JP6143632B2 - Component analysis method for low ash samples - Google Patents

Component analysis method for low ash samples Download PDF

Info

Publication number
JP6143632B2
JP6143632B2 JP2013213139A JP2013213139A JP6143632B2 JP 6143632 B2 JP6143632 B2 JP 6143632B2 JP 2013213139 A JP2013213139 A JP 2013213139A JP 2013213139 A JP2013213139 A JP 2013213139A JP 6143632 B2 JP6143632 B2 JP 6143632B2
Authority
JP
Japan
Prior art keywords
sample
ashing
ash
low
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013213139A
Other languages
Japanese (ja)
Other versions
JP2015075439A (en
Inventor
澤津橋 徹哉
徹哉 澤津橋
昭宏 野▲崎▼
昭宏 野▲崎▼
絢子 嬉野
絢子 嬉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013213139A priority Critical patent/JP6143632B2/en
Publication of JP2015075439A publication Critical patent/JP2015075439A/en
Application granted granted Critical
Publication of JP6143632B2 publication Critical patent/JP6143632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、灰分の少ないバイオマス燃料、コークス燃料等の低灰分試料の成分分析方法に関するものである。   The present invention relates to a component analysis method for low ash samples such as biomass fuel and coke fuel with low ash content.

火力発電プラントでは、系外に排出される環境規制物質を詳細に把握し規制をクリアできるプラント新設・既設改造の計画がなされており、本プロセスを確立する為、燃料・排水・排ガス中の微量成分の挙動を把握することが必須条件となっている。そのような中、燃料の多様化に伴い、例えば石油コークス、バイオマス、混炭(石炭及び石油コークス)を燃料とするケースが増加しており、その分析方法の確立が急務である。   In thermal power plants, there are plans for new construction and remodeling of plants that can grasp the environmentally regulated substances discharged outside the system in detail and clear the regulations, and in order to establish this process, trace amounts in fuel, wastewater, and exhaust gas It is essential to understand the behavior of the components. Under such circumstances, with the diversification of fuels, for example, cases of using petroleum coke, biomass, mixed coal (coal and petroleum coke) as fuels are increasing, and establishment of an analysis method is urgently required.

火力発電プラントの燃料として多用されている石炭燃料の元素の分析方法としては、公定法(JIS M8811(燃料前処理)、JIS K 0116準拠(灰組成分析)、JIS K 0102(Hg、As分析))による分析法が定められている(非特許文献1〜3)。   As an analysis method of elements of coal fuel, which is frequently used as fuel for thermal power plants, official methods (JIS M8811 (fuel pretreatment), JIS K 0116 compliant (ash composition analysis), JIS K 0102 (Hg, As analysis)) ) Is defined (Non-Patent Documents 1 to 3).

JIS M8811JIS M8811 JIS K 0116JIS K 0116 JIS K 0102JIS K 0102

しかしながら、灰分の少ない石油コークス燃料、バイオマス燃料、混炭(石炭及び石油コークスの混合燃料)等では、従来の石炭燃料分析で規定されている公定法(非特許文献1〜3)による分析法では、以下に示す問題点がある。
1) 燃料中の灰分が10%以下と少ない為、従来のJIS法を用いて分析に必要な灰分試料を調整するには、多大な時間と費用とがかかり、現実的に採用できない。
2) また、試料の灰化時の揮発分の飛散があり、さらには試料調整の際、溶融塩化や炭酸塩生成による微量成分の回収率が低下する。
However, in petroleum coke fuel, biomass fuel, mixed coal (mixed fuel of coal and petroleum coke), etc. with low ash content, etc., in the analysis method by the official method (Non-Patent Documents 1 to 3) defined in conventional coal fuel analysis, There are the following problems.
1) Since the ash content in the fuel is as low as 10% or less, it takes a lot of time and money to adjust the ash sample required for analysis using the conventional JIS method, and it cannot be practically adopted.
2) In addition, there is scattering of volatile components at the time of ashing of the sample, and further, when preparing the sample, the recovery rate of trace components due to molten chloride and carbonate formation is reduced.

固体燃料として、例えば石油コークス燃料を用いて焼成炉で灰化する場合、JIS規格の815℃での灰化では、微量元素の揮発および低融点物質が溶融することによる灰回収不良といった問題が明確となっており、さらに500℃程度で灰化する場合でも、微量元素によっては揮発ロス等が発生する、という問題がある。   When ashing in a calcination furnace using, for example, petroleum coke fuel as a solid fuel, the ash ashing at 815 ° C of JIS standard clearly reveals the problem of ash recovery failure due to volatilization of trace elements and melting of low melting point substances. Further, even when ashing is performed at about 500 ° C., there is a problem that volatilization loss or the like occurs depending on trace elements.

また、固体燃料として、例えばバイオマス燃料を用いて焼成炉で灰化する場合、JISの規定よりも低い例えば600℃で灰化する場合でも、炭酸塩が残存し、灰化処理が十分進行しない、という問題がある。   Further, as a solid fuel, for example, when ashing in a baking furnace using biomass fuel, even when ashing at 600 ° C. lower than JIS regulations, for example, carbonate remains and the ashing treatment does not proceed sufficiently. There is a problem.

3) また、仮に分析できたとしても、微量成分の分析検出下限値近傍付近となる為、分析精度の悪化がある(分析のバラツキが例えば50%である)、という問題がある。 3) Further, even if the analysis can be performed, since it is in the vicinity of the analysis detection lower limit value of the trace component, there is a problem that the analysis accuracy is deteriorated (analysis variation is, for example, 50%).

4) さらに、分析所要時間(灰化、分析試料調整、分析)が長い(7日/件以上)ので、プラント運転にタイムリーに微量成分挙動状況がフィードバックできない、という問題がある。 4) Furthermore, since the time required for analysis (ashing, analysis sample preparation, analysis) is long (7 days / case or more), there is a problem that the behavior of trace components cannot be fed back to the plant operation in a timely manner.

本発明は、前記問題に鑑み、灰分の少ないバイオマス燃料、コークス燃料、石炭及び石油コークスの混合燃料等の灰分分析において精度が高く、しかも迅速に分析できる低灰分試料の成分分析方法を提供することを課題とする。   In view of the above problems, the present invention provides a component analysis method for a low ash sample that has high accuracy and can be quickly analyzed in ash analysis of biomass fuel, coke fuel, mixed fuel of coal and petroleum coke, etc. with low ash content. Is an issue.

上述した課題を解決するための本発明の第1の発明は、固形燃料を灰化処理した際の灰分量が、10重量%以下の固形燃料を用い、灰分試料中の構成成分の元素が、500℃以上の高温で灰化した際の損失率が20%以上の元素か、損失率が20%未満の元素かに分類し、1)損失率が20%以上の元素を分析する際には、前記固形燃料に対して、酸素プラズマ低温灰化処理を行い、その後液化処理し、液化試料を調整した後、元素分析すると共に、2)損失率が20%未満の元素を分析する際には、前記固形燃料に対して、マイクロ波低温灰化処理を行い、その後液化処理し、液化試料を調整した後、元素分析することを特徴とする低灰分試料の成分分析方法にある。   The first invention of the present invention for solving the above-described problem is that solid fuel having an ash content of 10% by weight or less when ashing the solid fuel is used, and the constituent elements in the ash sample are: It is classified as an element with a loss rate of 20% or higher when ashing at a high temperature of 500 ° C or higher, or an element with a loss rate of less than 20%. 1) When analyzing an element with a loss rate of 20% or higher The solid fuel is subjected to oxygen plasma low-temperature ashing treatment, then liquefied, adjusted to a liquefied sample, and then subjected to elemental analysis. 2) When analyzing elements with a loss rate of less than 20% In the method of component analysis of a low ash sample, the solid fuel is subjected to microwave low-temperature ashing treatment, then liquefied, and a liquefied sample is prepared, followed by elemental analysis.

本発明によれば、低灰分燃料の灰分濃度を把握する際、固体燃料を揮発し易い成分と、揮発し難い成分とに分類し、揮発し易い損失率が20%以上の場合には、酸素プラズマ低温灰化処理を用いて、穏やかな条件で灰化処理し、これに対し揮発し難い損失率が20%未満の場合には、マイクロ波低温灰化処理を用いて灰化処理し、その後液化処理して分析することで、各構成元素の性状に応じて分析するので、分析の精度を向上する。   According to the present invention, when grasping the ash concentration of the low ash fuel, the solid fuel is classified into a component that easily volatilizes and a component that does not easily volatilize. Using plasma low-temperature ashing, ashing is performed under mild conditions. If the loss rate is less than 20%, the ashing is performed using microwave low-temperature ashing. Since the analysis is performed according to the properties of each constituent element by performing the liquefaction treatment, the accuracy of the analysis is improved.

第2の発明は、第1の発明において、前記酸素プラズマ低温灰化処理が、前記固形燃料の試料を分析皿に分取し、酸素を流しながら250℃以下の低温灰化を所定時間行い、所定量の灰分を得ることを特徴とする低灰分試料の成分分析方法にある。   A second invention is the oxygen plasma low-temperature ashing treatment according to the first invention, wherein the oxygen plasma low-temperature ashing treatment is performed by separating the solid fuel sample into an analysis dish and performing low-temperature ashing at 250 ° C. or lower for a predetermined time while flowing oxygen. A component analysis method for a low ash sample characterized by obtaining a predetermined amount of ash.

