from the one end part 1a toward the other end part 1b. In the support member 1, for example, a support object (for example, a glass substrate or the like) is placed on the upper surface 1 s located on the upper side in the vertical direction during use. When the support member 1 is attached to the robot or the LCD substrate storage cassette, an attachment part made of metal or the like is firmly joined to the fixed end side of the support member 1, and the robot or the like is connected via the support member attachment part. It can be set as the structure attached to. In order to easily bond or bond the mounting parts, it is preferable to provide a straight portion, that is, a portion whose cross-sectional shape and dimensions do not change, on the fixed end side of the support member 1.

支持部材1は、中空パイプ形状のベースパイプ部10と、ベースパイプ部10上に設けられた補強部20と、補強部20上に設けられた補強部30と、ベースパイプ部10上に設けられた整形部40とを備えている。ベースパイプ部10は、支持部材1の一端部1aから他端部1bにわたって延在している。ベースパイプ部10は、支持部材1の一端部1aから他端部1bに向かって徐々に縮小するようなテーパ形状を呈している。   The support member 1 is provided on the base pipe portion 10, the hollow pipe-shaped base pipe portion 10, the reinforcing portion 20 provided on the base pipe portion 10, the reinforcing portion 30 provided on the reinforcing portion 20, and the base pipe portion 10. The shaping unit 40 is provided. The base pipe portion 10 extends from the one end 1a of the support member 1 to the other end 1b. The base pipe portion 10 has a tapered shape that gradually decreases from the one end 1a of the support member 1 toward the other end 1b.

ベースパイプ部10における支持部材1の長手方向に直交する断面の形状(図2に示される断面形状)は、鉛直上下方向に交差する左右方向に延びると共に四隅が面取り、或いは丸型のフィレット状にされた長方形環状を呈している。ベースパイプ部10は、支持部材1の上面1s側に位置する(すなわち、使用時に鉛直方向上側となる)上側部分11と、その上側部分11に対向する下側部分12と、上側部分11と下側部分12とを互いに接続する一対の側方側部分13とから構成されている。   The shape of the cross section perpendicular to the longitudinal direction of the support member 1 in the base pipe portion 10 (the cross sectional shape shown in FIG. 2) extends in the left-right direction intersecting the vertical vertical direction and has four corners chamfered or round fillet shape. It has a rectangular ring shape. The base pipe portion 10 is located on the upper surface 1 s side of the support member 1 (that is, on the upper side in the vertical direction when in use), a lower portion 12 that faces the upper portion 11, an upper portion 11, and a lower portion It is comprised from a pair of side part 13 which connects the side part 12 mutually.

このようなベースパイプ部10は、例えば、ガラス繊維強化複合樹脂材料から構成することができる。その場合には、ベースパイプ部10は、ガラス繊維に熱硬化性樹脂が含浸されたガラスクロスプリプレグシートを複数層積層することにより構成することができる。ただし、ベースパイプ部10を構成する材料は、ガラス繊維強化複合樹脂材料に限らず、例えば、PAN由来の炭素繊維やピッチ由来の炭素繊維を用いた炭素繊維強化複合樹脂材料としてもよい。ベースパイプ部10は、後述する補強部20の第1の補強領域21を構成する炭素繊維強化複合樹脂材料の炭素繊維よりも引張弾性率の小さい任意の繊維を含む繊維強化複合樹脂材料から構成することができる。   Such a base pipe part 10 can be comprised from a glass fiber reinforced composite resin material, for example. In that case, the base pipe portion 10 can be configured by laminating a plurality of glass cloth prepreg sheets in which glass fibers are impregnated with a thermosetting resin. However, the material constituting the base pipe portion 10 is not limited to the glass fiber reinforced composite resin material, and may be, for example, a carbon fiber reinforced composite resin material using PAN-derived carbon fibers or pitch-derived carbon fibers. The base pipe part 10 is comprised from the fiber reinforced composite resin material containing the arbitrary fibers whose tensile elasticity modulus is smaller than the carbon fiber of the carbon fiber reinforced composite resin material which comprises the 1st reinforcement area | region 21 of the reinforcement part 20 mentioned later. be able to.

補強部20は、支持部材1の一端部1aから他端部1bにわたって延在している。補強部20は、ベースパイプ部10の上側部分11及び下側部分12のそれぞれの上に形成されている。補強部20は、ベースパイプ部10の側方側部分13の上には形成されていない。補強部20における支持部材1の長手方向に交差する方向に沿った断面形状は、ベースパイプ部10の上側部分11及び下側部分12の縁部から中心部に向かうにつれて厚みを増すような凸形状を呈している。   The reinforcing portion 20 extends from the one end 1a of the support member 1 to the other end 1b. The reinforcing portion 20 is formed on each of the upper portion 11 and the lower portion 12 of the base pipe portion 10. The reinforcing portion 20 is not formed on the side portion 13 of the base pipe portion 10. The cross-sectional shape along the direction intersecting the longitudinal direction of the support member 1 in the reinforcing portion 20 is a convex shape that increases in thickness from the edge of the upper portion 11 and the lower portion 12 of the base pipe portion 10 toward the center portion. Presents.

補強部20は、支持部材1の一端部1aから他端部1bに向かう方向に配列された第1の補強領域21及び第2の補強領域22からなる。第1の補強領域21は、支持部材1の一端部1aから延在しており、第2の補強領域22は、第1の補強領域21の終端部分から支持部材1の他端部1bまで延在している。支持部材1の長手方向において、第1の補強領域21の長さL21は、支持部材1の全長L1の30%以上70%以下程度である。また、支持部材1の長手方向において、第2の補強領域22の長さL22は、第1の補強領域21の長さL21との合計が支持部材1の全長L1の100%となる範囲において、支持部材1の全長L1の30%以上70%以下程度である。   The reinforcing portion 20 includes a first reinforcing region 21 and a second reinforcing region 22 arranged in a direction from the one end 1 a of the support member 1 toward the other end 1 b. The first reinforcement region 21 extends from one end 1 a of the support member 1, and the second reinforcement region 22 extends from the terminal portion of the first reinforcement region 21 to the other end 1 b of the support member 1. Exist. In the longitudinal direction of the support member 1, the length L <b> 21 of the first reinforcement region 21 is about 30% to 70% of the total length L <b> 1 of the support member 1. Further, in the longitudinal direction of the support member 1, the length L22 of the second reinforcement region 22 is within a range in which the sum of the length L21 of the first reinforcement region 21 and the total length L1 of the support member 1 is 100%. It is about 30% to 70% of the entire length L1 of the support member 1.

つまり、本実施形態においては、支持部材1の長手方向において、第1の補強領域21の長さL21が支持部材1の全長L1の60%程度である場合には、第2の補強領域22の長さL22が支持部材1の全長L1の40%程度となる。なお、補強部20は、第1の補強領域21及び第2の補強領域22と異なる他の領域を含んでいてもよい。その場合には、支持部材1の長手方向において、第1の補強領域21の長さL21を、支持部材1の全長L1の30%以上70%以下程度とすると共に、第2の補強領域22の長さL22を、第1の補強領域21の長さL21との合計が支持部材1の全長L1の100%未満となる範囲において、支持部材1の全長L1の30%以上70%以下程度とすればよい。   That is, in this embodiment, when the length L21 of the first reinforcement region 21 is about 60% of the total length L1 of the support member 1 in the longitudinal direction of the support member 1, the second reinforcement region 22 The length L22 is about 40% of the entire length L1 of the support member 1. The reinforcing portion 20 may include other regions different from the first reinforcing region 21 and the second reinforcing region 22. In that case, in the longitudinal direction of the support member 1, the length L 21 of the first reinforcement region 21 is set to about 30% or more and 70% or less of the total length L 1 of the support member 1 and the second reinforcement region 22. The length L22 is set to be not less than 30% and not more than 70% of the total length L1 of the support member 1 in a range in which the total of the length L21 of the first reinforcement region 21 is less than 100% of the total length L1 of the support member 1. That's fine.

第1の補強領域21及び第2の補強領域22は、炭素繊維強化複合樹脂材料から構成されている。第1の補強領域21及び第2の補強領域22を構成する炭素繊維強化複合樹脂材料の炭素繊維の配向方向は、支持部材1の長手方向に略一致している。第1の補強領域21を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、第2の補強領域22を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率よりも大きい。   The 1st reinforcement area | region 21 and the 2nd reinforcement area | region 22 are comprised from the carbon fiber reinforced composite resin material. The orientation direction of the carbon fibers of the carbon fiber reinforced composite resin material constituting the first reinforcement region 21 and the second reinforcement region 22 substantially coincides with the longitudinal direction of the support member 1. The tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region 21 is larger than the tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the second reinforcing region 22.

より具体的には、第1の補強領域21を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、例えば、400GPa以上900GPa以下程度である。また、第2の補強領域22を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、例えば、200GPa以上400GPa未満程度である。さらに具体的には、第1の補強領域21は、ピッチ由来の炭素繊維を用いた炭素繊維強化複合樹脂材料から構成することができ、第2の補強領域22は、PAN由来の炭素繊維を用いた炭素繊維強化複合樹脂材料から構成することができる。   More specifically, the tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region 21 is, for example, about 400 GPa or more and 900 GPa or less. Moreover, the tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the second reinforcing region 22 is, for example, about 200 GPa or more and less than 400 GPa. More specifically, the first reinforcing region 21 can be composed of a carbon fiber reinforced composite resin material using pitch-derived carbon fibers, and the second reinforcing region 22 uses PAN-derived carbon fibers. The carbon fiber reinforced composite resin material can be used.

このような補強部20は、例えば、第1の補強領域21及び第2の補強領域22のそれぞれのための、炭素繊維に熱硬化性樹脂が含浸された炭素繊維プリプレグシートを、ベースパイプ部10の上側部分11及び下側部分12のそれぞれの上に複数層積層することにより構成することができる。   For example, the reinforcing portion 20 is made of a carbon fiber prepreg sheet in which a carbon fiber is impregnated with a thermosetting resin for each of the first reinforcing region 21 and the second reinforcing region 22. A plurality of layers can be stacked on each of the upper part 11 and the lower part 12 of the first layer.

補強部30は、ベースパイプ部10の上側部分11及び下側部分12のそれぞれの上において、補強部20の全体を覆うように補強部20上に形成されている。したがって、補強部30は、支持部材1の一端部1aから他端部1bにわたって延在している。補強部30は、ベースパイプ部10の側方側部分13上には形成されていない。補強部30は、炭素繊維強化複合樹脂材料から構成されている。   The reinforcing portion 30 is formed on the reinforcing portion 20 so as to cover the entire reinforcing portion 20 on each of the upper portion 11 and the lower portion 12 of the base pipe portion 10. Accordingly, the reinforcing portion 30 extends from the one end 1a of the support member 1 to the other end 1b. The reinforcing part 30 is not formed on the side part 13 of the base pipe part 10. The reinforcement part 30 is comprised from the carbon fiber reinforced composite resin material.

補強部30を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張強度は、第1の補強領域21を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張強度よりも大きくすることができる。より具体的には、補強部30は、例えば、PAN由来の炭素繊維を用いた炭素繊維強化複合樹脂材料から構成することができる。補強部30は、例えば、炭素繊維プリプレグシートを補強部20上に1層積層することにより構成することができる。   The tensile strength of the carbon fiber of the carbon fiber reinforced composite resin material constituting the reinforcing portion 30 can be made larger than the tensile strength of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region 21. More specifically, the reinforcement part 30 can be comprised from the carbon fiber reinforced composite resin material using the carbon fiber derived from PAN, for example. The reinforcement part 30 can be comprised by laminating | stacking one layer of carbon fiber prepreg sheets on the reinforcement part 20, for example.

整形部40は、ベースパイプ部10の側方側部分13のそれぞれの上に形成されている。整形部40は、支持部材1の一端部1aから他端部1bにわたって延在している。整形部40は、例えば、ガラス繊維強化複合樹脂材料から構成することができる。その場合には、整形部40は、ガラスクロスプリプレグシートをベースパイプ部10上に複数層積層することにより構成することができる。整形部40における支持部材1の長手方向に直交する断面の形状は、ベースパイプ部10の側方側部分13の縁部から中心部に向かうにつれて厚みを増すような凸形状を呈している。   The shaping portion 40 is formed on each of the side portions 13 of the base pipe portion 10. The shaping portion 40 extends from the one end 1a of the support member 1 to the other end 1b. The shaping part 40 can be comprised from a glass fiber reinforced composite resin material, for example. In that case, the shaping part 40 can be configured by laminating a plurality of glass cloth prepreg sheets on the base pipe part 10. The shape of the cross section orthogonal to the longitudinal direction of the support member 1 in the shaping portion 40 has a convex shape that increases in thickness from the edge of the side portion 13 of the base pipe portion 10 toward the center.

