JP2005291970A - Quantitative analyzing method of boron - Google Patents

Quantitative analyzing method of boron Download PDF

Info

Publication number
JP2005291970A
JP2005291970A JP2004108384A JP2004108384A JP2005291970A JP 2005291970 A JP2005291970 A JP 2005291970A JP 2004108384 A JP2004108384 A JP 2004108384A JP 2004108384 A JP2004108384 A JP 2004108384A JP 2005291970 A JP2005291970 A JP 2005291970A
Authority
JP
Japan
Prior art keywords
sample
dichloroethane
boron
layer
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004108384A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
宏 久保田
Shinji Fukunaga
真嗣 福永
Emiko Nishiyama
笑子 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chuden Kankyo Technos Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2004108384A priority Critical patent/JP2005291970A/en
Publication of JP2005291970A publication Critical patent/JP2005291970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantitative analyzing method of boron determining boron contained in a solid sample more rapidly and accurately. <P>SOLUTION: The quantitative determination of boron is made rapidly and precisely by processes for: performing the ashing and alkali melting of a coal sample at 500-1,000°C at the same time using an electric furnace; for heating and melting a mixed solution prepared by adding sulfuric acid and phosphoric acid to the ashed and molten sample; adding hydrogen fluoride, a Methylene Blue reagent and dichloroethane to the heated and dissolved mixed solution successively to separate the mixed solution into a dichloroethane layer and a water layer; washing the dichloroethane layer using silver sulfate; dehydrating the washed dichloroethane layer; and measuring the absorbance of the dehydrated dichloroethane layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ホウ素の定量分析方法に関する。   The present invention relates to a method for quantitative analysis of boron.

従来、ホウ素の定量分析としては、例えば、以下の工程からなるメチレンブルー吸光光度法が用いられている(非特許文献1参照)。
1.固体試料を管状炉で燃焼することにより得られた残渣及び排ガスをそれぞれ回収する(排ガスは吸収液(蒸留水)を用いて回収する。)。
2.前記残渣に炭酸ナトリウムを添加した混合物を電気炉を用いて1000℃で融解する。
3.融解した前記混合物に硫酸及びリン酸を添加した混合溶液を加熱溶解する。
4.前記混合溶液を濾過する。
5.濾過した前記混合溶液と、前記排ガスを回収した吸収液とに、それぞれフッ化水素、メチレンブルー試薬、及びジクロロエタンを順に添加してジクロロエタン層と水層とに分離する。以下各々を独立に処理する。
6.前記ジクロロエタン層を硫酸銀を用いて洗浄する。
7.洗浄した前記ジクロロエタン層を脱水処理する。
8.脱水処理した前記ジクロロエタン層の吸光度を測定する。
9.前記濾過した混合溶液中のホウ素の含有量と、前記排ガスを回収した吸収液中のホウ素の含有量とを合算する。
工業排水試験方法(JISK0102の47.1〜47.3),社団法人日本工業用水協会,1998年4月20日
Conventionally, for quantitative analysis of boron, for example, a methylene blue absorptiometric method comprising the following steps is used (see Non-Patent Document 1).
1. The residue and exhaust gas obtained by burning the solid sample in a tubular furnace are recovered (the exhaust gas is recovered using an absorbing solution (distilled water)).
2. A mixture obtained by adding sodium carbonate to the residue is melted at 1000 ° C. using an electric furnace.
3. A mixed solution obtained by adding sulfuric acid and phosphoric acid to the melted mixture is heated and dissolved.
4). The mixed solution is filtered.
5). Hydrogen fluoride, a methylene blue reagent, and dichloroethane are sequentially added to the filtered mixed solution and the absorption liquid from which the exhaust gas has been recovered, respectively, to separate into a dichloroethane layer and an aqueous layer. Each of the following is processed independently.
6). The dichloroethane layer is washed with silver sulfate.
7). The washed dichloroethane layer is dehydrated.
8). The absorbance of the dehydrated dichloroethane layer is measured.
9. The boron content in the filtered mixed solution and the boron content in the absorbing solution from which the exhaust gas has been recovered are added together.
Industrial drainage test method (JISK0102 47.1-47.3), Japan Industrial Water Association, April 20, 1998