本発明によれば、揮発し易い損失率が20%以上の場合に、酸素プラズマ低温灰化処理を用いて、穏やかな低温灰化条件で灰化処理することで、灰化のロスがない灰分を得ることができる。   According to the present invention, when the loss rate that easily volatilizes is 20% or more, the ash content without ashing loss can be obtained by performing ashing under mild low-temperature ashing conditions using oxygen plasma low-temperature ashing. Can be obtained.

第3の発明は、第1の発明において、前記マイクロ波低温灰化処理が、前記固形燃料の試料を容器に分取し、550℃以下でマイクロ波低温灰化を所定時間行い、所定量の灰分を得ることを特徴とする低灰分試料の成分分析方法にある。   According to a third invention, in the first invention, the microwave low-temperature ashing treatment is performed by separating the solid fuel sample into a container, performing microwave low-temperature ashing at a temperature of 550 ° C. or lower for a predetermined time, It is in the component analysis method of the low ash sample characterized by obtaining ash.

本発明によれば、揮発し難い損失率が20%未満の場合に、マイクロ波低温灰化処理を用いて、酸素プラズマ低温灰化処理よりも高温の条件で灰化処理することで、灰化時間を短縮した灰化処理をすることで、灰分を得ることができる。   According to the present invention, when the loss rate that is difficult to volatilize is less than 20%, ashing is performed by using a microwave low-temperature ashing treatment at a higher temperature than the oxygen plasma low-temperature ashing treatment. Ash content can be obtained by performing an ashing treatment with a shortened time.

第4の発明は、第1の発明において、液化処理が、密閉型容器内に灰分と酸とを投入し、所定時間マイクロ波処理を行いつつ、加熱し、液化試料を得ることを特徴とする低灰分試料の成分分析方法にある。   A fourth invention is characterized in that, in the first invention, the liquefaction treatment is performed by putting ash and acid in a sealed container and heating while performing microwave treatment for a predetermined time, thereby obtaining a liquefied sample. It is in the component analysis method of the low ash sample.

本発明によれば、試料調整の液化の際に、密閉型とするので、元素割合が微量成分の場合でも、その飛散を防止することができる。   According to the present invention, when the sample is liquefied, the sealed type is used. Therefore, even when the element ratio is a trace component, the scattering can be prevented.

第5の発明は、第1の発明において、液化処理が、開放型容器内に灰分と酸とを投入し、所定時間マイクロ波処理を行いつつ、加熱し、液化試料を得ることを特徴とする低灰分試料の成分分析方法にある。   A fifth invention is characterized in that, in the first invention, the liquefaction treatment is performed by putting ash and acid into an open container and heating the solution while performing microwave treatment for a predetermined time to obtain a liquefied sample. It is in the component analysis method of the low ash sample.

本発明によれば、試料調整の液化の際に、元素割合が多い場合には、開放型液化でも適用できる。   According to the present invention, when the ratio of elements is large at the time of liquefaction for sample preparation, even open liquefaction can be applied.

第6の発明は、第4又は5の発明において、液化処理をした後、固相抽出処理を行うことを特徴とする低灰分試料の成分分析方法にある。   A sixth invention is a component analysis method for a low ash sample, characterized in that in the fourth or fifth invention, after liquefaction treatment, solid phase extraction treatment is performed.

本発明によれば、液体試料を固相抽出樹脂により、微量成分が濃縮され、微量成分の精度の高い分析が可能となる。   According to the present invention, a liquid sample is concentrated by a solid-phase extraction resin, so that a trace component is concentrated, and a trace component can be analyzed with high accuracy.

第7の発明は、第6の発明において、前記固相抽出処理が、2段固相抽出法により行うことを特徴とする低灰分試料の成分分析方法にある。   A seventh invention is the component analysis method for a low ash sample according to the sixth invention, wherein the solid phase extraction treatment is performed by a two-stage solid phase extraction method.

本発明によれば、液体試料の抽出の際、固相抽出樹脂を直列で2段とすることにより、1段固相部で主要成分が濃縮され、2段固相部で微量成分が濃縮され、主要成分が分離された試料を得ることで、さらに分析感度の高い分析が可能となる。   According to the present invention, when a liquid sample is extracted, the solid phase extraction resin is arranged in two stages in series, whereby the main component is concentrated in the first stage solid phase part and the trace component is concentrated in the second stage solid phase part. By obtaining a sample from which main components are separated, analysis with higher analytical sensitivity becomes possible.

第8の発明は、第1乃至7のいずれか一つの発明において、前記固形燃料が、バイオマス燃料又は石油コークス燃料又は石炭及び石油コークスの混合燃料であることを特徴とする低灰分試料の成分分析方法にある。   According to an eighth invention, in any one of the first to seventh inventions, the solid fuel is a biomass fuel, a petroleum coke fuel, or a mixed fuel of coal and petroleum coke, and a component analysis of a low ash sample Is in the way.

本発明によれば、固体燃料としてバイオマス燃料又は石油コークス燃料又は石炭及び石油コークスの混合燃料の低灰分の灰中の微量成分を感度よく的確に分析することができる。   ADVANTAGE OF THE INVENTION According to this invention, the trace component in the ash of the low ash content of biomass fuel, petroleum coke fuel, or the mixed fuel of coal and petroleum coke as a solid fuel can be analyzed with sufficient sensitivity.

本発明によれば、低灰分燃料の灰分濃度を把握する際、揮発し易い成分と、揮発し難い成分とに分類し、揮発し易い損失率が20%以上の場合には、酸素プラズマ低温灰化処理を用いて、穏やかな条件で灰化処理し、これに対し揮発し難い損失率が20%未満の場合には、マイクロ波低温灰化処理を用いて、灰化処理し、その後液化処理して分析することで、分析精度の向上を図り、しかも分析時間の短縮も図り、且つ分析誤差も大幅に向上することができる。これにより、元素分析結果をプラント運転指標に反映することができる。   According to the present invention, when grasping the ash concentration of the low ash fuel, it is classified into a component that easily volatilizes and a component that does not easily volatilize. If the loss rate is less than 20%, it is ashed using microwave low-temperature ashing, and then liquefied. Thus, the analysis accuracy can be improved, the analysis time can be shortened, and the analysis error can be greatly improved. Thereby, an elemental analysis result can be reflected on a plant operation index.

図1は、実施例1に係る低灰分試料の成分分析方法の分析工程図である。1 is an analysis process diagram of a component analysis method for a low ash sample according to Example 1. FIG. 図2は、実施例2に係る低灰分試料の成分分析方法の分析工程図である。FIG. 2 is an analysis process diagram of the component analysis method for the low ash sample according to the second embodiment. 図3は、実施例3に係る低灰分試料の成分分析方法の分析工程図である。FIG. 3 is an analysis process diagram of the component analysis method for the low ash sample according to the third embodiment. 図4は、実施例4に係る低灰分試料の成分分析方法の分析工程図である。FIG. 4 is an analysis process diagram of the component analysis method for the low ash sample according to Example 4. 図5は、実施例5に係る低灰分試料の成分分析方法の分析工程図である。FIG. 5 is an analysis process diagram of a component analysis method for a low ash sample according to Example 5. 図6は、石炭燃料、石油コークス燃料、バイオマス(広葉樹)燃料の灰中元素含有割合を示す図である。FIG. 6 is a diagram showing the element content ratio in ash of coal fuel, petroleum coke fuel, and biomass (hardwood) fuel.

以下に添付図面を参照して、本発明の好適な実施形態及び実施例を詳細に説明する。なお、この実施形態及び実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Exemplary embodiments and examples of the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment and an Example, Moreover, when there are two or more Examples, what comprises and combines each Example is also included.

本発明に係る低灰分試料の成分分析方法は、石油コークス燃料やバイオマス燃料の燃料組成、灰組成に起因した灰化処理の前述した課題を解決すべく、固形燃料の灰分を分析するに際し、先ず灰分量に着目し、固形燃料を例えば500℃の高温で灰化処理した際の灰分量が、10重量%(好適には5重量%)以下の場合には、従来のJISによる公定法以外の分析手法により分析するようにしている。   The component analysis method of the low ash sample according to the present invention is a fuel composition of petroleum coke fuel and biomass fuel, and in order to solve the above-mentioned problems of ashing treatment caused by the ash composition, Paying attention to the amount of ash, if the amount of ash when ashing the solid fuel at a high temperature of, for example, 500 ° C. is 10% by weight (preferably 5% by weight) or less, Analysis is performed by an analysis method.

さらに、灰分試料中の構成成分の元素が、500℃以上の高温で灰化した際の損失率が20%以上の元素(揮発・固化による損失し易い元素)か、損失率が20%未満の元素(揮発・固化による損失し難い元素)かに分類して、灰化条件を選定するようにしている。   Furthermore, the element of the constituent component in the ash sample is an element having a loss rate of 20% or more when ashing at a high temperature of 500 ° C. or higher (an element that is easily lost due to volatilization / solidification), or the loss rate is less than 20%. The ashing conditions are selected by classifying them into elements (elements that are difficult to lose due to volatilization and solidification).

ここで、500℃以上の高温灰化の条件の一例としては、例えばコークス燃料は500℃で灰化処理し、バイオマス燃料は600℃で灰化処理するのが好ましい。
ここで、灰化温度を500℃以上とするのは、500℃未満では、燃料中の炭化水素分の燃焼分解(灰化)に多大な時間を要し、分析時間が大幅にかかるからである。
灰化温度の上限の温度としては、例えば815℃程度が好ましい。
Here, as an example of conditions for high-temperature ashing at 500 ° C. or higher, for example, coke fuel is preferably ashed at 500 ° C., and biomass fuel is preferably ashed at 600 ° C.
Here, the ashing temperature is set to 500 ° C. or more because if it is less than 500 ° C., it takes a lot of time for the combustion decomposition (ashing) of the hydrocarbon content in the fuel, and it takes a lot of analysis time. .
The upper limit of the ashing temperature is preferably about 815 ° C., for example.