支持部材1の長手方向に直交する断面の外形は、補強部20(及び補強部30)と、整形部40とによって規定される。したがって、支持部材1の当該外形は、ベースパイプ部10の各部分上に形成された凸形状によって略楕円形状を呈している。これに対して、支持部材1の長手方向に交差する方向に沿った断面の内側形状は、ベースパイプ部10の各部分によって規定されるため、長方形状を呈している。なお、本実施形態に係る支持部材1においては、支持部材1の長手方向に直交するベースパイプ部10の断面の形状を正方形環状としてもよい。この場合、支持部材1の長手方向に直交する断面の外形は、略円形となる。   The outer shape of the cross section orthogonal to the longitudinal direction of the support member 1 is defined by the reinforcing portion 20 (and the reinforcing portion 30) and the shaping portion 40. Accordingly, the outer shape of the support member 1 has a substantially elliptical shape due to the convex shape formed on each part of the base pipe portion 10. On the other hand, since the inner shape of the cross section along the direction intersecting the longitudinal direction of the support member 1 is defined by each portion of the base pipe portion 10, it has a rectangular shape. In the support member 1 according to this embodiment, the shape of the cross section of the base pipe portion 10 orthogonal to the longitudinal direction of the support member 1 may be a square ring. In this case, the outer shape of the cross section orthogonal to the longitudinal direction of the support member 1 is substantially circular.

以上説明したように、本実施形態に係る支持部材1においては、その使用時において鉛直方向上側となるベースパイプ部10の上側部分11とその上側部分11に対向する下側部分12との上に、炭素繊維強化複合樹脂材料からなる補強部20が形成されている。特に、補強部20は、使用時に固定端となる一端部1a側の第1の補強領域21を、相対的に引張弾性率が大きい炭素繊維の炭素繊維強化複合樹脂材料から構成し、使用時に自由端となる他端部1b側の第2の補強領域22を、相対的に引張弾性率が小さい炭素繊維の炭素繊維強化複合樹脂材料から構成している。したがって、この支持部材1によれば、曲げ剛性を維持しつつ材料費を低減することが可能となる。   As described above, in the support member 1 according to the present embodiment, the upper portion 11 of the base pipe portion 10 that is the upper side in the vertical direction and the lower portion 12 that faces the upper portion 11 when used. A reinforcing portion 20 made of a carbon fiber reinforced composite resin material is formed. In particular, the reinforcing portion 20 is formed of a carbon fiber reinforced composite resin material of carbon fiber having a relatively large tensile elastic modulus, and the first reinforcing region 21 on the one end portion 1a side, which becomes a fixed end during use, is free during use. The second reinforcing region 22 on the other end 1b side that is an end is made of a carbon fiber reinforced composite resin material of carbon fibers having a relatively low tensile elastic modulus. Therefore, according to this support member 1, it becomes possible to reduce material cost, maintaining bending rigidity.

ここで、本実施形態に係る支持部材1は、例えば以下のようにして製造することができる。すなわち、まず、ガラスクロスプリプレグシートを芯材としてのマンドレル上に複数回捲回し、ベースパイプ部10に相当する部分を形成する。このベースパイプ部10に相当する部分の上側部分11及び下側部分12にそれぞれ相当する部分上に補強部20,30のための炭素繊維プリプレグシートを、左右の側方側部分13に相当する部分上に整形部40のためのガラスクロスプリプレグシートをそれぞれ単層又は複数層積層して支持部材1に相当する積層体を形成する。次に、前記積層体を加熱して各プリプレグシートを構成する熱硬化性樹脂を硬化させ、硬化物をマンドレルから引き抜くことにより、支持部材1を製造することができる。   Here, the support member 1 according to the present embodiment can be manufactured as follows, for example. That is, first, a glass cloth prepreg sheet is wound a plurality of times on a mandrel as a core material to form a portion corresponding to the base pipe portion 10. Carbon fiber prepreg sheets for the reinforcing portions 20 and 30 are provided on the portions corresponding to the upper portion 11 and the lower portion 12 of the portion corresponding to the base pipe portion 10, and the portions corresponding to the left and right side portions 13. A laminated body corresponding to the support member 1 is formed by laminating a single layer or a plurality of layers of glass cloth prepreg sheets for the shaping unit 40 on the top. Next, the support member 1 can be manufactured by heating the laminated body to cure the thermosetting resin constituting each prepreg sheet and pulling the cured product out of the mandrel.

支持部材1の外形を所望の形状に整えること、及び熱硬化性樹脂中のボイド発生を防止するための脱泡を目的として、熱硬化性樹脂の硬化のための加熱は加圧下に行うことが一般的である。この加圧下での加熱は、所望の支持部材1の外形形状を内側に有する分割可能な加圧用金型を、マンドレル上の積層体を覆うように加圧しながら装着してこれをオーブン等の加熱手段により加熱する方法(金型法)、加熱により収縮する合成樹脂製テープ(シュリンク・テープ)をマンドレル上の積層体全体に捲回し、これをオーブン等の加熱手段により加熱する方法(テープ・テンション法)等が一般的である。このうち、金型法は、金型及び付帯設備のための設備投資が必要でコストの上昇をもたらすのに対して、テープ・テンション法は設備投資が不要であるためにコストを低減することができる。   Heating for curing the thermosetting resin may be performed under pressure for the purpose of adjusting the outer shape of the support member 1 to a desired shape and defoaming to prevent void generation in the thermosetting resin. It is common. For heating under pressure, a separable pressing die having the outer shape of the desired support member 1 on the inside is attached while pressing so as to cover the laminate on the mandrel, and this is heated in an oven or the like. A method of heating by means (mold method), a method of winding a synthetic resin tape (shrink tape) that shrinks by heating around the entire laminate on a mandrel, and heating this by means of heating such as an oven (tape tension) Law) etc. is common. Of these, the mold method requires capital investment for molds and incidental equipment, which increases costs, whereas the tape tension method does not require capital investment, which can reduce costs. it can.

支持部材1の長手方向に直交する方向に沿った断面における外形が、例えば四角形のような、角部と平坦部とを有する形状である場合にテープ・シュリンク法を採用すると、テープの張力が積層体の角部に集中して平坦部には十分に付加され難いという張力の不均一化を生じる傾向となる。この場合、支持部材1の外形を所望の形状に整えることが困難となり、また、脱泡が不十分となりボイドを生じやすくなる傾向にある。これに対して、支持部材1の使用時の上下面の補強部20,30の外形を外方に向けて凸型とし、さらに左右側面に外方に向けて凸型である整形部40を設けることにより、支持部材1の断面外形が略楕円形或いは略円形となり、シュリンク・テープの張力を積層体の外周上各部に比較的均一に付加することができ、外形の整形及び脱泡を容易に行うことが可能となる。   When the tape / shrink method is employed when the outer shape of the cross section along the direction orthogonal to the longitudinal direction of the support member 1 is a shape having a corner portion and a flat portion, for example, a quadrangle, the tape tension is laminated. There is a tendency for the tension to become non-uniform so that it is difficult to be sufficiently added to the flat part by concentrating on the corners of the body. In this case, it is difficult to adjust the outer shape of the support member 1 to a desired shape, and defoaming is insufficient, and voids tend to occur. On the other hand, the outer shape of the reinforcing portions 20 and 30 on the upper and lower surfaces when the support member 1 is used is convex toward the outside, and the shaping portion 40 that is convex toward the outside is provided on the left and right side surfaces. As a result, the cross-sectional outer shape of the support member 1 becomes substantially elliptical or substantially circular, and the tension of the shrink tape can be applied relatively uniformly to each part on the outer periphery of the laminate, and the shaping and defoaming of the outer shape can be easily performed. Can be done.

また、本実施形態に係る支持部材1は、図3に示されるように、整形部40を設けない態様とすることもできる。さらには、本実施形態に係る支持部材1は、補強部30を設けない態様であってもよい。
[第2実施形態]
Moreover, the support member 1 which concerns on this embodiment can also be set as the aspect which does not provide the shaping part 40, as FIG. 3 shows. Furthermore, the support member 1 according to the present embodiment may be in a mode in which the reinforcing portion 30 is not provided.
[Second Embodiment]

引き続いて、本発明に係る支持部材の第2実施形態について説明する。図4は、本発明に係る支持部材の第2実施形態の構成を示す断面図である。図5は、図4に示された支持部材の他の断面図である。特に、図5の(a)は、図4のVA−VA線に沿っての断面図であり、図5の(b)は、図4のVB−VB線に沿っての断面図である。   Subsequently, a second embodiment of the support member according to the present invention will be described. FIG. 4 is a cross-sectional view showing the configuration of the second embodiment of the support member according to the present invention. FIG. 5 is another cross-sectional view of the support member shown in FIG. 5A is a cross-sectional view taken along line VA-VA in FIG. 4, and FIG. 5B is a cross-sectional view taken along line VB-VB in FIG.

図4,5に示されるように、本実施形態に係る支持部材1Aは、ベースパイプ部10に代えてベースパイプ部10Aを備える点、及び、整形部40を備えない点において、第1実施形態に係る支持部材1と相違している。本実施形態に係る支持部材1Aのその他の点は、第1実施形態に係る支持部材1と同様である。ベースパイプ部10Aは、支持部材1Aの長手方向に直交する断面の形状(図5に示される断面形状)が、円環状である点でベースパイプ部10と相違している。   As shown in FIGS. 4 and 5, the support member 1 </ b> A according to the present embodiment is the first embodiment in that the base pipe portion 10 </ b> A is provided instead of the base pipe portion 10 and the shaping portion 40 is not provided. This is different from the support member 1 according to the above. Other points of the support member 1A according to the present embodiment are the same as those of the support member 1 according to the first embodiment. The base pipe portion 10A is different from the base pipe portion 10 in that the shape of the cross section orthogonal to the longitudinal direction of the support member 1A (the cross sectional shape shown in FIG. 5) is annular.

ベースパイプ部10Aは、支持部材1Aの上面1s側に位置する(すなわち、鉛直方向上側となる)上側部分11Aと、その上側部分11Aに対向する下側部分12Aと、上側部分11Aと下側部分12Aとを互いに接続する一対の側方側部分13Aとから構成されている。このようなベースパイプ部10Aは、例えば、ベースパイプ部10と同様の材料及び方法によって構成することができる。   The base pipe portion 10A is located on the upper surface 1s side of the support member 1A (that is, on the upper side in the vertical direction), the lower portion 12A facing the upper portion 11A, the upper portion 11A, and the lower portion. It is comprised from a pair of side part 13A which connects 12A mutually. Such a base pipe portion 10 </ b> A can be configured by the same material and method as the base pipe portion 10, for example.

支持部材1Aにおいては、補強部20は、ベースパイプ部10Aの上側部分11A及び下側部分12Aのそれぞれの上に形成されている。補強部20は、ベースパイプ部10Aの側方側部分13Aの上には形成されていない。補強部20における支持部材1Aの長手方向に直交する断面の形状は、ベースパイプ部10Aの上側部分11A及び下側部分12Aのそれぞれの断面形状に沿うように湾曲している。   In the supporting member 1A, the reinforcing portion 20 is formed on each of the upper portion 11A and the lower portion 12A of the base pipe portion 10A. The reinforcing portion 20 is not formed on the side portion 13A of the base pipe portion 10A. The shape of the cross section orthogonal to the longitudinal direction of the support member 1A in the reinforcing portion 20 is curved so as to follow the cross sectional shapes of the upper portion 11A and the lower portion 12A of the base pipe portion 10A.