上述のように、従来のメチレンブルー吸光光度法においては、直接固体試料を定量分析することができないため、一端液体試料を調製し(上記1〜4の工程)、定量分析を行っていた。しかしながら、この液体試料の調製は、操作が煩雑で、かつ時間がかかる上、ホウ素の回収率が低いという問題があった。そのため、固体試料中のホウ素の定量分析を迅速かつ正確に行うことができなかった。   As described above, in the conventional methylene blue absorptiometry, since a solid sample cannot be directly quantitatively analyzed, a liquid sample is prepared (steps 1 to 4 above) and quantitative analysis is performed. However, the preparation of the liquid sample has problems that the operation is complicated and time-consuming, and the boron recovery rate is low. Therefore, the quantitative analysis of boron in the solid sample cannot be performed quickly and accurately.

そこで、本発明は、固体試料に含まれるホウ素の定量分析を迅速に、かつ正確に行うことができる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of quickly and accurately performing quantitative analysis of boron contained in a solid sample.

本発明者は、上記課題を解決すべく、電気炉を用いて、500〜1000°で石炭試料の灰化とアルカリ融解を同時に行い、その後、灰化融解した前記試料に硫酸及びリン酸を添加して加熱溶解し、さらに、フッ化水素、メチレンブルー試薬、及びジクロロエタンを順に添加してジクロロエタン層と水層とに分離した後、硫酸銀を用いて前記ジクロロエタン層を洗浄し、さらに、無水硫酸ナトリウムを添加して脱水処理して前記ジクロロエタン層に含まれるホウ素の含有量を測定したところ、JIS K0102に準拠したメチレンブルー吸光光度法と同程度の精度で、より迅速にホウ素の定量分析を行うことができることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventor simultaneously performed ashing and alkali melting of a coal sample at 500 to 1000 ° using an electric furnace, and then adding sulfuric acid and phosphoric acid to the ashed and melted sample. Then, after dissolving by heating and further adding hydrogen fluoride, methylene blue reagent and dichloroethane in order to separate into a dichloroethane layer and an aqueous layer, the dichloroethane layer is washed with silver sulfate, and further anhydrous sodium sulfate Was added and dehydrated to measure the boron content in the dichloroethane layer. As a result, it was possible to perform quantitative analysis of boron more quickly with the same accuracy as the methylene blue absorptiometry according to JIS K0102. The present inventors have found that this can be done, and have completed the present invention.

すなわち、本発明に係る方法は、試料に含まれるホウ素の定量分析方法であって、アルカリ融剤を用いて試料を電気炉で灰化融解する工程と、灰化融解した前記試料に硫酸及びリン酸を添加した混合溶液を加熱溶解する工程と、加熱溶解した前記混合溶液に、フッ化水素、メチレンブルー試薬、及びジクロロエタンを順に添加してジクロロエタン層と水層とに分離する工程と、硫酸銀を用いて前記ジクロロエタン層を洗浄する工程と、洗浄した前記ジクロロエタン層を脱水処理する工程と、脱水処理した前記ジクロロエタン層の吸光度を測定する工程と、を含むことを特徴とする。   That is, the method according to the present invention is a method for quantitative analysis of boron contained in a sample, the step of ashing and melting the sample in an electric furnace using an alkaline flux, and sulfuric acid and phosphorus in the ashed and melted sample. A step of heating and dissolving the mixed solution to which the acid has been added, a step of sequentially adding hydrogen fluoride, a methylene blue reagent, and dichloroethane to the mixed solution that has been dissolved by heating to separate the dichloroethane layer and the aqueous layer; A step of washing the dichloroethane layer, a step of dehydrating the washed dichloroethane layer, and a step of measuring the absorbance of the dehydrated dichloroethane layer.