次に、灰化処理した灰分中の元素の挙動により、さらに灰化条件を選定している。
すなわち、灰分試料中の微量成分の元素が、500℃以上の高温で灰化した際の損失率が、20%以上の元素を「揮発・固化による損失し易い元素」とし、損失率が20%未満の元素を「揮発・固化による損失し難い元素」とに分類している。
これは事前に所定温度で灰化した際、燃料中の構成元素について、灰化前と灰化後との差分を確認し、損失率の閾値を20%として予め確認している。
Next, further ashing conditions are selected based on the behavior of the elements in the ash that has been ashed.
That is, the loss rate when elements of trace components in the ash sample are incinerated at a high temperature of 500 ° C. or higher is 20% or more as “elements that are easily lost due to volatilization / solidification”, and the loss rate is 20%. The elements below are classified as “elements that are difficult to lose due to volatilization / solidification”.
When ashing at a predetermined temperature in advance, the difference between the ashing element before ashing and after ashing is confirmed for the constituent elements in the fuel, and the threshold of the loss rate is confirmed in advance as 20%.

そして、損失率が20%以上の元素を分析する際には、固形燃料に対して、酸素プラズマ低温灰化処理を行い、その後液化処理(湿式酸溶解処理)し、液化試料を調整した後、元素分析するようにしている。   And when analyzing an element having a loss rate of 20% or more, after performing an oxygen plasma low-temperature ashing treatment on the solid fuel, and then performing a liquefaction treatment (wet acid dissolution treatment) to prepare a liquefied sample, I do elemental analysis.

この酸素プラズマ低温灰化処理は、酸素プラズマ低化装置を用い、固形燃料の試料(所定量)を分析皿に分取し、酸素を導入しつつ250℃以下の低温灰化を行い、所定量の灰分を得るものである。
ここで、灰化条件の一例としては、100%の酸素ガスを装置内に例えば100mL/min程度で流しながら、150〜250℃で2〜10時間灰化処理を行うのが望ましい。
This oxygen plasma low-temperature ashing process uses an oxygen plasma low-pressure ashing device, dispenses a solid fuel sample (predetermined amount) into an analysis dish, performs low-temperature ashing at 250 ° C. or lower while introducing oxygen, The ash content is obtained.
Here, as an example of the ashing conditions, it is desirable to perform the ashing treatment at 150 to 250 ° C. for 2 to 10 hours while flowing 100% oxygen gas into the apparatus at, for example, about 100 mL / min.

本酸素プラズマ低温灰化処理によれば、揮発し易い損失率が20%以上の元素を分析する場合には、酸素プラズマ低温灰化処理を用いて、穏やかな低温灰化条件で灰化処理することで、灰化のロスがない灰分を得ることができる。   According to the present oxygen plasma low-temperature ashing treatment, when an element having a loss rate of 20% or more that is likely to volatilize is analyzed, the oxygen plasma low-temperature ashing treatment is used to carry out ashing treatment under mild low-temperature ashing conditions. As a result, it is possible to obtain an ash without ashing loss.

これに対し、損失率が20%未満の元素を分析する際には、固形燃料に対して、マイクロ波低温灰化処理(酸素プラズマ低温灰化よりも厳しい灰化)を行い、その後液化処理(湿式酸溶解処理)し、液化試料を調整した後、元素分析するようにしている。   In contrast, when analyzing elements with a loss rate of less than 20%, solid-state fuel is subjected to microwave low-temperature ashing (stricter ashing than oxygen plasma low-temperature ashing), and then liquefaction ( Wet acid dissolution treatment), and after preparing the liquefied sample, elemental analysis is performed.

このマイクロ波低温灰化処理は、マイクロ波乾式灰化装置を用い、固形燃料の試料(所定量)を容器(例えば石英ファイバ−ルツボ又は白金ルツボ等)に分取し、550℃以下で灰化を行い、所定量の灰分を得るものである。   In this microwave low-temperature ashing treatment, a solid fuel sample (predetermined amount) is dispensed into a container (for example, quartz fiber crucible or platinum crucible) using a microwave dry ashing device, and ashed at 550 ° C. or lower. To obtain a predetermined amount of ash.

ここで、灰化条件の一例としては、温度を100℃/minで昇温させた後、550℃以下で30〜60分時間保持して灰化処理を行うのが望ましい。   Here, as an example of the ashing conditions, it is desirable that the ashing process is performed by raising the temperature at 100 ° C./min and holding the temperature at 550 ° C. or lower for 30 to 60 minutes.

このマイクロ波低温灰化において、微量元素の揮発性が高い場合には、一定温度の灰化処理よりも段階的に分けて温度制御すると飛散防止効果があり、好ましい。
一方、灰化温度の低温化、時間短縮法として、試料の流動化(流動層)方式による灰化処理行うことができ、有効となる。
In this microwave low-temperature ashing, if the volatility of trace elements is high, it is preferable to control the temperature stepwise as compared with the ashing treatment at a constant temperature because it has a scattering prevention effect.
On the other hand, as a method for reducing the ashing temperature and shortening the time, ashing can be performed by a fluidization (fluidized bed) method of the sample, which is effective.

マイクロ波低温灰化処理によれば、揮発し難い損失率が20%未満の場合に、マイクロ波低温灰化処理を用いて、酸素プラズマ低温灰化処理よりも高温の条件で灰化処理することで、灰化時間を短縮した灰化処理をすることで、灰分を得ることができる。   According to the microwave low-temperature ashing treatment, when the loss rate that is difficult to volatilize is less than 20%, the microwave low-temperature ashing treatment is used to perform the ashing treatment under conditions higher than the oxygen plasma low-temperature ashing treatment. Thus, the ash content can be obtained by performing the ashing process with a shortened ashing time.

次に、得られた灰の試料調整として、液化処理を行う。
この液化処理においても、灰中の構成元素の割合に応じて、条件を選定している。
第1の液化処理としては、密閉容器に灰分を入れて液化処理するものである。
この密閉型の液化処理は、例えばマイクロ波湿式灰化装置を用いて、密閉型容器内に灰分と酸とを投入し、所定時間マイクロ波処理(例えば13.56MHz、高周波100W)を行いつつ、例えば200℃まで加熱昇温し、液化試料を得るものである。
ここで、酸処理の酸としては、例えば硝酸・濃塩酸、フッ化水素酸等の酸、酸以外の例えば過酸化水素、過塩素酸を用いることができる。
Next, a liquefaction treatment is performed as a sample adjustment of the obtained ash.
Also in this liquefaction treatment, conditions are selected according to the proportion of constituent elements in the ash.
As the first liquefaction treatment, the liquefaction treatment is performed by putting ash in a sealed container.
In this sealed liquefaction treatment, for example, using a microwave wet ashing apparatus, ash and acid are introduced into a sealed container, and microwave treatment (for example, 13.56 MHz, high frequency 100 W) is performed for a predetermined time. For example, the temperature is raised to 200 ° C. to obtain a liquefied sample.
Here, as the acid for acid treatment, for example, acids such as nitric acid / concentrated hydrochloric acid and hydrofluoric acid, and other acids such as hydrogen peroxide and perchloric acid can be used.

本処理によれば、試料調整の液化の際に、密閉型とするので、元素割合が微量成分の場合でも、その飛散を防止することができる。   According to this process, since it is a sealed type when liquefying the sample preparation, even when the element ratio is a trace component, the scattering can be prevented.

第2の液化処理としては、開放容器に灰分を入れて液化処理するものである。
この開放型の液化処理は、マイクロ波湿式灰化装置を用いて、開放型容器内に灰分と酸とを投入し、所定時間マイクロ波処理(例えば13.56MHz、高周波100W)を行いつつ、200℃まで加熱昇温し、液化試料を得るものである。
As a 2nd liquefaction process, ash is put into an open container and it liquefies.
In this open type liquefaction treatment, ash and acid are introduced into an open type container using a microwave wet ashing apparatus, and microwave treatment (for example, 13.56 MHz, high frequency 100 W) is performed for a predetermined time. The temperature is raised to 0 ° C. to obtain a liquefied sample.

この開放型の第2の液化処理は、元素の構成割合が多い場合に適用でき、第1の液化処理よりも液化時間の短縮を図ることができる。   This open-type second liquefaction treatment can be applied when the constituent ratio of the element is large, and the liquefaction time can be shortened as compared with the first liquefaction treatment.

ここで、固形燃料の元素の構成比率の相違について、図6を用いて説明する。
図6は、石炭燃料、石油コークス燃料、バイオマス(広葉樹)燃料の灰中元素含有割合を示す一例であり、横軸に構成元素を縦軸にその割合(%)を示す。
図6に示すように、バイオマス燃料は植物由来であるので、元素としてCa、K等の割合が多いが、石油コークス燃料は鉱物由来であるので、V、Ni等の割合が多い。
Here, the difference in the composition ratio of the elements of the solid fuel will be described with reference to FIG.
FIG. 6 is an example showing the content ratio of elements in ash of coal fuel, petroleum coke fuel, and biomass (hardwood) fuel. The horizontal axis indicates constituent elements and the vertical axis indicates the ratio (%).
As shown in FIG. 6, since the biomass fuel is derived from a plant, the ratio of elements such as Ca and K is large. However, since the petroleum coke fuel is derived from a mineral, the ratio of V, Ni and the like is large.