支持部材1Aの長手方向に直交する断面の外形は、整形部40を備えていないことから、補強部20(及び補強部30)と、ベースパイプ部10Aの側方側部分13Aとによって規定される。したがって、支持部材1Aの当該外形は、鉛直上下方向に延びる楕円形状を呈している。これに対して、支持部材1Aの長手方向に直交する断面の内側形状は、ベースパイプ部10Aの各部分によって規定されるため、円形状を呈している。   Since the outer shape of the cross section orthogonal to the longitudinal direction of the support member 1A does not include the shaping portion 40, the outer shape is defined by the reinforcing portion 20 (and the reinforcing portion 30) and the side portion 13A of the base pipe portion 10A. . Therefore, the outer shape of the support member 1A has an elliptical shape extending in the vertical vertical direction. On the other hand, since the inner shape of the cross section orthogonal to the longitudinal direction of the support member 1A is defined by each portion of the base pipe portion 10A, it has a circular shape.

なお、第2実施形態の支持部材1Aにおける補強部20は前記第1実施形態の支持部材1と同様の構成であるので、重複を避けるために説明を省略する。また、支持部材1Aの製造方法についても、使用するマンドレルの形状が異なること、及び整形部40を設けないこと以外は前記第1実施形態の支持部材1と同様の方法とすることができるので、説明を割愛する。   In addition, since the reinforcement part 20 in 1 A of support members of 2nd Embodiment is the structure similar to the support member 1 of the said 1st Embodiment, description is abbreviate | omitted in order to avoid duplication. Also, the manufacturing method of the supporting member 1A can be the same method as the supporting member 1 of the first embodiment except that the shape of the mandrel to be used is different and the shaping part 40 is not provided. I will omit the explanation.

以上のような本実施形態に係る支持部材1Aにおいても、第1実施形態に係る支持部材1と同様に、曲げ剛性を維持しつつ材料費を低減することが可能となる。   Also in the support member 1A according to the present embodiment as described above, it is possible to reduce the material cost while maintaining the bending rigidity similarly to the support member 1 according to the first embodiment.

なお、本実施形態に係る支持部材1Aにおいては、例えば、図6に示されるように、ベースパイプ部10Aにおける支持部材1Aの長手方向に交差する方向に沿った断面形状を鉛直上下方向に交差する左右方向に延びる楕円環状としてもよい。また、本実施形態に係る支持部材1Aも、補強部30を設けない態様であってもよい。   In the support member 1A according to the present embodiment, for example, as shown in FIG. 6, the cross-sectional shape along the direction intersecting the longitudinal direction of the support member 1A in the base pipe portion 10A intersects the vertical vertical direction. It may be an elliptical ring extending in the left-right direction. Further, the support member 1 </ b> A according to the present embodiment may also be an aspect in which the reinforcing portion 30 is not provided.

以上の実施形態は、本発明に係る支持部材の一実施形態を説明したものである。したがって、本発明に係る支持部材は、上述した支持部材1,1Aに限定されず、各請求項の要旨を変更しない範囲において支持部材1,1Aを任意に変更したものとすることができる。   The above embodiment describes one embodiment of the support member according to the present invention. Therefore, the support member according to the present invention is not limited to the support members 1 and 1A described above, and the support members 1 and 1A can be arbitrarily changed without changing the gist of each claim.

引き続いて、本発明に係る支持部材の実施例について説明する。本実施例においては、実施例1〜6に係る支持部材と比較例1〜6に係る支持部材とを準備し、それらの特性について測定を行った。なお、実施例1〜3の支持部材は、上記第1実施形態に係る支持部材1に対応するものであり、実施例4〜6の支持部材は、上記第2実施形態に係る支持部材1Aに対応するものである。以下では、まず、実施例1〜3及び比較例1〜3の説明を行い、次いで、実施例4〜6及び比較例4〜6の説明を行う。
[実施例1]
Subsequently, examples of the support member according to the present invention will be described. In a present Example, the supporting member which concerns on Examples 1-6 and the supporting member which concerns on Comparative Examples 1-6 were prepared, and it measured about those characteristics. In addition, the supporting member of Examples 1-3 respond | corresponds to the supporting member 1 which concerns on the said 1st Embodiment, The supporting member of Examples 4-6 is 1A of supporting members which concern on the said 2nd Embodiment. Corresponding. Below, Example 1-3 and Comparative Examples 1-3 are demonstrated first, and then Examples 4-6 and Comparative Examples 4-6 are demonstrated.
[Example 1]

まず、芯材であるスチール製のマンドレルを用意した。マンドレルは、固定端側にストレート部分、すなわち断面形状及び寸法が変化しない範囲と、自由端側にテーパ部分、すなわち自由端側に向かうほど、外周の長さが短くなる範囲から構成される。マンドレルの形状は、固定端側のストレート範囲では、正方形断面の角棒状、自由端側のテーパ範囲では、四角錐からその先端部分を切り落とした形状(すなわち四角錐台形状)である。マンドレルの寸法は、先端側幅10mm、先端側高さ10mm、基端側(手元側)幅22mm、基端側高さ22mmである。全長2400mmであり、固定端側250mmの範囲が、幅22mm、基端側高さ22mmのストレート状であり、自由端側の2150mmの範囲がテーパ状である。マンドレルには、プリプレグシートを巻き付けやすくするために、その角部に5Rのフィレット加工を施した。なお、ここでの先端とは、支持部材1における他端部1b側の端に相当し、基端とは、支持部材1における一端部1a側の端に相当する。   First, a mandrel made of steel as a core material was prepared. The mandrel includes a straight portion on the fixed end side, that is, a range in which the cross-sectional shape and dimensions do not change, and a tapered portion on the free end side, that is, a range in which the outer circumference becomes shorter toward the free end side. The shape of the mandrel is a square bar with a square cross section in the straight range on the fixed end side, and a shape obtained by cutting off the tip of the quadrangular pyramid in the taper range on the free end side (that is, a truncated pyramid shape). The dimensions of the mandrel are a tip side width of 10 mm, a tip side height of 10 mm, a base end side (hand side) width of 22 mm, and a base end side height of 22 mm. The total length is 2400 mm, the range of the fixed end side 250 mm is a straight shape with a width of 22 mm and the base end side height of 22 mm, and the range of 2150 mm on the free end side is a taper shape. In order to make it easy to wind the prepreg sheet, the corner of the mandrel was subjected to 5R fillet processing. Here, the distal end corresponds to the end on the other end 1 b side of the support member 1, and the proximal end corresponds to the end on the one end 1 a side of the support member 1.

続いて、基端側250mmにおいて、幅(外側)26mm、基端側高さ(外側)26mmのストレート範囲を有し、自由端側に向かって外周が小さくなり、先端側において、幅(外側)14mm、先端側高さ(外側)14mmとなる、肉厚2mm、全長2400mmの寸法のベースパイプ部を形成するために、マンドレルに対してガラスクロスプリプレグシートAを複数回巻きつけて積層した。ガラス繊維の配向方向は、マンドレルの長手方向(0°)及び周方向(90°)とした。ガラスクロスプリプレグシートAとして、ガラス繊維クロスにエポキシ樹脂を含浸してなるガラスクロスプリプレグシート(株式会社ダイトー製、品番:SCF243EP−BL3、厚さ:0.25mm)を使用した。   Subsequently, the base end side 250 mm has a straight range of 26 mm in width (outside) and 26 mm in base end side height (outside), the outer periphery becomes smaller toward the free end side, and the width (outside) on the tip end side. In order to form a base pipe portion having a thickness of 2 mm and a total length of 2400 mm, having a thickness of 14 mm and a tip side height (outside) of 14 mm, the glass cloth prepreg sheet A was wound around the mandrel and laminated several times. The orientation direction of the glass fiber was the longitudinal direction (0 °) and the circumferential direction (90 °) of the mandrel. As the glass cloth prepreg sheet A, a glass cloth prepreg sheet (manufactured by Daito Co., Ltd., product number: SCF243EP-BL3, thickness: 0.25 mm) formed by impregnating a glass fiber cloth with an epoxy resin was used.

続いて、第1の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅26mm、長さ250mmの長方形と、上底19mm、下底26mm、高さ1300mmの左右対称な台形が組み合わされた、長さ1550mmの形状に切り出して6枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、マンドレル巻き付けたガラスクロスプリプレグシートA上にその積層体を配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10の上側部分11及び下側部分12に対応する部分)のそれぞれに各積層体を配置した。特に、各積層体のピッチ由来の高弾性炭素繊維プリプレグシートBの下辺、幅26mmの部分が、マンドレルの基端に一致するようにした。したがって、第1の補強層のピッチ由来の高弾性炭素繊維プリプレグシートBは、マンドレルの基端側の1550mmの範囲に配置されることとなる。なお、第1の補強層である、長さ1550mmのプリプレグシートBにおいて、炭素繊維は長手方向に連続している。   Subsequently, as a first reinforcing layer, a highly elastic carbon fiber prepreg sheet B derived from pitch is combined with a rectangle with a width of 26 mm and a length of 250 mm and a symmetrical trapezoid with an upper base of 19 mm, a lower base of 26 mm, and a height of 1300 mm. Two glass laminate prepreg sheets were prepared by preparing two sets of laminates obtained by cutting into a 1550 mm long shape and laminating six sheets, so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers substantially coincided with each other. The laminate was placed on A. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11 and the lower part 12 of the base pipe part 10) which corresponds to the upper side and the lower side of the perpendicular direction at the time of use. In particular, the lower side of the highly elastic carbon fiber prepreg sheet B derived from the pitch of each laminate and a portion having a width of 26 mm coincided with the base end of the mandrel. Therefore, the highly elastic carbon fiber prepreg sheet B derived from the pitch of the first reinforcing layer is arranged in a range of 1550 mm on the base end side of the mandrel. In the prepreg sheet B having a length of 1550 mm, which is the first reinforcing layer, the carbon fibers are continuous in the longitudinal direction.

ピッチ由来の高弾性炭素繊維プリプレグシートBとして、引張弾性率800GPa、引張強度3430MPaのピッチ由来の高弾性炭素繊維を一方向に配向してエポキシ樹脂を含浸したピッチ由来の高弾性炭素繊維プリプレグシート(日本グラファイトファイバー株式会社製、品番:E8026C−28N、CF:グラノックXN−80(ピッチ由来)、CF目付け:285g/m、樹脂含有率:33重量%、厚さ0.25mm)を使用した。 The pitch-derived high-elasticity carbon fiber prepreg sheet B is a pitch-derived high-elasticity carbon fiber prepreg sheet in which pitch-derived high-elasticity carbon fibers having a tensile modulus of 800 GPa and a tensile strength of 3430 MPa are oriented in one direction and impregnated with an epoxy resin ( Nippon Graphite Fiber Co., Ltd., product number: E8026C-28N, CF: Granock XN-80 (derived from pitch), CF basis weight: 285 g / m 2 , resin content: 33 wt%, thickness 0.25 mm) were used.

続いて、第2の補強層として、PAN由来の炭素繊維プリプレグシートCを、上底14mm、下底19mm、高さ850mmの左右対称な台形状に切り出して6枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、マンドレルに巻き付けたガラスクロスプリプレグシートA上にその積層体を配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10の上側部分11及び下側部分12に対応する部分)のそれぞれに各積層体を配置した。特に、各積層体のPAN由来の炭素繊維プリプレグシートCの上底がマンドレルの先端に一致するようした。したがって、第2の補強層のPAN由来の炭素繊維プリプレグシートCは、マンドレルの先端側の850mmの範囲に配置されることとなる。   Subsequently, as a second reinforcing layer, a laminated body formed by laminating six PAN-derived carbon fiber prepreg sheets C into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 19 mm, and a height of 850 mm is laminated. A set was prepared, and the laminate was disposed on the glass cloth prepreg sheet A wound around the mandrel so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers substantially coincided. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11 and the lower part 12 of the base pipe part 10) which corresponds to the upper side and the lower side of the perpendicular direction at the time of use. In particular, the upper base of the PAN-derived carbon fiber prepreg sheet C of each laminate was made to coincide with the tip of the mandrel. Therefore, the PAN-derived carbon fiber prepreg sheet C of the second reinforcing layer is disposed in a range of 850 mm on the tip side of the mandrel.

PAN由来の炭素繊維プリプレグシートCとして、引張弾性率230GPa、引張強度4900MPaのPAN由来の炭素繊維を一方向に配向してエポキシ樹脂を含浸したPAN由来の炭素繊維プリプレグシート(東レ株式会社製、品番:P3052S−25、CF:トレカT700S(PAN由来)、CF目付け:250g/m、樹脂含有率:33重量%、厚さ0.24mm)を使用した。 As the PAN-derived carbon fiber prepreg sheet C, a PAN-derived carbon fiber prepreg sheet in which PAN-derived carbon fibers having a tensile modulus of 230 GPa and a tensile strength of 4900 MPa are oriented in one direction and impregnated with an epoxy resin (manufactured by Toray Industries, Inc., product number) : P3052S-25, CF: Trading card T700S (derived from PAN), CF basis weight: 250 g / m 2 , resin content: 33% by weight, thickness 0.24 mm).