本発明によれば、固体試料に含まれるホウ素の定量分析を迅速に、かつ正確に行うことができる方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can perform the quantitative analysis of the boron contained in a solid sample rapidly and correctly can be provided.

上記知見に基づき完成した本発明を実施するための形態を、実施例を挙げながら詳細に説明する。   An embodiment for carrying out the present invention completed based on the above knowledge will be described in detail with reference to examples.

本発明に係る試料に含まれるホウ素の定量分析方法では、試料の灰化処理と融解処理を同時に行う。これらの処理は、アーク炉、誘導炉、プラズマ炉、電子ビーム炉などの電気炉を用いて行うことができる。このように試料の灰化処理と融解処理を同時に行うことにより、ガス状で揮散するホウ素量を減少させることができ、もって試料に含まれるホウ素の定量分析を精度よく行うことができるようになる。また、試料を灰化することにより、試料中に含まれる有機物を熱分解することができ、有機物とホウ素との吸着・反応を防止することができるようになる。もって、試料に含まれるホウ素の定量分析を精度よく行うことが可能になる。   In the method for quantitative analysis of boron contained in a sample according to the present invention, the sample is ashed and melted at the same time. These treatments can be performed using an electric furnace such as an arc furnace, an induction furnace, a plasma furnace, or an electron beam furnace. By simultaneously performing the ashing treatment and the melting treatment of the sample in this way, the amount of boron volatilized in the gaseous state can be reduced, so that the quantitative analysis of boron contained in the sample can be performed with high accuracy. . In addition, by ashing the sample, the organic matter contained in the sample can be thermally decomposed, and adsorption / reaction between the organic matter and boron can be prevented. Accordingly, it becomes possible to accurately perform quantitative analysis of boron contained in the sample.

前記試料としては、燃焼できるものであればどのようなものでもよく、石炭や石油などの化石燃料や、動物飼料、植物肥料などを用いることができる。また、前記アルカリ融剤としては、例えば、炭酸ナトリウム、硝酸ナトリウムなどのアルカリ金属を用いることができる。アルカリ融剤の添加量としては、試料を完全に融解できる量であれば特に制限されるものではないが、試料1gに対してアルカリ融剤1gを用いることが好ましい。   Any sample can be used as long as it can be combusted, and fossil fuels such as coal and petroleum, animal feed, plant fertilizer, and the like can be used. Moreover, as said alkali flux, alkali metals, such as sodium carbonate and sodium nitrate, can be used, for example. The amount of the alkali flux added is not particularly limited as long as the sample can be completely melted, but 1 g of the alkali flux is preferably used with respect to 1 g of the sample.

次に、融解処理した試料に硫酸及びリン酸を添加し、この混合溶液を100℃以下で加熱溶解する。この処理により、後述するテトラフルオロホウ酸イオンを形成しやすくすることができる。なお、本実施の形態においては、加熱溶解する際に硫酸及びリン酸を添加することとしているが、硫酸、リン酸、硝酸、又はこれらの混合溶液などのホウ素を溶解できる酸性溶液を添加することとしてもよい。   Next, sulfuric acid and phosphoric acid are added to the melted sample, and the mixed solution is heated and dissolved at 100 ° C. or lower. By this treatment, tetrafluoroborate ions described later can be easily formed. In this embodiment, sulfuric acid and phosphoric acid are added when dissolving by heating, but an acidic solution that can dissolve boron, such as sulfuric acid, phosphoric acid, nitric acid, or a mixed solution thereof, is added. It is good.