よって、固形燃料の相違に基づき、主要元素を特定して第1の液化処理か第2の液化処理かを選定する。   Therefore, based on the difference in the solid fuel, the main element is specified and the first liquefaction process or the second liquefaction process is selected.

液化処理後の試料は、構成割合によりそのまま分析装置で分析できる場合と、さらに微量元素の抽出操作が必要となる場合がある。
この微量分析の場合には、液化処理をした後、さらに固相抽出処理を行うようにしている。この固相抽出処理は、例えば分子認識型の樹脂により吸着させた後、所定条件で溶出処理を行い、所望元素を溶出するようにしている。
Depending on the composition ratio, the sample after liquefaction may be analyzed as it is by an analyzer, or it may be necessary to further extract trace elements.
In the case of this microanalysis, after the liquefaction process, a solid phase extraction process is further performed. In this solid-phase extraction process, for example, after adsorbing with a molecular recognition type resin, an elution process is performed under predetermined conditions to elute a desired element.

ここで、固相抽出処理の抽出樹脂としては、例えばイミノ−2−酢酸基を有する分子認識型の固相抽出樹脂を用いるのが好ましい。イミノ−2−酢酸基を有する分子認識型の固相抽出樹脂としては、例えば「InertSEP(商品名)」ジーエルサイエンス社製を例示することができる。   Here, as the extraction resin for the solid phase extraction treatment, for example, a molecular recognition type solid phase extraction resin having an imino-2-acetic acid group is preferably used. As a molecular recognition type solid phase extraction resin having an imino-2-acetic acid group, for example, “InertSEP (trade name)” manufactured by GL Sciences Inc. can be exemplified.

本固相抽出処理を行うことで、液体試料を固相抽出樹脂により、微量成分が濃縮され、微量成分の精度の高い分析が可能となる。   By performing this solid phase extraction treatment, the trace component is concentrated in the liquid sample by the solid phase extraction resin, and the analysis of the trace component with high accuracy becomes possible.

この固相抽出処理の際、主要元素の影響で微量元素の分析精度が低下する場合には、固相部を2段直列に配置した2段固相抽出法により微量成分を濃縮した固相抽出を行うことが好ましい。   If the analysis accuracy of trace elements decreases due to the influence of main elements during this solid-phase extraction process, solid-phase extraction is performed by concentrating trace components by the two-stage solid-phase extraction method in which the solid-phase part is arranged in two stages in series. It is preferable to carry out.

この固相抽出樹脂を直列で2段配置して、液体試料を導入することにより、1段固相部で主要成分が濃縮され、2段固相部で微量成分が濃縮され、主要成分が分離された試料を得ることで、さらに分析感度の高い分析が可能となる。
燃料として例えば石油コークス燃料を分析する場合、1段固相部で主要成分のV、Ni等が抽出され、2段固相部で微量成分のP、Be等が抽出されることとなる。
すなわち、1段固相部で主要元素のV、Niを吸着させ、微量成分は2段固相部へ移行し、2段固相部で吸着される。その後溶出液を流して、目的の微量元素を溶離させ、微量成分の例えばSb、Sn等を抽出する。なお、溶出する際には、水や緩衝液を一度流して、不純物を除去し、クリーンナップ処理を実施するようにしても良い。
By placing the solid phase extraction resin in two stages in series and introducing a liquid sample, the main components are concentrated in the first stage solid phase part, the trace components are concentrated in the second stage solid phase part, and the main components are separated. By obtaining the obtained sample, analysis with higher analytical sensitivity becomes possible.
When, for example, petroleum coke fuel is analyzed as the fuel, the main components V, Ni and the like are extracted in the first stage solid phase portion, and the trace components P, Be and the like are extracted in the second stage solid phase portion.
That is, the main elements V and Ni are adsorbed in the first stage solid phase part, and the trace components are transferred to the second stage solid phase part and adsorbed in the second stage solid phase part. Thereafter, an eluate is flowed to elute the target trace element, and trace components such as Sb and Sn are extracted. When elution is performed, water or a buffer solution may be flowed once to remove impurities, and a cleanup process may be performed.

この液化処理後の液化試料は、公知の元素分析手段により各元素の定性及び定量分析がなされる。
ここで、固形燃料の分析としては、例えば誘導結合プラズマ(ICP:Inductively Coupled Plasma)質量分析装置(以下「ICP質量分析装置」)、ICP発光分析装置、原子吸光分析装置等により行うのが好ましい。
The liquefied sample after the liquefaction treatment is subjected to qualitative and quantitative analysis of each element by a known elemental analysis means.
Here, the analysis of the solid fuel is preferably performed by, for example, an inductively coupled plasma (ICP) mass spectrometer (hereinafter, “ICP mass spectrometer”), an ICP emission spectrometer, an atomic absorption spectrometer, or the like.

本発明によれば、低灰分燃料の灰分濃度を把握する際、固体燃料を揮発し易い成分と、揮発し難い成分とに分類し、揮発し易い損失率が20%以上の場合には、酸素プラズマ低温灰化処理を用いて、穏やかな条件で灰化処理し、これに対し揮発し難い損失率が20%未満の場合には、マイクロ波低温灰化処理を用いて灰化処理し、その後液化処理して分析することで、各構成元素の性状に応じて分析するので、分析の精度を向上する。   According to the present invention, when grasping the ash concentration of the low ash fuel, the solid fuel is classified into a component that easily volatilizes and a component that does not easily volatilize. Using plasma low-temperature ashing, ashing is performed under mild conditions. If the loss rate is less than 20%, the ashing is performed using microwave low-temperature ashing. Since the analysis is performed according to the properties of each constituent element by performing the liquefaction treatment, the accuracy of the analysis is improved.

図1は、実施例1に係る低灰分試料の成分分析方法の分析工程図である。
図1に示すように、本実施例に係る低灰分試料の成分分析方法は、試料受入工程11、試料前処理工程12、酸素プラズマ低温灰化処理工程13、湿式溶解処理工程14、分析試料調整工程15及び元素分析工程16からなる。
本実施例では、損失率が20%以上の元素(揮発・固化による損失し易い元素)を対象とし、構成割合が微量な微量元素の分析が対象となる。
1 is an analysis process diagram of a component analysis method for a low ash sample according to Example 1. FIG.
As shown in FIG. 1, the component analysis method for a low ash sample according to the present embodiment includes a sample receiving step 11, a sample pretreatment step 12, an oxygen plasma low temperature ashing treatment step 13, a wet dissolution treatment step 14, and an analysis sample preparation. It consists of the process 15 and the elemental analysis process 16.
In this embodiment, an element having a loss rate of 20% or more (an element that is easily lost due to volatilization / solidification) is an object, and an analysis of a trace element having a small constituent ratio is an object.

試料前処理工程12では、試料を縮分、粉砕、粒子径調整をJISM8811に準拠して行う。   In the sample pretreatment step 12, the sample is reduced, pulverized, and the particle size is adjusted according to JISM8811.

酸素プラズマ低温灰化処理工程13では、前処理した試料を用いて、酸素プラズマ低温
灰化装置(例えばJ-Science社製「lab JPA300型(商品名)」)により灰化を行う。
先ず、試料(石油コークス)10gを石英皿(又はパイレックス(登録商標)硝子製皿)に均一・滑らかになるように分取する。
灰化条件は、100%酸素ガスを装置内に、100mL/min程度で流しながら200℃で4時間以上保持する。この灰化処理の、0.5gの灰分量が得られた。
従来の灰化時間に較べて時間が1/2短縮することができ、費用の削減を大幅に図ることができた。
なお、灰化試料量は灰分濃度によって決まる為、装置内には複数の石英皿を設置することで、大量灰化が可能となる。
In the oxygen plasma low-temperature ashing treatment step 13, ashing is performed using a pretreated sample using an oxygen plasma low-temperature ashing apparatus (for example, “lab JPA300 type (trade name)” manufactured by J-Science).
First, 10 g of a sample (petroleum coke) is fractionated into a quartz dish (or a Pyrex (registered trademark) glass dish) so as to be uniform and smooth.
As ashing conditions, 100% oxygen gas is allowed to flow in the apparatus at about 100 mL / min for 4 hours or more at 200 ° C. An ash content of 0.5 g of this ashing treatment was obtained.
Compared with the conventional ashing time, the time can be shortened by 1/2, and the cost can be greatly reduced.
Since the amount of ashed sample is determined by the ash concentration, a large amount of ashing can be achieved by installing a plurality of quartz dishes in the apparatus.

湿式溶解処理工程14は、乾式灰化した灰を溶液化する為、マイクロ波湿式灰化装置(例えばCEM/Japan社製「MARS6(商品名)」)にテフロン(登録商標)製密閉ベッセル(φ20mm×100mmH)に、0.5g灰分と硝酸10mlを加え、15分マイクロ波(13.56MHz、高周波100W)にて200℃に加熱昇温させた。
なお、溶液化が不完全の場合には、酸種、液量を適宜選定する。密閉タイプの為、揮発し易い微量元素の回収も確実液化処理できる。
In the wet dissolution treatment step 14, a Teflon (registered trademark) sealed vessel (φ20 mm) is placed in a microwave wet ashing apparatus (for example, “MARS6 (trade name)” manufactured by CEM / Japan) in order to convert dry ashed ash into a solution. × 100 mmH), 0.5 g ash and 10 ml of nitric acid were added, and the temperature was raised to 200 ° C. with microwaves (13.56 MHz, high frequency 100 W) for 15 minutes.
In addition, when the solution is incomplete, the acid species and the liquid amount are appropriately selected. Because of the hermetically sealed type, trace elements that easily volatilize can be reliably liquefied.