続いて、第3の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅17mm、長さ250mmの長方形と、上底12mm、下底17mm、高さ1400mmの左右対称な台形が組み合わされた、長さ1650mmの形状に切り出して5枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、第1の補強層としてのピッチ由来の高弾性炭素繊維プリプレグシートBの上にその積層体を配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10の上側部分11及び下側部分12に対応する部分)のそれぞれに各積層体を配置した。特に、各積層体のピッチ由来の高弾性炭素繊維プリプレグシートBの下辺、幅17mmの部分がマンドレルの基端に一致するようにした。したがって、第3の補強層のピッチ由来の高弾性炭素繊維プリプレグシートBは、マンドレルの基端側の1650mmの範囲に配置されることとなる。なお、第3の補強層である、長さ1650mmのプリプレグシートBにおいて、炭素繊維は長手方向に連続している。   Subsequently, as a third reinforcing layer, a highly elastic carbon fiber prepreg sheet B derived from pitch is combined with a rectangle having a width of 17 mm and a length of 250 mm and a symmetrical trapezoid having an upper base of 12 mm, a lower base of 17 mm, and a height of 1400 mm. Two sets of laminates made by cutting out a 1650 mm long shape and laminating 5 sheets are prepared, and the first reinforcing layer is used so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers are substantially coincident with each other. The laminated body was arrange | positioned on the highly elastic carbon fiber prepreg sheet B derived from a pitch. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11 and the lower part 12 of the base pipe part 10) which corresponds to the upper side and the lower side of the perpendicular direction at the time of use. In particular, the lower side of the highly elastic carbon fiber prepreg sheet B derived from the pitch of each laminate and a portion having a width of 17 mm were made to coincide with the base end of the mandrel. Therefore, the highly elastic carbon fiber prepreg sheet B derived from the pitch of the third reinforcing layer is arranged in a range of 1650 mm on the base end side of the mandrel. In the prepreg sheet B having a length of 1650 mm, which is the third reinforcing layer, the carbon fibers are continuous in the longitudinal direction.

続いて、第4の補強層として、PAN由来の炭素繊維プリプレグシートCを、上底9mm、下底12mm、高さ750mmの左右対称な台形状に切り出して5枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、第2の補強層としてのPAN由来の炭素繊維プリプレグシートCの上に配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10の上側部分11及び下側部分12に対応する部分)のそれぞれに各積層体を配置した。特に、各積層体のPAN由来の炭素繊維プリプレグシートCの上底がマンドレルの先端に一致するように配置した。したがって、第4の補強層のPAN由来の炭素繊維プリプレグシートCは、マンドレルの先端側の750mmの範囲に配置されることとなる。   Subsequently, as a fourth reinforcing layer, a laminate obtained by cutting out a PAN-derived carbon fiber prepreg sheet C into a symmetrical trapezoidal shape having an upper base of 9 mm, a lower base of 12 mm, and a height of 750 mm and laminating two sheets is provided. A set was prepared and disposed on the PAN-derived carbon fiber prepreg sheet C as the second reinforcing layer so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers substantially coincided with each other. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11 and the lower part 12 of the base pipe part 10) which corresponds to the upper side and the lower side of the perpendicular direction at the time of use. In particular, the PAN-derived carbon fiber prepreg sheet C of each laminate was placed so that the upper base of the laminate coincided with the tip of the mandrel. Therefore, the PAN-derived carbon fiber prepreg sheet C of the fourth reinforcing layer is arranged in a range of 750 mm on the tip side of the mandrel.

続いて、第5の補強層として、PAN由来の炭素繊維プリプレグシートCを、幅26mm、長さ250mmの長方形と、上底14mm、下底26mm、高さ2150mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出して、1枚ずつ2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、第3の補強層のピッチ由来の高弾性炭素繊維プリプレグシートB及び第4の補強層のPAN由来の炭素繊維プリプレグシートCの上に1枚配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えば、ベースパイプ部10の上側部分11及び下側部分12に対応する部分)のそれぞれに、第5の補強層であるプリプレグシートCを1枚ずつ配置した。第5の補強層のPAN由来の炭素繊維プリプレグシートCは、マンドレルの全長にわたって配置されることとなる。なお、第5の補強層である、長さ2400mmのプリプレグシートCにおいて、炭素繊維は長手方向に連続している。   Subsequently, as a fifth reinforcing layer, a carbon fiber prepreg sheet C derived from PAN was combined with a rectangle with a width of 26 mm and a length of 250 mm, and a symmetrical trapezoid with an upper base of 14 mm, a lower base of 26 mm, and a height of 2150 mm. Cut out into a shape of 2400 mm in length, prepare two pairs one by one, and the highly elastic carbon fiber prepreg derived from the pitch of the third reinforcing layer so that the longitudinal direction of the mandrel and the orientation direction of the carbon fiber substantially coincide One sheet was placed on the PAN-derived carbon fiber prepreg sheet C of the sheet B and the fourth reinforcing layer. At that time, the prepreg sheet C as the fifth reinforcing layer is applied to each of the portions corresponding to the upper side and the lower side in the vertical direction during use (for example, the portions corresponding to the upper portion 11 and the lower portion 12 of the base pipe portion 10). One by one. The PAN-derived carbon fiber prepreg sheet C of the fifth reinforcing layer is arranged over the entire length of the mandrel. In the prepreg sheet C having a length of 2400 mm, which is the fifth reinforcing layer, the carbon fibers are continuous in the longitudinal direction.

ここでは、第1及び第3の補強層としてのピッチ由来の高弾性炭素繊維プリプレグシートBの積層体が、支持部材1の補強部20の第1の補強領域21に対応し、第2及び第4の補強層としてのPAN由来の炭素繊維プリプレグシートCの積層体が、支持部材1の補強部20の第2の補強領域22に対応し、第5の補強層としてのPAN由来の炭素繊維プリプレグシートCが、支持部材1の補強部30に対応する。   Here, the laminated body of highly elastic carbon fiber prepreg sheets B derived from the pitch as the first and third reinforcing layers corresponds to the first reinforcing region 21 of the reinforcing portion 20 of the supporting member 1, and the second and second The PAN-derived carbon fiber prepreg sheet C as a reinforcing layer 4 corresponds to the second reinforcing region 22 of the reinforcing portion 20 of the supporting member 1 and the PAN-derived carbon fiber prepreg as the fifth reinforcing layer. The sheet C corresponds to the reinforcing portion 30 of the support member 1.

以上の補強層の積層構造により、実施例1の支持部材においては、マンドレルの基端側2/3の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側1/3の範囲に、PAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。   With the laminated structure of the reinforcing layers described above, in the support member of Example 1, the pitch-derived highly elastic carbon fiber prepreg sheet B is disposed in the range of the mandrel proximal end side 2/3, and the mandrel distal end side 1/3 The PAN-derived carbon fiber prepreg sheet C is disposed in the range of the above, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel.

続いて、ガラスクロスプリプレグシートAを、幅26mm、長さ250mmの長方形と、上底14mm、下底26mm、高さ2150mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出したものを6枚積層し、さらにその上に、ガラスクロスプリプレグシートAを、幅17mm、長さ250mmの長方形と、上底9mm、下底17mm、高さ2150mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出したものを6枚積層して積層体を(2組)用意した。その後、その積層体を、ベースパイプ部10のためのガラスクロスプリプレグシートAの上に配置した。その際、使用時に鉛直方向に対して左右方向にあたる部分(例えばベースパイプ部10の側方側部分13に対応する部分)のそれぞれに各積層体を配置した。ここでは、この12枚のガラスクロスプリプレグシートAからなる積層体が、支持部材1の整形部40に対応する。   Subsequently, the glass cloth prepreg sheet A was cut into a shape of 2400 mm in length, which was a combination of a rectangle with a width of 26 mm and a length of 250 mm and a symmetrical trapezoid with an upper base of 14 mm, a lower base of 26 mm, and a height of 2150 mm. A glass cloth prepreg sheet A is combined with a rectangular shape with a width of 17 mm and a length of 250 mm and a symmetrical trapezoid with an upper base of 9 mm, a lower base of 17 mm, and a height of 2150 mm. Six sheets cut into a shape of 2400 mm were stacked to prepare (two sets) of stacked bodies. Thereafter, the laminate was placed on the glass cloth prepreg sheet A for the base pipe portion 10. In that case, each laminated body was arrange | positioned in each of the part (For example, the part corresponding to the side part 13 of the base pipe part 10) which corresponds to the left-right direction with respect to a perpendicular direction at the time of use. Here, the laminate composed of the 12 glass cloth prepreg sheets A corresponds to the shaping portion 40 of the support member 1.

以上のプリプレグ積層工程の後に、ポリプロピレンテープやPETテープ等の加熱により収縮するテープを全体の外側から巻き付けて各プリプレグシートを固定し、ベースパイプ部、補強層及び整形部を同時にオーブンにより加熱して各プリプレグシートを硬化した。このとき、2℃/minで昇温させて140℃で120分保持した後、自然冷却により常温に戻した。最後に、マンドレルを抜き取ることによって、中空パイプ形状の支持部材1に対応する実施例1の支持部材を得た。
[実施例2]
After the above prepreg lamination process, a tape that shrinks by heating, such as polypropylene tape or PET tape, is wound from the outside to fix each prepreg sheet, and the base pipe part, the reinforcing layer and the shaping part are simultaneously heated in an oven. Each prepreg sheet was cured. At this time, the temperature was raised at 2 ° C./min and held at 140 ° C. for 120 minutes, and then returned to room temperature by natural cooling. Finally, the support member of Example 1 corresponding to the support member 1 having a hollow pipe shape was obtained by extracting the mandrel.
[Example 2]

実施例2の支持部材は、実施例1の支持部材に対して、第1〜4の補強層としての積層体の炭素繊維プリプレグシートの寸法が異なる点で相違している。実施例2の支持部材のその他の点は、実施例1の支持部材と同様である。実施例2においては、第1の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅26mm、長さ250mmの長方形と、上底21mm、下底26mm、高さ900mmの左右対称な台形が組み合わされた、長さ1150mmの形状に切り出した。また、第2の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底14mm、下底21mm、高さ1250mmの左右対称な台形状に切り出した。   The support member of Example 2 differs from the support member of Example 1 in that the dimensions of the carbon fiber prepreg sheet of the laminate as the first to fourth reinforcing layers are different. The other points of the support member of Example 2 are the same as those of the support member of Example 1. In Example 2, for the laminated body of the first reinforcing layer, the pitch-derived high-elasticity carbon fiber prepreg sheet B is made of a rectangle with a width of 26 mm and a length of 250 mm, an upper base of 21 mm, a lower base of 26 mm, and a height. It was cut into a shape with a length of 1150 mm, in which 900 mm symmetrical left and right trapezoids were combined. Further, for the laminate of the second reinforcing layer, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 21 mm, and a height of 1250 mm.

また、第3の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅17mm、長さ250mmの長方形と、上底14mm、下底17mm、高さ1000mmの左右対称な台形が組み合わされた、長さ1250mmの形状に切り出した。さらに、第4の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底9mm、下底14mm、高さ1150mmの左右対称な台形状に切り出した。   Further, for the laminated body of the third reinforcing layer, the pitch-derived highly elastic carbon fiber prepreg sheet B is symmetrical with a rectangle having a width of 17 mm and a length of 250 mm, and an upper base of 14 mm, a lower base of 17 mm, and a height of 1000 mm. Cut into a 1250 mm long shape with a combination of various trapezoids. Furthermore, for the laminate of the fourth reinforcing layer, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 9 mm, a lower base of 14 mm, and a height of 1150 mm.