次に、加熱溶解した混合溶液にフッ化水素を添加してテトラフルオロホウ酸イオンを生成させ、続いて、メチレンブルー試薬(3.7-ビス(ジメチルアミニフェノチアジン-5-イウムクロリド)及びジクロロエタンを添加してジクロロエタン層と水層に分離すると、ジクロロエタン層にその錯体が抽出される。このジクロロエタン層に含まれるヨウ化物および硫化物を除去するために硫酸銀を用いてジクロロエタン層を洗浄し、無水硫酸ナトリウムや無水酢酸などの脱水剤を用いて脱水処理する。このようにして得られたジクロロエタン層を波長660nmの吸光度で測定することにより、ジクロロエタン層に含まれる錯体を定量することができるので、ホウ素の定量分析を行うことができる。なお、ジクロロエタン層と水層との分離は、遠心分離器を用いて行うことにより、より迅速にホウ素の定量分析を行うことができる。   Next, hydrogen fluoride is added to the heat-dissolved mixed solution to generate tetrafluoroborate ions, and then methylene blue reagent (3.7-bis (dimethylaminiphenothiazine-5-ium chloride) and dichloroethane are added to add dichloroethane. The complex is extracted into the dichloroethane layer when the layer is separated from the aqueous layer and the aqueous layer, and the dichloroethane layer is washed with silver sulfate to remove iodide and sulfide contained in the dichloroethane layer. Dehydration treatment is performed using a dehydrating agent such as acetic acid, etc. The complex contained in the dichloroethane layer can be quantified by measuring the absorbance of the dichloroethane layer thus obtained at a wavelength of 660 nm. In addition, the separation of the dichloroethane layer and the aqueous layer is performed by centrifugation. By performing with, it can be carried out more quickly quantitative analysis of boron.

以上のように、試料に含まれるホウ素の定量分析を行うことにより、ホウ素が多量に含まれる試料を特定することができ、また、このような試料の使用を避けることにより、環境汚染を未然に防止することができるようになる。   As described above, by performing quantitative analysis of boron contained in a sample, it is possible to identify a sample containing a large amount of boron, and by avoiding the use of such a sample, environmental pollution can be prevented. Can be prevented.

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

表1に示した各試料(ユインタプレミアム炭、グレゴリー炭、マウントオーエン炭、NIST SRM 1632C(標準石炭)など)を250μm以下に微粉砕したものを用いて、それらの石炭に含有するホウ素の定量を行った。まず、1gの各試料と1gの炭酸ナトリウムを白金皿にそれぞれのせて均一になるように十分に撹拌し、室温から500℃までゆっくりと温度を上昇させ、500℃で10分間保持することにより、試料の予備加熱、揮発成分の分解を行った。500℃で10分間保持した後、1000℃までゆっくりと温度を上昇させ、試料の灰化及び融解を同時に行った。   Quantitative determination of boron contained in each sample shown in Table 1 (Uinta premium coal, Gregory coal, Mount Owen coal, NIST SRM 1632C (standard coal), etc.) finely ground to 250 μm or less Went. First, 1 g of each sample and 1 g of sodium carbonate are placed on a platinum dish and stirred sufficiently so as to be uniform. The temperature is slowly increased from room temperature to 500 ° C. and held at 500 ° C. for 10 minutes. The sample was preheated and volatile components were decomposed. After holding at 500 ° C. for 10 minutes, the temperature was slowly raised to 1000 ° C., and the sample was ashed and melted simultaneously.

放冷後、融解処理した試料をテフロンビーカーに移し、蒸留水 50ml、(1+1)HSO 5ml、及びHPO 3mlを添加して、加熱しながら溶解させた。その後、蒸留水を添加してポリメスフラスコで100mlに定容し、ホウ素の含有量が0.1〜1.0μgとなるように適量をポリエチレン製の分液ロートに分取し、5% フッ化水素 3mlを添加して50℃のウォータバスに浸し、30分間反応させた。そして、1mM メチレンブルー試薬 3mlを添加し、1,2−ジクロロエタン 10mlを添加して1分間激しく振り混ぜた。 After standing to cool, the melted sample was transferred to a Teflon beaker, and 50 ml of distilled water, 5 ml of (1 + 1) H 2 SO 4 and 3 ml of H 3 PO 4 were added and dissolved while heating. Thereafter, distilled water is added and the volume is adjusted to 100 ml with a polymer flask, and an appropriate amount is dispensed into a polyethylene separatory funnel so that the boron content is 0.1 to 1.0 μg, and 5% 3 ml of hydrogen fluoride was added, immersed in a 50 ° C. water bath, and allowed to react for 30 minutes. Then, 3 ml of 1 mM methylene blue reagent was added, 10 ml of 1,2-dichloroethane was added and shaken vigorously for 1 minute.