分析試料調整工程15では、完全液化済みの液を0.1Nの硝酸溶液で希釈定容(250ml)し、分析試料の調整を行う。元素分析工程16では、例えばICP質量分析計で微量成分の分析を行う。
ここで、ICP質量分析装置としては、例えばアジレント・テクノロジ-社の「ICP-MS 7500CX型(商品名)」を用いて分析した。
ICP質量分析装置の計代表的な分析条件としては、例えば高周波出力:1.6KW、トーチ観測高:7.5mm、キャリアガス:0.9L/min、メイクアップガス:0.3L/min、リアクションガス(Heガス:5ml/min、H2ガス:4.5ml/min)で行った。
In the analytical sample preparation step 15, the completely liquefied liquid is diluted and fixed in volume (250 ml) with a 0.1N nitric acid solution, and the analytical sample is prepared. In the elemental analysis step 16, a trace component is analyzed by, for example, an ICP mass spectrometer.
Here, as an ICP mass spectrometer, for example, analysis was performed using “ICP-MS 7500CX type (trade name)” manufactured by Agilent Technologies.
Typical analysis conditions of the ICP mass spectrometer include, for example, high frequency output: 1.6 kW, torch observation height: 7.5 mm, carrier gas: 0.9 L / min, makeup gas: 0.3 L / min, reaction Gas (He gas: 5 ml / min, H 2 gas: 4.5 ml / min) was used.

実施例1の分析によれば、例えば石油コークス燃料では、元素としてBaを、バイオマス燃料では、元素としてB、Ba、Pbを分析することができた。   According to the analysis in Example 1, for example, petroleum coke fuel could analyze Ba as an element, and biomass fuel could analyze B, Ba, and Pb as elements.

図2は、実施例2に係る低灰分試料の成分分析方法の分析工程図である。
図2に示すように、本実施例に係る低灰分試料の成分分析方法は、試料受入工程11、試料前処理工程12、酸素プラズマ低温灰化処理工程13、湿式溶解処理工程14、固相抽出工程17、分析試料調整工程15及び元素分析工程16からなる。
本実施例では、損失率が20%以上の元素(揮発・固化による損失し易い元素)を対象とし、構成割合が極微量な微量元素の分析が対象となる。
FIG. 2 is an analysis process diagram of the component analysis method for the low ash sample according to the second embodiment.
As shown in FIG. 2, the component analysis method for the low ash sample according to the present embodiment includes a sample receiving step 11, a sample pretreatment step 12, an oxygen plasma low-temperature ashing treatment step 13, a wet dissolution treatment step 14, and a solid phase extraction. The process 17 includes an analysis sample preparation process 15 and an element analysis process 16.
In this embodiment, an element with a loss rate of 20% or more (an element that is easily lost due to volatilization / solidification) is targeted, and an analysis of trace elements with a very small constituent ratio is targeted.

試料前処理工程12では、試料を縮分、粉砕、粒子径調整をJISM8811に準拠して行う。   In the sample pretreatment step 12, the sample is reduced, pulverized, and the particle size is adjusted according to JISM8811.

酸素プラズマ低温灰化処理工程13では、前処理した試料を用いて、酸素プラズマ低温
灰化装置(例えばJ-Science社製「lab JPA300型(商品名)」)により灰化を行う。
先ず、試料(石油コークス)10gを石英皿(又はパイレックス(登録商標)硝子製皿)に均一・滑らかになるように分取する。
灰化条件は、100%酸素ガスを装置内に、100mL/min程度で流しながら200℃で4時間以上保持する。この灰化処理の、0.5gの灰分量が得られた。
従来の灰化時間に較べて時間が1/2短縮することができ、費用の削減を大幅に図ることができた。
なお、灰化試料量は灰分濃度によって決まる為、装置内には複数の石英皿を設置することで、大量灰化が可能となる。
In the oxygen plasma low-temperature ashing treatment step 13, ashing is performed using a pretreated sample using an oxygen plasma low-temperature ashing apparatus (for example, “lab JPA300 type (trade name)” manufactured by J-Science).
First, 10 g of a sample (petroleum coke) is fractionated into a quartz dish (or a Pyrex (registered trademark) glass dish) so as to be uniform and smooth.
As ashing conditions, 100% oxygen gas is allowed to flow in the apparatus at about 100 mL / min for 4 hours or more at 200 ° C. An ash content of 0.5 g of this ashing treatment was obtained.
Compared with the conventional ashing time, the time can be shortened by 1/2, and the cost can be greatly reduced.
Since the amount of ashed sample is determined by the ash concentration, a large amount of ashing can be achieved by installing a plurality of quartz dishes in the apparatus.

湿式溶解処理工程14は、乾式灰化した灰を溶液化する為、マイクロ波湿式灰化装置(例えばCEM/Japan社製「MARS6(商品名)」)にテフロン(登録商標)製密閉ベッセル(φ20mm×100mmH)に、0.5g灰分と硝酸10mlを加え、15分マイクロ波(13.56MHz、高周波100w)にて200℃に加熱昇温させた。
なお、溶液化が不完全の場合には、酸種、液量を適宜選定する。密閉タイプの為、揮発し易い微量元素の回収も確実液化処理できる。
In the wet dissolution treatment step 14, a Teflon (registered trademark) sealed vessel (φ20 mm) is placed in a microwave wet ashing apparatus (for example, “MARS6 (trade name)” manufactured by CEM / Japan) in order to convert dry ashed ash into a solution. × 100 mmH), 0.5 g ash and 10 ml of nitric acid were added, and the temperature was raised to 200 ° C. by microwave for 15 minutes (13.56 MHz, high frequency 100 w).
In addition, when the solution is incomplete, the acid species and the liquid amount are appropriately selected. Because of the hermetically sealed type, trace elements that easily volatilize can be reliably liquefied.

固相抽出工程17は、実施例1に追加する工程であり、液化試料を固相抽出法(分子認識型)の2段固相抽出法により固相抽出して濃縮し、分析試料の調整をした。
この結果、固相抽出により、従来よりも2〜10倍の元素濃縮が可能となり、従来の分析定量下限よりもさらに低い(1/2〜1/10)以下の分析が可能となった。
この固相抽出により、石油コークス燃料の場合では、主要元素の妨害成分(V、Ni、S)の影響を受けずに、高濃度濃縮が可能となり極微量成分の検出が可能となる。
The solid phase extraction step 17 is a step added to Example 1, in which the liquefied sample is solid phase extracted and concentrated by the two-stage solid phase extraction method of the solid phase extraction method (molecular recognition type) to adjust the analysis sample. did.
As a result, the solid-phase extraction enabled the element concentration to be 2 to 10 times that of the conventional method, and the analysis lower than the conventional analytical quantification lower limit (1/2 to 1/10) or less was enabled.
By this solid phase extraction, in the case of petroleum coke fuel, it is possible to concentrate at a high concentration without being affected by the disturbing components (V, Ni, S) of the main elements, and it is possible to detect a trace amount component.

分析試料調整工程15では、完全液化済みの液を0.1Nの硝酸溶液で希釈定容(250ml)し、分析試料の調整を行う。元素分析工程16では、例えばICP質量分析計で微量成分の分析を行う。
ICP質量分析計としては、例えばアジレント・テクノロジ-社の「ICP-MS 7500CX型(商品名)」で分析した。
ICP質量分析計代表的な分析条件として、例えば高周波出力:1.6KW、トーチ観測高:7.5mm、キャリアガス:0.9L/min、メイクアップガス:0.3L/min、リアクションガス(Heガス:5ml/min、H2ガス:4.5ml/min)で行った。
In the analytical sample preparation step 15, the completely liquefied liquid is diluted and fixed in volume (250 ml) with a 0.1N nitric acid solution, and the analytical sample is prepared. In the elemental analysis step 16, a trace component is analyzed by, for example, an ICP mass spectrometer.
As an ICP mass spectrometer, for example, “ICP-MS 7500CX type (trade name)” manufactured by Agilent Technologies was used.
As typical analysis conditions of the ICP mass spectrometer, for example, high frequency output: 1.6 KW, torch observation height: 7.5 mm, carrier gas: 0.9 L / min, makeup gas: 0.3 L / min, reaction gas (He Gas: 5 ml / min, H 2 gas: 4.5 ml / min).

実施例2の分析によれば、例えば石油コークス燃料では、元素としてSb、Sn、As、Se、Pb、Bを、バイオマス燃料では、元素としてSb、Sn、As、Seを分析することができた。   According to the analysis of Example 2, for example, petroleum coke fuel could analyze Sb, Sn, As, Se, Pb, and B as elements, and biomass fuel could analyze Sb, Sn, As, and Se as elements. .