以上の補強層の積層構造により、実施例2の支持部材においては、マンドレルの基端側1/2の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側1/2の範囲にPAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。
[実施例3]
Due to the laminated structure of the reinforcing layers described above, in the support member of Example 2, the high-elasticity carbon fiber prepreg sheet B derived from the pitch is disposed in the range of the base end side 1/2 of the mandrel, and the mandrel front end side 1/2 The PAN-derived carbon fiber prepreg sheet C is arranged in the range of, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel.
[Example 3]

実施例3の支持部材は、実施例1の支持部材に対して、第1〜4の補強層としての積層体の炭素繊維プリプレグシートの寸法が異なる点で相違している。実施例3の支持部材のその他の点は、実施例1の支持部材と同様である。実施例3においては、第1の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅26mm、長さ250mmの長方形と、上底23mm、下底26mm、高さ500mmの左右対称な台形が組み合わされた、長さ750mmの形状に切り出した。また、第2の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底14mm、下底23mm、高さ1650mmの左右対称な台形状に切り出した。   The support member of Example 3 differs from the support member of Example 1 in that the dimensions of the carbon fiber prepreg sheet of the laminate as the first to fourth reinforcing layers are different. Other points of the support member of Example 3 are the same as those of the support member of Example 1. In Example 3, for the laminated body of the first reinforcing layer, the pitch-derived high-elasticity carbon fiber prepreg sheet B is made of a rectangle with a width of 26 mm and a length of 250 mm, an upper base of 23 mm, a lower base of 26 mm, and a height. A 500 mm long symmetrical trapezoid was combined and cut into a shape with a length of 750 mm. In addition, for the second reinforcing layer laminate, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 23 mm, and a height of 1650 mm.

また、第3の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅17mm、長さ250mmの長方形と、上底15mm、下底17mm、高さ600mmの左右対称な台形が組み合わされた、長さ850mmの形状に切り出した。さらに、第4の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底9mm、下底15mm、高さ1550mmの左右対称な台形状に切り出した。   Further, for the laminated body of the third reinforcing layer, the pitch-derived highly elastic carbon fiber prepreg sheet B is symmetrical with a rectangle having a width of 17 mm and a length of 250 mm, and an upper base of 15 mm, a lower base of 17 mm, and a height of 600 mm. Cut into a shape of 850 mm in length with a combination of various trapezoids. Furthermore, for the laminate of the fourth reinforcing layer, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 9 mm, a lower base of 15 mm, and a height of 1550 mm.

以上の補強層の積層構造により、実施例3の支持部材においては、マンドレルの基端側1/3の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側2/3の範囲にPAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。
[比較例1]
Due to the laminated structure of the reinforcing layers described above, in the support member of Example 3, the pitch-derived highly elastic carbon fiber prepreg sheet B is disposed in the range of the base end side 1/3 of the mandrel, and the mandrel tip side 2/3 The PAN-derived carbon fiber prepreg sheet C is arranged in the range of, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel.
[Comparative Example 1]

比較例1の支持部材は、実施例1の支持部材に対して、補強層の構造が異なる点で相違している。比較例1の支持部材のその他の点は、実施例1の支持部材と同様である。すなわち、比較例1においては、第1,2の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅26mm、長さ250mmの長方形と、上底14mm、下底26mm、高さ2150mmの左右対称の台形が組み合わされた、長さ2400mmの形状に切り出して6枚積層してなる積層体を、ベースパイプ部としてのガラスクロスプリプレグシートAの上に配置した。   The support member of Comparative Example 1 is different from the support member of Example 1 in that the structure of the reinforcing layer is different. Other points of the support member of Comparative Example 1 are the same as those of the support member of Example 1. That is, in Comparative Example 1, as the first and second reinforcing layers, a highly elastic carbon fiber prepreg sheet B derived from pitch is formed into a rectangle having a width of 26 mm and a length of 250 mm, an upper base of 14 mm, a lower base of 26 mm, and a height of 2150 mm. A laminate obtained by combining the left and right symmetrical trapezoids and cutting out into a shape having a length of 2400 mm and laminating six pieces was placed on a glass cloth prepreg sheet A as a base pipe portion.

さらに、第3〜5の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅17mm、長さ250mmの長方形と、上底9mm、下底17mm、高さ2150mmの左右対称の台形が組み合わされた、長さ2400mmの形状に切り出したものを6枚積層してなる積層体を、第1,2の補強層としての積層体のうえに配置した。以上の補強層の積層構造により、比較例1の支持部材においては、マンドレルの全長にわたってピッチ由来の高弾性炭素繊維プリプレグシートBが配置されることとなる。
[比較例2]
Further, as the third to fifth reinforcing layers, a pitch-derived highly elastic carbon fiber prepreg sheet B is formed of a rectangular shape having a width of 17 mm and a length of 250 mm and a symmetrical trapezoid having an upper base of 9 mm, a lower base of 17 mm, and a height of 2150 mm. A combined laminated body obtained by laminating six pieces cut into a shape having a length of 2400 mm was placed on the laminated bodies as the first and second reinforcing layers. Due to the laminated structure of the reinforcing layers described above, in the support member of Comparative Example 1, the highly elastic carbon fiber prepreg sheet B derived from the pitch is disposed over the entire length of the mandrel.
[Comparative Example 2]

比較例2の支持部材は、比較例1の支持部材に対して、ピッチ由来の高弾性炭素繊維プリプレグシートBの代わりにPAN由来の炭素繊維プリプレグシートCを用いた点で相違している。比較例2の支持部材のその他の点は、比較例1の支持部材と同様である。比較例2の支持部材においては、マンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCが配置されることとなる。
[比較例3]
The support member of Comparative Example 2 is different from the support member of Comparative Example 1 in that a PAN-derived carbon fiber prepreg sheet C is used instead of the pitch-derived highly elastic carbon fiber prepreg sheet B. Other points of the support member of Comparative Example 2 are the same as those of the support member of Comparative Example 1. In the support member of Comparative Example 2, the PAN-derived carbon fiber prepreg sheet C is disposed over the entire length of the mandrel.
[Comparative Example 3]

比較例3の支持部材は、実施例1の支持部材に対して、補強層の構造が異なる点で相違している。比較例3の支持部材のその他の点は、実施例1の支持部材と同様である。比較例3においては、第1,2の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅26mm、長さ250mmの長方形と、上底14mm、下底26mm、高さ2150mmの左右対称の台形が組み合わされた、長さ2400mmの形状に切り出して、ベースパイプ部10としてのガラスクロスプリプレグシートAの上に6枚積層した。さらに、その上に、第3〜5の補強層として、PAN由来の炭素繊維プリプレグシートCを、幅17mm、長さ250mmの長方形と、上底9mm、下底17mm、高さ2150mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出したものを6枚積層した。   The support member of Comparative Example 3 is different from the support member of Example 1 in that the structure of the reinforcing layer is different. Other points of the support member of Comparative Example 3 are the same as those of the support member of Example 1. In Comparative Example 3, as the first and second reinforcing layers, a pitch-derived highly elastic carbon fiber prepreg sheet B is made of a rectangle having a width of 26 mm and a length of 250 mm, an upper base of 14 mm, a lower base of 26 mm, and a height of 2150 mm. Cut into a shape of 2400 mm in length with a combination of symmetrical trapezoids, 6 sheets were laminated on the glass cloth prepreg sheet A as the base pipe part 10. Furthermore, as a third to fifth reinforcing layer, a PAN-derived carbon fiber prepreg sheet C is symmetrical with a rectangle having a width of 17 mm and a length of 250 mm, and an upper base of 9 mm, a lower base of 17 mm, and a height of 2150 mm. Six pieces cut into a shape having a length of 2400 mm combined with trapezoids were stacked.

以上の補強層の積層構造により、比較例3の支持部材においては、マンドレルの全長にわたって延びるピッチ由来の高弾性炭素繊維プリプレグシートBの外側に、マンドレルの全長にわたって延びるPAN由来の炭素繊維プリプレグシートCが配置されることとなる。なお、上述したように、以上の実施例1〜3及び比較例1〜3においては、使用する際に鉛直方向の上側及び下側になる部分のみに各補強層が形成されている。
[測定方法]
Due to the laminated structure of the reinforcing layers described above, in the support member of Comparative Example 3, the PAN-derived carbon fiber prepreg sheet C extending over the entire length of the mandrel on the outside of the pitch-derived highly elastic carbon fiber prepreg sheet B extending over the entire length of the mandrel. Will be placed. In addition, as mentioned above, in the above Examples 1-3 and Comparative Examples 1-3, each reinforcement layer is formed only in the part which becomes an upper side and a lower side of a perpendicular direction when using.
[Measuring method]

以上のように準備した実施例1〜3及び比較例1〜3の支持部材に対して、以下の手順により、荷重たわみを測定した。まず、各支持部材の手元側(基端側)に、図7の(a)に示される支持部材取り付け用部品D1を強固に結合する。この部品D1は、アルミ等の金属から製造され、支持部材の内部に挿入して、接着・結合する接着部P1と、ロボット側、LCD収納カセット側等に取り付けられる固定部P2より構成される。接着部P1の長さは200mmであり、実施例及び比較例として作製した支持部材に、この取り付け用部品D1をエポキシ系接着剤により接着した。その後、固定台座の水平面に固定部P2を取り付けて、ボルトで締め付けることにより、各支持部材を水平に保持して片持ち梁状態とした。そして、各支持部材の先端から10mmの箇所に650gの錘を吊り下げて、各支持部材における鉛直下方向のたわみ(荷重たわみ)を測定した。
[測定結果]
With respect to the support members of Examples 1 to 3 and Comparative Examples 1 to 3 prepared as described above, load deflection was measured by the following procedure. First, the support member mounting part D1 shown in FIG. 7A is firmly joined to the proximal side (base end side) of each support member. The component D1 is manufactured from a metal such as aluminum, and includes a bonding portion P1 that is inserted into a support member to be bonded and bonded, and a fixing portion P2 that is attached to the robot side, the LCD storage cassette side, or the like. The length of the bonding part P1 is 200 mm, and this mounting part D1 is bonded to the supporting members manufactured as examples and comparative examples with an epoxy adhesive. Then, the fixing | fixed part P2 was attached to the horizontal surface of the fixed base, and it fastened with the volt | bolt, Each support member was hold | maintained horizontally and it was set as the cantilever state. Then, a weight of 650 g was suspended at a position 10 mm from the tip of each support member, and the deflection (load deflection) in the vertical direction of each support member was measured.
[Measurement result]

上記測定によって、図8の表に示される結果が得られた。なお、図8の表には、実施例1〜3及び比較例1〜3の支持部材の各部の具体的な寸法や材料等も示されている。図8に示されるように、実施例1〜3のいずれの支持部材においても、補強層全域(支持部材の全長)にわたってピッチ由来の高弾性炭素繊維(ピッチ由来の高弾性炭素繊維プリプレグシートB)を使用した比較例1の支持部材と比較して、ピッチ由来の高弾性炭素繊維の使用量を30%〜64%削減しつつ、荷重たわみの増加(すなわち、曲げ剛性の低下)を抑制することができた。   By the above measurement, the results shown in the table of FIG. 8 were obtained. In the table of FIG. 8, specific dimensions, materials, and the like of each part of the support members of Examples 1 to 3 and Comparative Examples 1 to 3 are also shown. As shown in FIG. 8, in any of the support members of Examples 1 to 3, pitch-derived high-elasticity carbon fibers (pitch-derived high-elasticity carbon fiber prepreg sheet B) over the entire reinforcing layer (full length of the support member). Compared with the support member of Comparative Example 1 using the material, the amount of pitch-derived highly elastic carbon fibers is reduced by 30% to 64%, and the increase in load deflection (that is, the decrease in bending rigidity) is suppressed. I was able to.

また、実施例1〜3のいずれの支持部材においても、補強層全域(支持部材の全長)にわたってPAN由来の炭素繊維(PAN由来の炭素繊維プリプレグシートC)を使用した比較例2の支持部材と比較して、荷重たわみを大幅に低減することができた。   Moreover, also in any support member of Examples 1-3, the support member of the comparative example 2 using the PAN-derived carbon fiber (PAN-derived carbon fiber prepreg sheet C) over the entire reinforcing layer (full length of the support member) and In comparison, the load deflection could be greatly reduced.