10分間静置した後、分離したジクロロエタン層をポリエチレン製の分液ロートで回収し、0.3g/lの硫酸銀 5mlを添加して1分間激しく振り混ぜて、ジクロロエタン層を洗浄した。10分間静置後、50mlのトールビーカーにジクロロエタン層を回収し、無水硫酸ナトリウムで脱水処理した。その後、脱水処理したジクロロエタン層の一部を10mmの石英製の吸光セルに入れ、分光光度計(日立製;spectrophotometer U-3310)を用いて波長660nmの吸光度を測定し、予め作成した検量線を用いてジクロロエタン層に含まれるホウ素の量を求め、試料1gに含まれるホウ素の含有量を算出し、試料1kgに含まれるホウ素の含有量を算出した(手法1)。また、同じ試料に含まれるホウ素の定量をJIS K0102の47.1に準拠した方法(手法2)により行った。それらの結果を表1に示す。   After standing for 10 minutes, the separated dichloroethane layer was recovered with a polyethylene separatory funnel, 5 ml of 0.3 g / l silver sulfate was added and shaken vigorously for 1 minute to wash the dichloroethane layer. After standing for 10 minutes, the dichloroethane layer was collected in a 50 ml tall beaker and dehydrated with anhydrous sodium sulfate. Thereafter, a portion of the dehydrated dichloroethane layer was placed in a 10 mm quartz absorption cell, and the absorbance at a wavelength of 660 nm was measured using a spectrophotometer (Hitachi; spectrophotometer U-3310). The amount of boron contained in the dichloroethane layer was obtained, the content of boron contained in 1 g of the sample was calculated, and the content of boron contained in 1 kg of the sample was calculated (Method 1). Further, boron contained in the same sample was quantified by a method (method 2) based on 47.1 of JIS K0102. The results are shown in Table 1.

なお、表1において、試料1〜3の回収率は、手法2のホウ素の回収率を100%とした時の値を示し、試料4の回収率は、試料4の保証値(60mg/kg)を100%とした時の値を示す。

Figure 2005291970
In Table 1, the recovery rates of Samples 1 to 3 are values when the boron recovery rate of Method 2 is 100%, and the recovery rate of Sample 4 is the guaranteed value of Sample 4 (60 mg / kg). The value when the value is 100% is shown.
Figure 2005291970

表1に示すように、手法1のホウ素の回収率は、試料1〜3において手法2の回収率に比べおよそ6%増加した値が得られた。これは、電気炉を用いて灰化と溶融を直接的に同時に行うことにより、試料中のホウ素がガス状で揮散せずに完全に回収できたことによるものであると考えられる。従って、本発明の手法1を用いることにより、試料に含まれるホウ素の定量分析をより精度よく行うことができると考えられる。また、手法2は試料中のホウ素の定量分析に6時間も要したが、手法1はより短時間(5時間)で試料に含まれるホウ素の定量分析を行うことができた。

As shown in Table 1, the boron recovery rate of Method 1 was about 6% higher than that of Method 2 in Samples 1 to 3. This is considered to be due to the fact that boron in the sample could be completely recovered without vaporizing in a gaseous state by performing ashing and melting directly and simultaneously using an electric furnace. Therefore, it is considered that the quantitative analysis of boron contained in the sample can be performed with higher accuracy by using the method 1 of the present invention. Further, Method 2 required 6 hours for quantitative analysis of boron in the sample, but Method 1 was able to perform quantitative analysis of boron contained in the sample in a shorter time (5 hours).