図3は、実施例3に係る低灰分試料の成分分析方法の分析工程図である。
図3に示すように、本実施例に係る低灰分試料の成分分析方法は、試料受入工程11、試料前処理工程12、マイクロ波低温灰化処理工程18、湿式溶解処理工程14、分析試料調整工程15及び元素分析工程16からなる。
本実施例では、損失率が20%未満の元素(揮発・固化による損失し難い元素)を対象とし、構成割合が微量な微量元素の分析が対象となる。
FIG. 3 is an analysis process diagram of the component analysis method for the low ash sample according to the third embodiment.
As shown in FIG. 3, the component analysis method of the low ash sample according to the present embodiment includes a sample receiving step 11, a sample pretreatment step 12, a microwave low temperature ashing treatment step 18, a wet dissolution treatment step 14, and an analysis sample preparation. It consists of the process 15 and the elemental analysis process 16.
In the present embodiment, an element with a loss rate of less than 20% (an element that is difficult to lose due to volatilization / solidification) is targeted, and the analysis of trace elements with a very small constituent ratio is targeted.

試料前処理工程12では、試料を縮分、粉砕、粒子径調整をJISM8811に準拠して行う。   In the sample pretreatment step 12, the sample is reduced, pulverized, and the particle size is adjusted according to JISM8811.

マイクロ波低温灰化処理工程18では、前処理した試料を用いて、マイクロ波乾式灰化装置(CEM-Japan社製、「Phenix型(商品名)」)に試料(石油コークス)50gを石英ファイバ型ルツボ(100mL)に分取した。灰化装置は100℃/minで昇温させ、灰化条件マイクロ波(13.56MHz、高周波100w)にて、500℃で50分とした。この灰化処理の結果、0.5gの灰分量が得られた。従来の灰化時間より1/5程度の灰化時間の短縮が可能となり、灰化費用の削減に繋がった。
なお、灰化試料量は灰分濃度によって決まる為、装置内には複数の石英皿を設置することで、大量灰化が可能となる。
In the microwave low-temperature ashing treatment step 18, 50 g of a sample (petroleum coke) is added to a quartz fiber in a microwave dry ashing device (manufactured by CEM-Japan, “Phenix type (trade name)”) using the pretreated sample. Aliquoted into a type crucible (100 mL). The ashing device was heated at 100 ° C./min, and ashing conditions were microwaved (13.56 MHz, high frequency 100 w) at 500 ° C. for 50 minutes. As a result of the ashing treatment, an ash content of 0.5 g was obtained. The ashing time can be shortened by about 1/5 from the conventional ashing time, which leads to a reduction in ashing cost.
Since the amount of ashed sample is determined by the ash concentration, a large amount of ashing can be achieved by installing a plurality of quartz dishes in the apparatus.

湿式溶解処理工程14は、乾式灰化した灰を溶液化する為、マイクロ波湿式灰化装置(例えばCEM/Japan社製「MARS6(商品名)」)にテフロン(登録商標)製密閉ベッセル(φ20mm×100mmH)に、0.5g灰分と硝酸10mlを加え、15分マイクロ波(13.56MHz、高周波100w)にて200℃に加熱昇温させた。
なお、溶液化が不完全の場合には、酸種、液量を適宜選定する。密閉タイプの為、揮発し易い微量元素の回収も確実に液化処理できる。
In the wet dissolution treatment step 14, a Teflon (registered trademark) sealed vessel (φ20 mm) is placed in a microwave wet ashing apparatus (for example, “MARS6 (trade name)” manufactured by CEM / Japan) in order to convert dry ashed ash into a solution. × 100 mmH), 0.5 g ash and 10 ml of nitric acid were added, and the temperature was raised to 200 ° C. by microwave for 15 minutes (13.56 MHz, high frequency 100 w).
In addition, when the solution is incomplete, the acid species and the liquid amount are appropriately selected. Because of the hermetically sealed type, it is possible to reliably liquefy the recovery of trace elements that tend to volatilize.

分析試料調整工程15では、完全液化済みの液を0.1Nの硝酸溶液で希釈定容(250ml)し、分析試料の調整を行う。元素分析工程16では、例えばICP質量分析計で微量成分の分析を行う。
ここで、ICP質量分析計としては、例えばアジレント・テクノロジ-社の「ICP-MS 7500CX型(商品名)」を用いて分析した。
ICP質量分析計代表的な分析条件としては、例えば高周波出力:1.6KW、トーチ観測高:7.5mm、キャリアガス:0.9L/min、メイクアップガス:0.3L/min、リアクションガス(Heガス:5ml/min、H2ガス:4.5ml/min)で行った。
In the analytical sample preparation step 15, the completely liquefied liquid is diluted and fixed in volume (250 ml) with a 0.1N nitric acid solution, and the analytical sample is prepared. In the elemental analysis step 16, a trace component is analyzed by, for example, an ICP mass spectrometer.
Here, as an ICP mass spectrometer, for example, analysis was performed using “ICP-MS 7500CX type (trade name)” manufactured by Agilent Technologies.
Typical analysis conditions of the ICP mass spectrometer are, for example, high frequency output: 1.6 kW, torch observation height: 7.5 mm, carrier gas: 0.9 L / min, makeup gas: 0.3 L / min, reaction gas ( He gas: 5 ml / min, H 2 gas: 4.5 ml / min).

実施例3の分析によれば、例えば石油コークス燃料では、元素としてNa、K、Ca、Mg、Co、Zn、Si、Al、Fe、Ti、Li、S、Mo、Cr、Mn、Cu、Zr、Sr、Agを、バイオマス燃料では、元素としてNa、Mg、P、Zn、Cd、Si、Al、Fe、Ti、Li、S、Mo、Cr、Mn、Cu、Zr、Sr、Agを分析することができた。   According to the analysis of Example 3, for example, in petroleum coke fuel, the elements are Na, K, Ca, Mg, Co, Zn, Si, Al, Fe, Ti, Li, S, Mo, Cr, Mn, Cu, Zr. In the case of biomass fuel, Na, Mg, P, Zn, Cd, Si, Al, Fe, Ti, Li, S, Mo, Cr, Mn, Cu, Zr, Sr, and Ag are analyzed as biomass elements. I was able to.

図4は、実施例4に係る低灰分試料の成分分析方法の分析工程図である。
図4に示すように、本実施例に係る低灰分試料の成分分析方法は、試料受入工程11、試料前処理工程12、マイクロ波低温灰化処理工程18、湿式溶解処理工程14、分析試料調整工程15及び元素分析工程16からなる。
本実施例では、損失率が20%未満の元素(揮発・固化による損失し難い元素)を対象とし、構成割合が主要な元素の分析が対象となる。
FIG. 4 is an analysis process diagram of the component analysis method for the low ash sample according to Example 4.
As shown in FIG. 4, the component analysis method of the low ash sample according to the present embodiment includes a sample receiving step 11, a sample pretreatment step 12, a microwave low-temperature ashing treatment step 18, a wet dissolution treatment step 14, and an analysis sample preparation. It consists of the process 15 and the elemental analysis process 16.
In this example, an element with a loss rate of less than 20% (an element that is difficult to lose due to volatilization / solidification) is targeted, and analysis of elements with a major constituent ratio is targeted.

試料前処理工程12では、試料を縮分、粉砕、粒子径調整をJISM8811に準拠して行う。   In the sample pretreatment step 12, the sample is reduced, pulverized, and the particle size is adjusted according to JISM8811.

マイクロ波低温灰化処理工程18では、前処理した試料を用いて、マイクロ波乾式灰化装置(CEM-Japan社製、「Phenix型(商品名)」に試料(石油コークス)
50gを石英ファイバ-ルツボ(100mL)に分取した。灰化装置は100℃/minで昇温させ、灰化条件マイクロ波(13.56MHz、高周波100w)にて、500℃で50分とした。この灰化処理の結果、0.5gの灰分量が得られた。従来の灰化時間より1/5程度の灰化時間の短縮が可能となり、灰化費用の削減に繋がった。
なお、灰化試料量は灰分濃度によって決まる為、装置内には複数の石英皿を設置することで、大量灰化が可能となる。
In the microwave low-temperature ashing treatment step 18, a sample (petroleum coke) is added to a microwave dry ashing device (manufactured by CEM-Japan, “Phenix type (trade name)”) using the pretreated sample.
50 g was dispensed into a quartz fiber crucible (100 mL). The ashing device was heated at 100 ° C./min, and ashing conditions were microwaved (13.56 MHz, high frequency 100 w) at 500 ° C. for 50 minutes. As a result of the ashing treatment, an ash content of 0.5 g was obtained. The ashing time can be shortened by about 1/5 from the conventional ashing time, which leads to a reduction in ashing cost.
Since the amount of ashed sample is determined by the ash concentration, a large amount of ashing can be achieved by installing a plurality of quartz dishes in the apparatus.

湿式溶解処理工程14は、乾式灰化した灰を溶液化する為、マイクロ波湿式灰化装置(例えばCEM/Japan社製「MARS6(商品名)」)にテフロン(登録商標)製開放ベッセル(φ20mm×100mmH)に、0.5g灰分と硝酸10mlを加え、15分マイクロ波(13.56MHz、高周波100w)にて200℃に加熱昇温させた。
なお、溶液化が不完全の場合には、酸種、液量を適宜選定する。
In the wet dissolution treatment step 14, an open vessel (φ20 mm) made of Teflon (registered trademark) is used in a microwave wet ashing apparatus (for example, “MARS6 (trade name)” manufactured by CEM / Japan) in order to make dry ashed ash into a solution. × 100 mmH), 0.5 g ash and 10 ml of nitric acid were added, and the temperature was raised to 200 ° C. by microwave for 15 minutes (13.56 MHz, high frequency 100 w).
In addition, when the solution is incomplete, the acid species and the liquid amount are appropriately selected.