さらに、支持部材の全長にわたって延びる補強層の内側層にピッチ由来の高弾性炭素繊維(ピッチ由来の高弾性炭素繊維プリプレグシートB)を使用すると共に、その補強層の外側層にPAN由来の炭素繊維(PAN由来の炭素繊維プリプレグシートC)を使用した比較例3の支持部材は、比較例1の支持部材と比較して、ピッチ由来の高弾性炭素繊維の使用量を40%低減できているが、実施例2の支持部材によれば、ピッチ由来の高弾性炭素繊維の使用量を46.5%とより多く削減できたうえに、荷重たわみをより低減できた(すなわち、より高い曲げ剛性を維持できた)。
[実施例4]
Furthermore, the pitch-derived high elastic carbon fiber (pitch-derived high elastic carbon fiber prepreg sheet B) is used for the inner layer of the reinforcing layer extending over the entire length of the support member, and the PAN-derived carbon fiber is used for the outer layer of the reinforcing layer. Although the support member of Comparative Example 3 using (PAN-derived carbon fiber prepreg sheet C) compared to the support member of Comparative Example 1, the amount of pitch-derived highly elastic carbon fibers can be reduced by 40%. According to the support member of Example 2, the usage amount of the high-elasticity carbon fiber derived from the pitch can be further reduced to 46.5%, and the deflection of the load can be further reduced (that is, higher bending rigidity can be obtained). Maintained).
[Example 4]

まず、芯材であるスチール製のマンドレルを用意した。マンドレルは、固定端側にストレート部分、すなわち断面形状及び寸法が変化しない範囲と、自由端側にテーパ部分、すなわち自由端に向かうほど、外周の長さが短くなる範囲とから構成される。マンドレルの形状は、固定端側ストレート範囲では、中実円形断面、自由端側のテーパ範囲では、円錐からその先端部分を切り落とした形状(すなわち円錐台形状)である。マンドレルの寸法は、先端側直径15mm、基端側直径27mmである。全長2400mmであり、固定端側200mmの範囲が、直径27mmの中実丸棒状のストレート範囲であり、自由端側の2200mmの範囲がテーパ状である。なお、ここでの先端とは、支持部材1Aにおける他端部1b側の端に相当し、基端とは、支持部材1Aにおける一端部1a側の端に相当する。   First, a mandrel made of steel as a core material was prepared. The mandrel includes a straight portion on the fixed end side, that is, a range in which the cross-sectional shape and dimensions do not change, and a tapered portion on the free end side, that is, a range in which the outer circumference becomes shorter toward the free end. The shape of the mandrel is a solid circular cross section in the straight range on the fixed end side, and a shape obtained by cutting off the tip portion from the cone (that is, a truncated cone shape) in the taper range on the free end side. The mandrel has a distal end diameter of 15 mm and a proximal end diameter of 27 mm. The total length is 2400 mm, the range of 200 mm on the fixed end side is a straight round bar-shaped straight range of 27 mm in diameter, and the range of 2200 mm on the free end side is tapered. Here, the distal end corresponds to the end on the other end 1b side of the support member 1A, and the proximal end corresponds to the end on the one end 1a side of the support member 1A.

続いて、基端側200mmにおいて、外径30mmのストレート範囲を有し、自由端側に向かって外周の長さが小さくなり、先端側において、外径が18mmとなる、肉厚1.5mm、長さ2400mmの中空のベースパイプ部を形成するために、マンドレルに対してガラスクロスプリプレグシートAを複数回巻きつけて積層した。ガラス繊維の配向方向は、マンドレルの長手方向(0°)及び周方向(90°)とした。なお、ガラスクロスプリプレグシートAは、上述したものと同様のものを使用した。   Subsequently, at the base end side of 200 mm, it has a straight range with an outer diameter of 30 mm, the length of the outer circumference decreases toward the free end side, and the outer diameter becomes 18 mm on the distal end side, with a wall thickness of 1.5 mm, In order to form a hollow base pipe portion having a length of 2400 mm, the glass cloth prepreg sheet A was wound around the mandrel and laminated several times. The orientation direction of the glass fiber was the longitudinal direction (0 °) and the circumferential direction (90 °) of the mandrel. The glass cloth prepreg sheet A used was the same as described above.

続いて、第1の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅24mm、長さ200mmの長方形と、上底18mm、下底24mm、高さ1400mmの左右対称な台形が組み合わされた、長さ1600mmの形状に切り出して4枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向が略一致するように、マンドレルに巻き付けたガラスクロスプリプレグシートA上に配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10Aの上側部分11A及び下側部分12Aに対応する部分)のそれぞれに各積層体を配置した。なお、第1の補強層である、長さ1600mmのプリプレグシートBにおいて、炭素繊維は長手方向に連続している。   Subsequently, as a first reinforcing layer, a highly elastic carbon fiber prepreg sheet B derived from pitch is combined with a rectangle with a width of 24 mm and a length of 200 mm, and a symmetrical trapezoid with an upper base of 18 mm, a lower base of 24 mm, and a height of 1400 mm. Two glass laminate prepreg sheets were prepared by preparing two sets of laminated bodies that were cut into a shape of 1600 mm in length and laminated, and wound around the mandrel so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers substantially coincided Arranged on A. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11A and the lower part 12A of the base pipe part 10A) which corresponds to the upper side and the lower side in the vertical direction during use. In the prepreg sheet B having a length of 1600 mm, which is the first reinforcing layer, the carbon fibers are continuous in the longitudinal direction.

特に、各積層体のピッチ由来の高弾性炭素繊維プリプレグシートBの下辺、幅24mmの部分がマンドレルの基端に一致するようにした。したがって、第1の補強層のピッチ由来の高弾性炭素繊維プリプレグシートBは、マンドレルの基端側1600mmの範囲に配置されることとなる。なお、各積層体を配置する際に、マンドレルの長手方向に沿ったベースパイプ部の中心軸と、各積層体のピッチ由来の高弾性炭素繊維プリプレグシートBの台形の長手方向における中心軸とが、鉛直方向に一致するようにした。また、ピッチ由来の高弾性炭素繊維プリプレグシートBとしては、上述したものと同様のものを使用した。   In particular, the lower side of the highly elastic carbon fiber prepreg sheet B derived from the pitch of each laminate, and the portion with a width of 24 mm were made to coincide with the base end of the mandrel. Therefore, the highly elastic carbon fiber prepreg sheet B derived from the pitch of the first reinforcing layer is disposed in the range of 1600 mm on the base end side of the mandrel. When arranging each laminate, the central axis of the base pipe portion along the longitudinal direction of the mandrel and the central axis in the longitudinal direction of the trapezoidal shape of the highly elastic carbon fiber prepreg sheet B derived from the pitch of each laminate are: In order to match the vertical direction. Moreover, as the highly elastic carbon fiber prepreg sheet B derived from pitch, the same one as described above was used.

続いて、第2の補強層として、PAN由来の炭素繊維プリプレグシートCを、上底14mm、下底18mm、高さ800mmの左右対称な台形状に切り出して4枚積層してなる積層体を2組用意し、マンドレルの長手方向と炭素繊維の配向方向が略一致するように、マンドレルに巻きつけたガラスクロスプリプレグシートA上にその積層体を配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10Aの上側部分11A及び下側部分12Aに対応する部分)のそれぞれに各積層体を配置した。   Subsequently, as a second reinforcing layer, a PAN-derived carbon fiber prepreg sheet C is cut into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 18 mm, and a height of 800 mm, and a laminate of two is laminated. A set was prepared, and the laminate was disposed on the glass cloth prepreg sheet A wound around the mandrel so that the longitudinal direction of the mandrel and the orientation direction of the carbon fibers substantially coincided. In that case, each laminated body was arrange | positioned to each of the part (for example, the part corresponding to the upper part 11A and the lower part 12A of the base pipe part 10A) which corresponds to the upper side and the lower side in the vertical direction during use.

特に、各積層体のPAN由来の炭素繊維プリプレグシートCの上底がマンドレルの先端に一致するようにした。したがって、第2の補強層のPAN由来の炭素繊維プリプレグシートCは、マンドレルの先端側の800mmの範囲に配置されることとなる。なお、各積層体を配置する際に、マンドレルの長手方向に沿ったベースパイプ部の中心軸と、各積層体のPAN由来の炭素繊維プリプレグシートCの台形の長手方向における中心軸とが、鉛直方向に一致するようにした。また、PAN由来の炭素繊維プリプレグシートCとしては、上述したものと同様のものを使用した。   In particular, the upper base of the PAN-derived carbon fiber prepreg sheet C of each laminate was made to coincide with the tip of the mandrel. Therefore, the PAN-derived carbon fiber prepreg sheet C of the second reinforcing layer is disposed in a range of 800 mm on the tip side of the mandrel. When arranging each laminate, the central axis of the base pipe portion along the longitudinal direction of the mandrel and the central axis in the longitudinal direction of the trapezoidal shape of the carbon fiber prepreg sheet C derived from the PAN of each laminate are vertical. Match the direction. As the PAN-derived carbon fiber prepreg sheet C, the same one as described above was used.

続いて、第3の補強層として、PAN由来の炭素繊維プリプレグシートCを、幅24mm、長さ200mmの長方形と、上底14mm、下底24mm、高さ2200mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出して、1枚ずつ2組用意し、マンドレルの長手方向と炭素繊維の配向方向とが略一致するように、第1の補強層のピッチ由来の高弾性炭素繊維プリプレグシートB及び第2の補強層のPAN由来の炭素繊維プリプレグシートCの上に1枚配置した。その際、使用時に鉛直方向の上側及び下側にあたる部分(例えばベースパイプ部10Aの上側部分11A及び下側部分12Aに対応する部分)のそれぞれに、第3の補強層であるプリプレグシートCを1枚ずつ配置した。第3の補強層のPAN由来の炭素繊維プリプレグシートCは、マンドレルの全長にわたって配置されることとなる。   Subsequently, as a third reinforcing layer, a carbon fiber prepreg sheet C derived from PAN was combined with a rectangle having a width of 24 mm and a length of 200 mm, and a symmetrical trapezoid having an upper base of 14 mm, a lower base of 24 mm, and a height of 2200 mm. Cut out into a shape of 2400 mm in length, prepare two sets of each one, and high elasticity carbon fiber prepreg derived from the pitch of the first reinforcing layer so that the longitudinal direction of the mandrel and the orientation direction of the carbon fiber substantially coincide One sheet was placed on the sheet B and the PAN-derived carbon fiber prepreg sheet C of the second reinforcing layer. At that time, the prepreg sheet C as the third reinforcing layer is applied to each of the portions corresponding to the upper side and the lower side in the vertical direction during use (for example, the portions corresponding to the upper portion 11A and the lower portion 12A of the base pipe portion 10A). Arranged one by one. The PAN-derived carbon fiber prepreg sheet C of the third reinforcing layer is disposed over the entire length of the mandrel.

ここでは、第1の補強層としてのピッチ由来の高弾性炭素繊維プリプレグシートBの積層体が、支持部材1Aの補強部20の第1の補強領域21に対応し、第2の補強層としてのPAN由来の炭素繊維プリプレグシートCの積層体が、支持部材1Aの補強部20の第2の補強領域22に対応し、第3の補強層としてのPAN由来の炭素繊維プリプレグシートCが、支持部材1Aの補強部30に対応する。   Here, the laminated body of the highly elastic carbon fiber prepreg sheet B derived from the pitch as the first reinforcing layer corresponds to the first reinforcing region 21 of the reinforcing portion 20 of the supporting member 1A, and serves as the second reinforcing layer. The laminate of the PAN-derived carbon fiber prepreg sheet C corresponds to the second reinforcing region 22 of the reinforcing portion 20 of the supporting member 1A, and the PAN-derived carbon fiber prepreg sheet C as the third reinforcing layer is a supporting member. This corresponds to the reinforcing portion 30 of 1A.

以上の補強層の積層構造により、実施例4の支持部材においては、マンドレルの基端側2/3の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側1/3の範囲にPAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。また、マンドレルの長手方向に交差する方向に沿った断面に着目すると、ガラスクロスプリプレグシートからなる肉厚1.5mmのベースパイプ部の外側における鉛直方向の上部及び下部の90°の範囲に、炭素繊維プリプレグシートからなる肉厚1mmの第1及び第2の補強層が積層され、さらに炭素繊維プリプレグシートからなる肉厚0.24mmの第3の補強層が積層された構造となる。   Due to the laminated structure of the reinforcing layers described above, in the support member of Example 4, the pitch-derived highly elastic carbon fiber prepreg sheet B is disposed in the range of the proximal end side 2/3 of the mandrel, and the distal end side 1/3 of the mandrel The PAN-derived carbon fiber prepreg sheet C is arranged in the range of, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel. Also, when focusing on the cross section along the direction intersecting the longitudinal direction of the mandrel, carbon in the upper and lower 90 ° range in the vertical direction outside the 1.5 mm thick base pipe portion made of glass cloth prepreg sheet. The first and second reinforcing layers having a thickness of 1 mm made of a fiber prepreg sheet are laminated, and the third reinforcing layer having a thickness of 0.24 mm made of a carbon fiber prepreg sheet is laminated.