Claims (1)

試料に含まれるホウ素の定量分析方法であって、アルカリ融剤を用いて試料を電気炉で灰化融解する工程と、灰化融解した前記試料に硫酸及びリン酸を添加した混合溶液を加熱溶解する工程と、加熱溶解した前記混合溶液に、フッ化水素、メチレンブルー試薬、及びジクロロエタンを順に添加してジクロロエタン層と水層とに分離する工程と、硫酸銀を用いて前記ジクロロエタン層を洗浄する工程と、洗浄した前記ジクロロエタン層を脱水処理する工程と、脱水処理した前記ジクロロエタン層の吸光度を測定する工程と、を含むことを特徴とするホウ素の定量分析方法。

A method for quantitative analysis of boron contained in a sample, the step of ashing and melting the sample in an electric furnace using an alkaline flux, and heating and dissolving a mixed solution obtained by adding sulfuric acid and phosphoric acid to the ashed and melted sample A step of adding hydrogen fluoride, a methylene blue reagent, and dichloroethane to the mixed solution dissolved by heating in order to separate the dichloroethane layer and the aqueous layer, and a step of washing the dichloroethane layer using silver sulfate And a step of dehydrating the washed dichloroethane layer, and a step of measuring the absorbance of the dehydrated dichloroethane layer.

JP2004108384A 2004-03-31 2004-03-31 Quantitative analyzing method of boron Pending JP2005291970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108384A JP2005291970A (en) 2004-03-31 2004-03-31 Quantitative analyzing method of boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108384A JP2005291970A (en) 2004-03-31 2004-03-31 Quantitative analyzing method of boron

Publications (1)

Publication Number Publication Date
JP2005291970A true JP2005291970A (en) 2005-10-20

Family

ID=35325054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108384A Pending JP2005291970A (en) 2004-03-31 2004-03-31 Quantitative analyzing method of boron

Country Status (1)

Country Link
JP (1) JP2005291970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075439A (en) * 2013-10-10 2015-04-20 三菱重工業株式会社 Component analysis method for low-ash sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075439A (en) * 2013-10-10 2015-04-20 三菱重工業株式会社 Component analysis method for low-ash sample

Similar Documents

Publication Publication Date Title
CN103728289A (en) Method for rapidly measuring gold and silver in crude copper
Amjadi et al. Ionic liquid-based, single-drop microextraction for preconcentration of cobalt before its determination by electrothermal atomic absorption spectrometry
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
JP6325358B2 (en) Method for separating and analyzing trace noble metals
JP2009014512A (en) Method for determining quantity of halide in sample containing organic compound
Dittmann et al. Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine
Munoz et al. Potentiometric stripping analysis for simultaneous determination of copper and lead in lubricating oils after total digestion in a focused microwave-assisted oven
Frentiu et al. Sono-induced cold vapour generation interfaced with capacitively coupled plasma microtorch optical emission spectrometry: Analytical characterization and comparison with atomic fluorescence spectrometry
Yuan et al. Preconcentration and determination of tin in water samples by using cloud point extraction and graphite furnace atomic absorption spectrometry
Ragheb et al. A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop for preconcentration of Pd (II) by graphite furnace atomic absorption spectrometry after complexation by a thienyl substituted 1, 2-ethanediamine
JP2011106961A (en) Analysis method of noble metal using laser ablation icp analysis method
JP2011214977A (en) Method of analyzing metal element in resin material
JP4655969B2 (en) Determination of iron
JP2005291970A (en) Quantitative analyzing method of boron
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
JP2020085894A (en) Evaluation methods for tungsten and element
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
JP2016095288A (en) Flow apparatus for automatic analysis of halogen and sulfur in organic compound, automatic analyzer using the flow apparatus, and method for automatic analysis
JP2015001374A (en) Cyanogen concentration measuring method
JP4559932B2 (en) Method for analyzing metal impurities
Fathabad et al. Determination of ultra trace amounts of silver by GFAAS after DLLME method in water, plasma and urine
JP4552645B2 (en) Determination of heavy metal elements
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
Maiti et al. A Fluorophore‐Free Chemodosimeter for H2S with Luminescence Turn–on Response: Hyrdogen Sulphide Sensing in Garlic Extract
JP6657851B2 (en) Determination of trace chlorine components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Effective date: 20090212

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A02