分析試料調整工程15では、完全液化済みの液を0.1Nの硝酸溶液で希釈定容(250ml)し、分析試料の調整を行う。元素分析工程16では、例えばICP質量分析計で微量成分の分析を行う。
ここで、ICP質量分析計としては、例えばアジレント・テクノロジ-社の「ICP-MS 7500CX型(商品名)」を用いて分析した。
ICP質量分析計代表的な分析条件としては、例えば高周波出力:1.6KW、トーチ観測高:7.5mm、キャリアガス:0.9L/min、メイクアップガス:0.3L/min、リアクションガス(Heガス:5ml/min、H2ガス:4.5ml/min)で行った。
In the analytical sample preparation step 15, the completely liquefied liquid is diluted and fixed in volume (250 ml) with a 0.1N nitric acid solution, and the analytical sample is prepared. In the elemental analysis step 16, a trace component is analyzed by, for example, an ICP mass spectrometer.
Here, as an ICP mass spectrometer, for example, analysis was performed using “ICP-MS 7500CX type (trade name)” manufactured by Agilent Technologies.
Typical analysis conditions of the ICP mass spectrometer are, for example, high frequency output: 1.6 kW, torch observation height: 7.5 mm, carrier gas: 0.9 L / min, makeup gas: 0.3 L / min, reaction gas ( He gas: 5 ml / min, H 2 gas: 4.5 ml / min).

実施例4の分析によれば、例えば石油コークス燃料では、主要元素としてNi、Vを、バイオマス燃料では、主要元素としてK、Caを分析することができた。   According to the analysis of Example 4, for example, petroleum coke fuel could analyze Ni and V as main elements, and biomass fuel could analyze K and Ca as main elements.

図5は、実施例5に係る低灰分試料の成分分析方法の分析工程図である。
図5に示すように、本実施例に係る低灰分試料の成分分析方法は、試料受入工程11、試料前処理工程12、マイクロ波低温灰化処理工程18、湿式溶解処理工程14、固相抽出工程17、分析試料調整工程15及び元素分析工程16からなる。
本実施例では、損失率が20%未満の元素(揮発・固化による損失し難い元素)を対象とし、構成割合が極微量元素の分析が対象となる。
FIG. 5 is an analysis process diagram of a component analysis method for a low ash sample according to Example 5.
As shown in FIG. 5, the component analysis method of the low ash sample according to the present embodiment includes a sample receiving step 11, a sample pretreatment step 12, a microwave low temperature ashing treatment step 18, a wet dissolution treatment step 14, a solid phase extraction. The process 17 includes an analysis sample preparation process 15 and an element analysis process 16.
In this example, an element with a loss rate of less than 20% (an element that is difficult to lose due to volatilization / solidification) is targeted, and analysis of trace elements with a constituent ratio is targeted.

試料前処理工程12では、試料を縮分、粉砕、粒子径調整をJISM8811に準拠して行う。   In the sample pretreatment step 12, the sample is reduced, pulverized, and the particle size is adjusted according to JISM8811.

マイクロ波低温灰化処理工程18では、前処理した試料を用いて、マイクロ波乾式灰化装置(CEM-Japan社製、「Phenix型(商品名)」)に試料(石油コークス)50gを石英ファイバ-ルツボ(100mL)に分取した。灰化装置は100℃/minで昇温させ、灰化条件マイクロ波(13.56MHz、高周波100w)にて、500℃で50分とした。この灰化処理の結果、0.5gの灰分量が得られた。従来の灰化時間より1/5程度の灰化時間の短縮が可能となり、灰化費用の削減に繋がった。
なお、灰化試料量は灰分濃度によって決まる為、装置内には複数の石英皿を設置することで、大量灰化が可能となる。
In the microwave low-temperature ashing treatment step 18, 50 g of a sample (petroleum coke) is added to a quartz fiber in a microwave dry ashing device (manufactured by CEM-Japan, “Phenix type (trade name)”) using the pretreated sample. -Aliquoted into crucible (100 mL). The ashing device was heated at 100 ° C./min, and ashing conditions were microwaved (13.56 MHz, high frequency 100 w) at 500 ° C. for 50 minutes. As a result of the ashing treatment, an ash content of 0.5 g was obtained. The ashing time can be shortened by about 1/5 from the conventional ashing time, which leads to a reduction in ashing cost.
Since the amount of ashed sample is determined by the ash concentration, a large amount of ashing can be achieved by installing a plurality of quartz dishes in the apparatus.

湿式溶解処理工程14は、乾式灰化した灰を溶液化する為、マイクロ波湿式灰化装置(例えばCEM/Japan社製「MARS6(商品名)」)にテフロン(登録商標)製密閉ベッセル(φ20mm×100mmH)に、0.5g灰分と硝酸10mlを加え、15分マイクロ波(13.56MHz、高周波100w)にて200℃に加熱昇温させた。
なお、溶液化が不完全の場合には、酸種、液量を適宜選定する。密閉タイプの為、揮発し易い微量元素の回収も確実に液化処理できる。
In the wet dissolution treatment step 14, a Teflon (registered trademark) sealed vessel (φ20 mm) is placed in a microwave wet ashing apparatus (for example, “MARS6 (trade name)” manufactured by CEM / Japan) in order to convert dry ashed ash into a solution. × 100 mmH), 0.5 g ash and 10 ml of nitric acid were added, and the temperature was raised to 200 ° C. by microwave for 15 minutes (13.56 MHz, high frequency 100 w).
In addition, when the solution is incomplete, the acid species and the liquid amount are appropriately selected. Because of the hermetically sealed type, it is possible to reliably liquefy the recovery of trace elements that tend to volatilize.

固相抽出工程17は、実施例4に追加する工程であり、液化試料を固相抽出法(分子認識型)の2段固相抽出法により固相抽出して濃縮し、分析試料の調整をした。
この結果、固相抽出により、従来よりも2〜10倍の元素濃縮が可能となり、従来の分析定量下限よりもさらに低い(1/2〜1/10)以下の分析が可能となった。 この固相抽出により、石油コークス燃料の場合では、主要元素の妨害成分(V、Ni、S)の影響を受けずに、高濃度濃縮が可能となり極微量成分の検出が可能となる。
The solid phase extraction step 17 is a step added to Example 4, in which the liquefied sample is subjected to solid phase extraction by the solid phase extraction method (molecular recognition type) two-stage solid phase extraction method and concentrated to adjust the analysis sample. did.
As a result, the solid-phase extraction enabled the element concentration to be 2 to 10 times that of the conventional method, and the analysis lower than the conventional analytical quantification lower limit (1/2 to 1/10) or less was enabled. By this solid phase extraction, in the case of petroleum coke fuel, it is possible to concentrate at a high concentration without being affected by the disturbing components (V, Ni, S) of the main elements, and it is possible to detect a trace amount component.

分析試料調整工程15では、完全液化済みの液を0.1Nの硝酸溶液で希釈定容(250ml)し、分析試料の調整を行う。元素分析工程16では、例えばICP質量分析計で微量成分の分析を行う。
ICP質量分析計としては、例えばアジレント・テクノロジ-社の「ICP-MS 7500CX型(商品名)」で分析した。
ICP質量分析計代表的な分析条件として、例えば高周波出力:1.6KW、トーチ観測高:7.5mm、キャリアガス:0.9L/min、メイクアップガス:0.3L/min、リアクションガス(Heガス:5ml/min、H2ガス:4.5ml/min)で行った。
In the analytical sample preparation step 15, the completely liquefied liquid is diluted and fixed in volume (250 ml) with a 0.1N nitric acid solution, and the analytical sample is prepared. In the elemental analysis step 16, a trace component is analyzed by, for example, an ICP mass spectrometer.
As an ICP mass spectrometer, for example, “ICP-MS 7500CX type (trade name)” manufactured by Agilent Technologies was used.
As typical analysis conditions of the ICP mass spectrometer, for example, high frequency output: 1.6 KW, torch observation height: 7.5 mm, carrier gas: 0.9 L / min, makeup gas: 0.3 L / min, reaction gas (He Gas: 5 ml / min, H 2 gas: 4.5 ml / min).

実施例5の分析によれば、例えば石油コークス燃料では、元素としてP、Be、Cdを、バイオマス燃料では、元素としてBe、Co、Ni、Vを分析することができた。   According to the analysis of Example 5, for example, petroleum coke fuel could analyze P, Be, and Cd as elements, and biomass fuel could analyze Be, Co, Ni, and V as elements.

このように、実施例1乃至5を組合せることで、燃料中の灰分濃度を把握することができ、特に微量元素分析時間の短縮、分析費用の削減、分析値バラツキの縮小は図ることができる。このように灰分の元素の挙動に見合った分析手法を組み合わせることで、分析時間は従来の7日/件から2日/件と5日/件も短縮でき、しかも分析誤差も10%以内(従来は50%)に収まり、分析精度の向上を図ることができた。
これにより、元素分析結果をプラント運転指標に反映することができる。
As described above, by combining the first to fifth embodiments, the ash concentration in the fuel can be grasped, and in particular, the trace element analysis time can be shortened, the analysis cost can be reduced, and the analysis value variation can be reduced. . By combining analysis methods that match the behavior of ash elements in this way, the analysis time can be reduced from 7 days / cases to 2 days / cases and 5 days / cases, and the analysis error is within 10% (conventional) Was 50%), and the analysis accuracy could be improved.
Thereby, an elemental analysis result can be reflected on a plant operation index.