以上のプリプレグ積層工程の後に、ポリプロピレンテープやPETテープ等の加熱により収縮するテープを全体の外側から巻き付けて各プリプレグシートを固定し、ベースパイプ部及び補強層を同時にオーブンにより加熱して各プリプレグシートを硬化した。このとき、2℃/minで昇温させて140℃で120分保持した後、自然冷却により常温に戻した。最後に、マンドレルを抜き取ることによって、中空パイプ形状の支持部材1Aに対応する実施例4の支持部材を得た。
[実施例5]
After the above prepreg laminating process, each prepreg sheet is fixed by wrapping a tape that shrinks when heated, such as polypropylene tape or PET tape, from the outside to fix each prepreg sheet, and simultaneously heating the base pipe portion and the reinforcing layer in an oven. Cured. At this time, the temperature was raised at 2 ° C./min and held at 140 ° C. for 120 minutes, and then returned to room temperature by natural cooling. Finally, the support member of Example 4 corresponding to the hollow pipe-shaped support member 1A was obtained by extracting the mandrel.
[Example 5]

実施例5の支持部材は、実施例4の支持部材に対して、第1,2の補強層としての積層体の炭素繊維プリプレグシートの寸法が異なる点で相違している。実施例5の支持部材のその他の点は、実施例4の支持部材と同様である。すなわち、実施例5においては、第1の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅24mm、長さ200mmの長方形と、上底19mm、下底24mm、高さ1000mmの左右対称な台形が組み合わされた、長さ1200の形状に切り出した。また、第2の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底14mm、下底19mm、高さ1200mmの左右対称な台形状に切り出した。   The support member of Example 5 differs from the support member of Example 4 in that the dimensions of the carbon fiber prepreg sheet of the laminate as the first and second reinforcing layers are different. Other points of the support member of Example 5 are the same as those of the support member of Example 4. That is, in Example 5, for the laminated body of the first reinforcing layer, the pitch-derived highly elastic carbon fiber prepreg sheet B is a rectangle having a width of 24 mm and a length of 200 mm, an upper base of 19 mm, a lower base of 24 mm, Cut into a shape of length 1200, which is a combination of symmetrical trapezoids with a height of 1000 mm. Further, for the laminate of the second reinforcing layer, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 19 mm, and a height of 1200 mm.

以上の補強層の積層構造により、実施例5の支持部材においては、マンドレルの基端側1/2の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側1/2の範囲にPAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。
[実施例6]
With the laminated structure of the reinforcing layer described above, in the support member of Example 5, the high-elasticity carbon fiber prepreg sheet B derived from the pitch is arranged in the range of the base end side 1/2 of the mandrel, and the mandrel front end side 1/2 The PAN-derived carbon fiber prepreg sheet C is arranged in the range of, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel.
[Example 6]

実施例6の支持部材は、実施例4の支持部材に対して、第1,2の補強層としての積層体の炭素繊維プリプレグシートの寸法が異なる点で相違している。実施例6の支持部材のその他の点は、実施例4の支持部材と同様である。実施例6においては、第1の補強層の積層体のために、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅24mm、長さ200mmの長方形と、上底21mm、下底24mm、高さ600mmの左右対称な台形が組み合わされた、長さ800mmの形状に切り出した。また、第2の補強層の積層体のために、PAN由来の炭素繊維プリプレグシートCを上底14mm、下底21mm、高さ1600mmの左右対称な台形状に切り出した。   The support member of Example 6 differs from the support member of Example 4 in that the dimensions of the carbon fiber prepreg sheet of the laminate as the first and second reinforcing layers are different. Other points of the support member of Example 6 are the same as those of the support member of Example 4. In Example 6, for the laminated body of the first reinforcing layer, the pitch-derived high-elasticity carbon fiber prepreg sheet B is made of a rectangle having a width of 24 mm and a length of 200 mm, an upper base of 21 mm, a lower base of 24 mm, and a height. It was cut into a shape of 800 mm in length, which was combined with a 600 mm symmetrical trapezoid. Further, for the laminate of the second reinforcing layer, the PAN-derived carbon fiber prepreg sheet C was cut into a symmetrical trapezoidal shape having an upper base of 14 mm, a lower base of 21 mm, and a height of 1600 mm.

以上の補強層の積層構造により、実施例6の支持部材においては、マンドレルの基端側1/3の範囲にピッチ由来の高弾性炭素繊維プリプレグシートBが配置され、マンドレルの先端側2/3の範囲にPAN由来の炭素繊維プリプレグシートCが配置され、それらの外側がマンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCに覆われることとなる。
[比較例4]
With the laminated structure of the reinforcing layers described above, in the support member of Example 6, the high-elasticity carbon fiber prepreg sheet B derived from the pitch is disposed in the range of the proximal end side 1/3 of the mandrel, and the distal end side 2/3 of the mandrel The PAN-derived carbon fiber prepreg sheet C is arranged in the range of, and the outside thereof is covered with the PAN-derived carbon fiber prepreg sheet C over the entire length of the mandrel.
[Comparative Example 4]

比較例4の支持部材は、実施例4の支持部材に対して、補強層の構造が異なる点で相違している。比較例4の支持部材のその他の点は、実施例4の支持部材と同様である。比較例4においては、第1,2の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅24mm、長さ200mmの長方形と、上底14mm、下底24mm、高さ2200mmの左右対称の台形が組み合わされた、長さ2400mmの形状に切り出して4枚積層してなる積層体を2組用意し、ベースパイプ部としてのガラスクロスプリプレグシートAの上に配置した。比較例4の支持部材においては、マンドレルの全長にわたってピッチ由来の高弾性炭素繊維プリプレグシートBが配置されることとなる。
[比較例5]
The support member of Comparative Example 4 is different from the support member of Example 4 in that the structure of the reinforcing layer is different. Other points of the support member of Comparative Example 4 are the same as those of the support member of Example 4. In Comparative Example 4, as the first and second reinforcing layers, pitch-derived highly elastic carbon fiber prepreg sheet B is made of a rectangle having a width of 24 mm and a length of 200 mm, an upper base of 14 mm, a lower base of 24 mm, and a height of 2200 mm. Two sets of laminated bodies obtained by cutting out into a shape having a length of 2400 mm combined with a symmetrical trapezoid and stacking four sheets were prepared and placed on a glass cloth prepreg sheet A as a base pipe portion. In the support member of Comparative Example 4, the highly elastic carbon fiber prepreg sheet B derived from the pitch is disposed over the entire length of the mandrel.
[Comparative Example 5]

比較例5の支持部材は、比較例4の支持部材に対して、ピッチ由来の高弾性炭素繊維プリプレグシートBの代わりにPAN由来の炭素繊維プリプレグシートCを用いた点で相違している。比較例5の支持部材のその他の点は、比較例4の支持部材と同様である。比較例5の支持部材においては、マンドレルの全長にわたってPAN由来の炭素繊維プリプレグシートCが配置されることとなる。
[比較例6]
The support member of Comparative Example 5 differs from the support member of Comparative Example 4 in that a PAN-derived carbon fiber prepreg sheet C is used instead of the pitch-derived highly elastic carbon fiber prepreg sheet B. Other points of the support member of Comparative Example 5 are the same as those of the support member of Comparative Example 4. In the support member of Comparative Example 5, the PAN-derived carbon fiber prepreg sheet C is disposed over the entire length of the mandrel.
[Comparative Example 6]

比較例6の支持部材は、実施例4の支持部材に対して、補強層の構造が異なっている。比較例6の支持部材のその他の点は、実施例4の支持部材と同様である。比較例6においては、第1,2の補強層として、ピッチ由来の高弾性炭素繊維プリプレグシートBを、幅24mm、長さ200mmの長方形と、上底14mm、下底24mm、高さ2200mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出して3枚積層すると共に、PAN由来の炭素繊維プリプレグシートCを、幅24mm、長さ200mmの長方形と、上底14mm、下底24mm、高さ2200mmの左右対称な台形が組み合わされた、長さ2400mmの形状に切り出したものを更に1枚ずつ積層することにより、合計4枚の炭素繊維プリプレグシートを積層してなる積層体を2組用意した。そして、その積層体を、ベースパイプ部としてのガラスクロスプリプレグシートAの上に配置した。   The support member of Comparative Example 6 differs from the support member of Example 4 in the structure of the reinforcing layer. Other points of the support member of Comparative Example 6 are the same as those of the support member of Example 4. In Comparative Example 6, as the first and second reinforcing layers, pitch-derived highly elastic carbon fiber prepreg sheet B is made of a rectangle with a width of 24 mm and a length of 200 mm, an upper base of 14 mm, a lower base of 24 mm, and a height of 2200 mm. Combined with a symmetrical trapezoidal shape, cut into a shape of 2400 mm in length and laminated, and PAN-derived carbon fiber prepreg sheet C, a rectangle with a width of 24 mm and a length of 200 mm, an upper base of 14 mm, a lower base of 24 mm, Two sets of laminates made by laminating a total of 4 carbon fiber prepreg sheets by laminating one by one pieces cut into a shape of 2400 mm in length, combined with a 2200 mm height symmetrical trapezoid Prepared. And the laminated body was arrange | positioned on the glass cloth prepreg sheet A as a base pipe part.

以上の補強層の積層構造により、比較例6の支持部材においては、マンドレルの全長にわたって延びるピッチ由来の高弾性炭素繊維プリプレグシートBの外側に、マンドレルの全長にわたって延びるPAN由来の炭素繊維プリプレグシートCが配置されることとなる。なお、上述したように、以上の実施例4〜6及び比較例4〜6においては、使用する際に鉛直方向の上側及び下側になる部分のみに各補強層が形成されている。
[測定方法]
Due to the laminated structure of the reinforcing layers described above, in the support member of Comparative Example 6, the PAN-derived carbon fiber prepreg sheet C extending over the entire length of the mandrel is provided outside the highly elastic carbon fiber prepreg sheet B derived from the pitch extending over the entire length of the mandrel. Will be placed. In addition, as above-mentioned, in the above Examples 4-6 and Comparative Examples 4-6, when using, each reinforcement layer is formed only in the part which becomes the upper side and lower side of a perpendicular direction.
[Measuring method]

以上のように準備した実施例4〜6及び比較例4〜6の支持部材に対して、以下の手順により、荷重たわみを測定した。まず、各支持部材の手元側(基端側)に、図7の(b)に示される支持部材取り付け用部品D2を強固に係合する。この部品D2は、鉄などの金属から製造され、支持部材の内部に挿入して、接着・結合する接着部P3と、ロボット側、LCD収納カセット側等に取り付けられる固定部P4より構成される。接着部P3の長さは150mmであり、実施例及び比較例として製作した支持部材に、この取り付け用部品D2をエポキシ系接着剤により接着した。その後、固定台座の垂直面に固定部P4を取り付けて、ボルトで締め付けることにより、各支持部材を水平に保持して片持ち梁状態とした。そして、各支持部材の先端から10mmの箇所に300gの錘を吊り下げて、各支持部材における鉛直下方向のたわみ(荷重たわみ)を測定した。
[測定結果]
With respect to the support members of Examples 4 to 6 and Comparative Examples 4 to 6 prepared as described above, load deflection was measured by the following procedure. First, the support member mounting part D2 shown in FIG. 7B is firmly engaged with the proximal side (base end side) of each support member. The component D2 is manufactured from a metal such as iron, and includes a bonding portion P3 that is inserted into a support member to be bonded and bonded, and a fixing portion P4 that is attached to the robot side, the LCD storage cassette side, or the like. The length of the bonding portion P3 is 150 mm, and the mounting component D2 is bonded to the support member manufactured as the example and the comparative example with an epoxy adhesive. Thereafter, the fixed portion P4 was attached to the vertical surface of the fixed base and tightened with bolts, whereby each support member was held horizontally to be in a cantilever state. Then, a weight of 300 g was suspended at a position 10 mm from the tip of each support member, and the vertical deflection (load deflection) of each support member was measured.
[Measurement result]

上記測定によって、図9の表に示される結果が得られた。なお、図9には、実施例4〜6及び比較例4〜6の支持部材の各部の具体的な寸法や材料等も示されている。図9に示されるように、実施例4〜6のいずれの支持部材においても、補強層全域(支持部材の全長)にわたってピッチ由来の高弾性炭素繊維(ピッチ由来の高弾性炭素繊維プリプレグシートB)を使用した比較例4の支持部材と比較して、ピッチ由来の高弾性炭素繊維の使用量を28%〜61%削減しつつ、荷重たわみの増加(すなわち、曲げ剛性の低下)を抑制することができた。   By the above measurement, the results shown in the table of FIG. 9 were obtained. In addition, the specific dimension, material, etc. of each part of the support member of Examples 4-6 and Comparative Examples 4-6 are also shown by FIG. As shown in FIG. 9, in any of the supporting members of Examples 4 to 6, pitch-derived high elastic carbon fibers (pitch-derived high elastic carbon fiber prepreg sheet B) over the entire reinforcing layer (full length of the supporting member). Compared with the support member of Comparative Example 4 using the material, the amount of high-elastic carbon fiber derived from pitch is reduced by 28% to 61%, while the increase in load deflection (that is, the decrease in bending rigidity) is suppressed. I was able to.