11 試料受入工程
12 試料前処理工程
13 酸素プラズマ低温灰化処理工程
14 湿式溶解処理工程
15 分析試料調整工程
16 元素分析工程
11 Sample acceptance process 12 Sample pretreatment process 13 Oxygen plasma low-temperature ashing process 14 Wet dissolution process 15 Analytical sample preparation process 16 Elemental analysis process

Claims (8)

固形燃料を灰化処理した際の灰分量が、10重量%以下の固形燃料を用い、
灰分試料中の構成成分の元素が、500℃以上の高温で灰化した際の損失率が20%以上の元素か、損失率が20%未満の元素かに分類し、
1)損失率が20%以上の元素を分析する際には、
前記固形燃料に対して、酸素プラズマ低温灰化処理を行い、その後液化処理し、
液化試料を調整した後、元素分析すると共に、
2)損失率が20%未満の元素を分析する際には、
前記固形燃料に対して、マイクロ波低温灰化処理を行い、その後液化処理し、
液化試料を調整した後、元素分析することを特徴とする低灰分試料の成分分析方法。
Using solid fuel having an ash content of 10% by weight or less when ashing the solid fuel,
The element of the constituent component in the ash sample is classified into an element having a loss rate of 20% or more when ashing at a high temperature of 500 ° C. or higher, or an element having a loss rate of less than 20%.
1) When analyzing elements with a loss rate of 20% or more,
The solid fuel is subjected to oxygen plasma low-temperature ashing, and then liquefied,
After adjusting the liquefied sample, elemental analysis,
2) When analyzing elements with a loss rate of less than 20%,
The solid fuel is subjected to microwave low-temperature ashing treatment, and then liquefied,
A component analysis method for a low ash sample, wherein elemental analysis is performed after preparing a liquefied sample.
請求項1において、
前記酸素プラズマ低温灰化処理が、
前記固形燃料の試料を分析皿に分取し、
酸素を流しながら250℃以下の低温灰化を所定時間行い、所定量の灰分を得ることを特徴とする低灰分試料の成分分析方法。
In claim 1,
The oxygen plasma low-temperature ashing treatment is
Sample the solid fuel into an analysis dish,
A component analysis method for a low ash sample, characterized in that low temperature ashing at 250 ° C. or lower is performed for a predetermined time while flowing oxygen to obtain a predetermined amount of ash.
請求項1において、
前記マイクロ波低温灰化処理が、
前記固形燃料の試料を容器に分取し、
550℃以下でマイクロ波低温灰化を所定時間行い、所定量の灰分を得ることを特徴とする低灰分試料の成分分析方法。
In claim 1,
The microwave low-temperature ashing treatment is
Dispensing a sample of the solid fuel into a container;
A component analysis method for a low ash sample, characterized by performing microwave low-temperature ashing at a temperature of 550 ° C. or lower for a predetermined time to obtain a predetermined amount of ash.
請求項1において、
液化処理が、密閉型容器内に灰分と酸とを投入し、所定時間マイクロ波処理を行いつつ、加熱し、液化試料を得ることを特徴とする低灰分試料の成分分析方法。
In claim 1,
A component analysis method for a low ash sample, characterized in that liquefaction is performed by putting ash and acid into a sealed container and heating the mixture while performing microwave treatment for a predetermined time to obtain a liquefied sample.
請求項1において、
液化処理が、開放型容器内に灰分と酸とを投入し、所定時間マイクロ波処理を行いつつ、加熱し、液化試料を得ることを特徴とする低灰分試料の成分分析方法。
In claim 1,
A component analysis method for a low ash sample, characterized in that liquefaction is performed by putting ash and acid into an open container and heating the sample while performing microwave treatment for a predetermined time to obtain a liquefied sample.
請求項4又は5において、
液化処理をした後、固相抽出処理を行うことを特徴とする低灰分試料の成分分析方法。
In claim 4 or 5,
A component analysis method for a low ash sample, characterized by performing solid phase extraction after liquefaction.
請求項6において、
前記固相抽出処理が、2段固相抽出法により行うことを特徴とする低灰分試料の成分分析方法。
In claim 6,
A component analysis method for a low ash sample, wherein the solid phase extraction treatment is performed by a two-stage solid phase extraction method.
請求項1乃至7のいずれか一つにおいて、
前記固形燃料が、バイオマス燃料又は石油コークス燃料又は石炭及び石油コークスの混合燃料であることを特徴とする低灰分試料の成分分析方法。
In any one of Claims 1 thru | or 7,
A method for analyzing a component of a low ash sample, wherein the solid fuel is biomass fuel, petroleum coke fuel, or a mixed fuel of coal and petroleum coke.
JP2013213139A 2013-10-10 2013-10-10 Component analysis method for low ash samples Active JP6143632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213139A JP6143632B2 (en) 2013-10-10 2013-10-10 Component analysis method for low ash samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213139A JP6143632B2 (en) 2013-10-10 2013-10-10 Component analysis method for low ash samples

Publications (2)

Publication Number Publication Date
JP2015075439A JP2015075439A (en) 2015-04-20
JP6143632B2 true JP6143632B2 (en) 2017-06-07

Family

ID=53000401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213139A Active JP6143632B2 (en) 2013-10-10 2013-10-10 Component analysis method for low ash samples

Country Status (1)

Country Link
JP (1) JP6143632B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245991A (en) * 1975-10-08 1977-04-12 Rikagaku Kenkyusho Method and device for drying and incinerating organic samples
US4474621A (en) * 1982-06-16 1984-10-02 International Telephone And Telegraph Corporation Method for low temperature ashing in a plasma
JPS6120863A (en) * 1984-07-09 1986-01-29 Mitsubishi Heavy Ind Ltd Simplified analysis of vanadium
GB2227397B (en) * 1989-01-18 1993-10-20 Cem Corp Microwave ashing and analytical apparatuses, components and processes
JPH052050U (en) * 1991-06-25 1993-01-14 三菱マテリアル株式会社 Sample ashing tool
SE500480C2 (en) * 1991-08-09 1994-07-04 Ahmad Reza Shirazi When sinking solid fuels under low temperature
US5252274A (en) * 1992-04-13 1993-10-12 Cem Corporation Process for manufacture of containers for materials being heated
JP3241213B2 (en) * 1994-08-31 2001-12-25 京セラ株式会社 Acid decomposition method of hardly decomposable sample by microwave heating
JP2000024615A (en) * 1998-07-10 2000-01-25 Meidensha Corp Treatment of material containing harmful component by using alkali substance
JP2001324427A (en) * 2000-05-16 2001-11-22 Nippon Steel Corp Method for high accuracy boron analysis in iron and steel
JP2002310864A (en) * 2001-04-10 2002-10-23 Fujikura Ltd Decomposing method for resin
JP2005291970A (en) * 2004-03-31 2005-10-20 Chugoku Electric Power Co Inc:The Quantitative analyzing method of boron
JP4945298B2 (en) * 2007-04-20 2012-06-06 株式会社日立製作所 Data collection method and data collection system
JP5755157B2 (en) * 2012-01-31 2015-07-29 三菱重工業株式会社 Fuel evaluation method and fuel adjustment method for avoiding slugging of low-grade fuel

Also Published As

Publication number Publication date
JP2015075439A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
Blum et al. Recent developments in mercury stable isotope analysis
Wang et al. Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W, Tl and Bi in geological reference materials and selected carbonaceous chondrites determined by isotope dilution ICP‐MS
Sahuquillo et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure
Cotta et al. Classical and new procedures of whole rock dissolution for trace element determination by ICP‐MS
Pallavicini et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS
Castillo et al. Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry
Baker et al. Investigation of thallium fluxes from subaerial volcanism—Implications for the present and past mass balance of thallium in the oceans
Helmeczi et al. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry
Wang et al. Abundances of sulfur, selenium, tellurium, rhenium and platinum‐group elements in eighteen reference materials by isotope dilution sector‐field ICP‐MS and negative TIMS
Bank et al. Analysis of Rare Earth Elements in Geologic Samples using Inductively Coupled Plasma Mass Spectrometry; US DOE Topical Report-DOE/NETL-2016/1794
König et al. A non-primitive origin of near-chondritic S–Se–Te ratios in mantle peridotites; implications for the Earthʼs late accretionary history
Cabral et al. Direct dating of gold by radiogenic helium: Testing the method on gold from Diamantina, Minas Gerais, Brazil
Stüeken et al. Selenium isotope analysis of organic-rich shales: advances in sample preparation and isobaric interference correction
CN105008909A (en) Combustion pretreatment-isotope dilution mass spectrometry
De Muynck et al. Development of a new method for Pb isotopic analysis of archaeological artefacts using single-collector ICP-dynamic reaction cell-MS
Luais Germanium chemistry and MC-ICPMS isotopic measurements of Fe–Ni, Zn alloys and silicate matrices: Insights into deep Earth processes
Asaoka et al. Preconcentration method of antimony using modified thiol cotton fiber for isotopic analyses of antimony in natural samples
Aydin et al. Vanadium fractions determination in asphaltite combustion waste using sequential extraction with ICP-OES
Okina et al. An investigation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP‐MS
Li et al. High‐precision measurement of molybdenum isotopic compositions of selected geochemical reference materials
Lv et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples
Chen et al. Tellurium speciation in a bioleaching solution by hydride generation atomic fluorescence spectrometry
Lashari et al. Fractionation of lead in lignite coal samples of Thar coalfield, Pakistan by time‐saving single‐step based on BCR sequential extraction scheme
JP6143632B2 (en) Component analysis method for low ash samples
Sampaio et al. New ICP‐MS results for trace elements in five iron‐formation reference materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150