また、実施例4〜6のいずれの支持部材においても、補強層全域(支持部材の全長)にわたってPAN由来の炭素繊維(PAN由来の炭素繊維プリプレグシートC)を使用した比較例5の支持部材と比較して、荷重たわみを大幅に低減することができた。   In any of the support members of Examples 4 to 6, the support member of Comparative Example 5 using PAN-derived carbon fibers (PAN-derived carbon fiber prepreg sheet C) over the entire reinforcing layer (full length of the support member) In comparison, the load deflection could be greatly reduced.

さらに、支持部材の全長にわたって延びる補強層の内側層にピッチ由来の高弾性炭素繊維(ピッチ由来の高弾性炭素繊維プリプレグシートB)を使用すると共に、その補強層の外側層にPAN由来の炭素繊維(PAN由来の炭素繊維プリプレグシートC)を使用した比較例6の支持部材は、比較例4の支持部材と比較して、ピッチ由来の高弾性炭素繊維の使用量を24.0%低減できているが、実施例4の支持部材によれば、ピッチ由来の高弾性炭素繊維の使用量を28.0%とより多く削減できたうえに、荷重たわみをより低減できた(すなわち、より高い曲げ剛性を維持できた)。   Furthermore, the pitch-derived high elastic carbon fiber (pitch-derived high elastic carbon fiber prepreg sheet B) is used for the inner layer of the reinforcing layer extending over the entire length of the support member, and the PAN-derived carbon fiber is used for the outer layer of the reinforcing layer. The support member of Comparative Example 6 using (PAN-derived carbon fiber prepreg sheet C) can reduce the amount of pitch-derived highly elastic carbon fiber used by 24.0% compared to the support member of Comparative Example 4. However, according to the support member of Example 4, it was possible to reduce the usage amount of the highly elastic carbon fiber derived from the pitch as much as 28.0% and to further reduce the load deflection (that is, higher bending). The rigidity was maintained).

1,1A…支持部材、1a…一端部、1b…他端部、10,10A…ベースパイプ部、11…上側部分、12…下側部分、20…補強部、21…第1の補強領域、22…第2の補強領域。   DESCRIPTION OF SYMBOLS 1, 1A ... Support member, 1a ... One end part, 1b ... Other end part, 10, 10A ... Base pipe part, 11 ... Upper part, 12 ... Lower part, 20 ... Reinforcement part, 21 ... 1st reinforcement area | region, 22 ... 2nd reinforcement area | region.

Claims (6)

一端部が固定されると共に他端部が固定されずに片持ち梁状態で使用される中空パイプ形状の支持部材であって、
前記一端部から前記他端部にわたって延在するベースパイプ部と、
前記ベースパイプ部における使用時に鉛直方向上側となる上側部分及び前記上側部分に対向する下側部分のそれぞれの上に形成され、前記一端部から前記他端部にわたって延在する補強部と、
前記補強部の全体を覆うように前記補強部上に形成され、前記一端部から前記他端部にわたって延在する別の補強部と、
を備え、
前記ベースパイプ部は、繊維強化複合樹脂材料から構成されており、
前記補強部は、前記一端部から前記他端部に向かう方向に配列された第1の補強領域及び第2の補強領域を含み、
前記第1の補強領域、前記第2の補強領域、及び、前記別の補強部は、炭素繊維強化複合樹脂材料から構成されており、
前記第1の補強領域、前記第2の補強領域、及び、前記別の補強部を構成する炭素繊維強化複合樹脂材料の炭素繊維の配向方向は、前記一端部から前記他端部に向かう方向に略一致しており、
前記第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、前記第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率よりも大きい、
ことを特徴とする支持部材。
A hollow pipe-shaped support member that is used in a cantilever state with one end fixed and the other end fixed,
A base pipe portion extending from the one end portion to the other end portion;
A reinforcing part that is formed on each of the upper part and the lower part that oppose the upper part when used in the base pipe part and extends from the one end part to the other end part; and
Another reinforcing part formed on the reinforcing part so as to cover the entire reinforcing part and extending from the one end to the other end;
With
The base pipe portion is made of a fiber reinforced composite resin material,
The reinforcing portion includes a first reinforcing region and a second reinforcing region arranged in a direction from the one end portion toward the other end portion,
The first reinforcing region, the second reinforcing region , and the another reinforcing portion are made of a carbon fiber reinforced composite resin material,
The orientation direction of the carbon fibers of the carbon fiber reinforced composite resin material constituting the first reinforcement region, the second reinforcement region , and the another reinforcement portion is a direction from the one end portion toward the other end portion. Are almost identical,
The tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region is larger than the tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the second reinforcing region,
A support member.
前記第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、400GPa以上900GPa以下であり、
前記第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維の引張弾性率は、200GPa以上400GPa未満である、
ことを特徴とする請求項1に記載の支持部材。
The tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region is 400 GPa or more and 900 GPa or less,
The tensile elastic modulus of the carbon fiber of the carbon fiber reinforced composite resin material constituting the second reinforcing region is 200 GPa or more and less than 400 GPa.
The support member according to claim 1.
前記一端部から前記他端部に向かう方向において、前記第1の補強領域の長さは、当該支持部材の全長の30%以上70%以下であり、
前記一端部から前記他端部に向かう方向において、前記第2の補強領域の長さは、前記第1の領域の長さとの合計が当該支持部材の全長の100%以下となる範囲において、当該支持部材の全長の30%以上70%以下である、
ことを特徴とする請求項1又は2に記載の支持部材。
In the direction from the one end to the other end, the length of the first reinforcing region is 30% or more and 70% or less of the total length of the support member;
In the direction from the one end to the other end, the length of the second reinforcement region is within a range in which the total length of the first region is 100% or less of the total length of the support member. 30% or more and 70% or less of the total length of the support member,
The support member according to claim 1 or 2, characterized in that.
前記第1の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維は、ピッチ由来の炭素繊維であり、
前記第2の補強領域を構成する炭素繊維強化複合樹脂材料の炭素繊維は、ポリアクリロニトリル由来の炭素繊維である、
ことを特徴とする請求項1〜3のいずれか一項に記載の支持部材。
The carbon fiber of the carbon fiber reinforced composite resin material constituting the first reinforcing region is a pitch-derived carbon fiber,
The carbon fiber of the carbon fiber reinforced composite resin material constituting the second reinforcing region is a carbon fiber derived from polyacrylonitrile.
The support member according to any one of claims 1 to 3, wherein the support member is provided.
前記一端部の外周の長さが前記他端部の外周の長さよりも長いテーパ形状を呈する、ことを特徴とする請求項1〜4のいずれか一項に記載の支持部材。   The support member according to any one of claims 1 to 4, wherein a length of an outer periphery of the one end portion is longer than a length of an outer periphery of the other end portion. 前記ベースパイプ部は、ガラス繊維強化複合樹脂材料から構成されている、ことを特徴とする請求項1〜5のいずれか一項に記載の支持部材。   The said base pipe part is comprised from the glass fiber reinforced composite resin material, The support member as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2013066720A 2013-03-27 2013-03-27 Support member Expired - Fee Related JP6144084B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013066720A JP6144084B2 (en) 2013-03-27 2013-03-27 Support member
TW102148258A TWI611917B (en) 2013-03-27 2013-12-25 Support component
KR1020140010159A KR102001817B1 (en) 2013-03-27 2014-01-28 Supporting member
CN201410093839.4A CN104070708B (en) 2013-03-27 2014-03-13 Supporting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066720A JP6144084B2 (en) 2013-03-27 2013-03-27 Support member

Publications (2)

Publication Number Publication Date
JP2014188853A JP2014188853A (en) 2014-10-06
JP6144084B2 true JP6144084B2 (en) 2017-06-07

Family

ID=51592510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066720A Expired - Fee Related JP6144084B2 (en) 2013-03-27 2013-03-27 Support member

Country Status (4)

Country Link
JP (1) JP6144084B2 (en)
KR (1) KR102001817B1 (en)
CN (1) CN104070708B (en)
TW (1) TWI611917B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038174A1 (en) * 2016-08-24 2018-03-01 Jxtgエネルギー株式会社 Support member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253309A (en) * 1990-03-02 1991-11-12 Tonen Corp Fiber reinforced resin prepreg
JPH0740488A (en) * 1993-07-28 1995-02-10 Mitsubishi Chem Corp Fiber reinforced resin tubular material
JPH08224329A (en) * 1995-02-22 1996-09-03 Mitsubishi Chem Corp Golf club shaft
JP3529009B2 (en) * 1996-10-14 2004-05-24 新日本石油株式会社 Carbon fiber reinforced composite
JP4029104B2 (en) * 2006-01-30 2008-01-09 新日本石油株式会社 Elliptical support member
JP2007281251A (en) * 2006-04-07 2007-10-25 E I Du Pont De Nemours & Co Support bar and substrate cassette
WO2010086955A1 (en) * 2009-01-27 2010-08-05 新日本石油株式会社 Conveyance member made of cfrp and robot hand employing the same
JP5495731B2 (en) * 2009-11-20 2014-05-21 Jx日鉱日石エネルギー株式会社 Support bar and substrate storage cassette

Also Published As

Publication number Publication date
KR102001817B1 (en) 2019-07-19
TW201441026A (en) 2014-11-01
JP2014188853A (en) 2014-10-06
KR20140118712A (en) 2014-10-08
CN104070708B (en) 2018-05-25
CN104070708A (en) 2014-10-01
TWI611917B (en) 2018-01-21

Similar Documents

Publication Publication Date Title
JP4029104B2 (en) Elliptical support member
KR101919952B1 (en) Solenoidal magnets made up of several axially aligned coils
JP5558745B2 (en) Fishing line guide
JP6902753B2 (en) Manufacturing method of carbon fiber reinforced resin member
JP2018149737A (en) Method of manufacturing reinforcing layer
JP2015145104A (en) Shaft-like composite member and manufacturing method of the same
CA2938645C (en) Composite material structure
KR101307627B1 (en) Conveyance member made of cfrp and robot hand employing the same
JP6144084B2 (en) Support member
JP5495731B2 (en) Support bar and substrate storage cassette
JP5627078B2 (en) Hollow pipe
JPS6143579B2 (en)
JP5277338B2 (en) Manufacturing method of fiber reinforced resin support bar for substrate storage cassette
KR19990037286A (en) Tubular body made of fiber reinforced composite material
JP6490413B2 (en) Fiber reinforced composite shaft
JP2013201953A (en) Fishing line guide and fishing rod provided with the same
JP2020049701A (en) Cylindrical body and method for manufacturing the same
KR20160125886A (en) Shaped pipe body
JP2009184053A (en) Fork for robot hand
TWI558536B (en) Flat workpiece support device
JP2020151852A (en) Fiber reinforced resin body
KR20150136799A (en) Manufacturing Method of Wheel Using Uni-Directional Fiber Fabric and Wheel Manufactured by the Same
JP2016215899A (en) Method for manufacturing table member
JP2018153972A (en) Laminate
JP2005297452A (en) Cantilevered beam manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170510

R150 Certificate of patent or registration of utility model

Ref document number: 6144084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees